1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_X87_MACRO_ASSEMBLER_X87_H_
6 #define V8_X87_MACRO_ASSEMBLER_X87_H_
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
16 // Convenience for platform-independent signatures. We do not normally
17 // distinguish memory operands from other operands on ia32.
18 typedef Operand MemOperand;
20 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
21 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
22 enum PointersToHereCheck {
23 kPointersToHereMaybeInteresting,
24 kPointersToHereAreAlwaysInteresting
28 enum RegisterValueType {
29 REGISTER_VALUE_IS_SMI,
30 REGISTER_VALUE_IS_INT32
35 bool AreAliased(Register reg1,
37 Register reg3 = no_reg,
38 Register reg4 = no_reg,
39 Register reg5 = no_reg,
40 Register reg6 = no_reg,
41 Register reg7 = no_reg,
42 Register reg8 = no_reg);
46 // MacroAssembler implements a collection of frequently used macros.
47 class MacroAssembler: public Assembler {
49 // The isolate parameter can be NULL if the macro assembler should
50 // not use isolate-dependent functionality. In this case, it's the
51 // responsibility of the caller to never invoke such function on the
53 MacroAssembler(Isolate* isolate, void* buffer, int size);
55 void Load(Register dst, const Operand& src, Representation r);
56 void Store(Register src, const Operand& dst, Representation r);
58 // Operations on roots in the root-array.
59 void LoadRoot(Register destination, Heap::RootListIndex index);
60 void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
61 void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
62 // These methods can only be used with constant roots (i.e. non-writable
63 // and not in new space).
64 void CompareRoot(Register with, Heap::RootListIndex index);
65 void CompareRoot(const Operand& with, Heap::RootListIndex index);
67 // ---------------------------------------------------------------------------
69 enum RememberedSetFinalAction {
74 // Record in the remembered set the fact that we have a pointer to new space
75 // at the address pointed to by the addr register. Only works if addr is not
77 void RememberedSetHelper(Register object, // Used for debug code.
78 Register addr, Register scratch,
79 SaveFPRegsMode save_fp,
80 RememberedSetFinalAction and_then);
82 void CheckPageFlag(Register object,
87 Label::Distance condition_met_distance = Label::kFar);
89 void CheckPageFlagForMap(
94 Label::Distance condition_met_distance = Label::kFar);
96 void CheckMapDeprecated(Handle<Map> map,
98 Label* if_deprecated);
100 // Check if object is in new space. Jumps if the object is not in new space.
101 // The register scratch can be object itself, but scratch will be clobbered.
102 void JumpIfNotInNewSpace(Register object,
105 Label::Distance distance = Label::kFar) {
106 InNewSpace(object, scratch, zero, branch, distance);
109 // Check if object is in new space. Jumps if the object is in new space.
110 // The register scratch can be object itself, but it will be clobbered.
111 void JumpIfInNewSpace(Register object,
114 Label::Distance distance = Label::kFar) {
115 InNewSpace(object, scratch, not_zero, branch, distance);
118 // Check if an object has a given incremental marking color. Also uses ecx!
119 void HasColor(Register object,
123 Label::Distance has_color_distance,
127 void JumpIfBlack(Register object,
131 Label::Distance on_black_distance = Label::kFar);
133 // Checks the color of an object. If the object is already grey or black
134 // then we just fall through, since it is already live. If it is white and
135 // we can determine that it doesn't need to be scanned, then we just mark it
136 // black and fall through. For the rest we jump to the label so the
137 // incremental marker can fix its assumptions.
138 void EnsureNotWhite(Register object,
141 Label* object_is_white_and_not_data,
142 Label::Distance distance);
144 // Notify the garbage collector that we wrote a pointer into an object.
145 // |object| is the object being stored into, |value| is the object being
146 // stored. value and scratch registers are clobbered by the operation.
147 // The offset is the offset from the start of the object, not the offset from
148 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
149 void RecordWriteField(
150 Register object, int offset, Register value, Register scratch,
151 SaveFPRegsMode save_fp,
152 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
153 SmiCheck smi_check = INLINE_SMI_CHECK,
154 PointersToHereCheck pointers_to_here_check_for_value =
155 kPointersToHereMaybeInteresting);
157 // As above, but the offset has the tag presubtracted. For use with
158 // Operand(reg, off).
159 void RecordWriteContextSlot(
160 Register context, int offset, Register value, Register scratch,
161 SaveFPRegsMode save_fp,
162 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
163 SmiCheck smi_check = INLINE_SMI_CHECK,
164 PointersToHereCheck pointers_to_here_check_for_value =
165 kPointersToHereMaybeInteresting) {
166 RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
167 remembered_set_action, smi_check,
168 pointers_to_here_check_for_value);
171 // Notify the garbage collector that we wrote a pointer into a fixed array.
172 // |array| is the array being stored into, |value| is the
173 // object being stored. |index| is the array index represented as a
174 // Smi. All registers are clobbered by the operation RecordWriteArray
175 // filters out smis so it does not update the write barrier if the
177 void RecordWriteArray(
178 Register array, Register value, Register index, SaveFPRegsMode save_fp,
179 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
180 SmiCheck smi_check = INLINE_SMI_CHECK,
181 PointersToHereCheck pointers_to_here_check_for_value =
182 kPointersToHereMaybeInteresting);
184 // For page containing |object| mark region covering |address|
185 // dirty. |object| is the object being stored into, |value| is the
186 // object being stored. The address and value registers are clobbered by the
187 // operation. RecordWrite filters out smis so it does not update the
188 // write barrier if the value is a smi.
190 Register object, Register address, Register value, SaveFPRegsMode save_fp,
191 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
192 SmiCheck smi_check = INLINE_SMI_CHECK,
193 PointersToHereCheck pointers_to_here_check_for_value =
194 kPointersToHereMaybeInteresting);
196 // For page containing |object| mark the region covering the object's map
197 // dirty. |object| is the object being stored into, |map| is the Map object
199 void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
200 Register scratch2, SaveFPRegsMode save_fp);
202 // ---------------------------------------------------------------------------
207 // Generates function and stub prologue code.
209 void Prologue(bool code_pre_aging);
211 // Enter specific kind of exit frame. Expects the number of
212 // arguments in register eax and sets up the number of arguments in
213 // register edi and the pointer to the first argument in register
215 void EnterExitFrame(bool save_doubles);
217 void EnterApiExitFrame(int argc);
219 // Leave the current exit frame. Expects the return value in
220 // register eax:edx (untouched) and the pointer to the first
221 // argument in register esi.
222 void LeaveExitFrame(bool save_doubles);
224 // Leave the current exit frame. Expects the return value in
225 // register eax (untouched).
226 void LeaveApiExitFrame(bool restore_context);
228 // Find the function context up the context chain.
229 void LoadContext(Register dst, int context_chain_length);
231 // Conditionally load the cached Array transitioned map of type
232 // transitioned_kind from the native context if the map in register
233 // map_in_out is the cached Array map in the native context of
235 void LoadTransitionedArrayMapConditional(
236 ElementsKind expected_kind,
237 ElementsKind transitioned_kind,
240 Label* no_map_match);
242 // Load the global function with the given index.
243 void LoadGlobalFunction(int index, Register function);
245 // Load the initial map from the global function. The registers
246 // function and map can be the same.
247 void LoadGlobalFunctionInitialMap(Register function, Register map);
249 // Push and pop the registers that can hold pointers.
250 void PushSafepointRegisters() { pushad(); }
251 void PopSafepointRegisters() { popad(); }
252 // Store the value in register/immediate src in the safepoint
253 // register stack slot for register dst.
254 void StoreToSafepointRegisterSlot(Register dst, Register src);
255 void StoreToSafepointRegisterSlot(Register dst, Immediate src);
256 void LoadFromSafepointRegisterSlot(Register dst, Register src);
258 void LoadHeapObject(Register result, Handle<HeapObject> object);
259 void CmpHeapObject(Register reg, Handle<HeapObject> object);
260 void PushHeapObject(Handle<HeapObject> object);
262 void LoadObject(Register result, Handle<Object> object) {
263 AllowDeferredHandleDereference heap_object_check;
264 if (object->IsHeapObject()) {
265 LoadHeapObject(result, Handle<HeapObject>::cast(object));
267 Move(result, Immediate(object));
271 void CmpObject(Register reg, Handle<Object> object) {
272 AllowDeferredHandleDereference heap_object_check;
273 if (object->IsHeapObject()) {
274 CmpHeapObject(reg, Handle<HeapObject>::cast(object));
276 cmp(reg, Immediate(object));
280 // ---------------------------------------------------------------------------
281 // JavaScript invokes
283 // Invoke the JavaScript function code by either calling or jumping.
284 void InvokeCode(Register code,
285 const ParameterCount& expected,
286 const ParameterCount& actual,
288 const CallWrapper& call_wrapper) {
289 InvokeCode(Operand(code), expected, actual, flag, call_wrapper);
292 void InvokeCode(const Operand& code,
293 const ParameterCount& expected,
294 const ParameterCount& actual,
296 const CallWrapper& call_wrapper);
298 // Invoke the JavaScript function in the given register. Changes the
299 // current context to the context in the function before invoking.
300 void InvokeFunction(Register function,
301 const ParameterCount& actual,
303 const CallWrapper& call_wrapper);
305 void InvokeFunction(Register function,
306 const ParameterCount& expected,
307 const ParameterCount& actual,
309 const CallWrapper& call_wrapper);
311 void InvokeFunction(Handle<JSFunction> function,
312 const ParameterCount& expected,
313 const ParameterCount& actual,
315 const CallWrapper& call_wrapper);
317 // Invoke specified builtin JavaScript function. Adds an entry to
318 // the unresolved list if the name does not resolve.
319 void InvokeBuiltin(Builtins::JavaScript id,
321 const CallWrapper& call_wrapper = NullCallWrapper());
323 // Store the function for the given builtin in the target register.
324 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
326 // Store the code object for the given builtin in the target register.
327 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
329 // Expression support
330 // Support for constant splitting.
331 bool IsUnsafeImmediate(const Immediate& x);
332 void SafeMove(Register dst, const Immediate& x);
333 void SafePush(const Immediate& x);
335 // Compare object type for heap object.
336 // Incoming register is heap_object and outgoing register is map.
337 void CmpObjectType(Register heap_object, InstanceType type, Register map);
339 // Compare instance type for map.
340 void CmpInstanceType(Register map, InstanceType type);
342 // Check if a map for a JSObject indicates that the object has fast elements.
343 // Jump to the specified label if it does not.
344 void CheckFastElements(Register map,
346 Label::Distance distance = Label::kFar);
348 // Check if a map for a JSObject indicates that the object can have both smi
349 // and HeapObject elements. Jump to the specified label if it does not.
350 void CheckFastObjectElements(Register map,
352 Label::Distance distance = Label::kFar);
354 // Check if a map for a JSObject indicates that the object has fast smi only
355 // elements. Jump to the specified label if it does not.
356 void CheckFastSmiElements(Register map,
358 Label::Distance distance = Label::kFar);
360 // Check to see if maybe_number can be stored as a double in
361 // FastDoubleElements. If it can, store it at the index specified by key in
362 // the FastDoubleElements array elements, otherwise jump to fail.
363 void StoreNumberToDoubleElements(Register maybe_number,
370 // Compare an object's map with the specified map.
371 void CompareMap(Register obj, Handle<Map> map);
373 // Check if the map of an object is equal to a specified map and branch to
374 // label if not. Skip the smi check if not required (object is known to be a
375 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
376 // against maps that are ElementsKind transition maps of the specified map.
377 void CheckMap(Register obj,
380 SmiCheckType smi_check_type);
382 // Check if the map of an object is equal to a specified map and branch to a
383 // specified target if equal. Skip the smi check if not required (object is
384 // known to be a heap object)
385 void DispatchMap(Register obj,
388 Handle<Code> success,
389 SmiCheckType smi_check_type);
391 // Check if the object in register heap_object is a string. Afterwards the
392 // register map contains the object map and the register instance_type
393 // contains the instance_type. The registers map and instance_type can be the
394 // same in which case it contains the instance type afterwards. Either of the
395 // registers map and instance_type can be the same as heap_object.
396 Condition IsObjectStringType(Register heap_object,
398 Register instance_type);
400 // Check if the object in register heap_object is a name. Afterwards the
401 // register map contains the object map and the register instance_type
402 // contains the instance_type. The registers map and instance_type can be the
403 // same in which case it contains the instance type afterwards. Either of the
404 // registers map and instance_type can be the same as heap_object.
405 Condition IsObjectNameType(Register heap_object,
407 Register instance_type);
409 // Check if a heap object's type is in the JSObject range, not including
410 // JSFunction. The object's map will be loaded in the map register.
411 // Any or all of the three registers may be the same.
412 // The contents of the scratch register will always be overwritten.
413 void IsObjectJSObjectType(Register heap_object,
418 // The contents of the scratch register will be overwritten.
419 void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
421 // FCmp is similar to integer cmp, but requires unsigned
422 // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
424 void FXamMinusZero();
427 void X87SetRC(int rc);
429 void ClampUint8(Register reg);
430 void ClampTOSToUint8(Register result_reg);
432 void SlowTruncateToI(Register result_reg, Register input_reg,
433 int offset = HeapNumber::kValueOffset - kHeapObjectTag);
435 void TruncateHeapNumberToI(Register result_reg, Register input_reg);
436 void TruncateX87TOSToI(Register result_reg);
438 void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode,
439 Label* lost_precision, Label* is_nan, Label* minus_zero,
440 Label::Distance dst = Label::kFar);
442 // Smi tagging support.
443 void SmiTag(Register reg) {
444 STATIC_ASSERT(kSmiTag == 0);
445 STATIC_ASSERT(kSmiTagSize == 1);
448 void SmiUntag(Register reg) {
449 sar(reg, kSmiTagSize);
452 // Modifies the register even if it does not contain a Smi!
453 void SmiUntag(Register reg, Label* is_smi) {
454 STATIC_ASSERT(kSmiTagSize == 1);
455 sar(reg, kSmiTagSize);
456 STATIC_ASSERT(kSmiTag == 0);
457 j(not_carry, is_smi);
460 void LoadUint32NoSSE2(Register src) {
461 LoadUint32NoSSE2(Operand(src));
463 void LoadUint32NoSSE2(const Operand& src);
465 // Jump the register contains a smi.
466 inline void JumpIfSmi(Register value,
468 Label::Distance distance = Label::kFar) {
469 test(value, Immediate(kSmiTagMask));
470 j(zero, smi_label, distance);
472 // Jump if the operand is a smi.
473 inline void JumpIfSmi(Operand value,
475 Label::Distance distance = Label::kFar) {
476 test(value, Immediate(kSmiTagMask));
477 j(zero, smi_label, distance);
479 // Jump if register contain a non-smi.
480 inline void JumpIfNotSmi(Register value,
481 Label* not_smi_label,
482 Label::Distance distance = Label::kFar) {
483 test(value, Immediate(kSmiTagMask));
484 j(not_zero, not_smi_label, distance);
487 void LoadInstanceDescriptors(Register map, Register descriptors);
488 void EnumLength(Register dst, Register map);
489 void NumberOfOwnDescriptors(Register dst, Register map);
491 template<typename Field>
492 void DecodeField(Register reg) {
493 static const int shift = Field::kShift;
494 static const int mask = Field::kMask >> Field::kShift;
498 and_(reg, Immediate(mask));
501 template<typename Field>
502 void DecodeFieldToSmi(Register reg) {
503 static const int shift = Field::kShift;
504 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
505 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
506 STATIC_ASSERT(kSmiTag == 0);
507 if (shift < kSmiTagSize) {
508 shl(reg, kSmiTagSize - shift);
509 } else if (shift > kSmiTagSize) {
510 sar(reg, shift - kSmiTagSize);
512 and_(reg, Immediate(mask));
515 // Abort execution if argument is not a number, enabled via --debug-code.
516 void AssertNumber(Register object);
518 // Abort execution if argument is not a smi, enabled via --debug-code.
519 void AssertSmi(Register object);
521 // Abort execution if argument is a smi, enabled via --debug-code.
522 void AssertNotSmi(Register object);
524 // Abort execution if argument is not a string, enabled via --debug-code.
525 void AssertString(Register object);
527 // Abort execution if argument is not a name, enabled via --debug-code.
528 void AssertName(Register object);
530 // Abort execution if argument is not undefined or an AllocationSite, enabled
532 void AssertUndefinedOrAllocationSite(Register object);
534 // ---------------------------------------------------------------------------
535 // Exception handling
537 // Push a new try handler and link it into try handler chain.
538 void PushTryHandler(StackHandler::Kind kind, int handler_index);
540 // Unlink the stack handler on top of the stack from the try handler chain.
541 void PopTryHandler();
543 // Throw to the top handler in the try hander chain.
544 void Throw(Register value);
546 // Throw past all JS frames to the top JS entry frame.
547 void ThrowUncatchable(Register value);
549 // ---------------------------------------------------------------------------
550 // Inline caching support
552 // Generate code for checking access rights - used for security checks
553 // on access to global objects across environments. The holder register
554 // is left untouched, but the scratch register is clobbered.
555 void CheckAccessGlobalProxy(Register holder_reg,
560 void GetNumberHash(Register r0, Register scratch);
562 void LoadFromNumberDictionary(Label* miss,
571 // ---------------------------------------------------------------------------
572 // Allocation support
574 // Allocate an object in new space or old pointer space. If the given space
575 // is exhausted control continues at the gc_required label. The allocated
576 // object is returned in result and end of the new object is returned in
577 // result_end. The register scratch can be passed as no_reg in which case
578 // an additional object reference will be added to the reloc info. The
579 // returned pointers in result and result_end have not yet been tagged as
580 // heap objects. If result_contains_top_on_entry is true the content of
581 // result is known to be the allocation top on entry (could be result_end
582 // from a previous call). If result_contains_top_on_entry is true scratch
583 // should be no_reg as it is never used.
584 void Allocate(int object_size,
589 AllocationFlags flags);
591 void Allocate(int header_size,
592 ScaleFactor element_size,
593 Register element_count,
594 RegisterValueType element_count_type,
599 AllocationFlags flags);
601 void Allocate(Register object_size,
606 AllocationFlags flags);
608 // Undo allocation in new space. The object passed and objects allocated after
609 // it will no longer be allocated. Make sure that no pointers are left to the
610 // object(s) no longer allocated as they would be invalid when allocation is
612 void UndoAllocationInNewSpace(Register object);
614 // Allocate a heap number in new space with undefined value. The
615 // register scratch2 can be passed as no_reg; the others must be
616 // valid registers. Returns tagged pointer in result register, or
617 // jumps to gc_required if new space is full.
618 void AllocateHeapNumber(Register result,
622 MutableMode mode = IMMUTABLE);
624 // Allocate a sequential string. All the header fields of the string object
626 void AllocateTwoByteString(Register result,
632 void AllocateOneByteString(Register result, Register length,
633 Register scratch1, Register scratch2,
634 Register scratch3, Label* gc_required);
635 void AllocateOneByteString(Register result, int length, Register scratch1,
636 Register scratch2, Label* gc_required);
638 // Allocate a raw cons string object. Only the map field of the result is
640 void AllocateTwoByteConsString(Register result,
644 void AllocateOneByteConsString(Register result, Register scratch1,
645 Register scratch2, Label* gc_required);
647 // Allocate a raw sliced string object. Only the map field of the result is
649 void AllocateTwoByteSlicedString(Register result,
653 void AllocateOneByteSlicedString(Register result, Register scratch1,
654 Register scratch2, Label* gc_required);
656 // Copy memory, byte-by-byte, from source to destination. Not optimized for
657 // long or aligned copies.
658 // The contents of index and scratch are destroyed.
659 void CopyBytes(Register source,
660 Register destination,
664 // Initialize fields with filler values. Fields starting at |start_offset|
665 // not including end_offset are overwritten with the value in |filler|. At
666 // the end the loop, |start_offset| takes the value of |end_offset|.
667 void InitializeFieldsWithFiller(Register start_offset,
671 // ---------------------------------------------------------------------------
672 // Support functions.
674 // Check a boolean-bit of a Smi field.
675 void BooleanBitTest(Register object, int field_offset, int bit_index);
677 // Check if result is zero and op is negative.
678 void NegativeZeroTest(Register result, Register op, Label* then_label);
680 // Check if result is zero and any of op1 and op2 are negative.
681 // Register scratch is destroyed, and it must be different from op2.
682 void NegativeZeroTest(Register result, Register op1, Register op2,
683 Register scratch, Label* then_label);
685 // Try to get function prototype of a function and puts the value in
686 // the result register. Checks that the function really is a
687 // function and jumps to the miss label if the fast checks fail. The
688 // function register will be untouched; the other registers may be
690 void TryGetFunctionPrototype(Register function,
694 bool miss_on_bound_function = false);
696 // Picks out an array index from the hash field.
698 // hash - holds the index's hash. Clobbered.
699 // index - holds the overwritten index on exit.
700 void IndexFromHash(Register hash, Register index);
702 // ---------------------------------------------------------------------------
705 // Call a code stub. Generate the code if necessary.
706 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
708 // Tail call a code stub (jump). Generate the code if necessary.
709 void TailCallStub(CodeStub* stub);
711 // Return from a code stub after popping its arguments.
712 void StubReturn(int argc);
714 // Call a runtime routine.
715 void CallRuntime(const Runtime::Function* f, int num_arguments,
716 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
717 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
718 const Runtime::Function* function = Runtime::FunctionForId(id);
719 CallRuntime(function, function->nargs, kSaveFPRegs);
722 // Convenience function: Same as above, but takes the fid instead.
723 void CallRuntime(Runtime::FunctionId id, int num_arguments,
724 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
725 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
728 // Convenience function: call an external reference.
729 void CallExternalReference(ExternalReference ref, int num_arguments);
731 // Tail call of a runtime routine (jump).
732 // Like JumpToExternalReference, but also takes care of passing the number
734 void TailCallExternalReference(const ExternalReference& ext,
738 // Convenience function: tail call a runtime routine (jump).
739 void TailCallRuntime(Runtime::FunctionId fid,
743 // Before calling a C-function from generated code, align arguments on stack.
744 // After aligning the frame, arguments must be stored in esp[0], esp[4],
745 // etc., not pushed. The argument count assumes all arguments are word sized.
746 // Some compilers/platforms require the stack to be aligned when calling
748 // Needs a scratch register to do some arithmetic. This register will be
750 void PrepareCallCFunction(int num_arguments, Register scratch);
752 // Calls a C function and cleans up the space for arguments allocated
753 // by PrepareCallCFunction. The called function is not allowed to trigger a
754 // garbage collection, since that might move the code and invalidate the
755 // return address (unless this is somehow accounted for by the called
757 void CallCFunction(ExternalReference function, int num_arguments);
758 void CallCFunction(Register function, int num_arguments);
760 // Prepares stack to put arguments (aligns and so on). Reserves
761 // space for return value if needed (assumes the return value is a handle).
762 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
763 // etc. Saves context (esi). If space was reserved for return value then
764 // stores the pointer to the reserved slot into esi.
765 void PrepareCallApiFunction(int argc);
767 // Calls an API function. Allocates HandleScope, extracts returned value
768 // from handle and propagates exceptions. Clobbers ebx, edi and
769 // caller-save registers. Restores context. On return removes
770 // stack_space * kPointerSize (GCed).
771 void CallApiFunctionAndReturn(Register function_address,
772 ExternalReference thunk_ref,
773 Operand thunk_last_arg,
775 Operand return_value_operand,
776 Operand* context_restore_operand);
778 // Jump to a runtime routine.
779 void JumpToExternalReference(const ExternalReference& ext);
781 // ---------------------------------------------------------------------------
786 // Return and drop arguments from stack, where the number of arguments
787 // may be bigger than 2^16 - 1. Requires a scratch register.
788 void Ret(int bytes_dropped, Register scratch);
790 // Emit code to discard a non-negative number of pointer-sized elements
791 // from the stack, clobbering only the esp register.
792 void Drop(int element_count);
794 void Call(Label* target) { call(target); }
795 void Push(Register src) { push(src); }
796 void Pop(Register dst) { pop(dst); }
798 // Emit call to the code we are currently generating.
800 Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
801 call(self, RelocInfo::CODE_TARGET);
804 // Move if the registers are not identical.
805 void Move(Register target, Register source);
807 // Move a constant into a destination using the most efficient encoding.
808 void Move(Register dst, const Immediate& x);
809 void Move(const Operand& dst, const Immediate& x);
811 // Push a handle value.
812 void Push(Handle<Object> handle) { push(Immediate(handle)); }
813 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
815 Handle<Object> CodeObject() {
816 DCHECK(!code_object_.is_null());
820 // Insert code to verify that the x87 stack has the specified depth (0-7)
821 void VerifyX87StackDepth(uint32_t depth);
823 // Emit code for a truncating division by a constant. The dividend register is
824 // unchanged, the result is in edx, and eax gets clobbered.
825 void TruncatingDiv(Register dividend, int32_t divisor);
827 // ---------------------------------------------------------------------------
828 // StatsCounter support
830 void SetCounter(StatsCounter* counter, int value);
831 void IncrementCounter(StatsCounter* counter, int value);
832 void DecrementCounter(StatsCounter* counter, int value);
833 void IncrementCounter(Condition cc, StatsCounter* counter, int value);
834 void DecrementCounter(Condition cc, StatsCounter* counter, int value);
837 // ---------------------------------------------------------------------------
840 // Calls Abort(msg) if the condition cc is not satisfied.
841 // Use --debug_code to enable.
842 void Assert(Condition cc, BailoutReason reason);
844 void AssertFastElements(Register elements);
846 // Like Assert(), but always enabled.
847 void Check(Condition cc, BailoutReason reason);
849 // Print a message to stdout and abort execution.
850 void Abort(BailoutReason reason);
852 // Check that the stack is aligned.
853 void CheckStackAlignment();
855 // Verify restrictions about code generated in stubs.
856 void set_generating_stub(bool value) { generating_stub_ = value; }
857 bool generating_stub() { return generating_stub_; }
858 void set_has_frame(bool value) { has_frame_ = value; }
859 bool has_frame() { return has_frame_; }
860 inline bool AllowThisStubCall(CodeStub* stub);
862 // ---------------------------------------------------------------------------
865 // Generate code to do a lookup in the number string cache. If the number in
866 // the register object is found in the cache the generated code falls through
867 // with the result in the result register. The object and the result register
868 // can be the same. If the number is not found in the cache the code jumps to
869 // the label not_found with only the content of register object unchanged.
870 void LookupNumberStringCache(Register object,
876 // Check whether the instance type represents a flat one-byte string. Jump to
877 // the label if not. If the instance type can be scratched specify same
878 // register for both instance type and scratch.
879 void JumpIfInstanceTypeIsNotSequentialOneByte(
880 Register instance_type, Register scratch,
881 Label* on_not_flat_one_byte_string);
883 // Checks if both objects are sequential one-byte strings, and jumps to label
885 void JumpIfNotBothSequentialOneByteStrings(
886 Register object1, Register object2, Register scratch1, Register scratch2,
887 Label* on_not_flat_one_byte_strings);
889 // Checks if the given register or operand is a unique name
890 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
891 Label::Distance distance = Label::kFar) {
892 JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
895 void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
896 Label::Distance distance = Label::kFar);
898 void EmitSeqStringSetCharCheck(Register string,
901 uint32_t encoding_mask);
903 static int SafepointRegisterStackIndex(Register reg) {
904 return SafepointRegisterStackIndex(reg.code());
907 // Activation support.
908 void EnterFrame(StackFrame::Type type);
909 void LeaveFrame(StackFrame::Type type);
911 // Expects object in eax and returns map with validated enum cache
912 // in eax. Assumes that any other register can be used as a scratch.
913 void CheckEnumCache(Label* call_runtime);
915 // AllocationMemento support. Arrays may have an associated
916 // AllocationMemento object that can be checked for in order to pretransition
918 // On entry, receiver_reg should point to the array object.
919 // scratch_reg gets clobbered.
920 // If allocation info is present, conditional code is set to equal.
921 void TestJSArrayForAllocationMemento(Register receiver_reg,
922 Register scratch_reg,
923 Label* no_memento_found);
925 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
926 Register scratch_reg,
927 Label* memento_found) {
928 Label no_memento_found;
929 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
931 j(equal, memento_found);
932 bind(&no_memento_found);
935 // Jumps to found label if a prototype map has dictionary elements.
936 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
937 Register scratch1, Label* found);
940 bool generating_stub_;
942 // This handle will be patched with the code object on installation.
943 Handle<Object> code_object_;
945 // Helper functions for generating invokes.
946 void InvokePrologue(const ParameterCount& expected,
947 const ParameterCount& actual,
948 Handle<Code> code_constant,
949 const Operand& code_operand,
951 bool* definitely_mismatches,
953 Label::Distance done_distance,
954 const CallWrapper& call_wrapper = NullCallWrapper());
956 void EnterExitFramePrologue();
957 void EnterExitFrameEpilogue(int argc, bool save_doubles);
959 void LeaveExitFrameEpilogue(bool restore_context);
961 // Allocation support helpers.
962 void LoadAllocationTopHelper(Register result,
964 AllocationFlags flags);
966 void UpdateAllocationTopHelper(Register result_end,
968 AllocationFlags flags);
970 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
971 void InNewSpace(Register object,
974 Label* condition_met,
975 Label::Distance condition_met_distance = Label::kFar);
977 // Helper for finding the mark bits for an address. Afterwards, the
978 // bitmap register points at the word with the mark bits and the mask
979 // the position of the first bit. Uses ecx as scratch and leaves addr_reg
981 inline void GetMarkBits(Register addr_reg,
985 // Helper for throwing exceptions. Compute a handler address and jump to
986 // it. See the implementation for register usage.
987 void JumpToHandlerEntry();
989 // Compute memory operands for safepoint stack slots.
990 Operand SafepointRegisterSlot(Register reg);
991 static int SafepointRegisterStackIndex(int reg_code);
993 // Needs access to SafepointRegisterStackIndex for compiled frame
995 friend class StandardFrame;
999 // The code patcher is used to patch (typically) small parts of code e.g. for
1000 // debugging and other types of instrumentation. When using the code patcher
1001 // the exact number of bytes specified must be emitted. Is not legal to emit
1002 // relocation information. If any of these constraints are violated it causes
1006 CodePatcher(byte* address, int size);
1007 virtual ~CodePatcher();
1009 // Macro assembler to emit code.
1010 MacroAssembler* masm() { return &masm_; }
1013 byte* address_; // The address of the code being patched.
1014 int size_; // Number of bytes of the expected patch size.
1015 MacroAssembler masm_; // Macro assembler used to generate the code.
1019 // -----------------------------------------------------------------------------
1020 // Static helper functions.
1022 // Generate an Operand for loading a field from an object.
1023 inline Operand FieldOperand(Register object, int offset) {
1024 return Operand(object, offset - kHeapObjectTag);
1028 // Generate an Operand for loading an indexed field from an object.
1029 inline Operand FieldOperand(Register object,
1033 return Operand(object, index, scale, offset - kHeapObjectTag);
1037 inline Operand FixedArrayElementOperand(Register array,
1038 Register index_as_smi,
1039 int additional_offset = 0) {
1040 int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
1041 return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
1045 inline Operand ContextOperand(Register context, int index) {
1046 return Operand(context, Context::SlotOffset(index));
1050 inline Operand GlobalObjectOperand() {
1051 return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX);
1055 // Generates an Operand for saving parameters after PrepareCallApiFunction.
1056 Operand ApiParameterOperand(int index);
1059 #ifdef GENERATED_CODE_COVERAGE
1060 extern void LogGeneratedCodeCoverage(const char* file_line);
1061 #define CODE_COVERAGE_STRINGIFY(x) #x
1062 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1063 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1064 #define ACCESS_MASM(masm) { \
1065 byte* ia32_coverage_function = \
1066 reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1069 masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
1070 masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \
1077 #define ACCESS_MASM(masm) masm->
1081 } } // namespace v8::internal
1083 #endif // V8_X87_MACRO_ASSEMBLER_X87_H_