1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/codegen.h"
13 #include "src/ic/handler-compiler.h"
14 #include "src/ic/ic.h"
15 #include "src/ic/stub-cache.h"
16 #include "src/isolate.h"
17 #include "src/jsregexp.h"
18 #include "src/regexp-macro-assembler.h"
19 #include "src/runtime/runtime.h"
25 static void InitializeArrayConstructorDescriptor(
26 Isolate* isolate, CodeStubDescriptor* descriptor,
27 int constant_stack_parameter_count) {
29 // eax -- number of arguments
31 // ebx -- allocation site with elements kind
32 Address deopt_handler = Runtime::FunctionForId(
33 Runtime::kArrayConstructor)->entry;
35 if (constant_stack_parameter_count == 0) {
36 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
37 JS_FUNCTION_STUB_MODE);
39 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
40 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
45 static void InitializeInternalArrayConstructorDescriptor(
46 Isolate* isolate, CodeStubDescriptor* descriptor,
47 int constant_stack_parameter_count) {
49 // eax -- number of arguments
50 // edi -- constructor function
51 Address deopt_handler = Runtime::FunctionForId(
52 Runtime::kInternalArrayConstructor)->entry;
54 if (constant_stack_parameter_count == 0) {
55 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
56 JS_FUNCTION_STUB_MODE);
58 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
59 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
64 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
65 CodeStubDescriptor* descriptor) {
66 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
70 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
71 CodeStubDescriptor* descriptor) {
72 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
76 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
77 CodeStubDescriptor* descriptor) {
78 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
82 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
83 CodeStubDescriptor* descriptor) {
84 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
88 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
89 CodeStubDescriptor* descriptor) {
90 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
94 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
95 CodeStubDescriptor* descriptor) {
96 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
100 #define __ ACCESS_MASM(masm)
103 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
104 ExternalReference miss) {
105 // Update the static counter each time a new code stub is generated.
106 isolate()->counters()->code_stubs()->Increment();
108 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
109 int param_count = descriptor.GetRegisterParameterCount();
111 // Call the runtime system in a fresh internal frame.
112 FrameScope scope(masm, StackFrame::INTERNAL);
113 DCHECK(param_count == 0 ||
114 eax.is(descriptor.GetRegisterParameter(param_count - 1)));
116 for (int i = 0; i < param_count; ++i) {
117 __ push(descriptor.GetRegisterParameter(i));
119 __ CallExternalReference(miss, param_count);
126 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
127 // We don't allow a GC during a store buffer overflow so there is no need to
128 // store the registers in any particular way, but we do have to store and
131 if (save_doubles()) {
132 // Save FPU stat in m108byte.
133 __ sub(esp, Immediate(108));
134 __ fnsave(Operand(esp, 0));
136 const int argument_count = 1;
138 AllowExternalCallThatCantCauseGC scope(masm);
139 __ PrepareCallCFunction(argument_count, ecx);
140 __ mov(Operand(esp, 0 * kPointerSize),
141 Immediate(ExternalReference::isolate_address(isolate())));
143 ExternalReference::store_buffer_overflow_function(isolate()),
145 if (save_doubles()) {
146 // Restore FPU stat in m108byte.
147 __ frstor(Operand(esp, 0));
148 __ add(esp, Immediate(108));
155 class FloatingPointHelper : public AllStatic {
162 // Code pattern for loading a floating point value. Input value must
163 // be either a smi or a heap number object (fp value). Requirements:
164 // operand in register number. Returns operand as floating point number
166 static void LoadFloatOperand(MacroAssembler* masm, Register number);
168 // Test if operands are smi or number objects (fp). Requirements:
169 // operand_1 in eax, operand_2 in edx; falls through on float
170 // operands, jumps to the non_float label otherwise.
171 static void CheckFloatOperands(MacroAssembler* masm,
177 void DoubleToIStub::Generate(MacroAssembler* masm) {
178 Register input_reg = this->source();
179 Register final_result_reg = this->destination();
180 DCHECK(is_truncating());
182 Label check_negative, process_64_bits, done, done_no_stash;
184 int double_offset = offset();
186 // Account for return address and saved regs if input is esp.
187 if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
189 MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
190 MemOperand exponent_operand(MemOperand(input_reg,
191 double_offset + kDoubleSize / 2));
195 Register scratch_candidates[3] = { ebx, edx, edi };
196 for (int i = 0; i < 3; i++) {
197 scratch1 = scratch_candidates[i];
198 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
201 // Since we must use ecx for shifts below, use some other register (eax)
202 // to calculate the result if ecx is the requested return register.
203 Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
204 // Save ecx if it isn't the return register and therefore volatile, or if it
205 // is the return register, then save the temp register we use in its stead for
207 Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
211 bool stash_exponent_copy = !input_reg.is(esp);
212 __ mov(scratch1, mantissa_operand);
213 __ mov(ecx, exponent_operand);
214 if (stash_exponent_copy) __ push(ecx);
216 __ and_(ecx, HeapNumber::kExponentMask);
217 __ shr(ecx, HeapNumber::kExponentShift);
218 __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
219 __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
220 __ j(below, &process_64_bits);
222 // Result is entirely in lower 32-bits of mantissa
223 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
224 __ sub(ecx, Immediate(delta));
225 __ xor_(result_reg, result_reg);
226 __ cmp(ecx, Immediate(31));
229 __ jmp(&check_negative);
231 __ bind(&process_64_bits);
232 // Result must be extracted from shifted 32-bit mantissa
233 __ sub(ecx, Immediate(delta));
235 if (stash_exponent_copy) {
236 __ mov(result_reg, MemOperand(esp, 0));
238 __ mov(result_reg, exponent_operand);
241 Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
243 Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
244 __ shrd(result_reg, scratch1);
245 __ shr_cl(result_reg);
246 __ test(ecx, Immediate(32));
249 __ j(equal, &skip_mov, Label::kNear);
250 __ mov(scratch1, result_reg);
254 // If the double was negative, negate the integer result.
255 __ bind(&check_negative);
256 __ mov(result_reg, scratch1);
258 if (stash_exponent_copy) {
259 __ cmp(MemOperand(esp, 0), Immediate(0));
261 __ cmp(exponent_operand, Immediate(0));
265 __ j(less_equal, &skip_mov, Label::kNear);
266 __ mov(result_reg, scratch1);
272 if (stash_exponent_copy) {
273 __ add(esp, Immediate(kDoubleSize / 2));
275 __ bind(&done_no_stash);
276 if (!final_result_reg.is(result_reg)) {
277 DCHECK(final_result_reg.is(ecx));
278 __ mov(final_result_reg, result_reg);
286 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
288 Label load_smi, done;
290 __ JumpIfSmi(number, &load_smi, Label::kNear);
291 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
292 __ jmp(&done, Label::kNear);
297 __ fild_s(Operand(esp, 0));
304 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
307 Label test_other, done;
308 // Test if both operands are floats or smi -> scratch=k_is_float;
309 // Otherwise scratch = k_not_float.
310 __ JumpIfSmi(edx, &test_other, Label::kNear);
311 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
312 Factory* factory = masm->isolate()->factory();
313 __ cmp(scratch, factory->heap_number_map());
314 __ j(not_equal, non_float); // argument in edx is not a number -> NaN
316 __ bind(&test_other);
317 __ JumpIfSmi(eax, &done, Label::kNear);
318 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
319 __ cmp(scratch, factory->heap_number_map());
320 __ j(not_equal, non_float); // argument in eax is not a number -> NaN
322 // Fall-through: Both operands are numbers.
327 void MathPowStub::Generate(MacroAssembler* masm) {
333 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
335 Register receiver = LoadDescriptor::ReceiverRegister();
336 // With careful management, we won't have to save slot and vector on
337 // the stack. Simply handle the possibly missing case first.
338 // TODO(mvstanton): this code can be more efficient.
339 __ cmp(FieldOperand(receiver, JSFunction::kPrototypeOrInitialMapOffset),
340 Immediate(isolate()->factory()->the_hole_value()));
342 __ TryGetFunctionPrototype(receiver, eax, ebx, &miss);
346 PropertyAccessCompiler::TailCallBuiltin(
347 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
351 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
352 // Return address is on the stack.
355 Register receiver = LoadDescriptor::ReceiverRegister();
356 Register key = LoadDescriptor::NameRegister();
357 Register scratch = eax;
358 DCHECK(!scratch.is(receiver) && !scratch.is(key));
360 // Check that the key is an array index, that is Uint32.
361 __ test(key, Immediate(kSmiTagMask | kSmiSignMask));
362 __ j(not_zero, &slow);
364 // Everything is fine, call runtime.
366 __ push(receiver); // receiver
368 __ push(scratch); // return address
370 // Perform tail call to the entry.
371 ExternalReference ref = ExternalReference(
372 IC_Utility(IC::kLoadElementWithInterceptor), masm->isolate());
373 __ TailCallExternalReference(ref, 2, 1);
376 PropertyAccessCompiler::TailCallBuiltin(
377 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
381 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
382 // Return address is on the stack.
385 Register receiver = LoadDescriptor::ReceiverRegister();
386 Register index = LoadDescriptor::NameRegister();
387 Register scratch = edi;
388 DCHECK(!scratch.is(receiver) && !scratch.is(index));
389 Register result = eax;
390 DCHECK(!result.is(scratch));
391 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
392 result.is(LoadDescriptor::SlotRegister()));
394 // StringCharAtGenerator doesn't use the result register until it's passed
395 // the different miss possibilities. If it did, we would have a conflict
396 // when FLAG_vector_ics is true.
398 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
399 &miss, // When not a string.
400 &miss, // When not a number.
401 &miss, // When index out of range.
402 STRING_INDEX_IS_ARRAY_INDEX,
404 char_at_generator.GenerateFast(masm);
407 StubRuntimeCallHelper call_helper;
408 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
411 PropertyAccessCompiler::TailCallBuiltin(
412 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
416 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
417 // The key is in edx and the parameter count is in eax.
418 DCHECK(edx.is(ArgumentsAccessReadDescriptor::index()));
419 DCHECK(eax.is(ArgumentsAccessReadDescriptor::parameter_count()));
421 // The displacement is used for skipping the frame pointer on the
422 // stack. It is the offset of the last parameter (if any) relative
423 // to the frame pointer.
424 static const int kDisplacement = 1 * kPointerSize;
426 // Check that the key is a smi.
428 __ JumpIfNotSmi(edx, &slow, Label::kNear);
430 // Check if the calling frame is an arguments adaptor frame.
432 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
433 __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
434 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
435 __ j(equal, &adaptor, Label::kNear);
437 // Check index against formal parameters count limit passed in
438 // through register eax. Use unsigned comparison to get negative
441 __ j(above_equal, &slow, Label::kNear);
443 // Read the argument from the stack and return it.
444 STATIC_ASSERT(kSmiTagSize == 1);
445 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
446 __ lea(ebx, Operand(ebp, eax, times_2, 0));
448 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
451 // Arguments adaptor case: Check index against actual arguments
452 // limit found in the arguments adaptor frame. Use unsigned
453 // comparison to get negative check for free.
455 __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
457 __ j(above_equal, &slow, Label::kNear);
459 // Read the argument from the stack and return it.
460 STATIC_ASSERT(kSmiTagSize == 1);
461 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
462 __ lea(ebx, Operand(ebx, ecx, times_2, 0));
464 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
467 // Slow-case: Handle non-smi or out-of-bounds access to arguments
468 // by calling the runtime system.
470 __ pop(ebx); // Return address.
473 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
477 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
478 // esp[0] : return address
479 // esp[4] : number of parameters
480 // esp[8] : receiver displacement
481 // esp[12] : function
483 // Check if the calling frame is an arguments adaptor frame.
485 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
486 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
487 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
488 __ j(not_equal, &runtime, Label::kNear);
490 // Patch the arguments.length and the parameters pointer.
491 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
492 __ mov(Operand(esp, 1 * kPointerSize), ecx);
493 __ lea(edx, Operand(edx, ecx, times_2,
494 StandardFrameConstants::kCallerSPOffset));
495 __ mov(Operand(esp, 2 * kPointerSize), edx);
498 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
502 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
503 // esp[0] : return address
504 // esp[4] : number of parameters (tagged)
505 // esp[8] : receiver displacement
506 // esp[12] : function
508 // ebx = parameter count (tagged)
509 __ mov(ebx, Operand(esp, 1 * kPointerSize));
511 // Check if the calling frame is an arguments adaptor frame.
512 // TODO(rossberg): Factor out some of the bits that are shared with the other
513 // Generate* functions.
515 Label adaptor_frame, try_allocate;
516 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
517 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
518 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
519 __ j(equal, &adaptor_frame, Label::kNear);
521 // No adaptor, parameter count = argument count.
523 __ jmp(&try_allocate, Label::kNear);
525 // We have an adaptor frame. Patch the parameters pointer.
526 __ bind(&adaptor_frame);
527 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
528 __ lea(edx, Operand(edx, ecx, times_2,
529 StandardFrameConstants::kCallerSPOffset));
530 __ mov(Operand(esp, 2 * kPointerSize), edx);
532 // ebx = parameter count (tagged)
533 // ecx = argument count (smi-tagged)
534 // esp[4] = parameter count (tagged)
535 // esp[8] = address of receiver argument
536 // Compute the mapped parameter count = min(ebx, ecx) in ebx.
538 __ j(less_equal, &try_allocate, Label::kNear);
541 __ bind(&try_allocate);
543 // Save mapped parameter count.
546 // Compute the sizes of backing store, parameter map, and arguments object.
547 // 1. Parameter map, has 2 extra words containing context and backing store.
548 const int kParameterMapHeaderSize =
549 FixedArray::kHeaderSize + 2 * kPointerSize;
550 Label no_parameter_map;
552 __ j(zero, &no_parameter_map, Label::kNear);
553 __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
554 __ bind(&no_parameter_map);
557 __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
559 // 3. Arguments object.
560 __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize));
562 // Do the allocation of all three objects in one go.
563 __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
565 // eax = address of new object(s) (tagged)
566 // ecx = argument count (smi-tagged)
567 // esp[0] = mapped parameter count (tagged)
568 // esp[8] = parameter count (tagged)
569 // esp[12] = address of receiver argument
570 // Get the arguments map from the current native context into edi.
571 Label has_mapped_parameters, instantiate;
572 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
573 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
574 __ mov(ebx, Operand(esp, 0 * kPointerSize));
576 __ j(not_zero, &has_mapped_parameters, Label::kNear);
579 Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
580 __ jmp(&instantiate, Label::kNear);
582 __ bind(&has_mapped_parameters);
583 __ mov(edi, Operand(edi, Context::SlotOffset(
584 Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX)));
585 __ bind(&instantiate);
587 // eax = address of new object (tagged)
588 // ebx = mapped parameter count (tagged)
589 // ecx = argument count (smi-tagged)
590 // edi = address of arguments map (tagged)
591 // esp[0] = mapped parameter count (tagged)
592 // esp[8] = parameter count (tagged)
593 // esp[12] = address of receiver argument
594 // Copy the JS object part.
595 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
596 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
597 masm->isolate()->factory()->empty_fixed_array());
598 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
599 masm->isolate()->factory()->empty_fixed_array());
601 // Set up the callee in-object property.
602 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
603 __ mov(edx, Operand(esp, 4 * kPointerSize));
604 __ AssertNotSmi(edx);
605 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
606 Heap::kArgumentsCalleeIndex * kPointerSize),
609 // Use the length (smi tagged) and set that as an in-object property too.
611 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
612 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
613 Heap::kArgumentsLengthIndex * kPointerSize),
616 // Set up the elements pointer in the allocated arguments object.
617 // If we allocated a parameter map, edi will point there, otherwise to the
619 __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize));
620 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
622 // eax = address of new object (tagged)
623 // ebx = mapped parameter count (tagged)
624 // ecx = argument count (tagged)
625 // edi = address of parameter map or backing store (tagged)
626 // esp[0] = mapped parameter count (tagged)
627 // esp[8] = parameter count (tagged)
628 // esp[12] = address of receiver argument
632 // Initialize parameter map. If there are no mapped arguments, we're done.
633 Label skip_parameter_map;
635 __ j(zero, &skip_parameter_map);
637 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
638 Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
639 __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
640 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
641 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
642 __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
643 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
645 // Copy the parameter slots and the holes in the arguments.
646 // We need to fill in mapped_parameter_count slots. They index the context,
647 // where parameters are stored in reverse order, at
648 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
649 // The mapped parameter thus need to get indices
650 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
651 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
652 // We loop from right to left.
653 Label parameters_loop, parameters_test;
655 __ mov(eax, Operand(esp, 2 * kPointerSize));
656 __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
657 __ add(ebx, Operand(esp, 4 * kPointerSize));
659 __ mov(ecx, isolate()->factory()->the_hole_value());
661 __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
662 // eax = loop variable (tagged)
663 // ebx = mapping index (tagged)
664 // ecx = the hole value
665 // edx = address of parameter map (tagged)
666 // edi = address of backing store (tagged)
667 // esp[0] = argument count (tagged)
668 // esp[4] = address of new object (tagged)
669 // esp[8] = mapped parameter count (tagged)
670 // esp[16] = parameter count (tagged)
671 // esp[20] = address of receiver argument
672 __ jmp(¶meters_test, Label::kNear);
674 __ bind(¶meters_loop);
675 __ sub(eax, Immediate(Smi::FromInt(1)));
676 __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
677 __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
678 __ add(ebx, Immediate(Smi::FromInt(1)));
679 __ bind(¶meters_test);
681 __ j(not_zero, ¶meters_loop, Label::kNear);
684 __ bind(&skip_parameter_map);
686 // ecx = argument count (tagged)
687 // edi = address of backing store (tagged)
688 // esp[0] = address of new object (tagged)
689 // esp[4] = mapped parameter count (tagged)
690 // esp[12] = parameter count (tagged)
691 // esp[16] = address of receiver argument
692 // Copy arguments header and remaining slots (if there are any).
693 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
694 Immediate(isolate()->factory()->fixed_array_map()));
695 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
697 Label arguments_loop, arguments_test;
698 __ mov(ebx, Operand(esp, 1 * kPointerSize));
699 __ mov(edx, Operand(esp, 4 * kPointerSize));
700 __ sub(edx, ebx); // Is there a smarter way to do negative scaling?
702 __ jmp(&arguments_test, Label::kNear);
704 __ bind(&arguments_loop);
705 __ sub(edx, Immediate(kPointerSize));
706 __ mov(eax, Operand(edx, 0));
707 __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
708 __ add(ebx, Immediate(Smi::FromInt(1)));
710 __ bind(&arguments_test);
712 __ j(less, &arguments_loop, Label::kNear);
715 __ pop(eax); // Address of arguments object.
716 __ pop(ebx); // Parameter count.
718 // Return and remove the on-stack parameters.
719 __ ret(3 * kPointerSize);
721 // Do the runtime call to allocate the arguments object.
723 __ pop(eax); // Remove saved parameter count.
724 __ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count.
725 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
729 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
730 // esp[0] : return address
731 // esp[4] : number of parameters
732 // esp[8] : receiver displacement
733 // esp[12] : function
735 // Check if the calling frame is an arguments adaptor frame.
736 Label adaptor_frame, try_allocate, runtime;
737 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
738 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
739 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
740 __ j(equal, &adaptor_frame, Label::kNear);
742 // Get the length from the frame.
743 __ mov(ecx, Operand(esp, 1 * kPointerSize));
744 __ jmp(&try_allocate, Label::kNear);
746 // Patch the arguments.length and the parameters pointer.
747 __ bind(&adaptor_frame);
748 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
750 __ lea(edx, Operand(edx, ecx, times_2,
751 StandardFrameConstants::kCallerSPOffset));
752 __ mov(Operand(esp, 1 * kPointerSize), ecx);
753 __ mov(Operand(esp, 2 * kPointerSize), edx);
755 // Try the new space allocation. Start out with computing the size of
756 // the arguments object and the elements array.
757 Label add_arguments_object;
758 __ bind(&try_allocate);
760 __ j(zero, &add_arguments_object, Label::kNear);
761 __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
762 __ bind(&add_arguments_object);
763 __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize));
765 // Do the allocation of both objects in one go.
766 __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
768 // Get the arguments map from the current native context.
769 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
770 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
771 const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX);
772 __ mov(edi, Operand(edi, offset));
774 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
775 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
776 masm->isolate()->factory()->empty_fixed_array());
777 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
778 masm->isolate()->factory()->empty_fixed_array());
780 // Get the length (smi tagged) and set that as an in-object property too.
781 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
782 __ mov(ecx, Operand(esp, 1 * kPointerSize));
784 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
785 Heap::kArgumentsLengthIndex * kPointerSize),
788 // If there are no actual arguments, we're done.
791 __ j(zero, &done, Label::kNear);
793 // Get the parameters pointer from the stack.
794 __ mov(edx, Operand(esp, 2 * kPointerSize));
796 // Set up the elements pointer in the allocated arguments object and
797 // initialize the header in the elements fixed array.
798 __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize));
799 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
800 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
801 Immediate(isolate()->factory()->fixed_array_map()));
803 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
804 // Untag the length for the loop below.
807 // Copy the fixed array slots.
810 __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
811 __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
812 __ add(edi, Immediate(kPointerSize));
813 __ sub(edx, Immediate(kPointerSize));
815 __ j(not_zero, &loop);
817 // Return and remove the on-stack parameters.
819 __ ret(3 * kPointerSize);
821 // Do the runtime call to allocate the arguments object.
823 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
827 void RestParamAccessStub::GenerateNew(MacroAssembler* masm) {
828 // esp[0] : return address
829 // esp[4] : language mode
830 // esp[8] : index of rest parameter
831 // esp[12] : number of parameters
832 // esp[16] : receiver displacement
834 // Check if the calling frame is an arguments adaptor frame.
836 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
837 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
838 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
839 __ j(not_equal, &runtime);
841 // Patch the arguments.length and the parameters pointer.
842 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
843 __ mov(Operand(esp, 3 * kPointerSize), ecx);
844 __ lea(edx, Operand(edx, ecx, times_2,
845 StandardFrameConstants::kCallerSPOffset));
846 __ mov(Operand(esp, 4 * kPointerSize), edx);
849 __ TailCallRuntime(Runtime::kNewRestParam, 4, 1);
853 void RegExpExecStub::Generate(MacroAssembler* masm) {
854 // Just jump directly to runtime if native RegExp is not selected at compile
855 // time or if regexp entry in generated code is turned off runtime switch or
857 #ifdef V8_INTERPRETED_REGEXP
858 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
859 #else // V8_INTERPRETED_REGEXP
861 // Stack frame on entry.
862 // esp[0]: return address
863 // esp[4]: last_match_info (expected JSArray)
864 // esp[8]: previous index
865 // esp[12]: subject string
866 // esp[16]: JSRegExp object
868 static const int kLastMatchInfoOffset = 1 * kPointerSize;
869 static const int kPreviousIndexOffset = 2 * kPointerSize;
870 static const int kSubjectOffset = 3 * kPointerSize;
871 static const int kJSRegExpOffset = 4 * kPointerSize;
874 Factory* factory = isolate()->factory();
876 // Ensure that a RegExp stack is allocated.
877 ExternalReference address_of_regexp_stack_memory_address =
878 ExternalReference::address_of_regexp_stack_memory_address(isolate());
879 ExternalReference address_of_regexp_stack_memory_size =
880 ExternalReference::address_of_regexp_stack_memory_size(isolate());
881 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
883 __ j(zero, &runtime);
885 // Check that the first argument is a JSRegExp object.
886 __ mov(eax, Operand(esp, kJSRegExpOffset));
887 STATIC_ASSERT(kSmiTag == 0);
888 __ JumpIfSmi(eax, &runtime);
889 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
890 __ j(not_equal, &runtime);
892 // Check that the RegExp has been compiled (data contains a fixed array).
893 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
894 if (FLAG_debug_code) {
895 __ test(ecx, Immediate(kSmiTagMask));
896 __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
897 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
898 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
901 // ecx: RegExp data (FixedArray)
902 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
903 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
904 __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
905 __ j(not_equal, &runtime);
907 // ecx: RegExp data (FixedArray)
908 // Check that the number of captures fit in the static offsets vector buffer.
909 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
910 // Check (number_of_captures + 1) * 2 <= offsets vector size
911 // Or number_of_captures * 2 <= offsets vector size - 2
912 // Multiplying by 2 comes for free since edx is smi-tagged.
913 STATIC_ASSERT(kSmiTag == 0);
914 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
915 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
916 __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
917 __ j(above, &runtime);
919 // Reset offset for possibly sliced string.
920 __ Move(edi, Immediate(0));
921 __ mov(eax, Operand(esp, kSubjectOffset));
922 __ JumpIfSmi(eax, &runtime);
923 __ mov(edx, eax); // Make a copy of the original subject string.
924 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
925 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
927 // eax: subject string
928 // edx: subject string
929 // ebx: subject string instance type
930 // ecx: RegExp data (FixedArray)
931 // Handle subject string according to its encoding and representation:
932 // (1) Sequential two byte? If yes, go to (9).
933 // (2) Sequential one byte? If yes, go to (6).
934 // (3) Anything but sequential or cons? If yes, go to (7).
935 // (4) Cons string. If the string is flat, replace subject with first string.
936 // Otherwise bailout.
937 // (5a) Is subject sequential two byte? If yes, go to (9).
938 // (5b) Is subject external? If yes, go to (8).
939 // (6) One byte sequential. Load regexp code for one byte.
943 // Deferred code at the end of the stub:
944 // (7) Not a long external string? If yes, go to (10).
945 // (8) External string. Make it, offset-wise, look like a sequential string.
946 // (8a) Is the external string one byte? If yes, go to (6).
947 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
948 // (10) Short external string or not a string? If yes, bail out to runtime.
949 // (11) Sliced string. Replace subject with parent. Go to (5a).
951 Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
952 external_string /* 8 */, check_underlying /* 5a */,
953 not_seq_nor_cons /* 7 */, check_code /* E */,
954 not_long_external /* 10 */;
956 // (1) Sequential two byte? If yes, go to (9).
957 __ and_(ebx, kIsNotStringMask |
958 kStringRepresentationMask |
959 kStringEncodingMask |
960 kShortExternalStringMask);
961 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
962 __ j(zero, &seq_two_byte_string); // Go to (9).
964 // (2) Sequential one byte? If yes, go to (6).
965 // Any other sequential string must be one byte.
966 __ and_(ebx, Immediate(kIsNotStringMask |
967 kStringRepresentationMask |
968 kShortExternalStringMask));
969 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6).
971 // (3) Anything but sequential or cons? If yes, go to (7).
972 // We check whether the subject string is a cons, since sequential strings
973 // have already been covered.
974 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
975 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
976 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
977 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
978 __ cmp(ebx, Immediate(kExternalStringTag));
979 __ j(greater_equal, ¬_seq_nor_cons); // Go to (7).
981 // (4) Cons string. Check that it's flat.
982 // Replace subject with first string and reload instance type.
983 __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
984 __ j(not_equal, &runtime);
985 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
986 __ bind(&check_underlying);
987 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
988 __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
990 // (5a) Is subject sequential two byte? If yes, go to (9).
991 __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask);
992 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
993 __ j(zero, &seq_two_byte_string); // Go to (9).
994 // (5b) Is subject external? If yes, go to (8).
995 __ test_b(ebx, kStringRepresentationMask);
996 // The underlying external string is never a short external string.
997 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
998 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
999 __ j(not_zero, &external_string); // Go to (8).
1001 // eax: sequential subject string (or look-alike, external string)
1002 // edx: original subject string
1003 // ecx: RegExp data (FixedArray)
1004 // (6) One byte sequential. Load regexp code for one byte.
1005 __ bind(&seq_one_byte_string);
1006 // Load previous index and check range before edx is overwritten. We have
1007 // to use edx instead of eax here because it might have been only made to
1008 // look like a sequential string when it actually is an external string.
1009 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1010 __ JumpIfNotSmi(ebx, &runtime);
1011 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1012 __ j(above_equal, &runtime);
1013 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
1014 __ Move(ecx, Immediate(1)); // Type is one byte.
1016 // (E) Carry on. String handling is done.
1017 __ bind(&check_code);
1018 // edx: irregexp code
1019 // Check that the irregexp code has been generated for the actual string
1020 // encoding. If it has, the field contains a code object otherwise it contains
1021 // a smi (code flushing support).
1022 __ JumpIfSmi(edx, &runtime);
1024 // eax: subject string
1025 // ebx: previous index (smi)
1027 // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
1028 // All checks done. Now push arguments for native regexp code.
1029 Counters* counters = isolate()->counters();
1030 __ IncrementCounter(counters->regexp_entry_native(), 1);
1032 // Isolates: note we add an additional parameter here (isolate pointer).
1033 static const int kRegExpExecuteArguments = 9;
1034 __ EnterApiExitFrame(kRegExpExecuteArguments);
1036 // Argument 9: Pass current isolate address.
1037 __ mov(Operand(esp, 8 * kPointerSize),
1038 Immediate(ExternalReference::isolate_address(isolate())));
1040 // Argument 8: Indicate that this is a direct call from JavaScript.
1041 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
1043 // Argument 7: Start (high end) of backtracking stack memory area.
1044 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
1045 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
1046 __ mov(Operand(esp, 6 * kPointerSize), esi);
1048 // Argument 6: Set the number of capture registers to zero to force global
1049 // regexps to behave as non-global. This does not affect non-global regexps.
1050 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
1052 // Argument 5: static offsets vector buffer.
1053 __ mov(Operand(esp, 4 * kPointerSize),
1054 Immediate(ExternalReference::address_of_static_offsets_vector(
1057 // Argument 2: Previous index.
1059 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1061 // Argument 1: Original subject string.
1062 // The original subject is in the previous stack frame. Therefore we have to
1063 // use ebp, which points exactly to one pointer size below the previous esp.
1064 // (Because creating a new stack frame pushes the previous ebp onto the stack
1065 // and thereby moves up esp by one kPointerSize.)
1066 __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
1067 __ mov(Operand(esp, 0 * kPointerSize), esi);
1069 // esi: original subject string
1070 // eax: underlying subject string
1071 // ebx: previous index
1072 // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
1074 // Argument 4: End of string data
1075 // Argument 3: Start of string data
1076 // Prepare start and end index of the input.
1077 // Load the length from the original sliced string if that is the case.
1078 __ mov(esi, FieldOperand(esi, String::kLengthOffset));
1079 __ add(esi, edi); // Calculate input end wrt offset.
1081 __ add(ebx, edi); // Calculate input start wrt offset.
1083 // ebx: start index of the input string
1084 // esi: end index of the input string
1085 Label setup_two_byte, setup_rest;
1087 __ j(zero, &setup_two_byte, Label::kNear);
1089 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
1090 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1091 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
1092 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1093 __ jmp(&setup_rest, Label::kNear);
1095 __ bind(&setup_two_byte);
1096 STATIC_ASSERT(kSmiTag == 0);
1097 STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2).
1098 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
1099 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1100 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
1101 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1103 __ bind(&setup_rest);
1105 // Locate the code entry and call it.
1106 __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1109 // Drop arguments and come back to JS mode.
1110 __ LeaveApiExitFrame(true);
1112 // Check the result.
1115 // We expect exactly one result since we force the called regexp to behave
1117 __ j(equal, &success);
1119 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
1120 __ j(equal, &failure);
1121 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
1122 // If not exception it can only be retry. Handle that in the runtime system.
1123 __ j(not_equal, &runtime);
1124 // Result must now be exception. If there is no pending exception already a
1125 // stack overflow (on the backtrack stack) was detected in RegExp code but
1126 // haven't created the exception yet. Handle that in the runtime system.
1127 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1128 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
1130 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
1131 __ mov(eax, Operand::StaticVariable(pending_exception));
1133 __ j(equal, &runtime);
1135 // For exception, throw the exception again.
1136 __ TailCallRuntime(Runtime::kRegExpExecReThrow, 4, 1);
1139 // For failure to match, return null.
1140 __ mov(eax, factory->null_value());
1141 __ ret(4 * kPointerSize);
1143 // Load RegExp data.
1145 __ mov(eax, Operand(esp, kJSRegExpOffset));
1146 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1147 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1148 // Calculate number of capture registers (number_of_captures + 1) * 2.
1149 STATIC_ASSERT(kSmiTag == 0);
1150 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1151 __ add(edx, Immediate(2)); // edx was a smi.
1153 // edx: Number of capture registers
1154 // Load last_match_info which is still known to be a fast case JSArray.
1155 // Check that the fourth object is a JSArray object.
1156 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1157 __ JumpIfSmi(eax, &runtime);
1158 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
1159 __ j(not_equal, &runtime);
1160 // Check that the JSArray is in fast case.
1161 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
1162 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
1163 __ cmp(eax, factory->fixed_array_map());
1164 __ j(not_equal, &runtime);
1165 // Check that the last match info has space for the capture registers and the
1166 // additional information.
1167 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
1169 __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
1171 __ j(greater, &runtime);
1173 // ebx: last_match_info backing store (FixedArray)
1174 // edx: number of capture registers
1175 // Store the capture count.
1176 __ SmiTag(edx); // Number of capture registers to smi.
1177 __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
1178 __ SmiUntag(edx); // Number of capture registers back from smi.
1179 // Store last subject and last input.
1180 __ mov(eax, Operand(esp, kSubjectOffset));
1182 __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
1183 __ RecordWriteField(ebx, RegExpImpl::kLastSubjectOffset, eax, edi,
1186 __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
1187 __ RecordWriteField(ebx, RegExpImpl::kLastInputOffset, eax, edi,
1190 // Get the static offsets vector filled by the native regexp code.
1191 ExternalReference address_of_static_offsets_vector =
1192 ExternalReference::address_of_static_offsets_vector(isolate());
1193 __ mov(ecx, Immediate(address_of_static_offsets_vector));
1195 // ebx: last_match_info backing store (FixedArray)
1196 // ecx: offsets vector
1197 // edx: number of capture registers
1198 Label next_capture, done;
1199 // Capture register counter starts from number of capture registers and
1200 // counts down until wraping after zero.
1201 __ bind(&next_capture);
1202 __ sub(edx, Immediate(1));
1203 __ j(negative, &done, Label::kNear);
1204 // Read the value from the static offsets vector buffer.
1205 __ mov(edi, Operand(ecx, edx, times_int_size, 0));
1207 // Store the smi value in the last match info.
1208 __ mov(FieldOperand(ebx,
1211 RegExpImpl::kFirstCaptureOffset),
1213 __ jmp(&next_capture);
1216 // Return last match info.
1217 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1218 __ ret(4 * kPointerSize);
1220 // Do the runtime call to execute the regexp.
1222 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
1224 // Deferred code for string handling.
1225 // (7) Not a long external string? If yes, go to (10).
1226 __ bind(¬_seq_nor_cons);
1227 // Compare flags are still set from (3).
1228 __ j(greater, ¬_long_external, Label::kNear); // Go to (10).
1230 // (8) External string. Short external strings have been ruled out.
1231 __ bind(&external_string);
1232 // Reload instance type.
1233 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1234 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1235 if (FLAG_debug_code) {
1236 // Assert that we do not have a cons or slice (indirect strings) here.
1237 // Sequential strings have already been ruled out.
1238 __ test_b(ebx, kIsIndirectStringMask);
1239 __ Assert(zero, kExternalStringExpectedButNotFound);
1241 __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
1242 // Move the pointer so that offset-wise, it looks like a sequential string.
1243 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1244 __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1245 STATIC_ASSERT(kTwoByteStringTag == 0);
1246 // (8a) Is the external string one byte? If yes, go to (6).
1247 __ test_b(ebx, kStringEncodingMask);
1248 __ j(not_zero, &seq_one_byte_string); // Goto (6).
1250 // eax: sequential subject string (or look-alike, external string)
1251 // edx: original subject string
1252 // ecx: RegExp data (FixedArray)
1253 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1254 __ bind(&seq_two_byte_string);
1255 // Load previous index and check range before edx is overwritten. We have
1256 // to use edx instead of eax here because it might have been only made to
1257 // look like a sequential string when it actually is an external string.
1258 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1259 __ JumpIfNotSmi(ebx, &runtime);
1260 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1261 __ j(above_equal, &runtime);
1262 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
1263 __ Move(ecx, Immediate(0)); // Type is two byte.
1264 __ jmp(&check_code); // Go to (E).
1266 // (10) Not a string or a short external string? If yes, bail out to runtime.
1267 __ bind(¬_long_external);
1268 // Catch non-string subject or short external string.
1269 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1270 __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
1271 __ j(not_zero, &runtime);
1273 // (11) Sliced string. Replace subject with parent. Go to (5a).
1274 // Load offset into edi and replace subject string with parent.
1275 __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
1276 __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
1277 __ jmp(&check_underlying); // Go to (5a).
1278 #endif // V8_INTERPRETED_REGEXP
1282 static int NegativeComparisonResult(Condition cc) {
1283 DCHECK(cc != equal);
1284 DCHECK((cc == less) || (cc == less_equal)
1285 || (cc == greater) || (cc == greater_equal));
1286 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
1290 static void CheckInputType(MacroAssembler* masm, Register input,
1291 CompareICState::State expected, Label* fail) {
1293 if (expected == CompareICState::SMI) {
1294 __ JumpIfNotSmi(input, fail);
1295 } else if (expected == CompareICState::NUMBER) {
1296 __ JumpIfSmi(input, &ok);
1297 __ cmp(FieldOperand(input, HeapObject::kMapOffset),
1298 Immediate(masm->isolate()->factory()->heap_number_map()));
1299 __ j(not_equal, fail);
1301 // We could be strict about internalized/non-internalized here, but as long as
1302 // hydrogen doesn't care, the stub doesn't have to care either.
1307 static void BranchIfNotInternalizedString(MacroAssembler* masm,
1311 __ JumpIfSmi(object, label);
1312 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
1313 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
1314 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
1315 __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
1316 __ j(not_zero, label);
1320 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
1321 Label runtime_call, check_unequal_objects;
1322 Condition cc = GetCondition();
1325 CheckInputType(masm, edx, left(), &miss);
1326 CheckInputType(masm, eax, right(), &miss);
1328 // Compare two smis.
1329 Label non_smi, smi_done;
1332 __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
1333 __ sub(edx, eax); // Return on the result of the subtraction.
1334 __ j(no_overflow, &smi_done, Label::kNear);
1335 __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
1341 // NOTICE! This code is only reached after a smi-fast-case check, so
1342 // it is certain that at least one operand isn't a smi.
1344 // Identical objects can be compared fast, but there are some tricky cases
1345 // for NaN and undefined.
1346 Label generic_heap_number_comparison;
1348 Label not_identical;
1350 __ j(not_equal, ¬_identical);
1353 // Check for undefined. undefined OP undefined is false even though
1354 // undefined == undefined.
1355 __ cmp(edx, isolate()->factory()->undefined_value());
1356 if (is_strong(strength())) {
1357 // In strong mode, this comparison must throw, so call the runtime.
1358 __ j(equal, &runtime_call, Label::kFar);
1360 Label check_for_nan;
1361 __ j(not_equal, &check_for_nan, Label::kNear);
1362 __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1364 __ bind(&check_for_nan);
1368 // Test for NaN. Compare heap numbers in a general way,
1369 // to handle NaNs correctly.
1370 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
1371 Immediate(isolate()->factory()->heap_number_map()));
1372 __ j(equal, &generic_heap_number_comparison, Label::kNear);
1374 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
1375 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
1376 // Call runtime on identical JSObjects. Otherwise return equal.
1377 __ cmpb(ecx, static_cast<uint8_t>(FIRST_SPEC_OBJECT_TYPE));
1378 __ j(above_equal, &runtime_call, Label::kFar);
1379 // Call runtime on identical symbols since we need to throw a TypeError.
1380 __ cmpb(ecx, static_cast<uint8_t>(SYMBOL_TYPE));
1381 __ j(equal, &runtime_call, Label::kFar);
1382 if (is_strong(strength())) {
1383 // We have already tested for smis and heap numbers, so if both
1384 // arguments are not strings we must proceed to the slow case.
1385 __ test(ecx, Immediate(kIsNotStringMask));
1386 __ j(not_zero, &runtime_call, Label::kFar);
1389 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
1393 __ bind(¬_identical);
1396 // Strict equality can quickly decide whether objects are equal.
1397 // Non-strict object equality is slower, so it is handled later in the stub.
1398 if (cc == equal && strict()) {
1399 Label slow; // Fallthrough label.
1401 // If we're doing a strict equality comparison, we don't have to do
1402 // type conversion, so we generate code to do fast comparison for objects
1403 // and oddballs. Non-smi numbers and strings still go through the usual
1405 // If either is a Smi (we know that not both are), then they can only
1406 // be equal if the other is a HeapNumber. If so, use the slow case.
1407 STATIC_ASSERT(kSmiTag == 0);
1408 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
1409 __ mov(ecx, Immediate(kSmiTagMask));
1412 __ j(not_zero, ¬_smis, Label::kNear);
1413 // One operand is a smi.
1415 // Check whether the non-smi is a heap number.
1416 STATIC_ASSERT(kSmiTagMask == 1);
1417 // ecx still holds eax & kSmiTag, which is either zero or one.
1418 __ sub(ecx, Immediate(0x01));
1421 __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
1423 // if eax was smi, ebx is now edx, else eax.
1425 // Check if the non-smi operand is a heap number.
1426 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
1427 Immediate(isolate()->factory()->heap_number_map()));
1428 // If heap number, handle it in the slow case.
1429 __ j(equal, &slow, Label::kNear);
1430 // Return non-equal (ebx is not zero)
1435 // If either operand is a JSObject or an oddball value, then they are not
1436 // equal since their pointers are different
1437 // There is no test for undetectability in strict equality.
1439 // Get the type of the first operand.
1440 // If the first object is a JS object, we have done pointer comparison.
1441 Label first_non_object;
1442 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1443 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1444 __ j(below, &first_non_object, Label::kNear);
1446 // Return non-zero (eax is not zero)
1447 Label return_not_equal;
1448 STATIC_ASSERT(kHeapObjectTag != 0);
1449 __ bind(&return_not_equal);
1452 __ bind(&first_non_object);
1453 // Check for oddballs: true, false, null, undefined.
1454 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1455 __ j(equal, &return_not_equal);
1457 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
1458 __ j(above_equal, &return_not_equal);
1460 // Check for oddballs: true, false, null, undefined.
1461 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1462 __ j(equal, &return_not_equal);
1464 // Fall through to the general case.
1468 // Generate the number comparison code.
1469 Label non_number_comparison;
1471 __ bind(&generic_heap_number_comparison);
1472 FloatingPointHelper::CheckFloatOperands(
1473 masm, &non_number_comparison, ebx);
1474 FloatingPointHelper::LoadFloatOperand(masm, eax);
1475 FloatingPointHelper::LoadFloatOperand(masm, edx);
1478 // Don't base result on EFLAGS when a NaN is involved.
1479 __ j(parity_even, &unordered, Label::kNear);
1481 Label below_label, above_label;
1482 // Return a result of -1, 0, or 1, based on EFLAGS.
1483 __ j(below, &below_label, Label::kNear);
1484 __ j(above, &above_label, Label::kNear);
1486 __ Move(eax, Immediate(0));
1489 __ bind(&below_label);
1490 __ mov(eax, Immediate(Smi::FromInt(-1)));
1493 __ bind(&above_label);
1494 __ mov(eax, Immediate(Smi::FromInt(1)));
1497 // If one of the numbers was NaN, then the result is always false.
1498 // The cc is never not-equal.
1499 __ bind(&unordered);
1500 DCHECK(cc != not_equal);
1501 if (cc == less || cc == less_equal) {
1502 __ mov(eax, Immediate(Smi::FromInt(1)));
1504 __ mov(eax, Immediate(Smi::FromInt(-1)));
1508 // The number comparison code did not provide a valid result.
1509 __ bind(&non_number_comparison);
1511 // Fast negative check for internalized-to-internalized equality.
1512 Label check_for_strings;
1514 BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
1515 BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
1517 // We've already checked for object identity, so if both operands
1518 // are internalized they aren't equal. Register eax already holds a
1519 // non-zero value, which indicates not equal, so just return.
1523 __ bind(&check_for_strings);
1525 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
1526 &check_unequal_objects);
1528 // Inline comparison of one-byte strings.
1530 StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
1532 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
1536 __ Abort(kUnexpectedFallThroughFromStringComparison);
1539 __ bind(&check_unequal_objects);
1540 if (cc == equal && !strict()) {
1541 // Non-strict equality. Objects are unequal if
1542 // they are both JSObjects and not undetectable,
1543 // and their pointers are different.
1544 Label return_unequal;
1545 // At most one is a smi, so we can test for smi by adding the two.
1546 // A smi plus a heap object has the low bit set, a heap object plus
1547 // a heap object has the low bit clear.
1548 STATIC_ASSERT(kSmiTag == 0);
1549 STATIC_ASSERT(kSmiTagMask == 1);
1550 __ lea(ecx, Operand(eax, edx, times_1, 0));
1551 __ test(ecx, Immediate(kSmiTagMask));
1552 __ j(not_zero, &runtime_call, Label::kNear);
1553 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1554 __ j(below, &runtime_call, Label::kNear);
1555 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
1556 __ j(below, &runtime_call, Label::kNear);
1557 // We do not bail out after this point. Both are JSObjects, and
1558 // they are equal if and only if both are undetectable.
1559 // The and of the undetectable flags is 1 if and only if they are equal.
1560 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1561 1 << Map::kIsUndetectable);
1562 __ j(zero, &return_unequal, Label::kNear);
1563 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
1564 1 << Map::kIsUndetectable);
1565 __ j(zero, &return_unequal, Label::kNear);
1566 // The objects are both undetectable, so they both compare as the value
1567 // undefined, and are equal.
1568 __ Move(eax, Immediate(EQUAL));
1569 __ bind(&return_unequal);
1570 // Return non-equal by returning the non-zero object pointer in eax,
1571 // or return equal if we fell through to here.
1572 __ ret(0); // rax, rdx were pushed
1574 __ bind(&runtime_call);
1576 // Push arguments below the return address.
1581 // Figure out which native to call and setup the arguments.
1582 Builtins::JavaScript builtin;
1584 builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1587 is_strong(strength()) ? Builtins::COMPARE_STRONG : Builtins::COMPARE;
1588 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1591 // Restore return address on the stack.
1594 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1595 // tagged as a small integer.
1596 __ InvokeBuiltin(builtin, JUMP_FUNCTION);
1603 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1604 // eax : number of arguments to the construct function
1605 // ebx : Feedback vector
1606 // edx : slot in feedback vector (Smi)
1607 // edi : the function to call
1608 FrameScope scope(masm, StackFrame::INTERNAL);
1610 // Number-of-arguments register must be smi-tagged to call out.
1627 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1628 // Cache the called function in a feedback vector slot. Cache states
1629 // are uninitialized, monomorphic (indicated by a JSFunction), and
1631 // eax : number of arguments to the construct function
1632 // ebx : Feedback vector
1633 // edx : slot in feedback vector (Smi)
1634 // edi : the function to call
1635 Isolate* isolate = masm->isolate();
1636 Label initialize, done, miss, megamorphic, not_array_function;
1638 // Load the cache state into ecx.
1639 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1640 FixedArray::kHeaderSize));
1642 // A monomorphic cache hit or an already megamorphic state: invoke the
1643 // function without changing the state.
1644 // We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read
1645 // at this position in a symbol (see static asserts in
1646 // type-feedback-vector.h).
1647 Label check_allocation_site;
1648 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
1649 __ j(equal, &done, Label::kFar);
1650 __ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex);
1651 __ j(equal, &done, Label::kFar);
1652 __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
1653 Heap::kWeakCellMapRootIndex);
1654 __ j(not_equal, FLAG_pretenuring_call_new ? &miss : &check_allocation_site);
1656 // If the weak cell is cleared, we have a new chance to become monomorphic.
1657 __ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize);
1658 __ jmp(&megamorphic);
1660 if (!FLAG_pretenuring_call_new) {
1661 __ bind(&check_allocation_site);
1662 // If we came here, we need to see if we are the array function.
1663 // If we didn't have a matching function, and we didn't find the megamorph
1664 // sentinel, then we have in the slot either some other function or an
1666 __ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex);
1667 __ j(not_equal, &miss);
1669 // Make sure the function is the Array() function
1670 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1672 __ j(not_equal, &megamorphic);
1673 __ jmp(&done, Label::kFar);
1678 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1680 __ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex);
1681 __ j(equal, &initialize);
1682 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1683 // write-barrier is needed.
1684 __ bind(&megamorphic);
1686 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
1687 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1688 __ jmp(&done, Label::kFar);
1690 // An uninitialized cache is patched with the function or sentinel to
1691 // indicate the ElementsKind if function is the Array constructor.
1692 __ bind(&initialize);
1693 if (!FLAG_pretenuring_call_new) {
1694 // Make sure the function is the Array() function
1695 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1697 __ j(not_equal, ¬_array_function);
1699 // The target function is the Array constructor,
1700 // Create an AllocationSite if we don't already have it, store it in the
1702 CreateAllocationSiteStub create_stub(isolate);
1703 CallStubInRecordCallTarget(masm, &create_stub);
1706 __ bind(¬_array_function);
1709 CreateWeakCellStub create_stub(isolate);
1710 CallStubInRecordCallTarget(masm, &create_stub);
1715 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
1716 // Do not transform the receiver for strict mode functions.
1717 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1718 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
1719 1 << SharedFunctionInfo::kStrictModeBitWithinByte);
1720 __ j(not_equal, cont);
1722 // Do not transform the receiver for natives (shared already in ecx).
1723 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
1724 1 << SharedFunctionInfo::kNativeBitWithinByte);
1725 __ j(not_equal, cont);
1729 static void EmitSlowCase(Isolate* isolate,
1730 MacroAssembler* masm,
1732 Label* non_function) {
1733 // Check for function proxy.
1734 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
1735 __ j(not_equal, non_function);
1737 __ push(edi); // put proxy as additional argument under return address
1739 __ Move(eax, Immediate(argc + 1));
1740 __ Move(ebx, Immediate(0));
1741 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
1743 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
1744 __ jmp(adaptor, RelocInfo::CODE_TARGET);
1747 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
1748 // of the original receiver from the call site).
1749 __ bind(non_function);
1750 __ mov(Operand(esp, (argc + 1) * kPointerSize), edi);
1751 __ Move(eax, Immediate(argc));
1752 __ Move(ebx, Immediate(0));
1753 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
1754 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
1755 __ jmp(adaptor, RelocInfo::CODE_TARGET);
1759 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
1760 // Wrap the receiver and patch it back onto the stack.
1761 { FrameScope frame_scope(masm, StackFrame::INTERNAL);
1764 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1767 __ mov(Operand(esp, (argc + 1) * kPointerSize), eax);
1772 static void CallFunctionNoFeedback(MacroAssembler* masm,
1773 int argc, bool needs_checks,
1774 bool call_as_method) {
1775 // edi : the function to call
1776 Label slow, non_function, wrap, cont;
1779 // Check that the function really is a JavaScript function.
1780 __ JumpIfSmi(edi, &non_function);
1782 // Goto slow case if we do not have a function.
1783 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
1784 __ j(not_equal, &slow);
1787 // Fast-case: Just invoke the function.
1788 ParameterCount actual(argc);
1790 if (call_as_method) {
1792 EmitContinueIfStrictOrNative(masm, &cont);
1795 // Load the receiver from the stack.
1796 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
1799 __ JumpIfSmi(eax, &wrap);
1801 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1810 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
1813 // Slow-case: Non-function called.
1815 // (non_function is bound in EmitSlowCase)
1816 EmitSlowCase(masm->isolate(), masm, argc, &non_function);
1819 if (call_as_method) {
1821 EmitWrapCase(masm, argc, &cont);
1826 void CallFunctionStub::Generate(MacroAssembler* masm) {
1827 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
1831 void CallConstructStub::Generate(MacroAssembler* masm) {
1832 // eax : number of arguments
1833 // ebx : feedback vector
1834 // ecx : original constructor (for IsSuperConstructorCall)
1835 // edx : slot in feedback vector (Smi, for RecordCallTarget)
1836 // edi : constructor function
1837 Label slow, non_function_call;
1839 if (IsSuperConstructorCall()) {
1843 // Check that function is not a smi.
1844 __ JumpIfSmi(edi, &non_function_call);
1845 // Check that function is a JSFunction.
1846 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
1847 __ j(not_equal, &slow);
1849 if (RecordCallTarget()) {
1850 GenerateRecordCallTarget(masm);
1852 if (FLAG_pretenuring_call_new) {
1853 // Put the AllocationSite from the feedback vector into ebx.
1854 // By adding kPointerSize we encode that we know the AllocationSite
1855 // entry is at the feedback vector slot given by edx + 1.
1856 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
1857 FixedArray::kHeaderSize + kPointerSize));
1859 Label feedback_register_initialized;
1860 // Put the AllocationSite from the feedback vector into ebx, or undefined.
1861 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
1862 FixedArray::kHeaderSize));
1863 Handle<Map> allocation_site_map =
1864 isolate()->factory()->allocation_site_map();
1865 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
1866 __ j(equal, &feedback_register_initialized);
1867 __ mov(ebx, isolate()->factory()->undefined_value());
1868 __ bind(&feedback_register_initialized);
1871 __ AssertUndefinedOrAllocationSite(ebx);
1874 if (IsSuperConstructorCall()) {
1877 // Pass original constructor to construct stub.
1881 // Jump to the function-specific construct stub.
1882 Register jmp_reg = ecx;
1883 __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1884 __ mov(jmp_reg, FieldOperand(jmp_reg,
1885 SharedFunctionInfo::kConstructStubOffset));
1886 __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
1889 // edi: called object
1890 // eax: number of arguments
1892 // esp[0]: original receiver
1895 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
1896 __ j(not_equal, &non_function_call);
1897 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
1900 __ bind(&non_function_call);
1901 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
1903 if (IsSuperConstructorCall()) {
1906 // Set expected number of arguments to zero (not changing eax).
1907 __ Move(ebx, Immediate(0));
1908 Handle<Code> arguments_adaptor =
1909 isolate()->builtins()->ArgumentsAdaptorTrampoline();
1910 __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
1914 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
1915 __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1916 __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
1917 __ mov(vector, FieldOperand(vector,
1918 SharedFunctionInfo::kFeedbackVectorOffset));
1922 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
1927 int argc = arg_count();
1928 ParameterCount actual(argc);
1930 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1932 __ j(not_equal, &miss);
1934 __ mov(eax, arg_count());
1935 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1936 FixedArray::kHeaderSize));
1938 // Verify that ecx contains an AllocationSite
1939 Factory* factory = masm->isolate()->factory();
1940 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
1941 factory->allocation_site_map());
1942 __ j(not_equal, &miss);
1944 // Increment the call count for monomorphic function calls.
1945 __ add(FieldOperand(ebx, edx, times_half_pointer_size,
1946 FixedArray::kHeaderSize + kPointerSize),
1947 Immediate(Smi::FromInt(CallICNexus::kCallCountIncrement)));
1951 ArrayConstructorStub stub(masm->isolate(), arg_count());
1952 __ TailCallStub(&stub);
1957 // The slow case, we need this no matter what to complete a call after a miss.
1958 CallFunctionNoFeedback(masm,
1968 void CallICStub::Generate(MacroAssembler* masm) {
1972 Isolate* isolate = masm->isolate();
1973 const int with_types_offset =
1974 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kWithTypesIndex);
1975 const int generic_offset =
1976 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kGenericCountIndex);
1977 Label extra_checks_or_miss, slow_start;
1978 Label slow, non_function, wrap, cont;
1979 Label have_js_function;
1980 int argc = arg_count();
1981 ParameterCount actual(argc);
1983 // The checks. First, does edi match the recorded monomorphic target?
1984 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1985 FixedArray::kHeaderSize));
1987 // We don't know that we have a weak cell. We might have a private symbol
1988 // or an AllocationSite, but the memory is safe to examine.
1989 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
1991 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
1992 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
1993 // computed, meaning that it can't appear to be a pointer. If the low bit is
1994 // 0, then hash is computed, but the 0 bit prevents the field from appearing
1996 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
1997 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
1998 WeakCell::kValueOffset &&
1999 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
2001 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
2002 __ j(not_equal, &extra_checks_or_miss);
2004 // The compare above could have been a SMI/SMI comparison. Guard against this
2005 // convincing us that we have a monomorphic JSFunction.
2006 __ JumpIfSmi(edi, &extra_checks_or_miss);
2008 // Increment the call count for monomorphic function calls.
2009 __ add(FieldOperand(ebx, edx, times_half_pointer_size,
2010 FixedArray::kHeaderSize + kPointerSize),
2011 Immediate(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2013 __ bind(&have_js_function);
2014 if (CallAsMethod()) {
2015 EmitContinueIfStrictOrNative(masm, &cont);
2017 // Load the receiver from the stack.
2018 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
2020 __ JumpIfSmi(eax, &wrap);
2022 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
2028 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
2031 EmitSlowCase(isolate, masm, argc, &non_function);
2033 if (CallAsMethod()) {
2035 EmitWrapCase(masm, argc, &cont);
2038 __ bind(&extra_checks_or_miss);
2039 Label uninitialized, miss;
2041 __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2042 __ j(equal, &slow_start);
2044 // The following cases attempt to handle MISS cases without going to the
2046 if (FLAG_trace_ic) {
2050 __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
2051 __ j(equal, &uninitialized);
2053 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2054 // to handle it here. More complex cases are dealt with in the runtime.
2055 __ AssertNotSmi(ecx);
2056 __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
2057 __ j(not_equal, &miss);
2059 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
2060 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2061 // We have to update statistics for runtime profiling.
2062 __ sub(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
2063 __ add(FieldOperand(ebx, generic_offset), Immediate(Smi::FromInt(1)));
2064 __ jmp(&slow_start);
2066 __ bind(&uninitialized);
2068 // We are going monomorphic, provided we actually have a JSFunction.
2069 __ JumpIfSmi(edi, &miss);
2071 // Goto miss case if we do not have a function.
2072 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2073 __ j(not_equal, &miss);
2075 // Make sure the function is not the Array() function, which requires special
2076 // behavior on MISS.
2077 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2082 __ add(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
2084 // Initialize the call counter.
2085 __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
2086 FixedArray::kHeaderSize + kPointerSize),
2087 Immediate(Smi::FromInt(CallICNexus::kCallCountIncrement)));
2089 // Store the function. Use a stub since we need a frame for allocation.
2094 FrameScope scope(masm, StackFrame::INTERNAL);
2095 CreateWeakCellStub create_stub(isolate);
2097 __ CallStub(&create_stub);
2101 __ jmp(&have_js_function);
2103 // We are here because tracing is on or we encountered a MISS case we can't
2109 __ bind(&slow_start);
2111 // Check that the function really is a JavaScript function.
2112 __ JumpIfSmi(edi, &non_function);
2114 // Goto slow case if we do not have a function.
2115 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2116 __ j(not_equal, &slow);
2117 __ jmp(&have_js_function);
2124 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2125 FrameScope scope(masm, StackFrame::INTERNAL);
2127 // Push the receiver and the function and feedback info.
2133 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2134 : IC::kCallIC_Customization_Miss;
2136 ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate());
2137 __ CallExternalReference(miss, 3);
2139 // Move result to edi and exit the internal frame.
2144 bool CEntryStub::NeedsImmovableCode() {
2149 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2150 CEntryStub::GenerateAheadOfTime(isolate);
2151 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
2152 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
2153 // It is important that the store buffer overflow stubs are generated first.
2154 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
2155 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
2156 CreateWeakCellStub::GenerateAheadOfTime(isolate);
2157 BinaryOpICStub::GenerateAheadOfTime(isolate);
2158 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
2159 StoreFastElementStub::GenerateAheadOfTime(isolate);
2160 TypeofStub::GenerateAheadOfTime(isolate);
2164 void CodeStub::GenerateFPStubs(Isolate* isolate) {
2165 CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
2166 // Stubs might already be in the snapshot, detect that and don't regenerate,
2167 // which would lead to code stub initialization state being messed up.
2168 Code* save_doubles_code;
2169 if (!save_doubles.FindCodeInCache(&save_doubles_code)) {
2170 save_doubles_code = *(save_doubles.GetCode());
2172 isolate->set_fp_stubs_generated(true);
2176 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
2177 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
2182 void CEntryStub::Generate(MacroAssembler* masm) {
2183 // eax: number of arguments including receiver
2184 // ebx: pointer to C function (C callee-saved)
2185 // ebp: frame pointer (restored after C call)
2186 // esp: stack pointer (restored after C call)
2187 // esi: current context (C callee-saved)
2188 // edi: JS function of the caller (C callee-saved)
2190 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2192 // Enter the exit frame that transitions from JavaScript to C++.
2193 __ EnterExitFrame(save_doubles());
2195 // ebx: pointer to C function (C callee-saved)
2196 // ebp: frame pointer (restored after C call)
2197 // esp: stack pointer (restored after C call)
2198 // edi: number of arguments including receiver (C callee-saved)
2199 // esi: pointer to the first argument (C callee-saved)
2201 // Result returned in eax, or eax+edx if result size is 2.
2203 // Check stack alignment.
2204 if (FLAG_debug_code) {
2205 __ CheckStackAlignment();
2209 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
2210 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
2211 __ mov(Operand(esp, 2 * kPointerSize),
2212 Immediate(ExternalReference::isolate_address(isolate())));
2214 // Result is in eax or edx:eax - do not destroy these registers!
2216 // Check result for exception sentinel.
2217 Label exception_returned;
2218 __ cmp(eax, isolate()->factory()->exception());
2219 __ j(equal, &exception_returned);
2221 // Check that there is no pending exception, otherwise we
2222 // should have returned the exception sentinel.
2223 if (FLAG_debug_code) {
2225 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2227 ExternalReference pending_exception_address(
2228 Isolate::kPendingExceptionAddress, isolate());
2229 __ cmp(edx, Operand::StaticVariable(pending_exception_address));
2230 // Cannot use check here as it attempts to generate call into runtime.
2231 __ j(equal, &okay, Label::kNear);
2237 // Exit the JavaScript to C++ exit frame.
2238 __ LeaveExitFrame(save_doubles());
2241 // Handling of exception.
2242 __ bind(&exception_returned);
2244 ExternalReference pending_handler_context_address(
2245 Isolate::kPendingHandlerContextAddress, isolate());
2246 ExternalReference pending_handler_code_address(
2247 Isolate::kPendingHandlerCodeAddress, isolate());
2248 ExternalReference pending_handler_offset_address(
2249 Isolate::kPendingHandlerOffsetAddress, isolate());
2250 ExternalReference pending_handler_fp_address(
2251 Isolate::kPendingHandlerFPAddress, isolate());
2252 ExternalReference pending_handler_sp_address(
2253 Isolate::kPendingHandlerSPAddress, isolate());
2255 // Ask the runtime for help to determine the handler. This will set eax to
2256 // contain the current pending exception, don't clobber it.
2257 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
2260 FrameScope scope(masm, StackFrame::MANUAL);
2261 __ PrepareCallCFunction(3, eax);
2262 __ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc.
2263 __ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv.
2264 __ mov(Operand(esp, 2 * kPointerSize),
2265 Immediate(ExternalReference::isolate_address(isolate())));
2266 __ CallCFunction(find_handler, 3);
2269 // Retrieve the handler context, SP and FP.
2270 __ mov(esi, Operand::StaticVariable(pending_handler_context_address));
2271 __ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
2272 __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));
2274 // If the handler is a JS frame, restore the context to the frame. Note that
2275 // the context will be set to (esi == 0) for non-JS frames.
2278 __ j(zero, &skip, Label::kNear);
2279 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
2282 // Compute the handler entry address and jump to it.
2283 __ mov(edi, Operand::StaticVariable(pending_handler_code_address));
2284 __ mov(edx, Operand::StaticVariable(pending_handler_offset_address));
2285 __ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
2290 void JSEntryStub::Generate(MacroAssembler* masm) {
2291 Label invoke, handler_entry, exit;
2292 Label not_outermost_js, not_outermost_js_2;
2294 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2300 // Push marker in two places.
2301 int marker = type();
2302 __ push(Immediate(Smi::FromInt(marker))); // context slot
2303 __ push(Immediate(Smi::FromInt(marker))); // function slot
2304 // Save callee-saved registers (C calling conventions).
2309 // Save copies of the top frame descriptor on the stack.
2310 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
2311 __ push(Operand::StaticVariable(c_entry_fp));
2313 // If this is the outermost JS call, set js_entry_sp value.
2314 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
2315 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
2316 __ j(not_equal, ¬_outermost_js, Label::kNear);
2317 __ mov(Operand::StaticVariable(js_entry_sp), ebp);
2318 __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2319 __ jmp(&invoke, Label::kNear);
2320 __ bind(¬_outermost_js);
2321 __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
2323 // Jump to a faked try block that does the invoke, with a faked catch
2324 // block that sets the pending exception.
2326 __ bind(&handler_entry);
2327 handler_offset_ = handler_entry.pos();
2328 // Caught exception: Store result (exception) in the pending exception
2329 // field in the JSEnv and return a failure sentinel.
2330 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
2332 __ mov(Operand::StaticVariable(pending_exception), eax);
2333 __ mov(eax, Immediate(isolate()->factory()->exception()));
2336 // Invoke: Link this frame into the handler chain.
2338 __ PushStackHandler();
2340 // Clear any pending exceptions.
2341 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2342 __ mov(Operand::StaticVariable(pending_exception), edx);
2344 // Fake a receiver (NULL).
2345 __ push(Immediate(0)); // receiver
2347 // Invoke the function by calling through JS entry trampoline builtin and
2348 // pop the faked function when we return. Notice that we cannot store a
2349 // reference to the trampoline code directly in this stub, because the
2350 // builtin stubs may not have been generated yet.
2351 if (type() == StackFrame::ENTRY_CONSTRUCT) {
2352 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2354 __ mov(edx, Immediate(construct_entry));
2356 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
2357 __ mov(edx, Immediate(entry));
2359 __ mov(edx, Operand(edx, 0)); // deref address
2360 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
2363 // Unlink this frame from the handler chain.
2364 __ PopStackHandler();
2367 // Check if the current stack frame is marked as the outermost JS frame.
2369 __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2370 __ j(not_equal, ¬_outermost_js_2);
2371 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
2372 __ bind(¬_outermost_js_2);
2374 // Restore the top frame descriptor from the stack.
2375 __ pop(Operand::StaticVariable(ExternalReference(
2376 Isolate::kCEntryFPAddress, isolate())));
2378 // Restore callee-saved registers (C calling conventions).
2382 __ add(esp, Immediate(2 * kPointerSize)); // remove markers
2384 // Restore frame pointer and return.
2390 // Generate stub code for instanceof.
2391 // This code can patch a call site inlined cache of the instance of check,
2392 // which looks like this.
2394 // 81 ff XX XX XX XX cmp edi, <the hole, patched to a map>
2395 // 75 0a jne <some near label>
2396 // b8 XX XX XX XX mov eax, <the hole, patched to either true or false>
2398 // If call site patching is requested the stack will have the delta from the
2399 // return address to the cmp instruction just below the return address. This
2400 // also means that call site patching can only take place with arguments in
2401 // registers. TOS looks like this when call site patching is requested
2403 // esp[0] : return address
2404 // esp[4] : delta from return address to cmp instruction
2406 void InstanceofStub::Generate(MacroAssembler* masm) {
2407 // Call site inlining and patching implies arguments in registers.
2408 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
2410 // Fixed register usage throughout the stub.
2411 Register object = eax; // Object (lhs).
2412 Register map = ebx; // Map of the object.
2413 Register function = edx; // Function (rhs).
2414 Register prototype = edi; // Prototype of the function.
2415 Register scratch = ecx;
2417 // Constants describing the call site code to patch.
2418 static const int kDeltaToCmpImmediate = 2;
2419 static const int kDeltaToMov = 8;
2420 static const int kDeltaToMovImmediate = 9;
2421 static const int8_t kCmpEdiOperandByte1 = bit_cast<int8_t, uint8_t>(0x3b);
2422 static const int8_t kCmpEdiOperandByte2 = bit_cast<int8_t, uint8_t>(0x3d);
2423 static const int8_t kMovEaxImmediateByte = bit_cast<int8_t, uint8_t>(0xb8);
2425 DCHECK_EQ(object.code(), InstanceofStub::left().code());
2426 DCHECK_EQ(function.code(), InstanceofStub::right().code());
2428 // Get the object and function - they are always both needed.
2429 Label slow, not_js_object;
2430 if (!HasArgsInRegisters()) {
2431 __ mov(object, Operand(esp, 2 * kPointerSize));
2432 __ mov(function, Operand(esp, 1 * kPointerSize));
2435 // Check that the left hand is a JS object.
2436 __ JumpIfSmi(object, ¬_js_object);
2437 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object);
2439 // If there is a call site cache don't look in the global cache, but do the
2440 // real lookup and update the call site cache.
2441 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
2442 // Look up the function and the map in the instanceof cache.
2444 __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2445 __ j(not_equal, &miss, Label::kNear);
2446 __ CompareRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2447 __ j(not_equal, &miss, Label::kNear);
2448 __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex);
2449 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2453 // Get the prototype of the function.
2454 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
2456 // Check that the function prototype is a JS object.
2457 __ JumpIfSmi(prototype, &slow);
2458 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
2460 // Update the global instanceof or call site inlined cache with the current
2461 // map and function. The cached answer will be set when it is known below.
2462 if (!HasCallSiteInlineCheck()) {
2463 __ StoreRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2464 __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2466 // The constants for the code patching are based on no push instructions
2467 // at the call site.
2468 DCHECK(HasArgsInRegisters());
2469 // Get return address and delta to inlined map check.
2470 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2471 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2472 if (FLAG_debug_code) {
2473 __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1);
2474 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp1);
2475 __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2);
2476 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp2);
2478 __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate));
2479 __ mov(Operand(scratch, 0), map);
2481 // Scratch points at the cell payload. Calculate the start of the object.
2482 __ sub(scratch, Immediate(Cell::kValueOffset - 1));
2483 __ RecordWriteField(scratch, Cell::kValueOffset, map, function,
2484 kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2488 // Loop through the prototype chain of the object looking for the function
2490 __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
2491 Label loop, is_instance, is_not_instance;
2493 __ cmp(scratch, prototype);
2494 __ j(equal, &is_instance, Label::kNear);
2495 Factory* factory = isolate()->factory();
2496 __ cmp(scratch, Immediate(factory->null_value()));
2497 __ j(equal, &is_not_instance, Label::kNear);
2498 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
2499 __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
2502 __ bind(&is_instance);
2503 if (!HasCallSiteInlineCheck()) {
2504 __ mov(eax, Immediate(0));
2505 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2506 if (ReturnTrueFalseObject()) {
2507 __ mov(eax, factory->true_value());
2510 // Get return address and delta to inlined map check.
2511 __ mov(eax, factory->true_value());
2512 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2513 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2514 if (FLAG_debug_code) {
2515 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2516 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2518 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2519 if (!ReturnTrueFalseObject()) {
2520 __ Move(eax, Immediate(0));
2523 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2525 __ bind(&is_not_instance);
2526 if (!HasCallSiteInlineCheck()) {
2527 __ mov(eax, Immediate(Smi::FromInt(1)));
2528 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2529 if (ReturnTrueFalseObject()) {
2530 __ mov(eax, factory->false_value());
2533 // Get return address and delta to inlined map check.
2534 __ mov(eax, factory->false_value());
2535 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2536 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2537 if (FLAG_debug_code) {
2538 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2539 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2541 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2542 if (!ReturnTrueFalseObject()) {
2543 __ Move(eax, Immediate(Smi::FromInt(1)));
2546 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2548 Label object_not_null, object_not_null_or_smi;
2549 __ bind(¬_js_object);
2550 // Before null, smi and string value checks, check that the rhs is a function
2551 // as for a non-function rhs an exception needs to be thrown.
2552 __ JumpIfSmi(function, &slow, Label::kNear);
2553 __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
2554 __ j(not_equal, &slow, Label::kNear);
2556 // Null is not instance of anything.
2557 __ cmp(object, factory->null_value());
2558 __ j(not_equal, &object_not_null, Label::kNear);
2559 if (ReturnTrueFalseObject()) {
2560 __ mov(eax, factory->false_value());
2562 __ Move(eax, Immediate(Smi::FromInt(1)));
2564 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2566 __ bind(&object_not_null);
2567 // Smi values is not instance of anything.
2568 __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear);
2569 if (ReturnTrueFalseObject()) {
2570 __ mov(eax, factory->false_value());
2572 __ Move(eax, Immediate(Smi::FromInt(1)));
2574 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2576 __ bind(&object_not_null_or_smi);
2577 // String values is not instance of anything.
2578 Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
2579 __ j(NegateCondition(is_string), &slow, Label::kNear);
2580 if (ReturnTrueFalseObject()) {
2581 __ mov(eax, factory->false_value());
2583 __ Move(eax, Immediate(Smi::FromInt(1)));
2585 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2587 // Slow-case: Go through the JavaScript implementation.
2589 if (!ReturnTrueFalseObject()) {
2590 // Tail call the builtin which returns 0 or 1.
2591 if (HasArgsInRegisters()) {
2592 // Push arguments below return address.
2598 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
2600 // Call the builtin and convert 0/1 to true/false.
2602 FrameScope scope(masm, StackFrame::INTERNAL);
2605 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
2607 Label true_value, done;
2609 __ j(zero, &true_value, Label::kNear);
2610 __ mov(eax, factory->false_value());
2611 __ jmp(&done, Label::kNear);
2612 __ bind(&true_value);
2613 __ mov(eax, factory->true_value());
2615 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2620 // -------------------------------------------------------------------------
2621 // StringCharCodeAtGenerator
2623 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2624 // If the receiver is a smi trigger the non-string case.
2625 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2626 __ JumpIfSmi(object_, receiver_not_string_);
2628 // Fetch the instance type of the receiver into result register.
2629 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2630 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2631 // If the receiver is not a string trigger the non-string case.
2632 __ test(result_, Immediate(kIsNotStringMask));
2633 __ j(not_zero, receiver_not_string_);
2636 // If the index is non-smi trigger the non-smi case.
2637 __ JumpIfNotSmi(index_, &index_not_smi_);
2638 __ bind(&got_smi_index_);
2640 // Check for index out of range.
2641 __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
2642 __ j(above_equal, index_out_of_range_);
2644 __ SmiUntag(index_);
2646 Factory* factory = masm->isolate()->factory();
2647 StringCharLoadGenerator::Generate(
2648 masm, factory, object_, index_, result_, &call_runtime_);
2655 void StringCharCodeAtGenerator::GenerateSlow(
2656 MacroAssembler* masm, EmbedMode embed_mode,
2657 const RuntimeCallHelper& call_helper) {
2658 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2660 // Index is not a smi.
2661 __ bind(&index_not_smi_);
2662 // If index is a heap number, try converting it to an integer.
2664 masm->isolate()->factory()->heap_number_map(),
2667 call_helper.BeforeCall(masm);
2668 if (embed_mode == PART_OF_IC_HANDLER) {
2669 __ push(LoadWithVectorDescriptor::VectorRegister());
2670 __ push(LoadDescriptor::SlotRegister());
2673 __ push(index_); // Consumed by runtime conversion function.
2674 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2675 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2677 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2678 // NumberToSmi discards numbers that are not exact integers.
2679 __ CallRuntime(Runtime::kNumberToSmi, 1);
2681 if (!index_.is(eax)) {
2682 // Save the conversion result before the pop instructions below
2683 // have a chance to overwrite it.
2684 __ mov(index_, eax);
2687 if (embed_mode == PART_OF_IC_HANDLER) {
2688 __ pop(LoadDescriptor::SlotRegister());
2689 __ pop(LoadWithVectorDescriptor::VectorRegister());
2691 // Reload the instance type.
2692 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2693 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2694 call_helper.AfterCall(masm);
2695 // If index is still not a smi, it must be out of range.
2696 STATIC_ASSERT(kSmiTag == 0);
2697 __ JumpIfNotSmi(index_, index_out_of_range_);
2698 // Otherwise, return to the fast path.
2699 __ jmp(&got_smi_index_);
2701 // Call runtime. We get here when the receiver is a string and the
2702 // index is a number, but the code of getting the actual character
2703 // is too complex (e.g., when the string needs to be flattened).
2704 __ bind(&call_runtime_);
2705 call_helper.BeforeCall(masm);
2709 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
2710 if (!result_.is(eax)) {
2711 __ mov(result_, eax);
2713 call_helper.AfterCall(masm);
2716 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2720 // -------------------------------------------------------------------------
2721 // StringCharFromCodeGenerator
2723 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2724 // Fast case of Heap::LookupSingleCharacterStringFromCode.
2725 STATIC_ASSERT(kSmiTag == 0);
2726 STATIC_ASSERT(kSmiShiftSize == 0);
2727 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1));
2728 __ test(code_, Immediate(kSmiTagMask |
2729 ((~String::kMaxOneByteCharCodeU) << kSmiTagSize)));
2730 __ j(not_zero, &slow_case_);
2732 Factory* factory = masm->isolate()->factory();
2733 __ Move(result_, Immediate(factory->single_character_string_cache()));
2734 STATIC_ASSERT(kSmiTag == 0);
2735 STATIC_ASSERT(kSmiTagSize == 1);
2736 STATIC_ASSERT(kSmiShiftSize == 0);
2737 // At this point code register contains smi tagged one byte char code.
2738 __ mov(result_, FieldOperand(result_,
2739 code_, times_half_pointer_size,
2740 FixedArray::kHeaderSize));
2741 __ cmp(result_, factory->undefined_value());
2742 __ j(equal, &slow_case_);
2747 void StringCharFromCodeGenerator::GenerateSlow(
2748 MacroAssembler* masm,
2749 const RuntimeCallHelper& call_helper) {
2750 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2752 __ bind(&slow_case_);
2753 call_helper.BeforeCall(masm);
2755 __ CallRuntime(Runtime::kCharFromCode, 1);
2756 if (!result_.is(eax)) {
2757 __ mov(result_, eax);
2759 call_helper.AfterCall(masm);
2762 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2766 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
2771 String::Encoding encoding) {
2772 DCHECK(!scratch.is(dest));
2773 DCHECK(!scratch.is(src));
2774 DCHECK(!scratch.is(count));
2776 // Nothing to do for zero characters.
2778 __ test(count, count);
2781 // Make count the number of bytes to copy.
2782 if (encoding == String::TWO_BYTE_ENCODING) {
2788 __ mov_b(scratch, Operand(src, 0));
2789 __ mov_b(Operand(dest, 0), scratch);
2793 __ j(not_zero, &loop);
2799 void SubStringStub::Generate(MacroAssembler* masm) {
2802 // Stack frame on entry.
2803 // esp[0]: return address
2808 // Make sure first argument is a string.
2809 __ mov(eax, Operand(esp, 3 * kPointerSize));
2810 STATIC_ASSERT(kSmiTag == 0);
2811 __ JumpIfSmi(eax, &runtime);
2812 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
2813 __ j(NegateCondition(is_string), &runtime);
2816 // ebx: instance type
2818 // Calculate length of sub string using the smi values.
2819 __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
2820 __ JumpIfNotSmi(ecx, &runtime);
2821 __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
2822 __ JumpIfNotSmi(edx, &runtime);
2824 __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
2825 Label not_original_string;
2826 // Shorter than original string's length: an actual substring.
2827 __ j(below, ¬_original_string, Label::kNear);
2828 // Longer than original string's length or negative: unsafe arguments.
2829 __ j(above, &runtime);
2830 // Return original string.
2831 Counters* counters = isolate()->counters();
2832 __ IncrementCounter(counters->sub_string_native(), 1);
2833 __ ret(3 * kPointerSize);
2834 __ bind(¬_original_string);
2837 __ cmp(ecx, Immediate(Smi::FromInt(1)));
2838 __ j(equal, &single_char);
2841 // ebx: instance type
2842 // ecx: sub string length (smi)
2843 // edx: from index (smi)
2844 // Deal with different string types: update the index if necessary
2845 // and put the underlying string into edi.
2846 Label underlying_unpacked, sliced_string, seq_or_external_string;
2847 // If the string is not indirect, it can only be sequential or external.
2848 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
2849 STATIC_ASSERT(kIsIndirectStringMask != 0);
2850 __ test(ebx, Immediate(kIsIndirectStringMask));
2851 __ j(zero, &seq_or_external_string, Label::kNear);
2853 Factory* factory = isolate()->factory();
2854 __ test(ebx, Immediate(kSlicedNotConsMask));
2855 __ j(not_zero, &sliced_string, Label::kNear);
2856 // Cons string. Check whether it is flat, then fetch first part.
2857 // Flat cons strings have an empty second part.
2858 __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
2859 factory->empty_string());
2860 __ j(not_equal, &runtime);
2861 __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
2862 // Update instance type.
2863 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
2864 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
2865 __ jmp(&underlying_unpacked, Label::kNear);
2867 __ bind(&sliced_string);
2868 // Sliced string. Fetch parent and adjust start index by offset.
2869 __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
2870 __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
2871 // Update instance type.
2872 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
2873 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
2874 __ jmp(&underlying_unpacked, Label::kNear);
2876 __ bind(&seq_or_external_string);
2877 // Sequential or external string. Just move string to the expected register.
2880 __ bind(&underlying_unpacked);
2882 if (FLAG_string_slices) {
2884 // edi: underlying subject string
2885 // ebx: instance type of underlying subject string
2886 // edx: adjusted start index (smi)
2887 // ecx: length (smi)
2888 __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
2889 // Short slice. Copy instead of slicing.
2890 __ j(less, ©_routine);
2891 // Allocate new sliced string. At this point we do not reload the instance
2892 // type including the string encoding because we simply rely on the info
2893 // provided by the original string. It does not matter if the original
2894 // string's encoding is wrong because we always have to recheck encoding of
2895 // the newly created string's parent anyways due to externalized strings.
2896 Label two_byte_slice, set_slice_header;
2897 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
2898 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
2899 __ test(ebx, Immediate(kStringEncodingMask));
2900 __ j(zero, &two_byte_slice, Label::kNear);
2901 __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime);
2902 __ jmp(&set_slice_header, Label::kNear);
2903 __ bind(&two_byte_slice);
2904 __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
2905 __ bind(&set_slice_header);
2906 __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
2907 __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
2908 Immediate(String::kEmptyHashField));
2909 __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
2910 __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
2911 __ IncrementCounter(counters->sub_string_native(), 1);
2912 __ ret(3 * kPointerSize);
2914 __ bind(©_routine);
2917 // edi: underlying subject string
2918 // ebx: instance type of underlying subject string
2919 // edx: adjusted start index (smi)
2920 // ecx: length (smi)
2921 // The subject string can only be external or sequential string of either
2922 // encoding at this point.
2923 Label two_byte_sequential, runtime_drop_two, sequential_string;
2924 STATIC_ASSERT(kExternalStringTag != 0);
2925 STATIC_ASSERT(kSeqStringTag == 0);
2926 __ test_b(ebx, kExternalStringTag);
2927 __ j(zero, &sequential_string);
2929 // Handle external string.
2930 // Rule out short external strings.
2931 STATIC_ASSERT(kShortExternalStringTag != 0);
2932 __ test_b(ebx, kShortExternalStringMask);
2933 __ j(not_zero, &runtime);
2934 __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
2935 // Move the pointer so that offset-wise, it looks like a sequential string.
2936 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2937 __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2939 __ bind(&sequential_string);
2940 // Stash away (adjusted) index and (underlying) string.
2944 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
2945 __ test_b(ebx, kStringEncodingMask);
2946 __ j(zero, &two_byte_sequential);
2948 // Sequential one byte string. Allocate the result.
2949 __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
2951 // eax: result string
2952 // ecx: result string length
2953 // Locate first character of result.
2955 __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2956 // Load string argument and locate character of sub string start.
2960 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
2962 // eax: result string
2963 // ecx: result length
2964 // edi: first character of result
2965 // edx: character of sub string start
2966 StringHelper::GenerateCopyCharacters(
2967 masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
2968 __ IncrementCounter(counters->sub_string_native(), 1);
2969 __ ret(3 * kPointerSize);
2971 __ bind(&two_byte_sequential);
2972 // Sequential two-byte string. Allocate the result.
2973 __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
2975 // eax: result string
2976 // ecx: result string length
2977 // Locate first character of result.
2980 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2981 // Load string argument and locate character of sub string start.
2984 // As from is a smi it is 2 times the value which matches the size of a two
2986 STATIC_ASSERT(kSmiTag == 0);
2987 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2988 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
2990 // eax: result string
2991 // ecx: result length
2992 // edi: first character of result
2993 // edx: character of sub string start
2994 StringHelper::GenerateCopyCharacters(
2995 masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
2996 __ IncrementCounter(counters->sub_string_native(), 1);
2997 __ ret(3 * kPointerSize);
2999 // Drop pushed values on the stack before tail call.
3000 __ bind(&runtime_drop_two);
3003 // Just jump to runtime to create the sub string.
3005 __ TailCallRuntime(Runtime::kSubStringRT, 3, 1);
3007 __ bind(&single_char);
3009 // ebx: instance type
3010 // ecx: sub string length (smi)
3011 // edx: from index (smi)
3012 StringCharAtGenerator generator(eax, edx, ecx, eax, &runtime, &runtime,
3013 &runtime, STRING_INDEX_IS_NUMBER,
3014 RECEIVER_IS_STRING);
3015 generator.GenerateFast(masm);
3016 __ ret(3 * kPointerSize);
3017 generator.SkipSlow(masm, &runtime);
3021 void ToNumberStub::Generate(MacroAssembler* masm) {
3022 // The ToNumber stub takes one argument in eax.
3024 __ JumpIfNotSmi(eax, ¬_smi, Label::kNear);
3028 Label not_heap_number;
3029 __ CompareMap(eax, masm->isolate()->factory()->heap_number_map());
3030 __ j(not_equal, ¬_heap_number, Label::kNear);
3032 __ bind(¬_heap_number);
3034 Label not_string, slow_string;
3035 __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edi);
3038 __ j(above_equal, ¬_string, Label::kNear);
3039 // Check if string has a cached array index.
3040 __ test(FieldOperand(eax, String::kHashFieldOffset),
3041 Immediate(String::kContainsCachedArrayIndexMask));
3042 __ j(not_zero, &slow_string, Label::kNear);
3043 __ mov(eax, FieldOperand(eax, String::kHashFieldOffset));
3044 __ IndexFromHash(eax, eax);
3046 __ bind(&slow_string);
3047 __ pop(ecx); // Pop return address.
3048 __ push(eax); // Push argument.
3049 __ push(ecx); // Push return address.
3050 __ TailCallRuntime(Runtime::kStringToNumber, 1, 1);
3051 __ bind(¬_string);
3054 __ CmpInstanceType(edi, ODDBALL_TYPE);
3055 __ j(not_equal, ¬_oddball, Label::kNear);
3056 __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
3058 __ bind(¬_oddball);
3060 __ pop(ecx); // Pop return address.
3061 __ push(eax); // Push argument.
3062 __ push(ecx); // Push return address.
3063 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
3067 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
3071 Register scratch2) {
3072 Register length = scratch1;
3075 Label strings_not_equal, check_zero_length;
3076 __ mov(length, FieldOperand(left, String::kLengthOffset));
3077 __ cmp(length, FieldOperand(right, String::kLengthOffset));
3078 __ j(equal, &check_zero_length, Label::kNear);
3079 __ bind(&strings_not_equal);
3080 __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
3083 // Check if the length is zero.
3084 Label compare_chars;
3085 __ bind(&check_zero_length);
3086 STATIC_ASSERT(kSmiTag == 0);
3087 __ test(length, length);
3088 __ j(not_zero, &compare_chars, Label::kNear);
3089 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3092 // Compare characters.
3093 __ bind(&compare_chars);
3094 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
3095 &strings_not_equal, Label::kNear);
3097 // Characters are equal.
3098 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3103 void StringHelper::GenerateCompareFlatOneByteStrings(
3104 MacroAssembler* masm, Register left, Register right, Register scratch1,
3105 Register scratch2, Register scratch3) {
3106 Counters* counters = masm->isolate()->counters();
3107 __ IncrementCounter(counters->string_compare_native(), 1);
3109 // Find minimum length.
3111 __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
3112 __ mov(scratch3, scratch1);
3113 __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
3115 Register length_delta = scratch3;
3117 __ j(less_equal, &left_shorter, Label::kNear);
3118 // Right string is shorter. Change scratch1 to be length of right string.
3119 __ sub(scratch1, length_delta);
3120 __ bind(&left_shorter);
3122 Register min_length = scratch1;
3124 // If either length is zero, just compare lengths.
3125 Label compare_lengths;
3126 __ test(min_length, min_length);
3127 __ j(zero, &compare_lengths, Label::kNear);
3129 // Compare characters.
3130 Label result_not_equal;
3131 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3132 &result_not_equal, Label::kNear);
3134 // Compare lengths - strings up to min-length are equal.
3135 __ bind(&compare_lengths);
3136 __ test(length_delta, length_delta);
3137 Label length_not_equal;
3138 __ j(not_zero, &length_not_equal, Label::kNear);
3141 STATIC_ASSERT(EQUAL == 0);
3142 STATIC_ASSERT(kSmiTag == 0);
3143 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3146 Label result_greater;
3148 __ bind(&length_not_equal);
3149 __ j(greater, &result_greater, Label::kNear);
3150 __ jmp(&result_less, Label::kNear);
3151 __ bind(&result_not_equal);
3152 __ j(above, &result_greater, Label::kNear);
3153 __ bind(&result_less);
3156 __ Move(eax, Immediate(Smi::FromInt(LESS)));
3159 // Result is GREATER.
3160 __ bind(&result_greater);
3161 __ Move(eax, Immediate(Smi::FromInt(GREATER)));
3166 void StringHelper::GenerateOneByteCharsCompareLoop(
3167 MacroAssembler* masm, Register left, Register right, Register length,
3168 Register scratch, Label* chars_not_equal,
3169 Label::Distance chars_not_equal_near) {
3170 // Change index to run from -length to -1 by adding length to string
3171 // start. This means that loop ends when index reaches zero, which
3172 // doesn't need an additional compare.
3173 __ SmiUntag(length);
3175 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
3177 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
3179 Register index = length; // index = -length;
3184 __ mov_b(scratch, Operand(left, index, times_1, 0));
3185 __ cmpb(scratch, Operand(right, index, times_1, 0));
3186 __ j(not_equal, chars_not_equal, chars_not_equal_near);
3188 __ j(not_zero, &loop);
3192 void StringCompareStub::Generate(MacroAssembler* masm) {
3195 // Stack frame on entry.
3196 // esp[0]: return address
3197 // esp[4]: right string
3198 // esp[8]: left string
3200 __ mov(edx, Operand(esp, 2 * kPointerSize)); // left
3201 __ mov(eax, Operand(esp, 1 * kPointerSize)); // right
3205 __ j(not_equal, ¬_same, Label::kNear);
3206 STATIC_ASSERT(EQUAL == 0);
3207 STATIC_ASSERT(kSmiTag == 0);
3208 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3209 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
3210 __ ret(2 * kPointerSize);
3214 // Check that both objects are sequential one-byte strings.
3215 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &runtime);
3217 // Compare flat one-byte strings.
3218 // Drop arguments from the stack.
3220 __ add(esp, Immediate(2 * kPointerSize));
3222 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
3225 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3226 // tagged as a small integer.
3228 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
3232 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3233 // ----------- S t a t e -------------
3236 // -- esp[0] : return address
3237 // -----------------------------------
3239 // Load ecx with the allocation site. We stick an undefined dummy value here
3240 // and replace it with the real allocation site later when we instantiate this
3241 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3242 __ mov(ecx, handle(isolate()->heap()->undefined_value()));
3244 // Make sure that we actually patched the allocation site.
3245 if (FLAG_debug_code) {
3246 __ test(ecx, Immediate(kSmiTagMask));
3247 __ Assert(not_equal, kExpectedAllocationSite);
3248 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
3249 isolate()->factory()->allocation_site_map());
3250 __ Assert(equal, kExpectedAllocationSite);
3253 // Tail call into the stub that handles binary operations with allocation
3255 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3256 __ TailCallStub(&stub);
3260 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3261 DCHECK(state() == CompareICState::SMI);
3265 __ JumpIfNotSmi(ecx, &miss, Label::kNear);
3267 if (GetCondition() == equal) {
3268 // For equality we do not care about the sign of the result.
3273 __ j(no_overflow, &done, Label::kNear);
3274 // Correct sign of result in case of overflow.
3286 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3287 DCHECK(state() == CompareICState::NUMBER);
3289 Label generic_stub, check_left;
3290 Label unordered, maybe_undefined1, maybe_undefined2;
3293 if (left() == CompareICState::SMI) {
3294 __ JumpIfNotSmi(edx, &miss);
3296 if (right() == CompareICState::SMI) {
3297 __ JumpIfNotSmi(eax, &miss);
3300 // Inlining the double comparison and falling back to the general compare
3301 // stub if NaN is involved or SSE2 or CMOV is unsupported.
3302 __ JumpIfSmi(eax, &check_left, Label::kNear);
3303 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
3304 isolate()->factory()->heap_number_map());
3305 __ j(not_equal, &maybe_undefined1, Label::kNear);
3307 __ bind(&check_left);
3308 __ JumpIfSmi(edx, &generic_stub, Label::kNear);
3309 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
3310 isolate()->factory()->heap_number_map());
3311 __ j(not_equal, &maybe_undefined2, Label::kNear);
3313 __ bind(&unordered);
3314 __ bind(&generic_stub);
3315 CompareICStub stub(isolate(), op(), strength(), CompareICState::GENERIC,
3316 CompareICState::GENERIC, CompareICState::GENERIC);
3317 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3319 __ bind(&maybe_undefined1);
3320 if (Token::IsOrderedRelationalCompareOp(op())) {
3321 __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
3322 __ j(not_equal, &miss);
3323 __ JumpIfSmi(edx, &unordered);
3324 __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
3325 __ j(not_equal, &maybe_undefined2, Label::kNear);
3329 __ bind(&maybe_undefined2);
3330 if (Token::IsOrderedRelationalCompareOp(op())) {
3331 __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
3332 __ j(equal, &unordered);
3340 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3341 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3342 DCHECK(GetCondition() == equal);
3344 // Registers containing left and right operands respectively.
3345 Register left = edx;
3346 Register right = eax;
3347 Register tmp1 = ecx;
3348 Register tmp2 = ebx;
3350 // Check that both operands are heap objects.
3353 STATIC_ASSERT(kSmiTag == 0);
3354 __ and_(tmp1, right);
3355 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3357 // Check that both operands are internalized strings.
3358 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3359 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3360 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3361 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3362 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3364 __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3365 __ j(not_zero, &miss, Label::kNear);
3367 // Internalized strings are compared by identity.
3369 __ cmp(left, right);
3370 // Make sure eax is non-zero. At this point input operands are
3371 // guaranteed to be non-zero.
3372 DCHECK(right.is(eax));
3373 __ j(not_equal, &done, Label::kNear);
3374 STATIC_ASSERT(EQUAL == 0);
3375 STATIC_ASSERT(kSmiTag == 0);
3376 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3385 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3386 DCHECK(state() == CompareICState::UNIQUE_NAME);
3387 DCHECK(GetCondition() == equal);
3389 // Registers containing left and right operands respectively.
3390 Register left = edx;
3391 Register right = eax;
3392 Register tmp1 = ecx;
3393 Register tmp2 = ebx;
3395 // Check that both operands are heap objects.
3398 STATIC_ASSERT(kSmiTag == 0);
3399 __ and_(tmp1, right);
3400 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3402 // Check that both operands are unique names. This leaves the instance
3403 // types loaded in tmp1 and tmp2.
3404 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3405 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3406 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3407 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3409 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
3410 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
3412 // Unique names are compared by identity.
3414 __ cmp(left, right);
3415 // Make sure eax is non-zero. At this point input operands are
3416 // guaranteed to be non-zero.
3417 DCHECK(right.is(eax));
3418 __ j(not_equal, &done, Label::kNear);
3419 STATIC_ASSERT(EQUAL == 0);
3420 STATIC_ASSERT(kSmiTag == 0);
3421 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3430 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3431 DCHECK(state() == CompareICState::STRING);
3434 bool equality = Token::IsEqualityOp(op());
3436 // Registers containing left and right operands respectively.
3437 Register left = edx;
3438 Register right = eax;
3439 Register tmp1 = ecx;
3440 Register tmp2 = ebx;
3441 Register tmp3 = edi;
3443 // Check that both operands are heap objects.
3445 STATIC_ASSERT(kSmiTag == 0);
3446 __ and_(tmp1, right);
3447 __ JumpIfSmi(tmp1, &miss);
3449 // Check that both operands are strings. This leaves the instance
3450 // types loaded in tmp1 and tmp2.
3451 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3452 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3453 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3454 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3456 STATIC_ASSERT(kNotStringTag != 0);
3458 __ test(tmp3, Immediate(kIsNotStringMask));
3459 __ j(not_zero, &miss);
3461 // Fast check for identical strings.
3463 __ cmp(left, right);
3464 __ j(not_equal, ¬_same, Label::kNear);
3465 STATIC_ASSERT(EQUAL == 0);
3466 STATIC_ASSERT(kSmiTag == 0);
3467 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3470 // Handle not identical strings.
3473 // Check that both strings are internalized. If they are, we're done
3474 // because we already know they are not identical. But in the case of
3475 // non-equality compare, we still need to determine the order. We
3476 // also know they are both strings.
3479 STATIC_ASSERT(kInternalizedTag == 0);
3481 __ test(tmp1, Immediate(kIsNotInternalizedMask));
3482 __ j(not_zero, &do_compare, Label::kNear);
3483 // Make sure eax is non-zero. At this point input operands are
3484 // guaranteed to be non-zero.
3485 DCHECK(right.is(eax));
3487 __ bind(&do_compare);
3490 // Check that both strings are sequential one-byte.
3492 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
3494 // Compare flat one byte strings. Returns when done.
3496 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3499 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3503 // Handle more complex cases in runtime.
3505 __ pop(tmp1); // Return address.
3510 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3512 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
3520 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3521 DCHECK(state() == CompareICState::OBJECT);
3525 __ JumpIfSmi(ecx, &miss, Label::kNear);
3527 __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
3528 __ j(not_equal, &miss, Label::kNear);
3529 __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
3530 __ j(not_equal, &miss, Label::kNear);
3532 DCHECK(GetCondition() == equal);
3541 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3543 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
3546 __ JumpIfSmi(ecx, &miss, Label::kNear);
3548 __ GetWeakValue(edi, cell);
3549 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
3550 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
3552 __ j(not_equal, &miss, Label::kNear);
3554 __ j(not_equal, &miss, Label::kNear);
3564 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3566 // Call the runtime system in a fresh internal frame.
3567 ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
3569 FrameScope scope(masm, StackFrame::INTERNAL);
3570 __ push(edx); // Preserve edx and eax.
3572 __ push(edx); // And also use them as the arguments.
3574 __ push(Immediate(Smi::FromInt(op())));
3575 __ CallExternalReference(miss, 3);
3576 // Compute the entry point of the rewritten stub.
3577 __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
3582 // Do a tail call to the rewritten stub.
3587 // Helper function used to check that the dictionary doesn't contain
3588 // the property. This function may return false negatives, so miss_label
3589 // must always call a backup property check that is complete.
3590 // This function is safe to call if the receiver has fast properties.
3591 // Name must be a unique name and receiver must be a heap object.
3592 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3595 Register properties,
3598 DCHECK(name->IsUniqueName());
3600 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3601 // not equal to the name and kProbes-th slot is not used (its name is the
3602 // undefined value), it guarantees the hash table doesn't contain the
3603 // property. It's true even if some slots represent deleted properties
3604 // (their names are the hole value).
3605 for (int i = 0; i < kInlinedProbes; i++) {
3606 // Compute the masked index: (hash + i + i * i) & mask.
3607 Register index = r0;
3608 // Capacity is smi 2^n.
3609 __ mov(index, FieldOperand(properties, kCapacityOffset));
3612 Immediate(Smi::FromInt(name->Hash() +
3613 NameDictionary::GetProbeOffset(i))));
3615 // Scale the index by multiplying by the entry size.
3616 DCHECK(NameDictionary::kEntrySize == 3);
3617 __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
3618 Register entity_name = r0;
3619 // Having undefined at this place means the name is not contained.
3620 DCHECK_EQ(kSmiTagSize, 1);
3621 __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
3622 kElementsStartOffset - kHeapObjectTag));
3623 __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
3626 // Stop if found the property.
3627 __ cmp(entity_name, Handle<Name>(name));
3631 // Check for the hole and skip.
3632 __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
3633 __ j(equal, &good, Label::kNear);
3635 // Check if the entry name is not a unique name.
3636 __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
3637 __ JumpIfNotUniqueNameInstanceType(
3638 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
3642 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
3644 __ push(Immediate(Handle<Object>(name)));
3645 __ push(Immediate(name->Hash()));
3648 __ j(not_zero, miss);
3653 // Probe the name dictionary in the |elements| register. Jump to the
3654 // |done| label if a property with the given name is found leaving the
3655 // index into the dictionary in |r0|. Jump to the |miss| label
3657 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3664 DCHECK(!elements.is(r0));
3665 DCHECK(!elements.is(r1));
3666 DCHECK(!name.is(r0));
3667 DCHECK(!name.is(r1));
3669 __ AssertName(name);
3671 __ mov(r1, FieldOperand(elements, kCapacityOffset));
3672 __ shr(r1, kSmiTagSize); // convert smi to int
3675 // Generate an unrolled loop that performs a few probes before
3676 // giving up. Measurements done on Gmail indicate that 2 probes
3677 // cover ~93% of loads from dictionaries.
3678 for (int i = 0; i < kInlinedProbes; i++) {
3679 // Compute the masked index: (hash + i + i * i) & mask.
3680 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
3681 __ shr(r0, Name::kHashShift);
3683 __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
3687 // Scale the index by multiplying by the entry size.
3688 DCHECK(NameDictionary::kEntrySize == 3);
3689 __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
3691 // Check if the key is identical to the name.
3692 __ cmp(name, Operand(elements,
3695 kElementsStartOffset - kHeapObjectTag));
3699 NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
3702 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
3703 __ shr(r0, Name::kHashShift);
3713 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3714 // This stub overrides SometimesSetsUpAFrame() to return false. That means
3715 // we cannot call anything that could cause a GC from this stub.
3716 // Stack frame on entry:
3717 // esp[0 * kPointerSize]: return address.
3718 // esp[1 * kPointerSize]: key's hash.
3719 // esp[2 * kPointerSize]: key.
3721 // dictionary_: NameDictionary to probe.
3722 // result_: used as scratch.
3723 // index_: will hold an index of entry if lookup is successful.
3724 // might alias with result_.
3726 // result_ is zero if lookup failed, non zero otherwise.
3728 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3730 Register scratch = result();
3732 __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
3734 __ SmiUntag(scratch);
3737 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3738 // not equal to the name and kProbes-th slot is not used (its name is the
3739 // undefined value), it guarantees the hash table doesn't contain the
3740 // property. It's true even if some slots represent deleted properties
3741 // (their names are the null value).
3742 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3743 // Compute the masked index: (hash + i + i * i) & mask.
3744 __ mov(scratch, Operand(esp, 2 * kPointerSize));
3746 __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
3748 __ and_(scratch, Operand(esp, 0));
3750 // Scale the index by multiplying by the entry size.
3751 DCHECK(NameDictionary::kEntrySize == 3);
3752 __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
3754 // Having undefined at this place means the name is not contained.
3755 DCHECK_EQ(kSmiTagSize, 1);
3756 __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
3757 kElementsStartOffset - kHeapObjectTag));
3758 __ cmp(scratch, isolate()->factory()->undefined_value());
3759 __ j(equal, ¬_in_dictionary);
3761 // Stop if found the property.
3762 __ cmp(scratch, Operand(esp, 3 * kPointerSize));
3763 __ j(equal, &in_dictionary);
3765 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3766 // If we hit a key that is not a unique name during negative
3767 // lookup we have to bailout as this key might be equal to the
3768 // key we are looking for.
3770 // Check if the entry name is not a unique name.
3771 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
3772 __ JumpIfNotUniqueNameInstanceType(
3773 FieldOperand(scratch, Map::kInstanceTypeOffset),
3774 &maybe_in_dictionary);
3778 __ bind(&maybe_in_dictionary);
3779 // If we are doing negative lookup then probing failure should be
3780 // treated as a lookup success. For positive lookup probing failure
3781 // should be treated as lookup failure.
3782 if (mode() == POSITIVE_LOOKUP) {
3783 __ mov(result(), Immediate(0));
3785 __ ret(2 * kPointerSize);
3788 __ bind(&in_dictionary);
3789 __ mov(result(), Immediate(1));
3791 __ ret(2 * kPointerSize);
3793 __ bind(¬_in_dictionary);
3794 __ mov(result(), Immediate(0));
3796 __ ret(2 * kPointerSize);
3800 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3802 StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
3804 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
3809 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
3810 // the value has just been written into the object, now this stub makes sure
3811 // we keep the GC informed. The word in the object where the value has been
3812 // written is in the address register.
3813 void RecordWriteStub::Generate(MacroAssembler* masm) {
3814 Label skip_to_incremental_noncompacting;
3815 Label skip_to_incremental_compacting;
3817 // The first two instructions are generated with labels so as to get the
3818 // offset fixed up correctly by the bind(Label*) call. We patch it back and
3819 // forth between a compare instructions (a nop in this position) and the
3820 // real branch when we start and stop incremental heap marking.
3821 __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
3822 __ jmp(&skip_to_incremental_compacting, Label::kFar);
3824 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3825 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3826 MacroAssembler::kReturnAtEnd);
3831 __ bind(&skip_to_incremental_noncompacting);
3832 GenerateIncremental(masm, INCREMENTAL);
3834 __ bind(&skip_to_incremental_compacting);
3835 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3837 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3838 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3839 masm->set_byte_at(0, kTwoByteNopInstruction);
3840 masm->set_byte_at(2, kFiveByteNopInstruction);
3844 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3847 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3848 Label dont_need_remembered_set;
3850 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
3851 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
3853 &dont_need_remembered_set);
3855 __ CheckPageFlag(regs_.object(),
3857 1 << MemoryChunk::SCAN_ON_SCAVENGE,
3859 &dont_need_remembered_set);
3861 // First notify the incremental marker if necessary, then update the
3863 CheckNeedsToInformIncrementalMarker(
3865 kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
3867 InformIncrementalMarker(masm);
3868 regs_.Restore(masm);
3869 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3870 MacroAssembler::kReturnAtEnd);
3872 __ bind(&dont_need_remembered_set);
3875 CheckNeedsToInformIncrementalMarker(
3877 kReturnOnNoNeedToInformIncrementalMarker,
3879 InformIncrementalMarker(masm);
3880 regs_.Restore(masm);
3885 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3886 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3887 int argument_count = 3;
3888 __ PrepareCallCFunction(argument_count, regs_.scratch0());
3889 __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
3890 __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
3891 __ mov(Operand(esp, 2 * kPointerSize),
3892 Immediate(ExternalReference::isolate_address(isolate())));
3894 AllowExternalCallThatCantCauseGC scope(masm);
3896 ExternalReference::incremental_marking_record_write_function(isolate()),
3899 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3903 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
3904 MacroAssembler* masm,
3905 OnNoNeedToInformIncrementalMarker on_no_need,
3907 Label object_is_black, need_incremental, need_incremental_pop_object;
3909 __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
3910 __ and_(regs_.scratch0(), regs_.object());
3911 __ mov(regs_.scratch1(),
3912 Operand(regs_.scratch0(),
3913 MemoryChunk::kWriteBarrierCounterOffset));
3914 __ sub(regs_.scratch1(), Immediate(1));
3915 __ mov(Operand(regs_.scratch0(),
3916 MemoryChunk::kWriteBarrierCounterOffset),
3918 __ j(negative, &need_incremental);
3920 // Let's look at the color of the object: If it is not black we don't have
3921 // to inform the incremental marker.
3922 __ JumpIfBlack(regs_.object(),
3928 regs_.Restore(masm);
3929 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3930 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3931 MacroAssembler::kReturnAtEnd);
3936 __ bind(&object_is_black);
3938 // Get the value from the slot.
3939 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
3941 if (mode == INCREMENTAL_COMPACTION) {
3942 Label ensure_not_white;
3944 __ CheckPageFlag(regs_.scratch0(), // Contains value.
3945 regs_.scratch1(), // Scratch.
3946 MemoryChunk::kEvacuationCandidateMask,
3951 __ CheckPageFlag(regs_.object(),
3952 regs_.scratch1(), // Scratch.
3953 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
3958 __ jmp(&need_incremental);
3960 __ bind(&ensure_not_white);
3963 // We need an extra register for this, so we push the object register
3965 __ push(regs_.object());
3966 __ EnsureNotWhite(regs_.scratch0(), // The value.
3967 regs_.scratch1(), // Scratch.
3968 regs_.object(), // Scratch.
3969 &need_incremental_pop_object,
3971 __ pop(regs_.object());
3973 regs_.Restore(masm);
3974 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3975 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3976 MacroAssembler::kReturnAtEnd);
3981 __ bind(&need_incremental_pop_object);
3982 __ pop(regs_.object());
3984 __ bind(&need_incremental);
3986 // Fall through when we need to inform the incremental marker.
3990 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
3991 // ----------- S t a t e -------------
3992 // -- eax : element value to store
3993 // -- ecx : element index as smi
3994 // -- esp[0] : return address
3995 // -- esp[4] : array literal index in function
3996 // -- esp[8] : array literal
3997 // clobbers ebx, edx, edi
3998 // -----------------------------------
4001 Label double_elements;
4003 Label slow_elements;
4004 Label slow_elements_from_double;
4005 Label fast_elements;
4007 // Get array literal index, array literal and its map.
4008 __ mov(edx, Operand(esp, 1 * kPointerSize));
4009 __ mov(ebx, Operand(esp, 2 * kPointerSize));
4010 __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
4012 __ CheckFastElements(edi, &double_elements);
4014 // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
4015 __ JumpIfSmi(eax, &smi_element);
4016 __ CheckFastSmiElements(edi, &fast_elements, Label::kNear);
4018 // Store into the array literal requires a elements transition. Call into
4021 __ bind(&slow_elements);
4022 __ pop(edi); // Pop return address and remember to put back later for tail
4027 __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
4028 __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
4030 __ push(edi); // Return return address so that tail call returns to right
4032 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4034 __ bind(&slow_elements_from_double);
4036 __ jmp(&slow_elements);
4038 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4039 __ bind(&fast_elements);
4040 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4041 __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
4042 FixedArrayBase::kHeaderSize));
4043 __ mov(Operand(ecx, 0), eax);
4044 // Update the write barrier for the array store.
4045 __ RecordWrite(ebx, ecx, eax, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
4049 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4050 // and value is Smi.
4051 __ bind(&smi_element);
4052 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4053 __ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
4054 FixedArrayBase::kHeaderSize), eax);
4057 // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
4058 __ bind(&double_elements);
4061 __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
4062 __ StoreNumberToDoubleElements(eax,
4066 &slow_elements_from_double,
4073 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4074 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4075 __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
4076 int parameter_count_offset =
4077 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4078 __ mov(ebx, MemOperand(ebp, parameter_count_offset));
4079 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4081 int additional_offset =
4082 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
4083 __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
4084 __ jmp(ecx); // Return to IC Miss stub, continuation still on stack.
4088 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4089 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4090 LoadICStub stub(isolate(), state());
4091 stub.GenerateForTrampoline(masm);
4095 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4096 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4097 KeyedLoadICStub stub(isolate(), state());
4098 stub.GenerateForTrampoline(masm);
4102 static void HandleArrayCases(MacroAssembler* masm, Register receiver,
4103 Register key, Register vector, Register slot,
4104 Register feedback, bool is_polymorphic,
4106 // feedback initially contains the feedback array
4107 Label next, next_loop, prepare_next;
4108 Label load_smi_map, compare_map;
4109 Label start_polymorphic;
4114 Register receiver_map = receiver;
4115 Register cached_map = vector;
4117 // Receiver might not be a heap object.
4118 __ JumpIfSmi(receiver, &load_smi_map);
4119 __ mov(receiver_map, FieldOperand(receiver, 0));
4120 __ bind(&compare_map);
4121 __ mov(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0)));
4123 // A named keyed load might have a 2 element array, all other cases can count
4124 // on an array with at least 2 {map, handler} pairs, so they can go right
4125 // into polymorphic array handling.
4126 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4127 __ j(not_equal, is_polymorphic ? &start_polymorphic : &next);
4129 // found, now call handler.
4130 Register handler = feedback;
4131 __ mov(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1)));
4134 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4137 if (!is_polymorphic) {
4139 __ cmp(FieldOperand(feedback, FixedArray::kLengthOffset),
4140 Immediate(Smi::FromInt(2)));
4141 __ j(not_equal, &start_polymorphic);
4147 // Polymorphic, we have to loop from 2 to N
4148 __ bind(&start_polymorphic);
4150 Register counter = key;
4151 __ mov(counter, Immediate(Smi::FromInt(2)));
4152 __ bind(&next_loop);
4153 __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
4154 FixedArray::kHeaderSize));
4155 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4156 __ j(not_equal, &prepare_next);
4157 __ mov(handler, FieldOperand(feedback, counter, times_half_pointer_size,
4158 FixedArray::kHeaderSize + kPointerSize));
4162 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4165 __ bind(&prepare_next);
4166 __ add(counter, Immediate(Smi::FromInt(2)));
4167 __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
4168 __ j(less, &next_loop);
4170 // We exhausted our array of map handler pairs.
4176 __ bind(&load_smi_map);
4177 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4178 __ jmp(&compare_map);
4182 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
4183 Register key, Register vector, Register slot,
4184 Register weak_cell, Label* miss) {
4185 // feedback initially contains the feedback array
4186 Label compare_smi_map;
4188 // Move the weak map into the weak_cell register.
4189 Register ic_map = weak_cell;
4190 __ mov(ic_map, FieldOperand(weak_cell, WeakCell::kValueOffset));
4192 // Receiver might not be a heap object.
4193 __ JumpIfSmi(receiver, &compare_smi_map);
4194 __ cmp(ic_map, FieldOperand(receiver, 0));
4195 __ j(not_equal, miss);
4196 Register handler = weak_cell;
4197 __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
4198 FixedArray::kHeaderSize + kPointerSize));
4199 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4202 // In microbenchmarks, it made sense to unroll this code so that the call to
4203 // the handler is duplicated for a HeapObject receiver and a Smi receiver.
4204 __ bind(&compare_smi_map);
4205 __ CompareRoot(ic_map, Heap::kHeapNumberMapRootIndex);
4206 __ j(not_equal, miss);
4207 __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
4208 FixedArray::kHeaderSize + kPointerSize));
4209 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4214 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
4217 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4218 GenerateImpl(masm, true);
4222 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4223 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // edx
4224 Register name = LoadWithVectorDescriptor::NameRegister(); // ecx
4225 Register vector = LoadWithVectorDescriptor::VectorRegister(); // ebx
4226 Register slot = LoadWithVectorDescriptor::SlotRegister(); // eax
4227 Register scratch = edi;
4228 __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
4229 FixedArray::kHeaderSize));
4231 // Is it a weak cell?
4233 Label not_array, smi_key, key_okay, miss;
4234 __ CompareRoot(FieldOperand(scratch, 0), Heap::kWeakCellMapRootIndex);
4235 __ j(not_equal, &try_array);
4236 HandleMonomorphicCase(masm, receiver, name, vector, slot, scratch, &miss);
4238 // Is it a fixed array?
4239 __ bind(&try_array);
4240 __ CompareRoot(FieldOperand(scratch, 0), Heap::kFixedArrayMapRootIndex);
4241 __ j(not_equal, ¬_array);
4242 HandleArrayCases(masm, receiver, name, vector, slot, scratch, true, &miss);
4244 __ bind(¬_array);
4245 __ CompareRoot(scratch, Heap::kmegamorphic_symbolRootIndex);
4246 __ j(not_equal, &miss);
4249 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4250 Code::ComputeHandlerFlags(Code::LOAD_IC));
4251 masm->isolate()->stub_cache()->GenerateProbe(
4252 masm, Code::LOAD_IC, code_flags, false, receiver, name, vector, scratch);
4257 LoadIC::GenerateMiss(masm);
4261 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
4262 GenerateImpl(masm, false);
4266 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4267 GenerateImpl(masm, true);
4271 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4272 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // edx
4273 Register key = LoadWithVectorDescriptor::NameRegister(); // ecx
4274 Register vector = LoadWithVectorDescriptor::VectorRegister(); // ebx
4275 Register slot = LoadWithVectorDescriptor::SlotRegister(); // eax
4276 Register feedback = edi;
4277 __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
4278 FixedArray::kHeaderSize));
4279 // Is it a weak cell?
4281 Label not_array, smi_key, key_okay, miss;
4282 __ CompareRoot(FieldOperand(feedback, 0), Heap::kWeakCellMapRootIndex);
4283 __ j(not_equal, &try_array);
4284 HandleMonomorphicCase(masm, receiver, key, vector, slot, feedback, &miss);
4286 __ bind(&try_array);
4287 // Is it a fixed array?
4288 __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
4289 __ j(not_equal, ¬_array);
4291 // We have a polymorphic element handler.
4292 Label polymorphic, try_poly_name;
4293 __ bind(&polymorphic);
4294 HandleArrayCases(masm, receiver, key, vector, slot, feedback, true, &miss);
4296 __ bind(¬_array);
4298 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4299 __ j(not_equal, &try_poly_name);
4300 Handle<Code> megamorphic_stub =
4301 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4302 __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
4304 __ bind(&try_poly_name);
4305 // We might have a name in feedback, and a fixed array in the next slot.
4306 __ cmp(key, feedback);
4307 __ j(not_equal, &miss);
4308 // If the name comparison succeeded, we know we have a fixed array with
4309 // at least one map/handler pair.
4310 __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
4311 FixedArray::kHeaderSize + kPointerSize));
4312 HandleArrayCases(masm, receiver, key, vector, slot, feedback, false, &miss);
4315 KeyedLoadIC::GenerateMiss(masm);
4319 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4320 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4321 VectorStoreICStub stub(isolate(), state());
4322 stub.GenerateForTrampoline(masm);
4326 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4327 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4328 VectorKeyedStoreICStub stub(isolate(), state());
4329 stub.GenerateForTrampoline(masm);
4333 void VectorStoreICStub::Generate(MacroAssembler* masm) {
4334 GenerateImpl(masm, false);
4338 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4339 GenerateImpl(masm, true);
4343 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4346 // TODO(mvstanton): Implement.
4348 StoreIC::GenerateMiss(masm);
4352 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4353 GenerateImpl(masm, false);
4357 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4358 GenerateImpl(masm, true);
4362 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4365 // TODO(mvstanton): Implement.
4367 KeyedStoreIC::GenerateMiss(masm);
4371 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
4372 EmitLoadTypeFeedbackVector(masm, ebx);
4373 CallICStub stub(isolate(), state());
4374 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4378 void CallIC_ArrayTrampolineStub::Generate(MacroAssembler* masm) {
4379 EmitLoadTypeFeedbackVector(masm, ebx);
4380 CallIC_ArrayStub stub(isolate(), state());
4381 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4385 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4386 if (masm->isolate()->function_entry_hook() != NULL) {
4387 ProfileEntryHookStub stub(masm->isolate());
4388 masm->CallStub(&stub);
4393 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4394 // Save volatile registers.
4395 const int kNumSavedRegisters = 3;
4400 // Calculate and push the original stack pointer.
4401 __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4404 // Retrieve our return address and use it to calculate the calling
4405 // function's address.
4406 __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4407 __ sub(eax, Immediate(Assembler::kCallInstructionLength));
4410 // Call the entry hook.
4411 DCHECK(isolate()->function_entry_hook() != NULL);
4412 __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
4413 RelocInfo::RUNTIME_ENTRY);
4414 __ add(esp, Immediate(2 * kPointerSize));
4426 static void CreateArrayDispatch(MacroAssembler* masm,
4427 AllocationSiteOverrideMode mode) {
4428 if (mode == DISABLE_ALLOCATION_SITES) {
4429 T stub(masm->isolate(),
4430 GetInitialFastElementsKind(),
4432 __ TailCallStub(&stub);
4433 } else if (mode == DONT_OVERRIDE) {
4434 int last_index = GetSequenceIndexFromFastElementsKind(
4435 TERMINAL_FAST_ELEMENTS_KIND);
4436 for (int i = 0; i <= last_index; ++i) {
4438 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4440 __ j(not_equal, &next);
4441 T stub(masm->isolate(), kind);
4442 __ TailCallStub(&stub);
4446 // If we reached this point there is a problem.
4447 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4454 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4455 AllocationSiteOverrideMode mode) {
4456 // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4457 // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
4458 // eax - number of arguments
4459 // edi - constructor?
4460 // esp[0] - return address
4461 // esp[4] - last argument
4462 Label normal_sequence;
4463 if (mode == DONT_OVERRIDE) {
4464 DCHECK(FAST_SMI_ELEMENTS == 0);
4465 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4466 DCHECK(FAST_ELEMENTS == 2);
4467 DCHECK(FAST_HOLEY_ELEMENTS == 3);
4468 DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4469 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4471 // is the low bit set? If so, we are holey and that is good.
4473 __ j(not_zero, &normal_sequence);
4476 // look at the first argument
4477 __ mov(ecx, Operand(esp, kPointerSize));
4479 __ j(zero, &normal_sequence);
4481 if (mode == DISABLE_ALLOCATION_SITES) {
4482 ElementsKind initial = GetInitialFastElementsKind();
4483 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4485 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4487 DISABLE_ALLOCATION_SITES);
4488 __ TailCallStub(&stub_holey);
4490 __ bind(&normal_sequence);
4491 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4493 DISABLE_ALLOCATION_SITES);
4494 __ TailCallStub(&stub);
4495 } else if (mode == DONT_OVERRIDE) {
4496 // We are going to create a holey array, but our kind is non-holey.
4497 // Fix kind and retry.
4500 if (FLAG_debug_code) {
4501 Handle<Map> allocation_site_map =
4502 masm->isolate()->factory()->allocation_site_map();
4503 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
4504 __ Assert(equal, kExpectedAllocationSite);
4507 // Save the resulting elements kind in type info. We can't just store r3
4508 // in the AllocationSite::transition_info field because elements kind is
4509 // restricted to a portion of the field...upper bits need to be left alone.
4510 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4511 __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
4512 Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
4514 __ bind(&normal_sequence);
4515 int last_index = GetSequenceIndexFromFastElementsKind(
4516 TERMINAL_FAST_ELEMENTS_KIND);
4517 for (int i = 0; i <= last_index; ++i) {
4519 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4521 __ j(not_equal, &next);
4522 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4523 __ TailCallStub(&stub);
4527 // If we reached this point there is a problem.
4528 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4536 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4537 int to_index = GetSequenceIndexFromFastElementsKind(
4538 TERMINAL_FAST_ELEMENTS_KIND);
4539 for (int i = 0; i <= to_index; ++i) {
4540 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4541 T stub(isolate, kind);
4543 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4544 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4551 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4552 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4554 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4556 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4561 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4563 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4564 for (int i = 0; i < 2; i++) {
4565 // For internal arrays we only need a few things
4566 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4568 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4570 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4576 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4577 MacroAssembler* masm,
4578 AllocationSiteOverrideMode mode) {
4579 if (argument_count() == ANY) {
4580 Label not_zero_case, not_one_case;
4582 __ j(not_zero, ¬_zero_case);
4583 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4585 __ bind(¬_zero_case);
4587 __ j(greater, ¬_one_case);
4588 CreateArrayDispatchOneArgument(masm, mode);
4590 __ bind(¬_one_case);
4591 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4592 } else if (argument_count() == NONE) {
4593 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4594 } else if (argument_count() == ONE) {
4595 CreateArrayDispatchOneArgument(masm, mode);
4596 } else if (argument_count() == MORE_THAN_ONE) {
4597 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4604 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4605 // ----------- S t a t e -------------
4606 // -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
4607 // -- ebx : AllocationSite or undefined
4608 // -- edi : constructor
4609 // -- edx : Original constructor
4610 // -- esp[0] : return address
4611 // -- esp[4] : last argument
4612 // -----------------------------------
4613 if (FLAG_debug_code) {
4614 // The array construct code is only set for the global and natives
4615 // builtin Array functions which always have maps.
4617 // Initial map for the builtin Array function should be a map.
4618 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4619 // Will both indicate a NULL and a Smi.
4620 __ test(ecx, Immediate(kSmiTagMask));
4621 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
4622 __ CmpObjectType(ecx, MAP_TYPE, ecx);
4623 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
4625 // We should either have undefined in ebx or a valid AllocationSite
4626 __ AssertUndefinedOrAllocationSite(ebx);
4632 __ j(not_equal, &subclassing);
4635 // If the feedback vector is the undefined value call an array constructor
4636 // that doesn't use AllocationSites.
4637 __ cmp(ebx, isolate()->factory()->undefined_value());
4638 __ j(equal, &no_info);
4640 // Only look at the lower 16 bits of the transition info.
4641 __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
4643 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4644 __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
4645 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4648 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4651 __ bind(&subclassing);
4652 __ pop(ecx); // return address.
4657 switch (argument_count()) {
4660 __ add(eax, Immediate(2));
4663 __ mov(eax, Immediate(2));
4666 __ mov(eax, Immediate(3));
4671 __ JumpToExternalReference(
4672 ExternalReference(Runtime::kArrayConstructorWithSubclassing, isolate()));
4676 void InternalArrayConstructorStub::GenerateCase(
4677 MacroAssembler* masm, ElementsKind kind) {
4678 Label not_zero_case, not_one_case;
4679 Label normal_sequence;
4682 __ j(not_zero, ¬_zero_case);
4683 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4684 __ TailCallStub(&stub0);
4686 __ bind(¬_zero_case);
4688 __ j(greater, ¬_one_case);
4690 if (IsFastPackedElementsKind(kind)) {
4691 // We might need to create a holey array
4692 // look at the first argument
4693 __ mov(ecx, Operand(esp, kPointerSize));
4695 __ j(zero, &normal_sequence);
4697 InternalArraySingleArgumentConstructorStub
4698 stub1_holey(isolate(), GetHoleyElementsKind(kind));
4699 __ TailCallStub(&stub1_holey);
4702 __ bind(&normal_sequence);
4703 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4704 __ TailCallStub(&stub1);
4706 __ bind(¬_one_case);
4707 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4708 __ TailCallStub(&stubN);
4712 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4713 // ----------- S t a t e -------------
4715 // -- edi : constructor
4716 // -- esp[0] : return address
4717 // -- esp[4] : last argument
4718 // -----------------------------------
4720 if (FLAG_debug_code) {
4721 // The array construct code is only set for the global and natives
4722 // builtin Array functions which always have maps.
4724 // Initial map for the builtin Array function should be a map.
4725 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4726 // Will both indicate a NULL and a Smi.
4727 __ test(ecx, Immediate(kSmiTagMask));
4728 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
4729 __ CmpObjectType(ecx, MAP_TYPE, ecx);
4730 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
4733 // Figure out the right elements kind
4734 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4736 // Load the map's "bit field 2" into |result|. We only need the first byte,
4737 // but the following masking takes care of that anyway.
4738 __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
4739 // Retrieve elements_kind from bit field 2.
4740 __ DecodeField<Map::ElementsKindBits>(ecx);
4742 if (FLAG_debug_code) {
4744 __ cmp(ecx, Immediate(FAST_ELEMENTS));
4746 __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
4748 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4752 Label fast_elements_case;
4753 __ cmp(ecx, Immediate(FAST_ELEMENTS));
4754 __ j(equal, &fast_elements_case);
4755 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4757 __ bind(&fast_elements_case);
4758 GenerateCase(masm, FAST_ELEMENTS);
4762 // Generates an Operand for saving parameters after PrepareCallApiFunction.
4763 static Operand ApiParameterOperand(int index) {
4764 return Operand(esp, index * kPointerSize);
4768 // Prepares stack to put arguments (aligns and so on). Reserves
4769 // space for return value if needed (assumes the return value is a handle).
4770 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
4771 // etc. Saves context (esi). If space was reserved for return value then
4772 // stores the pointer to the reserved slot into esi.
4773 static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
4774 __ EnterApiExitFrame(argc);
4775 if (__ emit_debug_code()) {
4776 __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
4781 // Calls an API function. Allocates HandleScope, extracts returned value
4782 // from handle and propagates exceptions. Clobbers ebx, edi and
4783 // caller-save registers. Restores context. On return removes
4784 // stack_space * kPointerSize (GCed).
4785 static void CallApiFunctionAndReturn(MacroAssembler* masm,
4786 Register function_address,
4787 ExternalReference thunk_ref,
4788 Operand thunk_last_arg, int stack_space,
4789 Operand* stack_space_operand,
4790 Operand return_value_operand,
4791 Operand* context_restore_operand) {
4792 Isolate* isolate = masm->isolate();
4794 ExternalReference next_address =
4795 ExternalReference::handle_scope_next_address(isolate);
4796 ExternalReference limit_address =
4797 ExternalReference::handle_scope_limit_address(isolate);
4798 ExternalReference level_address =
4799 ExternalReference::handle_scope_level_address(isolate);
4801 DCHECK(edx.is(function_address));
4802 // Allocate HandleScope in callee-save registers.
4803 __ mov(ebx, Operand::StaticVariable(next_address));
4804 __ mov(edi, Operand::StaticVariable(limit_address));
4805 __ add(Operand::StaticVariable(level_address), Immediate(1));
4807 if (FLAG_log_timer_events) {
4808 FrameScope frame(masm, StackFrame::MANUAL);
4809 __ PushSafepointRegisters();
4810 __ PrepareCallCFunction(1, eax);
4811 __ mov(Operand(esp, 0),
4812 Immediate(ExternalReference::isolate_address(isolate)));
4813 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
4815 __ PopSafepointRegisters();
4819 Label profiler_disabled;
4820 Label end_profiler_check;
4821 __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
4822 __ cmpb(Operand(eax, 0), 0);
4823 __ j(zero, &profiler_disabled);
4825 // Additional parameter is the address of the actual getter function.
4826 __ mov(thunk_last_arg, function_address);
4827 // Call the api function.
4828 __ mov(eax, Immediate(thunk_ref));
4830 __ jmp(&end_profiler_check);
4832 __ bind(&profiler_disabled);
4833 // Call the api function.
4834 __ call(function_address);
4835 __ bind(&end_profiler_check);
4837 if (FLAG_log_timer_events) {
4838 FrameScope frame(masm, StackFrame::MANUAL);
4839 __ PushSafepointRegisters();
4840 __ PrepareCallCFunction(1, eax);
4841 __ mov(Operand(esp, 0),
4842 Immediate(ExternalReference::isolate_address(isolate)));
4843 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
4845 __ PopSafepointRegisters();
4849 // Load the value from ReturnValue
4850 __ mov(eax, return_value_operand);
4852 Label promote_scheduled_exception;
4853 Label delete_allocated_handles;
4854 Label leave_exit_frame;
4857 // No more valid handles (the result handle was the last one). Restore
4858 // previous handle scope.
4859 __ mov(Operand::StaticVariable(next_address), ebx);
4860 __ sub(Operand::StaticVariable(level_address), Immediate(1));
4861 __ Assert(above_equal, kInvalidHandleScopeLevel);
4862 __ cmp(edi, Operand::StaticVariable(limit_address));
4863 __ j(not_equal, &delete_allocated_handles);
4865 // Leave the API exit frame.
4866 __ bind(&leave_exit_frame);
4867 bool restore_context = context_restore_operand != NULL;
4868 if (restore_context) {
4869 __ mov(esi, *context_restore_operand);
4871 if (stack_space_operand != nullptr) {
4872 __ mov(ebx, *stack_space_operand);
4874 __ LeaveApiExitFrame(!restore_context);
4876 // Check if the function scheduled an exception.
4877 ExternalReference scheduled_exception_address =
4878 ExternalReference::scheduled_exception_address(isolate);
4879 __ cmp(Operand::StaticVariable(scheduled_exception_address),
4880 Immediate(isolate->factory()->the_hole_value()));
4881 __ j(not_equal, &promote_scheduled_exception);
4884 // Check if the function returned a valid JavaScript value.
4886 Register return_value = eax;
4889 __ JumpIfSmi(return_value, &ok, Label::kNear);
4890 __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
4892 __ CmpInstanceType(map, LAST_NAME_TYPE);
4893 __ j(below_equal, &ok, Label::kNear);
4895 __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
4896 __ j(above_equal, &ok, Label::kNear);
4898 __ cmp(map, isolate->factory()->heap_number_map());
4899 __ j(equal, &ok, Label::kNear);
4901 __ cmp(return_value, isolate->factory()->undefined_value());
4902 __ j(equal, &ok, Label::kNear);
4904 __ cmp(return_value, isolate->factory()->true_value());
4905 __ j(equal, &ok, Label::kNear);
4907 __ cmp(return_value, isolate->factory()->false_value());
4908 __ j(equal, &ok, Label::kNear);
4910 __ cmp(return_value, isolate->factory()->null_value());
4911 __ j(equal, &ok, Label::kNear);
4913 __ Abort(kAPICallReturnedInvalidObject);
4918 if (stack_space_operand != nullptr) {
4919 DCHECK_EQ(0, stack_space);
4924 __ ret(stack_space * kPointerSize);
4927 // Re-throw by promoting a scheduled exception.
4928 __ bind(&promote_scheduled_exception);
4929 __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
4931 // HandleScope limit has changed. Delete allocated extensions.
4932 ExternalReference delete_extensions =
4933 ExternalReference::delete_handle_scope_extensions(isolate);
4934 __ bind(&delete_allocated_handles);
4935 __ mov(Operand::StaticVariable(limit_address), edi);
4937 __ mov(Operand(esp, 0),
4938 Immediate(ExternalReference::isolate_address(isolate)));
4939 __ mov(eax, Immediate(delete_extensions));
4942 __ jmp(&leave_exit_frame);
4946 static void CallApiFunctionStubHelper(MacroAssembler* masm,
4947 const ParameterCount& argc,
4948 bool return_first_arg,
4949 bool call_data_undefined) {
4950 // ----------- S t a t e -------------
4952 // -- ebx : call_data
4954 // -- edx : api_function_address
4956 // -- eax : number of arguments if argc is a register
4958 // -- esp[0] : return address
4959 // -- esp[4] : last argument
4961 // -- esp[argc * 4] : first argument
4962 // -- esp[(argc + 1) * 4] : receiver
4963 // -----------------------------------
4965 Register callee = edi;
4966 Register call_data = ebx;
4967 Register holder = ecx;
4968 Register api_function_address = edx;
4969 Register context = esi;
4970 Register return_address = eax;
4972 typedef FunctionCallbackArguments FCA;
4974 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4975 STATIC_ASSERT(FCA::kCalleeIndex == 5);
4976 STATIC_ASSERT(FCA::kDataIndex == 4);
4977 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4978 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4979 STATIC_ASSERT(FCA::kIsolateIndex == 1);
4980 STATIC_ASSERT(FCA::kHolderIndex == 0);
4981 STATIC_ASSERT(FCA::kArgsLength == 7);
4983 DCHECK(argc.is_immediate() || eax.is(argc.reg()));
4985 if (argc.is_immediate()) {
4986 __ pop(return_address);
4990 // pop return address and save context
4991 __ xchg(context, Operand(esp, 0));
4992 return_address = context;
5001 Register scratch = call_data;
5002 if (!call_data_undefined) {
5004 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
5005 // return value default
5006 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
5010 // return value default
5014 __ push(Immediate(reinterpret_cast<int>(masm->isolate())));
5018 __ mov(scratch, esp);
5020 // push return address
5021 __ push(return_address);
5023 // load context from callee
5024 __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
5026 // API function gets reference to the v8::Arguments. If CPU profiler
5027 // is enabled wrapper function will be called and we need to pass
5028 // address of the callback as additional parameter, always allocate
5030 const int kApiArgc = 1 + 1;
5032 // Allocate the v8::Arguments structure in the arguments' space since
5033 // it's not controlled by GC.
5034 const int kApiStackSpace = 4;
5036 PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);
5038 // FunctionCallbackInfo::implicit_args_.
5039 __ mov(ApiParameterOperand(2), scratch);
5040 if (argc.is_immediate()) {
5042 Immediate((argc.immediate() + FCA::kArgsLength - 1) * kPointerSize));
5043 // FunctionCallbackInfo::values_.
5044 __ mov(ApiParameterOperand(3), scratch);
5045 // FunctionCallbackInfo::length_.
5046 __ Move(ApiParameterOperand(4), Immediate(argc.immediate()));
5047 // FunctionCallbackInfo::is_construct_call_.
5048 __ Move(ApiParameterOperand(5), Immediate(0));
5050 __ lea(scratch, Operand(scratch, argc.reg(), times_pointer_size,
5051 (FCA::kArgsLength - 1) * kPointerSize));
5052 // FunctionCallbackInfo::values_.
5053 __ mov(ApiParameterOperand(3), scratch);
5054 // FunctionCallbackInfo::length_.
5055 __ mov(ApiParameterOperand(4), argc.reg());
5056 // FunctionCallbackInfo::is_construct_call_.
5057 __ lea(argc.reg(), Operand(argc.reg(), times_pointer_size,
5058 (FCA::kArgsLength + 1) * kPointerSize));
5059 __ mov(ApiParameterOperand(5), argc.reg());
5062 // v8::InvocationCallback's argument.
5063 __ lea(scratch, ApiParameterOperand(2));
5064 __ mov(ApiParameterOperand(0), scratch);
5066 ExternalReference thunk_ref =
5067 ExternalReference::invoke_function_callback(masm->isolate());
5069 Operand context_restore_operand(ebp,
5070 (2 + FCA::kContextSaveIndex) * kPointerSize);
5071 // Stores return the first js argument
5072 int return_value_offset = 0;
5073 if (return_first_arg) {
5074 return_value_offset = 2 + FCA::kArgsLength;
5076 return_value_offset = 2 + FCA::kReturnValueOffset;
5078 Operand return_value_operand(ebp, return_value_offset * kPointerSize);
5079 int stack_space = 0;
5080 Operand is_construct_call_operand = ApiParameterOperand(5);
5081 Operand* stack_space_operand = &is_construct_call_operand;
5082 if (argc.is_immediate()) {
5083 stack_space = argc.immediate() + FCA::kArgsLength + 1;
5084 stack_space_operand = nullptr;
5086 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5087 ApiParameterOperand(1), stack_space,
5088 stack_space_operand, return_value_operand,
5089 &context_restore_operand);
5093 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
5094 bool call_data_undefined = this->call_data_undefined();
5095 CallApiFunctionStubHelper(masm, ParameterCount(eax), false,
5096 call_data_undefined);
5100 void CallApiAccessorStub::Generate(MacroAssembler* masm) {
5101 bool is_store = this->is_store();
5102 int argc = this->argc();
5103 bool call_data_undefined = this->call_data_undefined();
5104 CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store,
5105 call_data_undefined);
5109 void CallApiGetterStub::Generate(MacroAssembler* masm) {
5110 // ----------- S t a t e -------------
5111 // -- esp[0] : return address
5113 // -- esp[8 - kArgsLength*4] : PropertyCallbackArguments object
5115 // -- edx : api_function_address
5116 // -----------------------------------
5117 DCHECK(edx.is(ApiGetterDescriptor::function_address()));
5119 // array for v8::Arguments::values_, handler for name and pointer
5120 // to the values (it considered as smi in GC).
5121 const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
5122 // Allocate space for opional callback address parameter in case
5123 // CPU profiler is active.
5124 const int kApiArgc = 2 + 1;
5126 Register api_function_address = edx;
5127 Register scratch = ebx;
5129 // load address of name
5130 __ lea(scratch, Operand(esp, 1 * kPointerSize));
5132 PrepareCallApiFunction(masm, kApiArgc);
5133 __ mov(ApiParameterOperand(0), scratch); // name.
5134 __ add(scratch, Immediate(kPointerSize));
5135 __ mov(ApiParameterOperand(1), scratch); // arguments pointer.
5137 ExternalReference thunk_ref =
5138 ExternalReference::invoke_accessor_getter_callback(isolate());
5140 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5141 ApiParameterOperand(2), kStackSpace, nullptr,
5142 Operand(ebp, 7 * kPointerSize), NULL);
5148 } // namespace internal
5151 #endif // V8_TARGET_ARCH_X87