1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_X87_MACRO_ASSEMBLER_X87_H_
6 #define V8_X87_MACRO_ASSEMBLER_X87_H_
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
16 // Convenience for platform-independent signatures. We do not normally
17 // distinguish memory operands from other operands on ia32.
18 typedef Operand MemOperand;
20 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
21 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
22 enum PointersToHereCheck {
23 kPointersToHereMaybeInteresting,
24 kPointersToHereAreAlwaysInteresting
28 enum RegisterValueType {
29 REGISTER_VALUE_IS_SMI,
30 REGISTER_VALUE_IS_INT32
35 bool AreAliased(Register reg1,
37 Register reg3 = no_reg,
38 Register reg4 = no_reg,
39 Register reg5 = no_reg,
40 Register reg6 = no_reg,
41 Register reg7 = no_reg,
42 Register reg8 = no_reg);
46 // MacroAssembler implements a collection of frequently used macros.
47 class MacroAssembler: public Assembler {
49 // The isolate parameter can be NULL if the macro assembler should
50 // not use isolate-dependent functionality. In this case, it's the
51 // responsibility of the caller to never invoke such function on the
53 MacroAssembler(Isolate* isolate, void* buffer, int size);
55 void Load(Register dst, const Operand& src, Representation r);
56 void Store(Register src, const Operand& dst, Representation r);
58 // Operations on roots in the root-array.
59 void LoadRoot(Register destination, Heap::RootListIndex index);
60 void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
61 void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
62 // These methods can only be used with constant roots (i.e. non-writable
63 // and not in new space).
64 void CompareRoot(Register with, Heap::RootListIndex index);
65 void CompareRoot(const Operand& with, Heap::RootListIndex index);
67 // ---------------------------------------------------------------------------
69 enum RememberedSetFinalAction {
74 // Record in the remembered set the fact that we have a pointer to new space
75 // at the address pointed to by the addr register. Only works if addr is not
77 void RememberedSetHelper(Register object, // Used for debug code.
78 Register addr, Register scratch,
79 SaveFPRegsMode save_fp,
80 RememberedSetFinalAction and_then);
82 void CheckPageFlag(Register object,
87 Label::Distance condition_met_distance = Label::kFar);
89 void CheckPageFlagForMap(
94 Label::Distance condition_met_distance = Label::kFar);
96 // Check if object is in new space. Jumps if the object is not in new space.
97 // The register scratch can be object itself, but scratch will be clobbered.
98 void JumpIfNotInNewSpace(Register object,
101 Label::Distance distance = Label::kFar) {
102 InNewSpace(object, scratch, zero, branch, distance);
105 // Check if object is in new space. Jumps if the object is in new space.
106 // The register scratch can be object itself, but it will be clobbered.
107 void JumpIfInNewSpace(Register object,
110 Label::Distance distance = Label::kFar) {
111 InNewSpace(object, scratch, not_zero, branch, distance);
114 // Check if an object has a given incremental marking color. Also uses ecx!
115 void HasColor(Register object,
119 Label::Distance has_color_distance,
123 void JumpIfBlack(Register object,
127 Label::Distance on_black_distance = Label::kFar);
129 // Checks the color of an object. If the object is already grey or black
130 // then we just fall through, since it is already live. If it is white and
131 // we can determine that it doesn't need to be scanned, then we just mark it
132 // black and fall through. For the rest we jump to the label so the
133 // incremental marker can fix its assumptions.
134 void EnsureNotWhite(Register object,
137 Label* object_is_white_and_not_data,
138 Label::Distance distance);
140 // Notify the garbage collector that we wrote a pointer into an object.
141 // |object| is the object being stored into, |value| is the object being
142 // stored. value and scratch registers are clobbered by the operation.
143 // The offset is the offset from the start of the object, not the offset from
144 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
145 void RecordWriteField(
146 Register object, int offset, Register value, Register scratch,
147 SaveFPRegsMode save_fp,
148 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
149 SmiCheck smi_check = INLINE_SMI_CHECK,
150 PointersToHereCheck pointers_to_here_check_for_value =
151 kPointersToHereMaybeInteresting);
153 // As above, but the offset has the tag presubtracted. For use with
154 // Operand(reg, off).
155 void RecordWriteContextSlot(
156 Register context, int offset, Register value, Register scratch,
157 SaveFPRegsMode save_fp,
158 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
159 SmiCheck smi_check = INLINE_SMI_CHECK,
160 PointersToHereCheck pointers_to_here_check_for_value =
161 kPointersToHereMaybeInteresting) {
162 RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
163 remembered_set_action, smi_check,
164 pointers_to_here_check_for_value);
167 // Notify the garbage collector that we wrote a pointer into a fixed array.
168 // |array| is the array being stored into, |value| is the
169 // object being stored. |index| is the array index represented as a
170 // Smi. All registers are clobbered by the operation RecordWriteArray
171 // filters out smis so it does not update the write barrier if the
173 void RecordWriteArray(
174 Register array, Register value, Register index, SaveFPRegsMode save_fp,
175 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
176 SmiCheck smi_check = INLINE_SMI_CHECK,
177 PointersToHereCheck pointers_to_here_check_for_value =
178 kPointersToHereMaybeInteresting);
180 // For page containing |object| mark region covering |address|
181 // dirty. |object| is the object being stored into, |value| is the
182 // object being stored. The address and value registers are clobbered by the
183 // operation. RecordWrite filters out smis so it does not update the
184 // write barrier if the value is a smi.
186 Register object, Register address, Register value, SaveFPRegsMode save_fp,
187 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
188 SmiCheck smi_check = INLINE_SMI_CHECK,
189 PointersToHereCheck pointers_to_here_check_for_value =
190 kPointersToHereMaybeInteresting);
192 // For page containing |object| mark the region covering the object's map
193 // dirty. |object| is the object being stored into, |map| is the Map object
195 void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
196 Register scratch2, SaveFPRegsMode save_fp);
198 // ---------------------------------------------------------------------------
203 // Generates function and stub prologue code.
205 void Prologue(bool code_pre_aging);
207 // Enter specific kind of exit frame. Expects the number of
208 // arguments in register eax and sets up the number of arguments in
209 // register edi and the pointer to the first argument in register
211 void EnterExitFrame(bool save_doubles);
213 void EnterApiExitFrame(int argc);
215 // Leave the current exit frame. Expects the return value in
216 // register eax:edx (untouched) and the pointer to the first
217 // argument in register esi.
218 void LeaveExitFrame(bool save_doubles);
220 // Leave the current exit frame. Expects the return value in
221 // register eax (untouched).
222 void LeaveApiExitFrame(bool restore_context);
224 // Find the function context up the context chain.
225 void LoadContext(Register dst, int context_chain_length);
227 // Conditionally load the cached Array transitioned map of type
228 // transitioned_kind from the native context if the map in register
229 // map_in_out is the cached Array map in the native context of
231 void LoadTransitionedArrayMapConditional(
232 ElementsKind expected_kind,
233 ElementsKind transitioned_kind,
236 Label* no_map_match);
238 // Load the global function with the given index.
239 void LoadGlobalFunction(int index, Register function);
241 // Load the initial map from the global function. The registers
242 // function and map can be the same.
243 void LoadGlobalFunctionInitialMap(Register function, Register map);
245 // Push and pop the registers that can hold pointers.
246 void PushSafepointRegisters() { pushad(); }
247 void PopSafepointRegisters() { popad(); }
248 // Store the value in register/immediate src in the safepoint
249 // register stack slot for register dst.
250 void StoreToSafepointRegisterSlot(Register dst, Register src);
251 void StoreToSafepointRegisterSlot(Register dst, Immediate src);
252 void LoadFromSafepointRegisterSlot(Register dst, Register src);
254 void LoadHeapObject(Register result, Handle<HeapObject> object);
255 void CmpHeapObject(Register reg, Handle<HeapObject> object);
256 void PushHeapObject(Handle<HeapObject> object);
258 void LoadObject(Register result, Handle<Object> object) {
259 AllowDeferredHandleDereference heap_object_check;
260 if (object->IsHeapObject()) {
261 LoadHeapObject(result, Handle<HeapObject>::cast(object));
263 Move(result, Immediate(object));
267 void CmpObject(Register reg, Handle<Object> object) {
268 AllowDeferredHandleDereference heap_object_check;
269 if (object->IsHeapObject()) {
270 CmpHeapObject(reg, Handle<HeapObject>::cast(object));
272 cmp(reg, Immediate(object));
276 void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
277 void GetWeakValue(Register value, Handle<WeakCell> cell);
278 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
280 // ---------------------------------------------------------------------------
281 // JavaScript invokes
283 // Invoke the JavaScript function code by either calling or jumping.
284 void InvokeCode(Register code,
285 const ParameterCount& expected,
286 const ParameterCount& actual,
288 const CallWrapper& call_wrapper) {
289 InvokeCode(Operand(code), expected, actual, flag, call_wrapper);
292 void InvokeCode(const Operand& code,
293 const ParameterCount& expected,
294 const ParameterCount& actual,
296 const CallWrapper& call_wrapper);
298 // Invoke the JavaScript function in the given register. Changes the
299 // current context to the context in the function before invoking.
300 void InvokeFunction(Register function,
301 const ParameterCount& actual,
303 const CallWrapper& call_wrapper);
305 void InvokeFunction(Register function,
306 const ParameterCount& expected,
307 const ParameterCount& actual,
309 const CallWrapper& call_wrapper);
311 void InvokeFunction(Handle<JSFunction> function,
312 const ParameterCount& expected,
313 const ParameterCount& actual,
315 const CallWrapper& call_wrapper);
317 // Invoke specified builtin JavaScript function. Adds an entry to
318 // the unresolved list if the name does not resolve.
319 void InvokeBuiltin(Builtins::JavaScript id,
321 const CallWrapper& call_wrapper = NullCallWrapper());
323 // Store the function for the given builtin in the target register.
324 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
326 // Store the code object for the given builtin in the target register.
327 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
329 // Expression support
330 // Support for constant splitting.
331 bool IsUnsafeImmediate(const Immediate& x);
332 void SafeMove(Register dst, const Immediate& x);
333 void SafePush(const Immediate& x);
335 // Compare object type for heap object.
336 // Incoming register is heap_object and outgoing register is map.
337 void CmpObjectType(Register heap_object, InstanceType type, Register map);
339 // Compare instance type for map.
340 void CmpInstanceType(Register map, InstanceType type);
342 // Check if a map for a JSObject indicates that the object has fast elements.
343 // Jump to the specified label if it does not.
344 void CheckFastElements(Register map,
346 Label::Distance distance = Label::kFar);
348 // Check if a map for a JSObject indicates that the object can have both smi
349 // and HeapObject elements. Jump to the specified label if it does not.
350 void CheckFastObjectElements(Register map,
352 Label::Distance distance = Label::kFar);
354 // Check if a map for a JSObject indicates that the object has fast smi only
355 // elements. Jump to the specified label if it does not.
356 void CheckFastSmiElements(Register map,
358 Label::Distance distance = Label::kFar);
360 // Check to see if maybe_number can be stored as a double in
361 // FastDoubleElements. If it can, store it at the index specified by key in
362 // the FastDoubleElements array elements, otherwise jump to fail.
363 void StoreNumberToDoubleElements(Register maybe_number,
370 // Compare an object's map with the specified map.
371 void CompareMap(Register obj, Handle<Map> map);
373 // Check if the map of an object is equal to a specified map and branch to
374 // label if not. Skip the smi check if not required (object is known to be a
375 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
376 // against maps that are ElementsKind transition maps of the specified map.
377 void CheckMap(Register obj,
380 SmiCheckType smi_check_type);
382 // Check if the map of an object is equal to a specified weak map and branch
383 // to a specified target if equal. Skip the smi check if not required
384 // (object is known to be a heap object)
385 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
386 Handle<WeakCell> cell, Handle<Code> success,
387 SmiCheckType smi_check_type);
389 // Check if the object in register heap_object is a string. Afterwards the
390 // register map contains the object map and the register instance_type
391 // contains the instance_type. The registers map and instance_type can be the
392 // same in which case it contains the instance type afterwards. Either of the
393 // registers map and instance_type can be the same as heap_object.
394 Condition IsObjectStringType(Register heap_object,
396 Register instance_type);
398 // Check if the object in register heap_object is a name. Afterwards the
399 // register map contains the object map and the register instance_type
400 // contains the instance_type. The registers map and instance_type can be the
401 // same in which case it contains the instance type afterwards. Either of the
402 // registers map and instance_type can be the same as heap_object.
403 Condition IsObjectNameType(Register heap_object,
405 Register instance_type);
407 // Check if a heap object's type is in the JSObject range, not including
408 // JSFunction. The object's map will be loaded in the map register.
409 // Any or all of the three registers may be the same.
410 // The contents of the scratch register will always be overwritten.
411 void IsObjectJSObjectType(Register heap_object,
416 // The contents of the scratch register will be overwritten.
417 void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
419 // FCmp is similar to integer cmp, but requires unsigned
420 // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
422 void FXamMinusZero();
425 void X87SetRC(int rc);
426 void X87SetFPUCW(int cw);
428 void ClampUint8(Register reg);
429 void ClampTOSToUint8(Register result_reg);
431 void SlowTruncateToI(Register result_reg, Register input_reg,
432 int offset = HeapNumber::kValueOffset - kHeapObjectTag);
434 void TruncateHeapNumberToI(Register result_reg, Register input_reg);
435 void TruncateX87TOSToI(Register result_reg);
437 void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode,
438 Label* lost_precision, Label* is_nan, Label* minus_zero,
439 Label::Distance dst = Label::kFar);
441 // Smi tagging support.
442 void SmiTag(Register reg) {
443 STATIC_ASSERT(kSmiTag == 0);
444 STATIC_ASSERT(kSmiTagSize == 1);
447 void SmiUntag(Register reg) {
448 sar(reg, kSmiTagSize);
451 // Modifies the register even if it does not contain a Smi!
452 void SmiUntag(Register reg, Label* is_smi) {
453 STATIC_ASSERT(kSmiTagSize == 1);
454 sar(reg, kSmiTagSize);
455 STATIC_ASSERT(kSmiTag == 0);
456 j(not_carry, is_smi);
459 void LoadUint32NoSSE2(Register src) {
460 LoadUint32NoSSE2(Operand(src));
462 void LoadUint32NoSSE2(const Operand& src);
464 // Jump the register contains a smi.
465 inline void JumpIfSmi(Register value,
467 Label::Distance distance = Label::kFar) {
468 test(value, Immediate(kSmiTagMask));
469 j(zero, smi_label, distance);
471 // Jump if the operand is a smi.
472 inline void JumpIfSmi(Operand value,
474 Label::Distance distance = Label::kFar) {
475 test(value, Immediate(kSmiTagMask));
476 j(zero, smi_label, distance);
478 // Jump if register contain a non-smi.
479 inline void JumpIfNotSmi(Register value,
480 Label* not_smi_label,
481 Label::Distance distance = Label::kFar) {
482 test(value, Immediate(kSmiTagMask));
483 j(not_zero, not_smi_label, distance);
486 void LoadInstanceDescriptors(Register map, Register descriptors);
487 void EnumLength(Register dst, Register map);
488 void NumberOfOwnDescriptors(Register dst, Register map);
489 void LoadAccessor(Register dst, Register holder, int accessor_index,
490 AccessorComponent accessor);
492 template<typename Field>
493 void DecodeField(Register reg) {
494 static const int shift = Field::kShift;
495 static const int mask = Field::kMask >> Field::kShift;
499 and_(reg, Immediate(mask));
502 template<typename Field>
503 void DecodeFieldToSmi(Register reg) {
504 static const int shift = Field::kShift;
505 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
506 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
507 STATIC_ASSERT(kSmiTag == 0);
508 if (shift < kSmiTagSize) {
509 shl(reg, kSmiTagSize - shift);
510 } else if (shift > kSmiTagSize) {
511 sar(reg, shift - kSmiTagSize);
513 and_(reg, Immediate(mask));
516 // Abort execution if argument is not a number, enabled via --debug-code.
517 void AssertNumber(Register object);
519 // Abort execution if argument is not a smi, enabled via --debug-code.
520 void AssertSmi(Register object);
522 // Abort execution if argument is a smi, enabled via --debug-code.
523 void AssertNotSmi(Register object);
525 // Abort execution if argument is not a string, enabled via --debug-code.
526 void AssertString(Register object);
528 // Abort execution if argument is not a name, enabled via --debug-code.
529 void AssertName(Register object);
531 // Abort execution if argument is not undefined or an AllocationSite, enabled
533 void AssertUndefinedOrAllocationSite(Register object);
535 // ---------------------------------------------------------------------------
536 // Exception handling
538 // Push a new try handler and link it into try handler chain.
539 void PushTryHandler(StackHandler::Kind kind, int handler_index);
541 // Unlink the stack handler on top of the stack from the try handler chain.
542 void PopTryHandler();
544 // Throw to the top handler in the try hander chain.
545 void Throw(Register value);
547 // Throw past all JS frames to the top JS entry frame.
548 void ThrowUncatchable(Register value);
550 // ---------------------------------------------------------------------------
551 // Inline caching support
553 // Generate code for checking access rights - used for security checks
554 // on access to global objects across environments. The holder register
555 // is left untouched, but the scratch register is clobbered.
556 void CheckAccessGlobalProxy(Register holder_reg,
561 void GetNumberHash(Register r0, Register scratch);
563 void LoadFromNumberDictionary(Label* miss,
572 // ---------------------------------------------------------------------------
573 // Allocation support
575 // Allocate an object in new space or old pointer space. If the given space
576 // is exhausted control continues at the gc_required label. The allocated
577 // object is returned in result and end of the new object is returned in
578 // result_end. The register scratch can be passed as no_reg in which case
579 // an additional object reference will be added to the reloc info. The
580 // returned pointers in result and result_end have not yet been tagged as
581 // heap objects. If result_contains_top_on_entry is true the content of
582 // result is known to be the allocation top on entry (could be result_end
583 // from a previous call). If result_contains_top_on_entry is true scratch
584 // should be no_reg as it is never used.
585 void Allocate(int object_size,
590 AllocationFlags flags);
592 void Allocate(int header_size,
593 ScaleFactor element_size,
594 Register element_count,
595 RegisterValueType element_count_type,
600 AllocationFlags flags);
602 void Allocate(Register object_size,
607 AllocationFlags flags);
609 // Undo allocation in new space. The object passed and objects allocated after
610 // it will no longer be allocated. Make sure that no pointers are left to the
611 // object(s) no longer allocated as they would be invalid when allocation is
613 void UndoAllocationInNewSpace(Register object);
615 // Allocate a heap number in new space with undefined value. The
616 // register scratch2 can be passed as no_reg; the others must be
617 // valid registers. Returns tagged pointer in result register, or
618 // jumps to gc_required if new space is full.
619 void AllocateHeapNumber(Register result,
623 MutableMode mode = IMMUTABLE);
625 // Allocate a sequential string. All the header fields of the string object
627 void AllocateTwoByteString(Register result,
633 void AllocateOneByteString(Register result, Register length,
634 Register scratch1, Register scratch2,
635 Register scratch3, Label* gc_required);
636 void AllocateOneByteString(Register result, int length, Register scratch1,
637 Register scratch2, Label* gc_required);
639 // Allocate a raw cons string object. Only the map field of the result is
641 void AllocateTwoByteConsString(Register result,
645 void AllocateOneByteConsString(Register result, Register scratch1,
646 Register scratch2, Label* gc_required);
648 // Allocate a raw sliced string object. Only the map field of the result is
650 void AllocateTwoByteSlicedString(Register result,
654 void AllocateOneByteSlicedString(Register result, Register scratch1,
655 Register scratch2, Label* gc_required);
657 // Copy memory, byte-by-byte, from source to destination. Not optimized for
658 // long or aligned copies.
659 // The contents of index and scratch are destroyed.
660 void CopyBytes(Register source,
661 Register destination,
665 // Initialize fields with filler values. Fields starting at |start_offset|
666 // not including end_offset are overwritten with the value in |filler|. At
667 // the end the loop, |start_offset| takes the value of |end_offset|.
668 void InitializeFieldsWithFiller(Register start_offset,
672 // ---------------------------------------------------------------------------
673 // Support functions.
675 // Check a boolean-bit of a Smi field.
676 void BooleanBitTest(Register object, int field_offset, int bit_index);
678 // Check if result is zero and op is negative.
679 void NegativeZeroTest(Register result, Register op, Label* then_label);
681 // Check if result is zero and any of op1 and op2 are negative.
682 // Register scratch is destroyed, and it must be different from op2.
683 void NegativeZeroTest(Register result, Register op1, Register op2,
684 Register scratch, Label* then_label);
686 // Try to get function prototype of a function and puts the value in
687 // the result register. Checks that the function really is a
688 // function and jumps to the miss label if the fast checks fail. The
689 // function register will be untouched; the other registers may be
691 void TryGetFunctionPrototype(Register function,
695 bool miss_on_bound_function = false);
697 // Picks out an array index from the hash field.
699 // hash - holds the index's hash. Clobbered.
700 // index - holds the overwritten index on exit.
701 void IndexFromHash(Register hash, Register index);
703 // ---------------------------------------------------------------------------
706 // Call a code stub. Generate the code if necessary.
707 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
709 // Tail call a code stub (jump). Generate the code if necessary.
710 void TailCallStub(CodeStub* stub);
712 // Return from a code stub after popping its arguments.
713 void StubReturn(int argc);
715 // Call a runtime routine.
716 void CallRuntime(const Runtime::Function* f, int num_arguments,
717 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
718 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
719 const Runtime::Function* function = Runtime::FunctionForId(id);
720 CallRuntime(function, function->nargs, kSaveFPRegs);
723 // Convenience function: Same as above, but takes the fid instead.
724 void CallRuntime(Runtime::FunctionId id, int num_arguments,
725 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
726 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
729 // Convenience function: call an external reference.
730 void CallExternalReference(ExternalReference ref, int num_arguments);
732 // Tail call of a runtime routine (jump).
733 // Like JumpToExternalReference, but also takes care of passing the number
735 void TailCallExternalReference(const ExternalReference& ext,
739 // Convenience function: tail call a runtime routine (jump).
740 void TailCallRuntime(Runtime::FunctionId fid,
744 // Before calling a C-function from generated code, align arguments on stack.
745 // After aligning the frame, arguments must be stored in esp[0], esp[4],
746 // etc., not pushed. The argument count assumes all arguments are word sized.
747 // Some compilers/platforms require the stack to be aligned when calling
749 // Needs a scratch register to do some arithmetic. This register will be
751 void PrepareCallCFunction(int num_arguments, Register scratch);
753 // Calls a C function and cleans up the space for arguments allocated
754 // by PrepareCallCFunction. The called function is not allowed to trigger a
755 // garbage collection, since that might move the code and invalidate the
756 // return address (unless this is somehow accounted for by the called
758 void CallCFunction(ExternalReference function, int num_arguments);
759 void CallCFunction(Register function, int num_arguments);
761 // Jump to a runtime routine.
762 void JumpToExternalReference(const ExternalReference& ext);
764 // ---------------------------------------------------------------------------
769 // Return and drop arguments from stack, where the number of arguments
770 // may be bigger than 2^16 - 1. Requires a scratch register.
771 void Ret(int bytes_dropped, Register scratch);
773 // Emit code to discard a non-negative number of pointer-sized elements
774 // from the stack, clobbering only the esp register.
775 void Drop(int element_count);
777 void Call(Label* target) { call(target); }
778 void Push(Register src) { push(src); }
779 void Pop(Register dst) { pop(dst); }
781 // Emit call to the code we are currently generating.
783 Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
784 call(self, RelocInfo::CODE_TARGET);
787 // Move if the registers are not identical.
788 void Move(Register target, Register source);
790 // Move a constant into a destination using the most efficient encoding.
791 void Move(Register dst, const Immediate& x);
792 void Move(const Operand& dst, const Immediate& x);
794 // Push a handle value.
795 void Push(Handle<Object> handle) { push(Immediate(handle)); }
796 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
798 Handle<Object> CodeObject() {
799 DCHECK(!code_object_.is_null());
803 // Insert code to verify that the x87 stack has the specified depth (0-7)
804 void VerifyX87StackDepth(uint32_t depth);
806 // Emit code for a truncating division by a constant. The dividend register is
807 // unchanged, the result is in edx, and eax gets clobbered.
808 void TruncatingDiv(Register dividend, int32_t divisor);
810 // ---------------------------------------------------------------------------
811 // StatsCounter support
813 void SetCounter(StatsCounter* counter, int value);
814 void IncrementCounter(StatsCounter* counter, int value);
815 void DecrementCounter(StatsCounter* counter, int value);
816 void IncrementCounter(Condition cc, StatsCounter* counter, int value);
817 void DecrementCounter(Condition cc, StatsCounter* counter, int value);
820 // ---------------------------------------------------------------------------
823 // Calls Abort(msg) if the condition cc is not satisfied.
824 // Use --debug_code to enable.
825 void Assert(Condition cc, BailoutReason reason);
827 void AssertFastElements(Register elements);
829 // Like Assert(), but always enabled.
830 void Check(Condition cc, BailoutReason reason);
832 // Print a message to stdout and abort execution.
833 void Abort(BailoutReason reason);
835 // Check that the stack is aligned.
836 void CheckStackAlignment();
838 // Verify restrictions about code generated in stubs.
839 void set_generating_stub(bool value) { generating_stub_ = value; }
840 bool generating_stub() { return generating_stub_; }
841 void set_has_frame(bool value) { has_frame_ = value; }
842 bool has_frame() { return has_frame_; }
843 inline bool AllowThisStubCall(CodeStub* stub);
845 // ---------------------------------------------------------------------------
848 // Generate code to do a lookup in the number string cache. If the number in
849 // the register object is found in the cache the generated code falls through
850 // with the result in the result register. The object and the result register
851 // can be the same. If the number is not found in the cache the code jumps to
852 // the label not_found with only the content of register object unchanged.
853 void LookupNumberStringCache(Register object,
859 // Check whether the instance type represents a flat one-byte string. Jump to
860 // the label if not. If the instance type can be scratched specify same
861 // register for both instance type and scratch.
862 void JumpIfInstanceTypeIsNotSequentialOneByte(
863 Register instance_type, Register scratch,
864 Label* on_not_flat_one_byte_string);
866 // Checks if both objects are sequential one-byte strings, and jumps to label
868 void JumpIfNotBothSequentialOneByteStrings(
869 Register object1, Register object2, Register scratch1, Register scratch2,
870 Label* on_not_flat_one_byte_strings);
872 // Checks if the given register or operand is a unique name
873 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
874 Label::Distance distance = Label::kFar) {
875 JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
878 void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
879 Label::Distance distance = Label::kFar);
881 void EmitSeqStringSetCharCheck(Register string,
884 uint32_t encoding_mask);
886 static int SafepointRegisterStackIndex(Register reg) {
887 return SafepointRegisterStackIndex(reg.code());
890 // Activation support.
891 void EnterFrame(StackFrame::Type type);
892 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
893 void LeaveFrame(StackFrame::Type type);
895 // Expects object in eax and returns map with validated enum cache
896 // in eax. Assumes that any other register can be used as a scratch.
897 void CheckEnumCache(Label* call_runtime);
899 // AllocationMemento support. Arrays may have an associated
900 // AllocationMemento object that can be checked for in order to pretransition
902 // On entry, receiver_reg should point to the array object.
903 // scratch_reg gets clobbered.
904 // If allocation info is present, conditional code is set to equal.
905 void TestJSArrayForAllocationMemento(Register receiver_reg,
906 Register scratch_reg,
907 Label* no_memento_found);
909 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
910 Register scratch_reg,
911 Label* memento_found) {
912 Label no_memento_found;
913 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
915 j(equal, memento_found);
916 bind(&no_memento_found);
919 // Jumps to found label if a prototype map has dictionary elements.
920 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
921 Register scratch1, Label* found);
924 bool generating_stub_;
926 // This handle will be patched with the code object on installation.
927 Handle<Object> code_object_;
929 // Helper functions for generating invokes.
930 void InvokePrologue(const ParameterCount& expected,
931 const ParameterCount& actual,
932 Handle<Code> code_constant,
933 const Operand& code_operand,
935 bool* definitely_mismatches,
937 Label::Distance done_distance,
938 const CallWrapper& call_wrapper = NullCallWrapper());
940 void EnterExitFramePrologue();
941 void EnterExitFrameEpilogue(int argc, bool save_doubles);
943 void LeaveExitFrameEpilogue(bool restore_context);
945 // Allocation support helpers.
946 void LoadAllocationTopHelper(Register result,
948 AllocationFlags flags);
950 void UpdateAllocationTopHelper(Register result_end,
952 AllocationFlags flags);
954 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
955 void InNewSpace(Register object,
958 Label* condition_met,
959 Label::Distance condition_met_distance = Label::kFar);
961 // Helper for finding the mark bits for an address. Afterwards, the
962 // bitmap register points at the word with the mark bits and the mask
963 // the position of the first bit. Uses ecx as scratch and leaves addr_reg
965 inline void GetMarkBits(Register addr_reg,
969 // Helper for throwing exceptions. Compute a handler address and jump to
970 // it. See the implementation for register usage.
971 void JumpToHandlerEntry();
973 // Compute memory operands for safepoint stack slots.
974 Operand SafepointRegisterSlot(Register reg);
975 static int SafepointRegisterStackIndex(int reg_code);
977 // Needs access to SafepointRegisterStackIndex for compiled frame
979 friend class StandardFrame;
983 // The code patcher is used to patch (typically) small parts of code e.g. for
984 // debugging and other types of instrumentation. When using the code patcher
985 // the exact number of bytes specified must be emitted. Is not legal to emit
986 // relocation information. If any of these constraints are violated it causes
990 CodePatcher(byte* address, int size);
991 virtual ~CodePatcher();
993 // Macro assembler to emit code.
994 MacroAssembler* masm() { return &masm_; }
997 byte* address_; // The address of the code being patched.
998 int size_; // Number of bytes of the expected patch size.
999 MacroAssembler masm_; // Macro assembler used to generate the code.
1003 // -----------------------------------------------------------------------------
1004 // Static helper functions.
1006 // Generate an Operand for loading a field from an object.
1007 inline Operand FieldOperand(Register object, int offset) {
1008 return Operand(object, offset - kHeapObjectTag);
1012 // Generate an Operand for loading an indexed field from an object.
1013 inline Operand FieldOperand(Register object,
1017 return Operand(object, index, scale, offset - kHeapObjectTag);
1021 inline Operand FixedArrayElementOperand(Register array,
1022 Register index_as_smi,
1023 int additional_offset = 0) {
1024 int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
1025 return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
1029 inline Operand ContextOperand(Register context, int index) {
1030 return Operand(context, Context::SlotOffset(index));
1034 inline Operand GlobalObjectOperand() {
1035 return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX);
1039 #ifdef GENERATED_CODE_COVERAGE
1040 extern void LogGeneratedCodeCoverage(const char* file_line);
1041 #define CODE_COVERAGE_STRINGIFY(x) #x
1042 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1043 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1044 #define ACCESS_MASM(masm) { \
1045 byte* ia32_coverage_function = \
1046 reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1049 masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
1050 masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \
1057 #define ACCESS_MASM(masm) masm->
1061 } } // namespace v8::internal
1063 #endif // V8_X87_MACRO_ASSEMBLER_X87_H_