1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/codegen.h"
13 #include "src/ic/handler-compiler.h"
14 #include "src/ic/ic.h"
15 #include "src/ic/stub-cache.h"
16 #include "src/isolate.h"
17 #include "src/jsregexp.h"
18 #include "src/regexp-macro-assembler.h"
19 #include "src/runtime/runtime.h"
25 static void InitializeArrayConstructorDescriptor(
26 Isolate* isolate, CodeStubDescriptor* descriptor,
27 int constant_stack_parameter_count) {
29 // eax -- number of arguments
31 // ebx -- allocation site with elements kind
32 Address deopt_handler = Runtime::FunctionForId(
33 Runtime::kArrayConstructor)->entry;
35 if (constant_stack_parameter_count == 0) {
36 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
37 JS_FUNCTION_STUB_MODE);
39 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
40 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
45 static void InitializeInternalArrayConstructorDescriptor(
46 Isolate* isolate, CodeStubDescriptor* descriptor,
47 int constant_stack_parameter_count) {
49 // eax -- number of arguments
50 // edi -- constructor function
51 Address deopt_handler = Runtime::FunctionForId(
52 Runtime::kInternalArrayConstructor)->entry;
54 if (constant_stack_parameter_count == 0) {
55 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
56 JS_FUNCTION_STUB_MODE);
58 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
59 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
64 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
65 CodeStubDescriptor* descriptor) {
66 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
70 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
71 CodeStubDescriptor* descriptor) {
72 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
76 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
77 CodeStubDescriptor* descriptor) {
78 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
82 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
83 CodeStubDescriptor* descriptor) {
84 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
88 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
89 CodeStubDescriptor* descriptor) {
90 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
94 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
95 CodeStubDescriptor* descriptor) {
96 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
100 #define __ ACCESS_MASM(masm)
103 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
104 ExternalReference miss) {
105 // Update the static counter each time a new code stub is generated.
106 isolate()->counters()->code_stubs()->Increment();
108 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
109 int param_count = descriptor.GetEnvironmentParameterCount();
111 // Call the runtime system in a fresh internal frame.
112 FrameScope scope(masm, StackFrame::INTERNAL);
113 DCHECK(param_count == 0 ||
114 eax.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
116 for (int i = 0; i < param_count; ++i) {
117 __ push(descriptor.GetEnvironmentParameterRegister(i));
119 __ CallExternalReference(miss, param_count);
126 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
127 // We don't allow a GC during a store buffer overflow so there is no need to
128 // store the registers in any particular way, but we do have to store and
131 if (save_doubles()) {
132 // Save FPU stat in m108byte.
133 __ sub(esp, Immediate(108));
134 __ fnsave(Operand(esp, 0));
136 const int argument_count = 1;
138 AllowExternalCallThatCantCauseGC scope(masm);
139 __ PrepareCallCFunction(argument_count, ecx);
140 __ mov(Operand(esp, 0 * kPointerSize),
141 Immediate(ExternalReference::isolate_address(isolate())));
143 ExternalReference::store_buffer_overflow_function(isolate()),
145 if (save_doubles()) {
146 // Restore FPU stat in m108byte.
147 __ frstor(Operand(esp, 0));
148 __ add(esp, Immediate(108));
155 class FloatingPointHelper : public AllStatic {
162 // Code pattern for loading a floating point value. Input value must
163 // be either a smi or a heap number object (fp value). Requirements:
164 // operand in register number. Returns operand as floating point number
166 static void LoadFloatOperand(MacroAssembler* masm, Register number);
168 // Test if operands are smi or number objects (fp). Requirements:
169 // operand_1 in eax, operand_2 in edx; falls through on float
170 // operands, jumps to the non_float label otherwise.
171 static void CheckFloatOperands(MacroAssembler* masm,
177 void DoubleToIStub::Generate(MacroAssembler* masm) {
178 Register input_reg = this->source();
179 Register final_result_reg = this->destination();
180 DCHECK(is_truncating());
182 Label check_negative, process_64_bits, done, done_no_stash;
184 int double_offset = offset();
186 // Account for return address and saved regs if input is esp.
187 if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
189 MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
190 MemOperand exponent_operand(MemOperand(input_reg,
191 double_offset + kDoubleSize / 2));
195 Register scratch_candidates[3] = { ebx, edx, edi };
196 for (int i = 0; i < 3; i++) {
197 scratch1 = scratch_candidates[i];
198 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
201 // Since we must use ecx for shifts below, use some other register (eax)
202 // to calculate the result if ecx is the requested return register.
203 Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
204 // Save ecx if it isn't the return register and therefore volatile, or if it
205 // is the return register, then save the temp register we use in its stead for
207 Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
211 bool stash_exponent_copy = !input_reg.is(esp);
212 __ mov(scratch1, mantissa_operand);
213 __ mov(ecx, exponent_operand);
214 if (stash_exponent_copy) __ push(ecx);
216 __ and_(ecx, HeapNumber::kExponentMask);
217 __ shr(ecx, HeapNumber::kExponentShift);
218 __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
219 __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
220 __ j(below, &process_64_bits);
222 // Result is entirely in lower 32-bits of mantissa
223 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
224 __ sub(ecx, Immediate(delta));
225 __ xor_(result_reg, result_reg);
226 __ cmp(ecx, Immediate(31));
229 __ jmp(&check_negative);
231 __ bind(&process_64_bits);
232 // Result must be extracted from shifted 32-bit mantissa
233 __ sub(ecx, Immediate(delta));
235 if (stash_exponent_copy) {
236 __ mov(result_reg, MemOperand(esp, 0));
238 __ mov(result_reg, exponent_operand);
241 Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
243 Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
244 __ shrd(result_reg, scratch1);
245 __ shr_cl(result_reg);
246 __ test(ecx, Immediate(32));
249 __ j(equal, &skip_mov, Label::kNear);
250 __ mov(scratch1, result_reg);
254 // If the double was negative, negate the integer result.
255 __ bind(&check_negative);
256 __ mov(result_reg, scratch1);
258 if (stash_exponent_copy) {
259 __ cmp(MemOperand(esp, 0), Immediate(0));
261 __ cmp(exponent_operand, Immediate(0));
265 __ j(less_equal, &skip_mov, Label::kNear);
266 __ mov(result_reg, scratch1);
272 if (stash_exponent_copy) {
273 __ add(esp, Immediate(kDoubleSize / 2));
275 __ bind(&done_no_stash);
276 if (!final_result_reg.is(result_reg)) {
277 DCHECK(final_result_reg.is(ecx));
278 __ mov(final_result_reg, result_reg);
286 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
288 Label load_smi, done;
290 __ JumpIfSmi(number, &load_smi, Label::kNear);
291 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
292 __ jmp(&done, Label::kNear);
297 __ fild_s(Operand(esp, 0));
304 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
307 Label test_other, done;
308 // Test if both operands are floats or smi -> scratch=k_is_float;
309 // Otherwise scratch = k_not_float.
310 __ JumpIfSmi(edx, &test_other, Label::kNear);
311 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
312 Factory* factory = masm->isolate()->factory();
313 __ cmp(scratch, factory->heap_number_map());
314 __ j(not_equal, non_float); // argument in edx is not a number -> NaN
316 __ bind(&test_other);
317 __ JumpIfSmi(eax, &done, Label::kNear);
318 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
319 __ cmp(scratch, factory->heap_number_map());
320 __ j(not_equal, non_float); // argument in eax is not a number -> NaN
322 // Fall-through: Both operands are numbers.
327 void MathPowStub::Generate(MacroAssembler* masm) {
333 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
335 Register receiver = LoadDescriptor::ReceiverRegister();
336 // With careful management, we won't have to save slot and vector on
337 // the stack. Simply handle the possibly missing case first.
338 // TODO(mvstanton): this code can be more efficient.
339 __ cmp(FieldOperand(receiver, JSFunction::kPrototypeOrInitialMapOffset),
340 Immediate(isolate()->factory()->the_hole_value()));
342 __ TryGetFunctionPrototype(receiver, eax, ebx, &miss);
346 PropertyAccessCompiler::TailCallBuiltin(
347 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
351 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
352 // Return address is on the stack.
355 Register receiver = LoadDescriptor::ReceiverRegister();
356 Register key = LoadDescriptor::NameRegister();
357 Register scratch = eax;
358 DCHECK(!scratch.is(receiver) && !scratch.is(key));
360 // Check that the key is an array index, that is Uint32.
361 __ test(key, Immediate(kSmiTagMask | kSmiSignMask));
362 __ j(not_zero, &slow);
364 // Everything is fine, call runtime.
366 __ push(receiver); // receiver
368 __ push(scratch); // return address
370 // Perform tail call to the entry.
371 ExternalReference ref = ExternalReference(
372 IC_Utility(IC::kLoadElementWithInterceptor), masm->isolate());
373 __ TailCallExternalReference(ref, 2, 1);
376 PropertyAccessCompiler::TailCallBuiltin(
377 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
381 void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
382 // Return address is on the stack.
385 Register receiver = LoadDescriptor::ReceiverRegister();
386 Register index = LoadDescriptor::NameRegister();
387 Register scratch = edi;
388 DCHECK(!scratch.is(receiver) && !scratch.is(index));
389 Register result = eax;
390 DCHECK(!result.is(scratch));
391 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
392 result.is(LoadDescriptor::SlotRegister()));
394 // StringCharAtGenerator doesn't use the result register until it's passed
395 // the different miss possibilities. If it did, we would have a conflict
396 // when FLAG_vector_ics is true.
398 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
399 &miss, // When not a string.
400 &miss, // When not a number.
401 &miss, // When index out of range.
402 STRING_INDEX_IS_ARRAY_INDEX,
404 char_at_generator.GenerateFast(masm);
407 StubRuntimeCallHelper call_helper;
408 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
411 PropertyAccessCompiler::TailCallBuiltin(
412 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
416 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
417 CHECK(!has_new_target());
418 // The key is in edx and the parameter count is in eax.
419 DCHECK(edx.is(ArgumentsAccessReadDescriptor::index()));
420 DCHECK(eax.is(ArgumentsAccessReadDescriptor::parameter_count()));
422 // The displacement is used for skipping the frame pointer on the
423 // stack. It is the offset of the last parameter (if any) relative
424 // to the frame pointer.
425 static const int kDisplacement = 1 * kPointerSize;
427 // Check that the key is a smi.
429 __ JumpIfNotSmi(edx, &slow, Label::kNear);
431 // Check if the calling frame is an arguments adaptor frame.
433 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
434 __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
435 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
436 __ j(equal, &adaptor, Label::kNear);
438 // Check index against formal parameters count limit passed in
439 // through register eax. Use unsigned comparison to get negative
442 __ j(above_equal, &slow, Label::kNear);
444 // Read the argument from the stack and return it.
445 STATIC_ASSERT(kSmiTagSize == 1);
446 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
447 __ lea(ebx, Operand(ebp, eax, times_2, 0));
449 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
452 // Arguments adaptor case: Check index against actual arguments
453 // limit found in the arguments adaptor frame. Use unsigned
454 // comparison to get negative check for free.
456 __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
458 __ j(above_equal, &slow, Label::kNear);
460 // Read the argument from the stack and return it.
461 STATIC_ASSERT(kSmiTagSize == 1);
462 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
463 __ lea(ebx, Operand(ebx, ecx, times_2, 0));
465 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
468 // Slow-case: Handle non-smi or out-of-bounds access to arguments
469 // by calling the runtime system.
471 __ pop(ebx); // Return address.
474 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
478 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
479 // esp[0] : return address
480 // esp[4] : number of parameters
481 // esp[8] : receiver displacement
482 // esp[12] : function
484 CHECK(!has_new_target());
486 // Check if the calling frame is an arguments adaptor frame.
488 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
489 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
490 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
491 __ j(not_equal, &runtime, Label::kNear);
493 // Patch the arguments.length and the parameters pointer.
494 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
495 __ mov(Operand(esp, 1 * kPointerSize), ecx);
496 __ lea(edx, Operand(edx, ecx, times_2,
497 StandardFrameConstants::kCallerSPOffset));
498 __ mov(Operand(esp, 2 * kPointerSize), edx);
501 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
505 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
506 // esp[0] : return address
507 // esp[4] : number of parameters (tagged)
508 // esp[8] : receiver displacement
509 // esp[12] : function
511 // ebx = parameter count (tagged)
512 __ mov(ebx, Operand(esp, 1 * kPointerSize));
514 CHECK(!has_new_target());
516 // Check if the calling frame is an arguments adaptor frame.
517 // TODO(rossberg): Factor out some of the bits that are shared with the other
518 // Generate* functions.
520 Label adaptor_frame, try_allocate;
521 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
522 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
523 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
524 __ j(equal, &adaptor_frame, Label::kNear);
526 // No adaptor, parameter count = argument count.
528 __ jmp(&try_allocate, Label::kNear);
530 // We have an adaptor frame. Patch the parameters pointer.
531 __ bind(&adaptor_frame);
532 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
533 __ lea(edx, Operand(edx, ecx, times_2,
534 StandardFrameConstants::kCallerSPOffset));
535 __ mov(Operand(esp, 2 * kPointerSize), edx);
537 // ebx = parameter count (tagged)
538 // ecx = argument count (smi-tagged)
539 // esp[4] = parameter count (tagged)
540 // esp[8] = address of receiver argument
541 // Compute the mapped parameter count = min(ebx, ecx) in ebx.
543 __ j(less_equal, &try_allocate, Label::kNear);
546 __ bind(&try_allocate);
548 // Save mapped parameter count.
551 // Compute the sizes of backing store, parameter map, and arguments object.
552 // 1. Parameter map, has 2 extra words containing context and backing store.
553 const int kParameterMapHeaderSize =
554 FixedArray::kHeaderSize + 2 * kPointerSize;
555 Label no_parameter_map;
557 __ j(zero, &no_parameter_map, Label::kNear);
558 __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
559 __ bind(&no_parameter_map);
562 __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
564 // 3. Arguments object.
565 __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize));
567 // Do the allocation of all three objects in one go.
568 __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
570 // eax = address of new object(s) (tagged)
571 // ecx = argument count (smi-tagged)
572 // esp[0] = mapped parameter count (tagged)
573 // esp[8] = parameter count (tagged)
574 // esp[12] = address of receiver argument
575 // Get the arguments map from the current native context into edi.
576 Label has_mapped_parameters, instantiate;
577 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
578 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
579 __ mov(ebx, Operand(esp, 0 * kPointerSize));
581 __ j(not_zero, &has_mapped_parameters, Label::kNear);
584 Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
585 __ jmp(&instantiate, Label::kNear);
587 __ bind(&has_mapped_parameters);
590 Operand(edi, Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX)));
591 __ bind(&instantiate);
593 // eax = address of new object (tagged)
594 // ebx = mapped parameter count (tagged)
595 // ecx = argument count (smi-tagged)
596 // edi = address of arguments map (tagged)
597 // esp[0] = mapped parameter count (tagged)
598 // esp[8] = parameter count (tagged)
599 // esp[12] = address of receiver argument
600 // Copy the JS object part.
601 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
602 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
603 masm->isolate()->factory()->empty_fixed_array());
604 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
605 masm->isolate()->factory()->empty_fixed_array());
607 // Set up the callee in-object property.
608 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
609 __ mov(edx, Operand(esp, 4 * kPointerSize));
610 __ AssertNotSmi(edx);
611 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
612 Heap::kArgumentsCalleeIndex * kPointerSize),
615 // Use the length (smi tagged) and set that as an in-object property too.
617 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
618 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
619 Heap::kArgumentsLengthIndex * kPointerSize),
622 // Set up the elements pointer in the allocated arguments object.
623 // If we allocated a parameter map, edi will point there, otherwise to the
625 __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize));
626 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
628 // eax = address of new object (tagged)
629 // ebx = mapped parameter count (tagged)
630 // ecx = argument count (tagged)
631 // edi = address of parameter map or backing store (tagged)
632 // esp[0] = mapped parameter count (tagged)
633 // esp[8] = parameter count (tagged)
634 // esp[12] = address of receiver argument
638 // Initialize parameter map. If there are no mapped arguments, we're done.
639 Label skip_parameter_map;
641 __ j(zero, &skip_parameter_map);
643 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
644 Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
645 __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
646 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
647 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
648 __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
649 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
651 // Copy the parameter slots and the holes in the arguments.
652 // We need to fill in mapped_parameter_count slots. They index the context,
653 // where parameters are stored in reverse order, at
654 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
655 // The mapped parameter thus need to get indices
656 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
657 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
658 // We loop from right to left.
659 Label parameters_loop, parameters_test;
661 __ mov(eax, Operand(esp, 2 * kPointerSize));
662 __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
663 __ add(ebx, Operand(esp, 4 * kPointerSize));
665 __ mov(ecx, isolate()->factory()->the_hole_value());
667 __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
668 // eax = loop variable (tagged)
669 // ebx = mapping index (tagged)
670 // ecx = the hole value
671 // edx = address of parameter map (tagged)
672 // edi = address of backing store (tagged)
673 // esp[0] = argument count (tagged)
674 // esp[4] = address of new object (tagged)
675 // esp[8] = mapped parameter count (tagged)
676 // esp[16] = parameter count (tagged)
677 // esp[20] = address of receiver argument
678 __ jmp(¶meters_test, Label::kNear);
680 __ bind(¶meters_loop);
681 __ sub(eax, Immediate(Smi::FromInt(1)));
682 __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
683 __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
684 __ add(ebx, Immediate(Smi::FromInt(1)));
685 __ bind(¶meters_test);
687 __ j(not_zero, ¶meters_loop, Label::kNear);
690 __ bind(&skip_parameter_map);
692 // ecx = argument count (tagged)
693 // edi = address of backing store (tagged)
694 // esp[0] = address of new object (tagged)
695 // esp[4] = mapped parameter count (tagged)
696 // esp[12] = parameter count (tagged)
697 // esp[16] = address of receiver argument
698 // Copy arguments header and remaining slots (if there are any).
699 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
700 Immediate(isolate()->factory()->fixed_array_map()));
701 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
703 Label arguments_loop, arguments_test;
704 __ mov(ebx, Operand(esp, 1 * kPointerSize));
705 __ mov(edx, Operand(esp, 4 * kPointerSize));
706 __ sub(edx, ebx); // Is there a smarter way to do negative scaling?
708 __ jmp(&arguments_test, Label::kNear);
710 __ bind(&arguments_loop);
711 __ sub(edx, Immediate(kPointerSize));
712 __ mov(eax, Operand(edx, 0));
713 __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
714 __ add(ebx, Immediate(Smi::FromInt(1)));
716 __ bind(&arguments_test);
718 __ j(less, &arguments_loop, Label::kNear);
721 __ pop(eax); // Address of arguments object.
722 __ pop(ebx); // Parameter count.
724 // Return and remove the on-stack parameters.
725 __ ret(3 * kPointerSize);
727 // Do the runtime call to allocate the arguments object.
729 __ pop(eax); // Remove saved parameter count.
730 __ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count.
731 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
735 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
736 // esp[0] : return address
737 // esp[4] : number of parameters
738 // esp[8] : receiver displacement
739 // esp[12] : function
741 // Check if the calling frame is an arguments adaptor frame.
742 Label adaptor_frame, try_allocate, runtime;
743 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
744 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
745 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
746 __ j(equal, &adaptor_frame, Label::kNear);
748 // Get the length from the frame.
749 __ mov(ecx, Operand(esp, 1 * kPointerSize));
750 __ jmp(&try_allocate, Label::kNear);
752 // Patch the arguments.length and the parameters pointer.
753 __ bind(&adaptor_frame);
754 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
756 if (has_new_target()) {
757 // If the constructor was [[Call]]ed, the call will not push a new.target
758 // onto the stack. In that case the arguments array we construct is bogus,
759 // bu we do not care as the constructor throws immediately.
760 __ cmp(ecx, Immediate(Smi::FromInt(0)));
761 Label skip_decrement;
762 __ j(equal, &skip_decrement);
763 // Subtract 1 from smi-tagged arguments count.
764 __ sub(ecx, Immediate(2));
765 __ bind(&skip_decrement);
768 __ lea(edx, Operand(edx, ecx, times_2,
769 StandardFrameConstants::kCallerSPOffset));
770 __ mov(Operand(esp, 1 * kPointerSize), ecx);
771 __ mov(Operand(esp, 2 * kPointerSize), edx);
773 // Try the new space allocation. Start out with computing the size of
774 // the arguments object and the elements array.
775 Label add_arguments_object;
776 __ bind(&try_allocate);
778 __ j(zero, &add_arguments_object, Label::kNear);
779 __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
780 __ bind(&add_arguments_object);
781 __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize));
783 // Do the allocation of both objects in one go.
784 __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
786 // Get the arguments map from the current native context.
787 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
788 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
789 const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX);
790 __ mov(edi, Operand(edi, offset));
792 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
793 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
794 masm->isolate()->factory()->empty_fixed_array());
795 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
796 masm->isolate()->factory()->empty_fixed_array());
798 // Get the length (smi tagged) and set that as an in-object property too.
799 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
800 __ mov(ecx, Operand(esp, 1 * kPointerSize));
802 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
803 Heap::kArgumentsLengthIndex * kPointerSize),
806 // If there are no actual arguments, we're done.
809 __ j(zero, &done, Label::kNear);
811 // Get the parameters pointer from the stack.
812 __ mov(edx, Operand(esp, 2 * kPointerSize));
814 // Set up the elements pointer in the allocated arguments object and
815 // initialize the header in the elements fixed array.
816 __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize));
817 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
818 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
819 Immediate(isolate()->factory()->fixed_array_map()));
821 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
822 // Untag the length for the loop below.
825 // Copy the fixed array slots.
828 __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
829 __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
830 __ add(edi, Immediate(kPointerSize));
831 __ sub(edx, Immediate(kPointerSize));
833 __ j(not_zero, &loop);
835 // Return and remove the on-stack parameters.
837 __ ret(3 * kPointerSize);
839 // Do the runtime call to allocate the arguments object.
841 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
845 void RestParamAccessStub::GenerateNew(MacroAssembler* masm) {
846 // esp[0] : return address
847 // esp[4] : language mode
848 // esp[8] : index of rest parameter
849 // esp[12] : number of parameters
850 // esp[16] : receiver displacement
852 // Check if the calling frame is an arguments adaptor frame.
854 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
855 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
856 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
857 __ j(not_equal, &runtime);
859 // Patch the arguments.length and the parameters pointer.
860 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
861 __ mov(Operand(esp, 3 * kPointerSize), ecx);
862 __ lea(edx, Operand(edx, ecx, times_2,
863 StandardFrameConstants::kCallerSPOffset));
864 __ mov(Operand(esp, 4 * kPointerSize), edx);
867 __ TailCallRuntime(Runtime::kNewRestParam, 4, 1);
871 void RegExpExecStub::Generate(MacroAssembler* masm) {
872 // Just jump directly to runtime if native RegExp is not selected at compile
873 // time or if regexp entry in generated code is turned off runtime switch or
875 #ifdef V8_INTERPRETED_REGEXP
876 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
877 #else // V8_INTERPRETED_REGEXP
879 // Stack frame on entry.
880 // esp[0]: return address
881 // esp[4]: last_match_info (expected JSArray)
882 // esp[8]: previous index
883 // esp[12]: subject string
884 // esp[16]: JSRegExp object
886 static const int kLastMatchInfoOffset = 1 * kPointerSize;
887 static const int kPreviousIndexOffset = 2 * kPointerSize;
888 static const int kSubjectOffset = 3 * kPointerSize;
889 static const int kJSRegExpOffset = 4 * kPointerSize;
892 Factory* factory = isolate()->factory();
894 // Ensure that a RegExp stack is allocated.
895 ExternalReference address_of_regexp_stack_memory_address =
896 ExternalReference::address_of_regexp_stack_memory_address(isolate());
897 ExternalReference address_of_regexp_stack_memory_size =
898 ExternalReference::address_of_regexp_stack_memory_size(isolate());
899 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
901 __ j(zero, &runtime);
903 // Check that the first argument is a JSRegExp object.
904 __ mov(eax, Operand(esp, kJSRegExpOffset));
905 STATIC_ASSERT(kSmiTag == 0);
906 __ JumpIfSmi(eax, &runtime);
907 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
908 __ j(not_equal, &runtime);
910 // Check that the RegExp has been compiled (data contains a fixed array).
911 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
912 if (FLAG_debug_code) {
913 __ test(ecx, Immediate(kSmiTagMask));
914 __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
915 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
916 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
919 // ecx: RegExp data (FixedArray)
920 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
921 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
922 __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
923 __ j(not_equal, &runtime);
925 // ecx: RegExp data (FixedArray)
926 // Check that the number of captures fit in the static offsets vector buffer.
927 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
928 // Check (number_of_captures + 1) * 2 <= offsets vector size
929 // Or number_of_captures * 2 <= offsets vector size - 2
930 // Multiplying by 2 comes for free since edx is smi-tagged.
931 STATIC_ASSERT(kSmiTag == 0);
932 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
933 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
934 __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
935 __ j(above, &runtime);
937 // Reset offset for possibly sliced string.
938 __ Move(edi, Immediate(0));
939 __ mov(eax, Operand(esp, kSubjectOffset));
940 __ JumpIfSmi(eax, &runtime);
941 __ mov(edx, eax); // Make a copy of the original subject string.
942 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
943 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
945 // eax: subject string
946 // edx: subject string
947 // ebx: subject string instance type
948 // ecx: RegExp data (FixedArray)
949 // Handle subject string according to its encoding and representation:
950 // (1) Sequential two byte? If yes, go to (9).
951 // (2) Sequential one byte? If yes, go to (6).
952 // (3) Anything but sequential or cons? If yes, go to (7).
953 // (4) Cons string. If the string is flat, replace subject with first string.
954 // Otherwise bailout.
955 // (5a) Is subject sequential two byte? If yes, go to (9).
956 // (5b) Is subject external? If yes, go to (8).
957 // (6) One byte sequential. Load regexp code for one byte.
961 // Deferred code at the end of the stub:
962 // (7) Not a long external string? If yes, go to (10).
963 // (8) External string. Make it, offset-wise, look like a sequential string.
964 // (8a) Is the external string one byte? If yes, go to (6).
965 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
966 // (10) Short external string or not a string? If yes, bail out to runtime.
967 // (11) Sliced string. Replace subject with parent. Go to (5a).
969 Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
970 external_string /* 8 */, check_underlying /* 5a */,
971 not_seq_nor_cons /* 7 */, check_code /* E */,
972 not_long_external /* 10 */;
974 // (1) Sequential two byte? If yes, go to (9).
975 __ and_(ebx, kIsNotStringMask |
976 kStringRepresentationMask |
977 kStringEncodingMask |
978 kShortExternalStringMask);
979 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
980 __ j(zero, &seq_two_byte_string); // Go to (9).
982 // (2) Sequential one byte? If yes, go to (6).
983 // Any other sequential string must be one byte.
984 __ and_(ebx, Immediate(kIsNotStringMask |
985 kStringRepresentationMask |
986 kShortExternalStringMask));
987 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6).
989 // (3) Anything but sequential or cons? If yes, go to (7).
990 // We check whether the subject string is a cons, since sequential strings
991 // have already been covered.
992 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
993 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
994 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
995 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
996 __ cmp(ebx, Immediate(kExternalStringTag));
997 __ j(greater_equal, ¬_seq_nor_cons); // Go to (7).
999 // (4) Cons string. Check that it's flat.
1000 // Replace subject with first string and reload instance type.
1001 __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
1002 __ j(not_equal, &runtime);
1003 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
1004 __ bind(&check_underlying);
1005 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1006 __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1008 // (5a) Is subject sequential two byte? If yes, go to (9).
1009 __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask);
1010 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
1011 __ j(zero, &seq_two_byte_string); // Go to (9).
1012 // (5b) Is subject external? If yes, go to (8).
1013 __ test_b(ebx, kStringRepresentationMask);
1014 // The underlying external string is never a short external string.
1015 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
1016 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
1017 __ j(not_zero, &external_string); // Go to (8).
1019 // eax: sequential subject string (or look-alike, external string)
1020 // edx: original subject string
1021 // ecx: RegExp data (FixedArray)
1022 // (6) One byte sequential. Load regexp code for one byte.
1023 __ bind(&seq_one_byte_string);
1024 // Load previous index and check range before edx is overwritten. We have
1025 // to use edx instead of eax here because it might have been only made to
1026 // look like a sequential string when it actually is an external string.
1027 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1028 __ JumpIfNotSmi(ebx, &runtime);
1029 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1030 __ j(above_equal, &runtime);
1031 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
1032 __ Move(ecx, Immediate(1)); // Type is one byte.
1034 // (E) Carry on. String handling is done.
1035 __ bind(&check_code);
1036 // edx: irregexp code
1037 // Check that the irregexp code has been generated for the actual string
1038 // encoding. If it has, the field contains a code object otherwise it contains
1039 // a smi (code flushing support).
1040 __ JumpIfSmi(edx, &runtime);
1042 // eax: subject string
1043 // ebx: previous index (smi)
1045 // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
1046 // All checks done. Now push arguments for native regexp code.
1047 Counters* counters = isolate()->counters();
1048 __ IncrementCounter(counters->regexp_entry_native(), 1);
1050 // Isolates: note we add an additional parameter here (isolate pointer).
1051 static const int kRegExpExecuteArguments = 9;
1052 __ EnterApiExitFrame(kRegExpExecuteArguments);
1054 // Argument 9: Pass current isolate address.
1055 __ mov(Operand(esp, 8 * kPointerSize),
1056 Immediate(ExternalReference::isolate_address(isolate())));
1058 // Argument 8: Indicate that this is a direct call from JavaScript.
1059 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
1061 // Argument 7: Start (high end) of backtracking stack memory area.
1062 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
1063 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
1064 __ mov(Operand(esp, 6 * kPointerSize), esi);
1066 // Argument 6: Set the number of capture registers to zero to force global
1067 // regexps to behave as non-global. This does not affect non-global regexps.
1068 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
1070 // Argument 5: static offsets vector buffer.
1071 __ mov(Operand(esp, 4 * kPointerSize),
1072 Immediate(ExternalReference::address_of_static_offsets_vector(
1075 // Argument 2: Previous index.
1077 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1079 // Argument 1: Original subject string.
1080 // The original subject is in the previous stack frame. Therefore we have to
1081 // use ebp, which points exactly to one pointer size below the previous esp.
1082 // (Because creating a new stack frame pushes the previous ebp onto the stack
1083 // and thereby moves up esp by one kPointerSize.)
1084 __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
1085 __ mov(Operand(esp, 0 * kPointerSize), esi);
1087 // esi: original subject string
1088 // eax: underlying subject string
1089 // ebx: previous index
1090 // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
1092 // Argument 4: End of string data
1093 // Argument 3: Start of string data
1094 // Prepare start and end index of the input.
1095 // Load the length from the original sliced string if that is the case.
1096 __ mov(esi, FieldOperand(esi, String::kLengthOffset));
1097 __ add(esi, edi); // Calculate input end wrt offset.
1099 __ add(ebx, edi); // Calculate input start wrt offset.
1101 // ebx: start index of the input string
1102 // esi: end index of the input string
1103 Label setup_two_byte, setup_rest;
1105 __ j(zero, &setup_two_byte, Label::kNear);
1107 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
1108 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1109 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
1110 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1111 __ jmp(&setup_rest, Label::kNear);
1113 __ bind(&setup_two_byte);
1114 STATIC_ASSERT(kSmiTag == 0);
1115 STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2).
1116 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
1117 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1118 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
1119 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1121 __ bind(&setup_rest);
1123 // Locate the code entry and call it.
1124 __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1127 // Drop arguments and come back to JS mode.
1128 __ LeaveApiExitFrame(true);
1130 // Check the result.
1133 // We expect exactly one result since we force the called regexp to behave
1135 __ j(equal, &success);
1137 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
1138 __ j(equal, &failure);
1139 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
1140 // If not exception it can only be retry. Handle that in the runtime system.
1141 __ j(not_equal, &runtime);
1142 // Result must now be exception. If there is no pending exception already a
1143 // stack overflow (on the backtrack stack) was detected in RegExp code but
1144 // haven't created the exception yet. Handle that in the runtime system.
1145 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1146 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
1148 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
1149 __ mov(eax, Operand::StaticVariable(pending_exception));
1151 __ j(equal, &runtime);
1153 // For exception, throw the exception again.
1154 __ TailCallRuntime(Runtime::kRegExpExecReThrow, 4, 1);
1157 // For failure to match, return null.
1158 __ mov(eax, factory->null_value());
1159 __ ret(4 * kPointerSize);
1161 // Load RegExp data.
1163 __ mov(eax, Operand(esp, kJSRegExpOffset));
1164 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1165 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1166 // Calculate number of capture registers (number_of_captures + 1) * 2.
1167 STATIC_ASSERT(kSmiTag == 0);
1168 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1169 __ add(edx, Immediate(2)); // edx was a smi.
1171 // edx: Number of capture registers
1172 // Load last_match_info which is still known to be a fast case JSArray.
1173 // Check that the fourth object is a JSArray object.
1174 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1175 __ JumpIfSmi(eax, &runtime);
1176 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
1177 __ j(not_equal, &runtime);
1178 // Check that the JSArray is in fast case.
1179 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
1180 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
1181 __ cmp(eax, factory->fixed_array_map());
1182 __ j(not_equal, &runtime);
1183 // Check that the last match info has space for the capture registers and the
1184 // additional information.
1185 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
1187 __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
1189 __ j(greater, &runtime);
1191 // ebx: last_match_info backing store (FixedArray)
1192 // edx: number of capture registers
1193 // Store the capture count.
1194 __ SmiTag(edx); // Number of capture registers to smi.
1195 __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
1196 __ SmiUntag(edx); // Number of capture registers back from smi.
1197 // Store last subject and last input.
1198 __ mov(eax, Operand(esp, kSubjectOffset));
1200 __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
1201 __ RecordWriteField(ebx, RegExpImpl::kLastSubjectOffset, eax, edi,
1204 __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
1205 __ RecordWriteField(ebx, RegExpImpl::kLastInputOffset, eax, edi,
1208 // Get the static offsets vector filled by the native regexp code.
1209 ExternalReference address_of_static_offsets_vector =
1210 ExternalReference::address_of_static_offsets_vector(isolate());
1211 __ mov(ecx, Immediate(address_of_static_offsets_vector));
1213 // ebx: last_match_info backing store (FixedArray)
1214 // ecx: offsets vector
1215 // edx: number of capture registers
1216 Label next_capture, done;
1217 // Capture register counter starts from number of capture registers and
1218 // counts down until wraping after zero.
1219 __ bind(&next_capture);
1220 __ sub(edx, Immediate(1));
1221 __ j(negative, &done, Label::kNear);
1222 // Read the value from the static offsets vector buffer.
1223 __ mov(edi, Operand(ecx, edx, times_int_size, 0));
1225 // Store the smi value in the last match info.
1226 __ mov(FieldOperand(ebx,
1229 RegExpImpl::kFirstCaptureOffset),
1231 __ jmp(&next_capture);
1234 // Return last match info.
1235 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1236 __ ret(4 * kPointerSize);
1238 // Do the runtime call to execute the regexp.
1240 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
1242 // Deferred code for string handling.
1243 // (7) Not a long external string? If yes, go to (10).
1244 __ bind(¬_seq_nor_cons);
1245 // Compare flags are still set from (3).
1246 __ j(greater, ¬_long_external, Label::kNear); // Go to (10).
1248 // (8) External string. Short external strings have been ruled out.
1249 __ bind(&external_string);
1250 // Reload instance type.
1251 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1252 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1253 if (FLAG_debug_code) {
1254 // Assert that we do not have a cons or slice (indirect strings) here.
1255 // Sequential strings have already been ruled out.
1256 __ test_b(ebx, kIsIndirectStringMask);
1257 __ Assert(zero, kExternalStringExpectedButNotFound);
1259 __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
1260 // Move the pointer so that offset-wise, it looks like a sequential string.
1261 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1262 __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1263 STATIC_ASSERT(kTwoByteStringTag == 0);
1264 // (8a) Is the external string one byte? If yes, go to (6).
1265 __ test_b(ebx, kStringEncodingMask);
1266 __ j(not_zero, &seq_one_byte_string); // Goto (6).
1268 // eax: sequential subject string (or look-alike, external string)
1269 // edx: original subject string
1270 // ecx: RegExp data (FixedArray)
1271 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1272 __ bind(&seq_two_byte_string);
1273 // Load previous index and check range before edx is overwritten. We have
1274 // to use edx instead of eax here because it might have been only made to
1275 // look like a sequential string when it actually is an external string.
1276 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1277 __ JumpIfNotSmi(ebx, &runtime);
1278 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1279 __ j(above_equal, &runtime);
1280 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
1281 __ Move(ecx, Immediate(0)); // Type is two byte.
1282 __ jmp(&check_code); // Go to (E).
1284 // (10) Not a string or a short external string? If yes, bail out to runtime.
1285 __ bind(¬_long_external);
1286 // Catch non-string subject or short external string.
1287 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1288 __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
1289 __ j(not_zero, &runtime);
1291 // (11) Sliced string. Replace subject with parent. Go to (5a).
1292 // Load offset into edi and replace subject string with parent.
1293 __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
1294 __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
1295 __ jmp(&check_underlying); // Go to (5a).
1296 #endif // V8_INTERPRETED_REGEXP
1300 static int NegativeComparisonResult(Condition cc) {
1301 DCHECK(cc != equal);
1302 DCHECK((cc == less) || (cc == less_equal)
1303 || (cc == greater) || (cc == greater_equal));
1304 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
1308 static void CheckInputType(MacroAssembler* masm, Register input,
1309 CompareICState::State expected, Label* fail) {
1311 if (expected == CompareICState::SMI) {
1312 __ JumpIfNotSmi(input, fail);
1313 } else if (expected == CompareICState::NUMBER) {
1314 __ JumpIfSmi(input, &ok);
1315 __ cmp(FieldOperand(input, HeapObject::kMapOffset),
1316 Immediate(masm->isolate()->factory()->heap_number_map()));
1317 __ j(not_equal, fail);
1319 // We could be strict about internalized/non-internalized here, but as long as
1320 // hydrogen doesn't care, the stub doesn't have to care either.
1325 static void BranchIfNotInternalizedString(MacroAssembler* masm,
1329 __ JumpIfSmi(object, label);
1330 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
1331 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
1332 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
1333 __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
1334 __ j(not_zero, label);
1338 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
1339 Label runtime_call, check_unequal_objects;
1340 Condition cc = GetCondition();
1343 CheckInputType(masm, edx, left(), &miss);
1344 CheckInputType(masm, eax, right(), &miss);
1346 // Compare two smis.
1347 Label non_smi, smi_done;
1350 __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
1351 __ sub(edx, eax); // Return on the result of the subtraction.
1352 __ j(no_overflow, &smi_done, Label::kNear);
1353 __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
1359 // NOTICE! This code is only reached after a smi-fast-case check, so
1360 // it is certain that at least one operand isn't a smi.
1362 // Identical objects can be compared fast, but there are some tricky cases
1363 // for NaN and undefined.
1364 Label generic_heap_number_comparison;
1366 Label not_identical;
1368 __ j(not_equal, ¬_identical);
1371 // Check for undefined. undefined OP undefined is false even though
1372 // undefined == undefined.
1373 __ cmp(edx, isolate()->factory()->undefined_value());
1375 // In strong mode, this comparison must throw, so call the runtime.
1376 __ j(equal, &runtime_call, Label::kFar);
1378 Label check_for_nan;
1379 __ j(not_equal, &check_for_nan, Label::kNear);
1380 __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1382 __ bind(&check_for_nan);
1386 // Test for NaN. Compare heap numbers in a general way,
1387 // to handle NaNs correctly.
1388 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
1389 Immediate(isolate()->factory()->heap_number_map()));
1390 __ j(equal, &generic_heap_number_comparison, Label::kNear);
1392 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
1393 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
1394 // Call runtime on identical JSObjects. Otherwise return equal.
1395 __ cmpb(ecx, static_cast<uint8_t>(FIRST_SPEC_OBJECT_TYPE));
1396 __ j(above_equal, &runtime_call, Label::kFar);
1397 // Call runtime on identical symbols since we need to throw a TypeError.
1398 __ cmpb(ecx, static_cast<uint8_t>(SYMBOL_TYPE));
1399 __ j(equal, &runtime_call, Label::kFar);
1401 // We have already tested for smis and heap numbers, so if both
1402 // arguments are not strings we must proceed to the slow case.
1403 __ test(ecx, Immediate(kIsNotStringMask));
1404 __ j(not_zero, &runtime_call, Label::kFar);
1407 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
1411 __ bind(¬_identical);
1414 // Strict equality can quickly decide whether objects are equal.
1415 // Non-strict object equality is slower, so it is handled later in the stub.
1416 if (cc == equal && strict()) {
1417 Label slow; // Fallthrough label.
1419 // If we're doing a strict equality comparison, we don't have to do
1420 // type conversion, so we generate code to do fast comparison for objects
1421 // and oddballs. Non-smi numbers and strings still go through the usual
1423 // If either is a Smi (we know that not both are), then they can only
1424 // be equal if the other is a HeapNumber. If so, use the slow case.
1425 STATIC_ASSERT(kSmiTag == 0);
1426 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
1427 __ mov(ecx, Immediate(kSmiTagMask));
1430 __ j(not_zero, ¬_smis, Label::kNear);
1431 // One operand is a smi.
1433 // Check whether the non-smi is a heap number.
1434 STATIC_ASSERT(kSmiTagMask == 1);
1435 // ecx still holds eax & kSmiTag, which is either zero or one.
1436 __ sub(ecx, Immediate(0x01));
1439 __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
1441 // if eax was smi, ebx is now edx, else eax.
1443 // Check if the non-smi operand is a heap number.
1444 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
1445 Immediate(isolate()->factory()->heap_number_map()));
1446 // If heap number, handle it in the slow case.
1447 __ j(equal, &slow, Label::kNear);
1448 // Return non-equal (ebx is not zero)
1453 // If either operand is a JSObject or an oddball value, then they are not
1454 // equal since their pointers are different
1455 // There is no test for undetectability in strict equality.
1457 // Get the type of the first operand.
1458 // If the first object is a JS object, we have done pointer comparison.
1459 Label first_non_object;
1460 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1461 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1462 __ j(below, &first_non_object, Label::kNear);
1464 // Return non-zero (eax is not zero)
1465 Label return_not_equal;
1466 STATIC_ASSERT(kHeapObjectTag != 0);
1467 __ bind(&return_not_equal);
1470 __ bind(&first_non_object);
1471 // Check for oddballs: true, false, null, undefined.
1472 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1473 __ j(equal, &return_not_equal);
1475 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
1476 __ j(above_equal, &return_not_equal);
1478 // Check for oddballs: true, false, null, undefined.
1479 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1480 __ j(equal, &return_not_equal);
1482 // Fall through to the general case.
1486 // Generate the number comparison code.
1487 Label non_number_comparison;
1489 __ bind(&generic_heap_number_comparison);
1490 FloatingPointHelper::CheckFloatOperands(
1491 masm, &non_number_comparison, ebx);
1492 FloatingPointHelper::LoadFloatOperand(masm, eax);
1493 FloatingPointHelper::LoadFloatOperand(masm, edx);
1496 // Don't base result on EFLAGS when a NaN is involved.
1497 __ j(parity_even, &unordered, Label::kNear);
1499 Label below_label, above_label;
1500 // Return a result of -1, 0, or 1, based on EFLAGS.
1501 __ j(below, &below_label, Label::kNear);
1502 __ j(above, &above_label, Label::kNear);
1504 __ Move(eax, Immediate(0));
1507 __ bind(&below_label);
1508 __ mov(eax, Immediate(Smi::FromInt(-1)));
1511 __ bind(&above_label);
1512 __ mov(eax, Immediate(Smi::FromInt(1)));
1515 // If one of the numbers was NaN, then the result is always false.
1516 // The cc is never not-equal.
1517 __ bind(&unordered);
1518 DCHECK(cc != not_equal);
1519 if (cc == less || cc == less_equal) {
1520 __ mov(eax, Immediate(Smi::FromInt(1)));
1522 __ mov(eax, Immediate(Smi::FromInt(-1)));
1526 // The number comparison code did not provide a valid result.
1527 __ bind(&non_number_comparison);
1529 // Fast negative check for internalized-to-internalized equality.
1530 Label check_for_strings;
1532 BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
1533 BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
1535 // We've already checked for object identity, so if both operands
1536 // are internalized they aren't equal. Register eax already holds a
1537 // non-zero value, which indicates not equal, so just return.
1541 __ bind(&check_for_strings);
1543 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
1544 &check_unequal_objects);
1546 // Inline comparison of one-byte strings.
1548 StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
1550 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
1554 __ Abort(kUnexpectedFallThroughFromStringComparison);
1557 __ bind(&check_unequal_objects);
1558 if (cc == equal && !strict()) {
1559 // Non-strict equality. Objects are unequal if
1560 // they are both JSObjects and not undetectable,
1561 // and their pointers are different.
1562 Label return_unequal;
1563 // At most one is a smi, so we can test for smi by adding the two.
1564 // A smi plus a heap object has the low bit set, a heap object plus
1565 // a heap object has the low bit clear.
1566 STATIC_ASSERT(kSmiTag == 0);
1567 STATIC_ASSERT(kSmiTagMask == 1);
1568 __ lea(ecx, Operand(eax, edx, times_1, 0));
1569 __ test(ecx, Immediate(kSmiTagMask));
1570 __ j(not_zero, &runtime_call, Label::kNear);
1571 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1572 __ j(below, &runtime_call, Label::kNear);
1573 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
1574 __ j(below, &runtime_call, Label::kNear);
1575 // We do not bail out after this point. Both are JSObjects, and
1576 // they are equal if and only if both are undetectable.
1577 // The and of the undetectable flags is 1 if and only if they are equal.
1578 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1579 1 << Map::kIsUndetectable);
1580 __ j(zero, &return_unequal, Label::kNear);
1581 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
1582 1 << Map::kIsUndetectable);
1583 __ j(zero, &return_unequal, Label::kNear);
1584 // The objects are both undetectable, so they both compare as the value
1585 // undefined, and are equal.
1586 __ Move(eax, Immediate(EQUAL));
1587 __ bind(&return_unequal);
1588 // Return non-equal by returning the non-zero object pointer in eax,
1589 // or return equal if we fell through to here.
1590 __ ret(0); // rax, rdx were pushed
1592 __ bind(&runtime_call);
1594 // Push arguments below the return address.
1599 // Figure out which native to call and setup the arguments.
1600 Builtins::JavaScript builtin;
1602 builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1604 builtin = strong() ? Builtins::COMPARE_STRONG : Builtins::COMPARE;
1605 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1608 // Restore return address on the stack.
1611 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1612 // tagged as a small integer.
1613 __ InvokeBuiltin(builtin, JUMP_FUNCTION);
1620 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1621 // eax : number of arguments to the construct function
1622 // ebx : Feedback vector
1623 // edx : slot in feedback vector (Smi)
1624 // edi : the function to call
1625 FrameScope scope(masm, StackFrame::INTERNAL);
1627 // Number-of-arguments register must be smi-tagged to call out.
1644 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1645 // Cache the called function in a feedback vector slot. Cache states
1646 // are uninitialized, monomorphic (indicated by a JSFunction), and
1648 // eax : number of arguments to the construct function
1649 // ebx : Feedback vector
1650 // edx : slot in feedback vector (Smi)
1651 // edi : the function to call
1652 Isolate* isolate = masm->isolate();
1653 Label initialize, done, miss, megamorphic, not_array_function;
1655 // Load the cache state into ecx.
1656 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1657 FixedArray::kHeaderSize));
1659 // A monomorphic cache hit or an already megamorphic state: invoke the
1660 // function without changing the state.
1661 // We don't know if ecx is a WeakCell or a Symbol, but it's harmless to read
1662 // at this position in a symbol (see static asserts in
1663 // type-feedback-vector.h).
1664 Label check_allocation_site;
1665 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
1666 __ j(equal, &done, Label::kFar);
1667 __ CompareRoot(ecx, Heap::kmegamorphic_symbolRootIndex);
1668 __ j(equal, &done, Label::kFar);
1669 __ CompareRoot(FieldOperand(ecx, HeapObject::kMapOffset),
1670 Heap::kWeakCellMapRootIndex);
1671 __ j(not_equal, FLAG_pretenuring_call_new ? &miss : &check_allocation_site);
1673 // If the weak cell is cleared, we have a new chance to become monomorphic.
1674 __ JumpIfSmi(FieldOperand(ecx, WeakCell::kValueOffset), &initialize);
1675 __ jmp(&megamorphic);
1677 if (!FLAG_pretenuring_call_new) {
1678 __ bind(&check_allocation_site);
1679 // If we came here, we need to see if we are the array function.
1680 // If we didn't have a matching function, and we didn't find the megamorph
1681 // sentinel, then we have in the slot either some other function or an
1683 __ CompareRoot(FieldOperand(ecx, 0), Heap::kAllocationSiteMapRootIndex);
1684 __ j(not_equal, &miss);
1686 // Make sure the function is the Array() function
1687 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1689 __ j(not_equal, &megamorphic);
1690 __ jmp(&done, Label::kFar);
1695 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1697 __ CompareRoot(ecx, Heap::kuninitialized_symbolRootIndex);
1698 __ j(equal, &initialize);
1699 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1700 // write-barrier is needed.
1701 __ bind(&megamorphic);
1703 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
1704 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1705 __ jmp(&done, Label::kFar);
1707 // An uninitialized cache is patched with the function or sentinel to
1708 // indicate the ElementsKind if function is the Array constructor.
1709 __ bind(&initialize);
1710 if (!FLAG_pretenuring_call_new) {
1711 // Make sure the function is the Array() function
1712 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1714 __ j(not_equal, ¬_array_function);
1716 // The target function is the Array constructor,
1717 // Create an AllocationSite if we don't already have it, store it in the
1719 CreateAllocationSiteStub create_stub(isolate);
1720 CallStubInRecordCallTarget(masm, &create_stub);
1723 __ bind(¬_array_function);
1726 CreateWeakCellStub create_stub(isolate);
1727 CallStubInRecordCallTarget(masm, &create_stub);
1732 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
1733 // Do not transform the receiver for strict mode functions.
1734 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1735 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
1736 1 << SharedFunctionInfo::kStrictModeBitWithinByte);
1737 __ j(not_equal, cont);
1739 // Do not transform the receiver for natives (shared already in ecx).
1740 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
1741 1 << SharedFunctionInfo::kNativeBitWithinByte);
1742 __ j(not_equal, cont);
1746 static void EmitSlowCase(Isolate* isolate,
1747 MacroAssembler* masm,
1749 Label* non_function) {
1750 // Check for function proxy.
1751 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
1752 __ j(not_equal, non_function);
1754 __ push(edi); // put proxy as additional argument under return address
1756 __ Move(eax, Immediate(argc + 1));
1757 __ Move(ebx, Immediate(0));
1758 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
1760 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
1761 __ jmp(adaptor, RelocInfo::CODE_TARGET);
1764 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
1765 // of the original receiver from the call site).
1766 __ bind(non_function);
1767 __ mov(Operand(esp, (argc + 1) * kPointerSize), edi);
1768 __ Move(eax, Immediate(argc));
1769 __ Move(ebx, Immediate(0));
1770 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
1771 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
1772 __ jmp(adaptor, RelocInfo::CODE_TARGET);
1776 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
1777 // Wrap the receiver and patch it back onto the stack.
1778 { FrameScope frame_scope(masm, StackFrame::INTERNAL);
1781 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1784 __ mov(Operand(esp, (argc + 1) * kPointerSize), eax);
1789 static void CallFunctionNoFeedback(MacroAssembler* masm,
1790 int argc, bool needs_checks,
1791 bool call_as_method) {
1792 // edi : the function to call
1793 Label slow, non_function, wrap, cont;
1796 // Check that the function really is a JavaScript function.
1797 __ JumpIfSmi(edi, &non_function);
1799 // Goto slow case if we do not have a function.
1800 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
1801 __ j(not_equal, &slow);
1804 // Fast-case: Just invoke the function.
1805 ParameterCount actual(argc);
1807 if (call_as_method) {
1809 EmitContinueIfStrictOrNative(masm, &cont);
1812 // Load the receiver from the stack.
1813 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
1816 __ JumpIfSmi(eax, &wrap);
1818 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1827 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
1830 // Slow-case: Non-function called.
1832 // (non_function is bound in EmitSlowCase)
1833 EmitSlowCase(masm->isolate(), masm, argc, &non_function);
1836 if (call_as_method) {
1838 EmitWrapCase(masm, argc, &cont);
1843 void CallFunctionStub::Generate(MacroAssembler* masm) {
1844 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
1848 void CallConstructStub::Generate(MacroAssembler* masm) {
1849 // eax : number of arguments
1850 // ebx : feedback vector
1851 // edx : (only if ebx is not the megamorphic symbol) slot in feedback
1853 // edi : constructor function
1854 Label slow, non_function_call;
1856 // Check that function is not a smi.
1857 __ JumpIfSmi(edi, &non_function_call);
1858 // Check that function is a JSFunction.
1859 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
1860 __ j(not_equal, &slow);
1862 if (RecordCallTarget()) {
1863 GenerateRecordCallTarget(masm);
1865 if (FLAG_pretenuring_call_new) {
1866 // Put the AllocationSite from the feedback vector into ebx.
1867 // By adding kPointerSize we encode that we know the AllocationSite
1868 // entry is at the feedback vector slot given by edx + 1.
1869 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
1870 FixedArray::kHeaderSize + kPointerSize));
1872 Label feedback_register_initialized;
1873 // Put the AllocationSite from the feedback vector into ebx, or undefined.
1874 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
1875 FixedArray::kHeaderSize));
1876 Handle<Map> allocation_site_map =
1877 isolate()->factory()->allocation_site_map();
1878 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
1879 __ j(equal, &feedback_register_initialized);
1880 __ mov(ebx, isolate()->factory()->undefined_value());
1881 __ bind(&feedback_register_initialized);
1884 __ AssertUndefinedOrAllocationSite(ebx);
1887 if (IsSuperConstructorCall()) {
1888 __ mov(edx, Operand(esp, eax, times_pointer_size, 2 * kPointerSize));
1890 // Pass original constructor to construct stub.
1894 // Jump to the function-specific construct stub.
1895 Register jmp_reg = ecx;
1896 __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1897 __ mov(jmp_reg, FieldOperand(jmp_reg,
1898 SharedFunctionInfo::kConstructStubOffset));
1899 __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
1902 // edi: called object
1903 // eax: number of arguments
1907 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
1908 __ j(not_equal, &non_function_call);
1909 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
1912 __ bind(&non_function_call);
1913 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
1915 // Set expected number of arguments to zero (not changing eax).
1916 __ Move(ebx, Immediate(0));
1917 Handle<Code> arguments_adaptor =
1918 isolate()->builtins()->ArgumentsAdaptorTrampoline();
1919 __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
1923 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
1924 __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1925 __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
1926 __ mov(vector, FieldOperand(vector,
1927 SharedFunctionInfo::kFeedbackVectorOffset));
1931 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
1936 int argc = arg_count();
1937 ParameterCount actual(argc);
1939 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1941 __ j(not_equal, &miss);
1943 __ mov(eax, arg_count());
1944 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1945 FixedArray::kHeaderSize));
1947 // Verify that ecx contains an AllocationSite
1948 Factory* factory = masm->isolate()->factory();
1949 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
1950 factory->allocation_site_map());
1951 __ j(not_equal, &miss);
1955 ArrayConstructorStub stub(masm->isolate(), arg_count());
1956 __ TailCallStub(&stub);
1961 // The slow case, we need this no matter what to complete a call after a miss.
1962 CallFunctionNoFeedback(masm,
1972 void CallICStub::Generate(MacroAssembler* masm) {
1976 Isolate* isolate = masm->isolate();
1977 const int with_types_offset =
1978 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kWithTypesIndex);
1979 const int generic_offset =
1980 FixedArray::OffsetOfElementAt(TypeFeedbackVector::kGenericCountIndex);
1981 Label extra_checks_or_miss, slow_start;
1982 Label slow, non_function, wrap, cont;
1983 Label have_js_function;
1984 int argc = arg_count();
1985 ParameterCount actual(argc);
1987 // The checks. First, does edi match the recorded monomorphic target?
1988 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1989 FixedArray::kHeaderSize));
1991 // We don't know that we have a weak cell. We might have a private symbol
1992 // or an AllocationSite, but the memory is safe to examine.
1993 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
1995 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
1996 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
1997 // computed, meaning that it can't appear to be a pointer. If the low bit is
1998 // 0, then hash is computed, but the 0 bit prevents the field from appearing
2000 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2001 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2002 WeakCell::kValueOffset &&
2003 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
2005 __ cmp(edi, FieldOperand(ecx, WeakCell::kValueOffset));
2006 __ j(not_equal, &extra_checks_or_miss);
2008 // The compare above could have been a SMI/SMI comparison. Guard against this
2009 // convincing us that we have a monomorphic JSFunction.
2010 __ JumpIfSmi(edi, &extra_checks_or_miss);
2012 __ bind(&have_js_function);
2013 if (CallAsMethod()) {
2014 EmitContinueIfStrictOrNative(masm, &cont);
2016 // Load the receiver from the stack.
2017 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
2019 __ JumpIfSmi(eax, &wrap);
2021 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
2027 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
2030 EmitSlowCase(isolate, masm, argc, &non_function);
2032 if (CallAsMethod()) {
2034 EmitWrapCase(masm, argc, &cont);
2037 __ bind(&extra_checks_or_miss);
2038 Label uninitialized, miss;
2040 __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2041 __ j(equal, &slow_start);
2043 // The following cases attempt to handle MISS cases without going to the
2045 if (FLAG_trace_ic) {
2049 __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
2050 __ j(equal, &uninitialized);
2052 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2053 // to handle it here. More complex cases are dealt with in the runtime.
2054 __ AssertNotSmi(ecx);
2055 __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
2056 __ j(not_equal, &miss);
2058 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
2059 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2060 // We have to update statistics for runtime profiling.
2061 __ sub(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
2062 __ add(FieldOperand(ebx, generic_offset), Immediate(Smi::FromInt(1)));
2063 __ jmp(&slow_start);
2065 __ bind(&uninitialized);
2067 // We are going monomorphic, provided we actually have a JSFunction.
2068 __ JumpIfSmi(edi, &miss);
2070 // Goto miss case if we do not have a function.
2071 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2072 __ j(not_equal, &miss);
2074 // Make sure the function is not the Array() function, which requires special
2075 // behavior on MISS.
2076 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2081 __ add(FieldOperand(ebx, with_types_offset), Immediate(Smi::FromInt(1)));
2083 // Store the function. Use a stub since we need a frame for allocation.
2088 FrameScope scope(masm, StackFrame::INTERNAL);
2089 CreateWeakCellStub create_stub(isolate);
2091 __ CallStub(&create_stub);
2095 __ jmp(&have_js_function);
2097 // We are here because tracing is on or we encountered a MISS case we can't
2103 __ bind(&slow_start);
2105 // Check that the function really is a JavaScript function.
2106 __ JumpIfSmi(edi, &non_function);
2108 // Goto slow case if we do not have a function.
2109 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2110 __ j(not_equal, &slow);
2111 __ jmp(&have_js_function);
2118 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2119 FrameScope scope(masm, StackFrame::INTERNAL);
2121 // Push the receiver and the function and feedback info.
2127 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2128 : IC::kCallIC_Customization_Miss;
2130 ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate());
2131 __ CallExternalReference(miss, 3);
2133 // Move result to edi and exit the internal frame.
2138 bool CEntryStub::NeedsImmovableCode() {
2143 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2144 CEntryStub::GenerateAheadOfTime(isolate);
2145 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
2146 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
2147 // It is important that the store buffer overflow stubs are generated first.
2148 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
2149 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
2150 CreateWeakCellStub::GenerateAheadOfTime(isolate);
2151 BinaryOpICStub::GenerateAheadOfTime(isolate);
2152 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
2153 StoreFastElementStub::GenerateAheadOfTime(isolate);
2154 TypeofStub::GenerateAheadOfTime(isolate);
2158 void CodeStub::GenerateFPStubs(Isolate* isolate) {
2159 CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
2160 // Stubs might already be in the snapshot, detect that and don't regenerate,
2161 // which would lead to code stub initialization state being messed up.
2162 Code* save_doubles_code;
2163 if (!save_doubles.FindCodeInCache(&save_doubles_code)) {
2164 save_doubles_code = *(save_doubles.GetCode());
2166 isolate->set_fp_stubs_generated(true);
2170 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
2171 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
2176 void CEntryStub::Generate(MacroAssembler* masm) {
2177 // eax: number of arguments including receiver
2178 // ebx: pointer to C function (C callee-saved)
2179 // ebp: frame pointer (restored after C call)
2180 // esp: stack pointer (restored after C call)
2181 // esi: current context (C callee-saved)
2182 // edi: JS function of the caller (C callee-saved)
2184 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2186 // Enter the exit frame that transitions from JavaScript to C++.
2187 __ EnterExitFrame(save_doubles());
2189 // ebx: pointer to C function (C callee-saved)
2190 // ebp: frame pointer (restored after C call)
2191 // esp: stack pointer (restored after C call)
2192 // edi: number of arguments including receiver (C callee-saved)
2193 // esi: pointer to the first argument (C callee-saved)
2195 // Result returned in eax, or eax+edx if result size is 2.
2197 // Check stack alignment.
2198 if (FLAG_debug_code) {
2199 __ CheckStackAlignment();
2203 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
2204 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
2205 __ mov(Operand(esp, 2 * kPointerSize),
2206 Immediate(ExternalReference::isolate_address(isolate())));
2208 // Result is in eax or edx:eax - do not destroy these registers!
2210 // Check result for exception sentinel.
2211 Label exception_returned;
2212 __ cmp(eax, isolate()->factory()->exception());
2213 __ j(equal, &exception_returned);
2215 // Check that there is no pending exception, otherwise we
2216 // should have returned the exception sentinel.
2217 if (FLAG_debug_code) {
2219 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2221 ExternalReference pending_exception_address(
2222 Isolate::kPendingExceptionAddress, isolate());
2223 __ cmp(edx, Operand::StaticVariable(pending_exception_address));
2224 // Cannot use check here as it attempts to generate call into runtime.
2225 __ j(equal, &okay, Label::kNear);
2231 // Exit the JavaScript to C++ exit frame.
2232 __ LeaveExitFrame(save_doubles());
2235 // Handling of exception.
2236 __ bind(&exception_returned);
2238 ExternalReference pending_handler_context_address(
2239 Isolate::kPendingHandlerContextAddress, isolate());
2240 ExternalReference pending_handler_code_address(
2241 Isolate::kPendingHandlerCodeAddress, isolate());
2242 ExternalReference pending_handler_offset_address(
2243 Isolate::kPendingHandlerOffsetAddress, isolate());
2244 ExternalReference pending_handler_fp_address(
2245 Isolate::kPendingHandlerFPAddress, isolate());
2246 ExternalReference pending_handler_sp_address(
2247 Isolate::kPendingHandlerSPAddress, isolate());
2249 // Ask the runtime for help to determine the handler. This will set eax to
2250 // contain the current pending exception, don't clobber it.
2251 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
2254 FrameScope scope(masm, StackFrame::MANUAL);
2255 __ PrepareCallCFunction(3, eax);
2256 __ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc.
2257 __ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv.
2258 __ mov(Operand(esp, 2 * kPointerSize),
2259 Immediate(ExternalReference::isolate_address(isolate())));
2260 __ CallCFunction(find_handler, 3);
2263 // Retrieve the handler context, SP and FP.
2264 __ mov(esi, Operand::StaticVariable(pending_handler_context_address));
2265 __ mov(esp, Operand::StaticVariable(pending_handler_sp_address));
2266 __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address));
2268 // If the handler is a JS frame, restore the context to the frame. Note that
2269 // the context will be set to (esi == 0) for non-JS frames.
2272 __ j(zero, &skip, Label::kNear);
2273 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
2276 // Compute the handler entry address and jump to it.
2277 __ mov(edi, Operand::StaticVariable(pending_handler_code_address));
2278 __ mov(edx, Operand::StaticVariable(pending_handler_offset_address));
2279 __ lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
2284 void JSEntryStub::Generate(MacroAssembler* masm) {
2285 Label invoke, handler_entry, exit;
2286 Label not_outermost_js, not_outermost_js_2;
2288 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2294 // Push marker in two places.
2295 int marker = type();
2296 __ push(Immediate(Smi::FromInt(marker))); // context slot
2297 __ push(Immediate(Smi::FromInt(marker))); // function slot
2298 // Save callee-saved registers (C calling conventions).
2303 // Save copies of the top frame descriptor on the stack.
2304 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
2305 __ push(Operand::StaticVariable(c_entry_fp));
2307 // If this is the outermost JS call, set js_entry_sp value.
2308 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
2309 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
2310 __ j(not_equal, ¬_outermost_js, Label::kNear);
2311 __ mov(Operand::StaticVariable(js_entry_sp), ebp);
2312 __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2313 __ jmp(&invoke, Label::kNear);
2314 __ bind(¬_outermost_js);
2315 __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
2317 // Jump to a faked try block that does the invoke, with a faked catch
2318 // block that sets the pending exception.
2320 __ bind(&handler_entry);
2321 handler_offset_ = handler_entry.pos();
2322 // Caught exception: Store result (exception) in the pending exception
2323 // field in the JSEnv and return a failure sentinel.
2324 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
2326 __ mov(Operand::StaticVariable(pending_exception), eax);
2327 __ mov(eax, Immediate(isolate()->factory()->exception()));
2330 // Invoke: Link this frame into the handler chain.
2332 __ PushStackHandler();
2334 // Clear any pending exceptions.
2335 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2336 __ mov(Operand::StaticVariable(pending_exception), edx);
2338 // Fake a receiver (NULL).
2339 __ push(Immediate(0)); // receiver
2341 // Invoke the function by calling through JS entry trampoline builtin and
2342 // pop the faked function when we return. Notice that we cannot store a
2343 // reference to the trampoline code directly in this stub, because the
2344 // builtin stubs may not have been generated yet.
2345 if (type() == StackFrame::ENTRY_CONSTRUCT) {
2346 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2348 __ mov(edx, Immediate(construct_entry));
2350 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
2351 __ mov(edx, Immediate(entry));
2353 __ mov(edx, Operand(edx, 0)); // deref address
2354 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
2357 // Unlink this frame from the handler chain.
2358 __ PopStackHandler();
2361 // Check if the current stack frame is marked as the outermost JS frame.
2363 __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2364 __ j(not_equal, ¬_outermost_js_2);
2365 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
2366 __ bind(¬_outermost_js_2);
2368 // Restore the top frame descriptor from the stack.
2369 __ pop(Operand::StaticVariable(ExternalReference(
2370 Isolate::kCEntryFPAddress, isolate())));
2372 // Restore callee-saved registers (C calling conventions).
2376 __ add(esp, Immediate(2 * kPointerSize)); // remove markers
2378 // Restore frame pointer and return.
2384 // Generate stub code for instanceof.
2385 // This code can patch a call site inlined cache of the instance of check,
2386 // which looks like this.
2388 // 81 ff XX XX XX XX cmp edi, <the hole, patched to a map>
2389 // 75 0a jne <some near label>
2390 // b8 XX XX XX XX mov eax, <the hole, patched to either true or false>
2392 // If call site patching is requested the stack will have the delta from the
2393 // return address to the cmp instruction just below the return address. This
2394 // also means that call site patching can only take place with arguments in
2395 // registers. TOS looks like this when call site patching is requested
2397 // esp[0] : return address
2398 // esp[4] : delta from return address to cmp instruction
2400 void InstanceofStub::Generate(MacroAssembler* masm) {
2401 // Call site inlining and patching implies arguments in registers.
2402 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
2404 // Fixed register usage throughout the stub.
2405 Register object = eax; // Object (lhs).
2406 Register map = ebx; // Map of the object.
2407 Register function = edx; // Function (rhs).
2408 Register prototype = edi; // Prototype of the function.
2409 Register scratch = ecx;
2411 // Constants describing the call site code to patch.
2412 static const int kDeltaToCmpImmediate = 2;
2413 static const int kDeltaToMov = 8;
2414 static const int kDeltaToMovImmediate = 9;
2415 static const int8_t kCmpEdiOperandByte1 = bit_cast<int8_t, uint8_t>(0x3b);
2416 static const int8_t kCmpEdiOperandByte2 = bit_cast<int8_t, uint8_t>(0x3d);
2417 static const int8_t kMovEaxImmediateByte = bit_cast<int8_t, uint8_t>(0xb8);
2419 DCHECK_EQ(object.code(), InstanceofStub::left().code());
2420 DCHECK_EQ(function.code(), InstanceofStub::right().code());
2422 // Get the object and function - they are always both needed.
2423 Label slow, not_js_object;
2424 if (!HasArgsInRegisters()) {
2425 __ mov(object, Operand(esp, 2 * kPointerSize));
2426 __ mov(function, Operand(esp, 1 * kPointerSize));
2429 // Check that the left hand is a JS object.
2430 __ JumpIfSmi(object, ¬_js_object);
2431 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object);
2433 // If there is a call site cache don't look in the global cache, but do the
2434 // real lookup and update the call site cache.
2435 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
2436 // Look up the function and the map in the instanceof cache.
2438 __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2439 __ j(not_equal, &miss, Label::kNear);
2440 __ CompareRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2441 __ j(not_equal, &miss, Label::kNear);
2442 __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex);
2443 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2447 // Get the prototype of the function.
2448 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
2450 // Check that the function prototype is a JS object.
2451 __ JumpIfSmi(prototype, &slow);
2452 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
2454 // Update the global instanceof or call site inlined cache with the current
2455 // map and function. The cached answer will be set when it is known below.
2456 if (!HasCallSiteInlineCheck()) {
2457 __ StoreRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2458 __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2460 // The constants for the code patching are based on no push instructions
2461 // at the call site.
2462 DCHECK(HasArgsInRegisters());
2463 // Get return address and delta to inlined map check.
2464 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2465 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2466 if (FLAG_debug_code) {
2467 __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1);
2468 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp1);
2469 __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2);
2470 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp2);
2472 __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate));
2473 __ mov(Operand(scratch, 0), map);
2475 // Scratch points at the cell payload. Calculate the start of the object.
2476 __ sub(scratch, Immediate(Cell::kValueOffset - 1));
2477 __ RecordWriteField(scratch, Cell::kValueOffset, map, function,
2478 kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2482 // Loop through the prototype chain of the object looking for the function
2484 __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
2485 Label loop, is_instance, is_not_instance;
2487 __ cmp(scratch, prototype);
2488 __ j(equal, &is_instance, Label::kNear);
2489 Factory* factory = isolate()->factory();
2490 __ cmp(scratch, Immediate(factory->null_value()));
2491 __ j(equal, &is_not_instance, Label::kNear);
2492 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
2493 __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
2496 __ bind(&is_instance);
2497 if (!HasCallSiteInlineCheck()) {
2498 __ mov(eax, Immediate(0));
2499 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2500 if (ReturnTrueFalseObject()) {
2501 __ mov(eax, factory->true_value());
2504 // Get return address and delta to inlined map check.
2505 __ mov(eax, factory->true_value());
2506 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2507 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2508 if (FLAG_debug_code) {
2509 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2510 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2512 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2513 if (!ReturnTrueFalseObject()) {
2514 __ Move(eax, Immediate(0));
2517 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2519 __ bind(&is_not_instance);
2520 if (!HasCallSiteInlineCheck()) {
2521 __ mov(eax, Immediate(Smi::FromInt(1)));
2522 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2523 if (ReturnTrueFalseObject()) {
2524 __ mov(eax, factory->false_value());
2527 // Get return address and delta to inlined map check.
2528 __ mov(eax, factory->false_value());
2529 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2530 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2531 if (FLAG_debug_code) {
2532 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2533 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2535 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2536 if (!ReturnTrueFalseObject()) {
2537 __ Move(eax, Immediate(Smi::FromInt(1)));
2540 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2542 Label object_not_null, object_not_null_or_smi;
2543 __ bind(¬_js_object);
2544 // Before null, smi and string value checks, check that the rhs is a function
2545 // as for a non-function rhs an exception needs to be thrown.
2546 __ JumpIfSmi(function, &slow, Label::kNear);
2547 __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
2548 __ j(not_equal, &slow, Label::kNear);
2550 // Null is not instance of anything.
2551 __ cmp(object, factory->null_value());
2552 __ j(not_equal, &object_not_null, Label::kNear);
2553 if (ReturnTrueFalseObject()) {
2554 __ mov(eax, factory->false_value());
2556 __ Move(eax, Immediate(Smi::FromInt(1)));
2558 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2560 __ bind(&object_not_null);
2561 // Smi values is not instance of anything.
2562 __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear);
2563 if (ReturnTrueFalseObject()) {
2564 __ mov(eax, factory->false_value());
2566 __ Move(eax, Immediate(Smi::FromInt(1)));
2568 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2570 __ bind(&object_not_null_or_smi);
2571 // String values is not instance of anything.
2572 Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
2573 __ j(NegateCondition(is_string), &slow, Label::kNear);
2574 if (ReturnTrueFalseObject()) {
2575 __ mov(eax, factory->false_value());
2577 __ Move(eax, Immediate(Smi::FromInt(1)));
2579 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2581 // Slow-case: Go through the JavaScript implementation.
2583 if (!ReturnTrueFalseObject()) {
2584 // Tail call the builtin which returns 0 or 1.
2585 if (HasArgsInRegisters()) {
2586 // Push arguments below return address.
2592 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
2594 // Call the builtin and convert 0/1 to true/false.
2596 FrameScope scope(masm, StackFrame::INTERNAL);
2599 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
2601 Label true_value, done;
2603 __ j(zero, &true_value, Label::kNear);
2604 __ mov(eax, factory->false_value());
2605 __ jmp(&done, Label::kNear);
2606 __ bind(&true_value);
2607 __ mov(eax, factory->true_value());
2609 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2614 // -------------------------------------------------------------------------
2615 // StringCharCodeAtGenerator
2617 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2618 // If the receiver is a smi trigger the non-string case.
2619 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2620 __ JumpIfSmi(object_, receiver_not_string_);
2622 // Fetch the instance type of the receiver into result register.
2623 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2624 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2625 // If the receiver is not a string trigger the non-string case.
2626 __ test(result_, Immediate(kIsNotStringMask));
2627 __ j(not_zero, receiver_not_string_);
2630 // If the index is non-smi trigger the non-smi case.
2631 __ JumpIfNotSmi(index_, &index_not_smi_);
2632 __ bind(&got_smi_index_);
2634 // Check for index out of range.
2635 __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
2636 __ j(above_equal, index_out_of_range_);
2638 __ SmiUntag(index_);
2640 Factory* factory = masm->isolate()->factory();
2641 StringCharLoadGenerator::Generate(
2642 masm, factory, object_, index_, result_, &call_runtime_);
2649 void StringCharCodeAtGenerator::GenerateSlow(
2650 MacroAssembler* masm, EmbedMode embed_mode,
2651 const RuntimeCallHelper& call_helper) {
2652 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2654 // Index is not a smi.
2655 __ bind(&index_not_smi_);
2656 // If index is a heap number, try converting it to an integer.
2658 masm->isolate()->factory()->heap_number_map(),
2661 call_helper.BeforeCall(masm);
2662 if (embed_mode == PART_OF_IC_HANDLER) {
2663 __ push(LoadWithVectorDescriptor::VectorRegister());
2664 __ push(LoadDescriptor::SlotRegister());
2667 __ push(index_); // Consumed by runtime conversion function.
2668 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2669 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2671 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2672 // NumberToSmi discards numbers that are not exact integers.
2673 __ CallRuntime(Runtime::kNumberToSmi, 1);
2675 if (!index_.is(eax)) {
2676 // Save the conversion result before the pop instructions below
2677 // have a chance to overwrite it.
2678 __ mov(index_, eax);
2681 if (embed_mode == PART_OF_IC_HANDLER) {
2682 __ pop(LoadDescriptor::SlotRegister());
2683 __ pop(LoadWithVectorDescriptor::VectorRegister());
2685 // Reload the instance type.
2686 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2687 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2688 call_helper.AfterCall(masm);
2689 // If index is still not a smi, it must be out of range.
2690 STATIC_ASSERT(kSmiTag == 0);
2691 __ JumpIfNotSmi(index_, index_out_of_range_);
2692 // Otherwise, return to the fast path.
2693 __ jmp(&got_smi_index_);
2695 // Call runtime. We get here when the receiver is a string and the
2696 // index is a number, but the code of getting the actual character
2697 // is too complex (e.g., when the string needs to be flattened).
2698 __ bind(&call_runtime_);
2699 call_helper.BeforeCall(masm);
2703 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
2704 if (!result_.is(eax)) {
2705 __ mov(result_, eax);
2707 call_helper.AfterCall(masm);
2710 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2714 // -------------------------------------------------------------------------
2715 // StringCharFromCodeGenerator
2717 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2718 // Fast case of Heap::LookupSingleCharacterStringFromCode.
2719 STATIC_ASSERT(kSmiTag == 0);
2720 STATIC_ASSERT(kSmiShiftSize == 0);
2721 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
2723 Immediate(kSmiTagMask |
2724 ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
2725 __ j(not_zero, &slow_case_);
2727 Factory* factory = masm->isolate()->factory();
2728 __ Move(result_, Immediate(factory->single_character_string_cache()));
2729 STATIC_ASSERT(kSmiTag == 0);
2730 STATIC_ASSERT(kSmiTagSize == 1);
2731 STATIC_ASSERT(kSmiShiftSize == 0);
2732 // At this point code register contains smi tagged one byte char code.
2733 __ mov(result_, FieldOperand(result_,
2734 code_, times_half_pointer_size,
2735 FixedArray::kHeaderSize));
2736 __ cmp(result_, factory->undefined_value());
2737 __ j(equal, &slow_case_);
2742 void StringCharFromCodeGenerator::GenerateSlow(
2743 MacroAssembler* masm,
2744 const RuntimeCallHelper& call_helper) {
2745 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2747 __ bind(&slow_case_);
2748 call_helper.BeforeCall(masm);
2750 __ CallRuntime(Runtime::kCharFromCode, 1);
2751 if (!result_.is(eax)) {
2752 __ mov(result_, eax);
2754 call_helper.AfterCall(masm);
2757 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2761 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
2766 String::Encoding encoding) {
2767 DCHECK(!scratch.is(dest));
2768 DCHECK(!scratch.is(src));
2769 DCHECK(!scratch.is(count));
2771 // Nothing to do for zero characters.
2773 __ test(count, count);
2776 // Make count the number of bytes to copy.
2777 if (encoding == String::TWO_BYTE_ENCODING) {
2783 __ mov_b(scratch, Operand(src, 0));
2784 __ mov_b(Operand(dest, 0), scratch);
2788 __ j(not_zero, &loop);
2794 void SubStringStub::Generate(MacroAssembler* masm) {
2797 // Stack frame on entry.
2798 // esp[0]: return address
2803 // Make sure first argument is a string.
2804 __ mov(eax, Operand(esp, 3 * kPointerSize));
2805 STATIC_ASSERT(kSmiTag == 0);
2806 __ JumpIfSmi(eax, &runtime);
2807 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
2808 __ j(NegateCondition(is_string), &runtime);
2811 // ebx: instance type
2813 // Calculate length of sub string using the smi values.
2814 __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
2815 __ JumpIfNotSmi(ecx, &runtime);
2816 __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
2817 __ JumpIfNotSmi(edx, &runtime);
2819 __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
2820 Label not_original_string;
2821 // Shorter than original string's length: an actual substring.
2822 __ j(below, ¬_original_string, Label::kNear);
2823 // Longer than original string's length or negative: unsafe arguments.
2824 __ j(above, &runtime);
2825 // Return original string.
2826 Counters* counters = isolate()->counters();
2827 __ IncrementCounter(counters->sub_string_native(), 1);
2828 __ ret(3 * kPointerSize);
2829 __ bind(¬_original_string);
2832 __ cmp(ecx, Immediate(Smi::FromInt(1)));
2833 __ j(equal, &single_char);
2836 // ebx: instance type
2837 // ecx: sub string length (smi)
2838 // edx: from index (smi)
2839 // Deal with different string types: update the index if necessary
2840 // and put the underlying string into edi.
2841 Label underlying_unpacked, sliced_string, seq_or_external_string;
2842 // If the string is not indirect, it can only be sequential or external.
2843 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
2844 STATIC_ASSERT(kIsIndirectStringMask != 0);
2845 __ test(ebx, Immediate(kIsIndirectStringMask));
2846 __ j(zero, &seq_or_external_string, Label::kNear);
2848 Factory* factory = isolate()->factory();
2849 __ test(ebx, Immediate(kSlicedNotConsMask));
2850 __ j(not_zero, &sliced_string, Label::kNear);
2851 // Cons string. Check whether it is flat, then fetch first part.
2852 // Flat cons strings have an empty second part.
2853 __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
2854 factory->empty_string());
2855 __ j(not_equal, &runtime);
2856 __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
2857 // Update instance type.
2858 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
2859 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
2860 __ jmp(&underlying_unpacked, Label::kNear);
2862 __ bind(&sliced_string);
2863 // Sliced string. Fetch parent and adjust start index by offset.
2864 __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
2865 __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
2866 // Update instance type.
2867 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
2868 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
2869 __ jmp(&underlying_unpacked, Label::kNear);
2871 __ bind(&seq_or_external_string);
2872 // Sequential or external string. Just move string to the expected register.
2875 __ bind(&underlying_unpacked);
2877 if (FLAG_string_slices) {
2879 // edi: underlying subject string
2880 // ebx: instance type of underlying subject string
2881 // edx: adjusted start index (smi)
2882 // ecx: length (smi)
2883 __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
2884 // Short slice. Copy instead of slicing.
2885 __ j(less, ©_routine);
2886 // Allocate new sliced string. At this point we do not reload the instance
2887 // type including the string encoding because we simply rely on the info
2888 // provided by the original string. It does not matter if the original
2889 // string's encoding is wrong because we always have to recheck encoding of
2890 // the newly created string's parent anyways due to externalized strings.
2891 Label two_byte_slice, set_slice_header;
2892 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
2893 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
2894 __ test(ebx, Immediate(kStringEncodingMask));
2895 __ j(zero, &two_byte_slice, Label::kNear);
2896 __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime);
2897 __ jmp(&set_slice_header, Label::kNear);
2898 __ bind(&two_byte_slice);
2899 __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
2900 __ bind(&set_slice_header);
2901 __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
2902 __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
2903 Immediate(String::kEmptyHashField));
2904 __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
2905 __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
2906 __ IncrementCounter(counters->sub_string_native(), 1);
2907 __ ret(3 * kPointerSize);
2909 __ bind(©_routine);
2912 // edi: underlying subject string
2913 // ebx: instance type of underlying subject string
2914 // edx: adjusted start index (smi)
2915 // ecx: length (smi)
2916 // The subject string can only be external or sequential string of either
2917 // encoding at this point.
2918 Label two_byte_sequential, runtime_drop_two, sequential_string;
2919 STATIC_ASSERT(kExternalStringTag != 0);
2920 STATIC_ASSERT(kSeqStringTag == 0);
2921 __ test_b(ebx, kExternalStringTag);
2922 __ j(zero, &sequential_string);
2924 // Handle external string.
2925 // Rule out short external strings.
2926 STATIC_ASSERT(kShortExternalStringTag != 0);
2927 __ test_b(ebx, kShortExternalStringMask);
2928 __ j(not_zero, &runtime);
2929 __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
2930 // Move the pointer so that offset-wise, it looks like a sequential string.
2931 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2932 __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2934 __ bind(&sequential_string);
2935 // Stash away (adjusted) index and (underlying) string.
2939 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
2940 __ test_b(ebx, kStringEncodingMask);
2941 __ j(zero, &two_byte_sequential);
2943 // Sequential one byte string. Allocate the result.
2944 __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
2946 // eax: result string
2947 // ecx: result string length
2948 // Locate first character of result.
2950 __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2951 // Load string argument and locate character of sub string start.
2955 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
2957 // eax: result string
2958 // ecx: result length
2959 // edi: first character of result
2960 // edx: character of sub string start
2961 StringHelper::GenerateCopyCharacters(
2962 masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
2963 __ IncrementCounter(counters->sub_string_native(), 1);
2964 __ ret(3 * kPointerSize);
2966 __ bind(&two_byte_sequential);
2967 // Sequential two-byte string. Allocate the result.
2968 __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
2970 // eax: result string
2971 // ecx: result string length
2972 // Locate first character of result.
2975 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2976 // Load string argument and locate character of sub string start.
2979 // As from is a smi it is 2 times the value which matches the size of a two
2981 STATIC_ASSERT(kSmiTag == 0);
2982 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2983 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
2985 // eax: result string
2986 // ecx: result length
2987 // edi: first character of result
2988 // edx: character of sub string start
2989 StringHelper::GenerateCopyCharacters(
2990 masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
2991 __ IncrementCounter(counters->sub_string_native(), 1);
2992 __ ret(3 * kPointerSize);
2994 // Drop pushed values on the stack before tail call.
2995 __ bind(&runtime_drop_two);
2998 // Just jump to runtime to create the sub string.
3000 __ TailCallRuntime(Runtime::kSubStringRT, 3, 1);
3002 __ bind(&single_char);
3004 // ebx: instance type
3005 // ecx: sub string length (smi)
3006 // edx: from index (smi)
3007 StringCharAtGenerator generator(eax, edx, ecx, eax, &runtime, &runtime,
3008 &runtime, STRING_INDEX_IS_NUMBER,
3009 RECEIVER_IS_STRING);
3010 generator.GenerateFast(masm);
3011 __ ret(3 * kPointerSize);
3012 generator.SkipSlow(masm, &runtime);
3016 void ToNumberStub::Generate(MacroAssembler* masm) {
3017 // The ToNumber stub takes one argument in eax.
3019 __ JumpIfNotSmi(eax, ¬_smi, Label::kNear);
3023 Label not_heap_number;
3024 __ CompareMap(eax, masm->isolate()->factory()->heap_number_map());
3025 __ j(not_equal, ¬_heap_number, Label::kNear);
3027 __ bind(¬_heap_number);
3029 Label not_string, slow_string;
3030 __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edi);
3033 __ j(above_equal, ¬_string, Label::kNear);
3034 // Check if string has a cached array index.
3035 __ test(FieldOperand(eax, String::kHashFieldOffset),
3036 Immediate(String::kContainsCachedArrayIndexMask));
3037 __ j(not_zero, &slow_string, Label::kNear);
3038 __ mov(eax, FieldOperand(eax, String::kHashFieldOffset));
3039 __ IndexFromHash(eax, eax);
3041 __ bind(&slow_string);
3042 __ pop(ecx); // Pop return address.
3043 __ push(eax); // Push argument.
3044 __ push(ecx); // Push return address.
3045 __ TailCallRuntime(Runtime::kStringToNumber, 1, 1);
3046 __ bind(¬_string);
3049 __ CmpInstanceType(edi, ODDBALL_TYPE);
3050 __ j(not_equal, ¬_oddball, Label::kNear);
3051 __ mov(eax, FieldOperand(eax, Oddball::kToNumberOffset));
3053 __ bind(¬_oddball);
3055 __ pop(ecx); // Pop return address.
3056 __ push(eax); // Push argument.
3057 __ push(ecx); // Push return address.
3058 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
3062 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
3066 Register scratch2) {
3067 Register length = scratch1;
3070 Label strings_not_equal, check_zero_length;
3071 __ mov(length, FieldOperand(left, String::kLengthOffset));
3072 __ cmp(length, FieldOperand(right, String::kLengthOffset));
3073 __ j(equal, &check_zero_length, Label::kNear);
3074 __ bind(&strings_not_equal);
3075 __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
3078 // Check if the length is zero.
3079 Label compare_chars;
3080 __ bind(&check_zero_length);
3081 STATIC_ASSERT(kSmiTag == 0);
3082 __ test(length, length);
3083 __ j(not_zero, &compare_chars, Label::kNear);
3084 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3087 // Compare characters.
3088 __ bind(&compare_chars);
3089 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
3090 &strings_not_equal, Label::kNear);
3092 // Characters are equal.
3093 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3098 void StringHelper::GenerateCompareFlatOneByteStrings(
3099 MacroAssembler* masm, Register left, Register right, Register scratch1,
3100 Register scratch2, Register scratch3) {
3101 Counters* counters = masm->isolate()->counters();
3102 __ IncrementCounter(counters->string_compare_native(), 1);
3104 // Find minimum length.
3106 __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
3107 __ mov(scratch3, scratch1);
3108 __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
3110 Register length_delta = scratch3;
3112 __ j(less_equal, &left_shorter, Label::kNear);
3113 // Right string is shorter. Change scratch1 to be length of right string.
3114 __ sub(scratch1, length_delta);
3115 __ bind(&left_shorter);
3117 Register min_length = scratch1;
3119 // If either length is zero, just compare lengths.
3120 Label compare_lengths;
3121 __ test(min_length, min_length);
3122 __ j(zero, &compare_lengths, Label::kNear);
3124 // Compare characters.
3125 Label result_not_equal;
3126 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3127 &result_not_equal, Label::kNear);
3129 // Compare lengths - strings up to min-length are equal.
3130 __ bind(&compare_lengths);
3131 __ test(length_delta, length_delta);
3132 Label length_not_equal;
3133 __ j(not_zero, &length_not_equal, Label::kNear);
3136 STATIC_ASSERT(EQUAL == 0);
3137 STATIC_ASSERT(kSmiTag == 0);
3138 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3141 Label result_greater;
3143 __ bind(&length_not_equal);
3144 __ j(greater, &result_greater, Label::kNear);
3145 __ jmp(&result_less, Label::kNear);
3146 __ bind(&result_not_equal);
3147 __ j(above, &result_greater, Label::kNear);
3148 __ bind(&result_less);
3151 __ Move(eax, Immediate(Smi::FromInt(LESS)));
3154 // Result is GREATER.
3155 __ bind(&result_greater);
3156 __ Move(eax, Immediate(Smi::FromInt(GREATER)));
3161 void StringHelper::GenerateOneByteCharsCompareLoop(
3162 MacroAssembler* masm, Register left, Register right, Register length,
3163 Register scratch, Label* chars_not_equal,
3164 Label::Distance chars_not_equal_near) {
3165 // Change index to run from -length to -1 by adding length to string
3166 // start. This means that loop ends when index reaches zero, which
3167 // doesn't need an additional compare.
3168 __ SmiUntag(length);
3170 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
3172 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
3174 Register index = length; // index = -length;
3179 __ mov_b(scratch, Operand(left, index, times_1, 0));
3180 __ cmpb(scratch, Operand(right, index, times_1, 0));
3181 __ j(not_equal, chars_not_equal, chars_not_equal_near);
3183 __ j(not_zero, &loop);
3187 void StringCompareStub::Generate(MacroAssembler* masm) {
3190 // Stack frame on entry.
3191 // esp[0]: return address
3192 // esp[4]: right string
3193 // esp[8]: left string
3195 __ mov(edx, Operand(esp, 2 * kPointerSize)); // left
3196 __ mov(eax, Operand(esp, 1 * kPointerSize)); // right
3200 __ j(not_equal, ¬_same, Label::kNear);
3201 STATIC_ASSERT(EQUAL == 0);
3202 STATIC_ASSERT(kSmiTag == 0);
3203 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3204 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
3205 __ ret(2 * kPointerSize);
3209 // Check that both objects are sequential one-byte strings.
3210 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &runtime);
3212 // Compare flat one-byte strings.
3213 // Drop arguments from the stack.
3215 __ add(esp, Immediate(2 * kPointerSize));
3217 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
3220 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3221 // tagged as a small integer.
3223 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
3227 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3228 // ----------- S t a t e -------------
3231 // -- esp[0] : return address
3232 // -----------------------------------
3234 // Load ecx with the allocation site. We stick an undefined dummy value here
3235 // and replace it with the real allocation site later when we instantiate this
3236 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3237 __ mov(ecx, handle(isolate()->heap()->undefined_value()));
3239 // Make sure that we actually patched the allocation site.
3240 if (FLAG_debug_code) {
3241 __ test(ecx, Immediate(kSmiTagMask));
3242 __ Assert(not_equal, kExpectedAllocationSite);
3243 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
3244 isolate()->factory()->allocation_site_map());
3245 __ Assert(equal, kExpectedAllocationSite);
3248 // Tail call into the stub that handles binary operations with allocation
3250 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3251 __ TailCallStub(&stub);
3255 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3256 DCHECK(state() == CompareICState::SMI);
3260 __ JumpIfNotSmi(ecx, &miss, Label::kNear);
3262 if (GetCondition() == equal) {
3263 // For equality we do not care about the sign of the result.
3268 __ j(no_overflow, &done, Label::kNear);
3269 // Correct sign of result in case of overflow.
3281 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3282 DCHECK(state() == CompareICState::NUMBER);
3284 Label generic_stub, check_left;
3285 Label unordered, maybe_undefined1, maybe_undefined2;
3288 if (left() == CompareICState::SMI) {
3289 __ JumpIfNotSmi(edx, &miss);
3291 if (right() == CompareICState::SMI) {
3292 __ JumpIfNotSmi(eax, &miss);
3295 // Inlining the double comparison and falling back to the general compare
3296 // stub if NaN is involved or SSE2 or CMOV is unsupported.
3297 __ JumpIfSmi(eax, &check_left, Label::kNear);
3298 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
3299 isolate()->factory()->heap_number_map());
3300 __ j(not_equal, &maybe_undefined1, Label::kNear);
3302 __ bind(&check_left);
3303 __ JumpIfSmi(edx, &generic_stub, Label::kNear);
3304 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
3305 isolate()->factory()->heap_number_map());
3306 __ j(not_equal, &maybe_undefined2, Label::kNear);
3308 __ bind(&unordered);
3309 __ bind(&generic_stub);
3310 CompareICStub stub(isolate(), op(), strong(), CompareICState::GENERIC,
3311 CompareICState::GENERIC, CompareICState::GENERIC);
3312 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3314 __ bind(&maybe_undefined1);
3315 if (Token::IsOrderedRelationalCompareOp(op())) {
3316 __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
3317 __ j(not_equal, &miss);
3318 __ JumpIfSmi(edx, &unordered);
3319 __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
3320 __ j(not_equal, &maybe_undefined2, Label::kNear);
3324 __ bind(&maybe_undefined2);
3325 if (Token::IsOrderedRelationalCompareOp(op())) {
3326 __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
3327 __ j(equal, &unordered);
3335 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3336 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3337 DCHECK(GetCondition() == equal);
3339 // Registers containing left and right operands respectively.
3340 Register left = edx;
3341 Register right = eax;
3342 Register tmp1 = ecx;
3343 Register tmp2 = ebx;
3345 // Check that both operands are heap objects.
3348 STATIC_ASSERT(kSmiTag == 0);
3349 __ and_(tmp1, right);
3350 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3352 // Check that both operands are internalized strings.
3353 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3354 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3355 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3356 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3357 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3359 __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3360 __ j(not_zero, &miss, Label::kNear);
3362 // Internalized strings are compared by identity.
3364 __ cmp(left, right);
3365 // Make sure eax is non-zero. At this point input operands are
3366 // guaranteed to be non-zero.
3367 DCHECK(right.is(eax));
3368 __ j(not_equal, &done, Label::kNear);
3369 STATIC_ASSERT(EQUAL == 0);
3370 STATIC_ASSERT(kSmiTag == 0);
3371 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3380 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3381 DCHECK(state() == CompareICState::UNIQUE_NAME);
3382 DCHECK(GetCondition() == equal);
3384 // Registers containing left and right operands respectively.
3385 Register left = edx;
3386 Register right = eax;
3387 Register tmp1 = ecx;
3388 Register tmp2 = ebx;
3390 // Check that both operands are heap objects.
3393 STATIC_ASSERT(kSmiTag == 0);
3394 __ and_(tmp1, right);
3395 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3397 // Check that both operands are unique names. This leaves the instance
3398 // types loaded in tmp1 and tmp2.
3399 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3400 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3401 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3402 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3404 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
3405 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
3407 // Unique names are compared by identity.
3409 __ cmp(left, right);
3410 // Make sure eax is non-zero. At this point input operands are
3411 // guaranteed to be non-zero.
3412 DCHECK(right.is(eax));
3413 __ j(not_equal, &done, Label::kNear);
3414 STATIC_ASSERT(EQUAL == 0);
3415 STATIC_ASSERT(kSmiTag == 0);
3416 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3425 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3426 DCHECK(state() == CompareICState::STRING);
3429 bool equality = Token::IsEqualityOp(op());
3431 // Registers containing left and right operands respectively.
3432 Register left = edx;
3433 Register right = eax;
3434 Register tmp1 = ecx;
3435 Register tmp2 = ebx;
3436 Register tmp3 = edi;
3438 // Check that both operands are heap objects.
3440 STATIC_ASSERT(kSmiTag == 0);
3441 __ and_(tmp1, right);
3442 __ JumpIfSmi(tmp1, &miss);
3444 // Check that both operands are strings. This leaves the instance
3445 // types loaded in tmp1 and tmp2.
3446 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3447 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3448 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3449 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3451 STATIC_ASSERT(kNotStringTag != 0);
3453 __ test(tmp3, Immediate(kIsNotStringMask));
3454 __ j(not_zero, &miss);
3456 // Fast check for identical strings.
3458 __ cmp(left, right);
3459 __ j(not_equal, ¬_same, Label::kNear);
3460 STATIC_ASSERT(EQUAL == 0);
3461 STATIC_ASSERT(kSmiTag == 0);
3462 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3465 // Handle not identical strings.
3468 // Check that both strings are internalized. If they are, we're done
3469 // because we already know they are not identical. But in the case of
3470 // non-equality compare, we still need to determine the order. We
3471 // also know they are both strings.
3474 STATIC_ASSERT(kInternalizedTag == 0);
3476 __ test(tmp1, Immediate(kIsNotInternalizedMask));
3477 __ j(not_zero, &do_compare, Label::kNear);
3478 // Make sure eax is non-zero. At this point input operands are
3479 // guaranteed to be non-zero.
3480 DCHECK(right.is(eax));
3482 __ bind(&do_compare);
3485 // Check that both strings are sequential one-byte.
3487 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
3489 // Compare flat one byte strings. Returns when done.
3491 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3494 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3498 // Handle more complex cases in runtime.
3500 __ pop(tmp1); // Return address.
3505 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3507 __ TailCallRuntime(Runtime::kStringCompareRT, 2, 1);
3515 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3516 DCHECK(state() == CompareICState::OBJECT);
3520 __ JumpIfSmi(ecx, &miss, Label::kNear);
3522 __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
3523 __ j(not_equal, &miss, Label::kNear);
3524 __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
3525 __ j(not_equal, &miss, Label::kNear);
3527 DCHECK(GetCondition() == equal);
3536 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3538 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
3541 __ JumpIfSmi(ecx, &miss, Label::kNear);
3543 __ GetWeakValue(edi, cell);
3544 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
3545 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
3547 __ j(not_equal, &miss, Label::kNear);
3549 __ j(not_equal, &miss, Label::kNear);
3559 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3561 // Call the runtime system in a fresh internal frame.
3562 ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
3564 FrameScope scope(masm, StackFrame::INTERNAL);
3565 __ push(edx); // Preserve edx and eax.
3567 __ push(edx); // And also use them as the arguments.
3569 __ push(Immediate(Smi::FromInt(op())));
3570 __ CallExternalReference(miss, 3);
3571 // Compute the entry point of the rewritten stub.
3572 __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
3577 // Do a tail call to the rewritten stub.
3582 // Helper function used to check that the dictionary doesn't contain
3583 // the property. This function may return false negatives, so miss_label
3584 // must always call a backup property check that is complete.
3585 // This function is safe to call if the receiver has fast properties.
3586 // Name must be a unique name and receiver must be a heap object.
3587 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3590 Register properties,
3593 DCHECK(name->IsUniqueName());
3595 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3596 // not equal to the name and kProbes-th slot is not used (its name is the
3597 // undefined value), it guarantees the hash table doesn't contain the
3598 // property. It's true even if some slots represent deleted properties
3599 // (their names are the hole value).
3600 for (int i = 0; i < kInlinedProbes; i++) {
3601 // Compute the masked index: (hash + i + i * i) & mask.
3602 Register index = r0;
3603 // Capacity is smi 2^n.
3604 __ mov(index, FieldOperand(properties, kCapacityOffset));
3607 Immediate(Smi::FromInt(name->Hash() +
3608 NameDictionary::GetProbeOffset(i))));
3610 // Scale the index by multiplying by the entry size.
3611 DCHECK(NameDictionary::kEntrySize == 3);
3612 __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
3613 Register entity_name = r0;
3614 // Having undefined at this place means the name is not contained.
3615 DCHECK_EQ(kSmiTagSize, 1);
3616 __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
3617 kElementsStartOffset - kHeapObjectTag));
3618 __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
3621 // Stop if found the property.
3622 __ cmp(entity_name, Handle<Name>(name));
3626 // Check for the hole and skip.
3627 __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
3628 __ j(equal, &good, Label::kNear);
3630 // Check if the entry name is not a unique name.
3631 __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
3632 __ JumpIfNotUniqueNameInstanceType(
3633 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
3637 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
3639 __ push(Immediate(Handle<Object>(name)));
3640 __ push(Immediate(name->Hash()));
3643 __ j(not_zero, miss);
3648 // Probe the name dictionary in the |elements| register. Jump to the
3649 // |done| label if a property with the given name is found leaving the
3650 // index into the dictionary in |r0|. Jump to the |miss| label
3652 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3659 DCHECK(!elements.is(r0));
3660 DCHECK(!elements.is(r1));
3661 DCHECK(!name.is(r0));
3662 DCHECK(!name.is(r1));
3664 __ AssertName(name);
3666 __ mov(r1, FieldOperand(elements, kCapacityOffset));
3667 __ shr(r1, kSmiTagSize); // convert smi to int
3670 // Generate an unrolled loop that performs a few probes before
3671 // giving up. Measurements done on Gmail indicate that 2 probes
3672 // cover ~93% of loads from dictionaries.
3673 for (int i = 0; i < kInlinedProbes; i++) {
3674 // Compute the masked index: (hash + i + i * i) & mask.
3675 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
3676 __ shr(r0, Name::kHashShift);
3678 __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
3682 // Scale the index by multiplying by the entry size.
3683 DCHECK(NameDictionary::kEntrySize == 3);
3684 __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
3686 // Check if the key is identical to the name.
3687 __ cmp(name, Operand(elements,
3690 kElementsStartOffset - kHeapObjectTag));
3694 NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
3697 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
3698 __ shr(r0, Name::kHashShift);
3708 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3709 // This stub overrides SometimesSetsUpAFrame() to return false. That means
3710 // we cannot call anything that could cause a GC from this stub.
3711 // Stack frame on entry:
3712 // esp[0 * kPointerSize]: return address.
3713 // esp[1 * kPointerSize]: key's hash.
3714 // esp[2 * kPointerSize]: key.
3716 // dictionary_: NameDictionary to probe.
3717 // result_: used as scratch.
3718 // index_: will hold an index of entry if lookup is successful.
3719 // might alias with result_.
3721 // result_ is zero if lookup failed, non zero otherwise.
3723 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3725 Register scratch = result();
3727 __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
3729 __ SmiUntag(scratch);
3732 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3733 // not equal to the name and kProbes-th slot is not used (its name is the
3734 // undefined value), it guarantees the hash table doesn't contain the
3735 // property. It's true even if some slots represent deleted properties
3736 // (their names are the null value).
3737 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3738 // Compute the masked index: (hash + i + i * i) & mask.
3739 __ mov(scratch, Operand(esp, 2 * kPointerSize));
3741 __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
3743 __ and_(scratch, Operand(esp, 0));
3745 // Scale the index by multiplying by the entry size.
3746 DCHECK(NameDictionary::kEntrySize == 3);
3747 __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
3749 // Having undefined at this place means the name is not contained.
3750 DCHECK_EQ(kSmiTagSize, 1);
3751 __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
3752 kElementsStartOffset - kHeapObjectTag));
3753 __ cmp(scratch, isolate()->factory()->undefined_value());
3754 __ j(equal, ¬_in_dictionary);
3756 // Stop if found the property.
3757 __ cmp(scratch, Operand(esp, 3 * kPointerSize));
3758 __ j(equal, &in_dictionary);
3760 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3761 // If we hit a key that is not a unique name during negative
3762 // lookup we have to bailout as this key might be equal to the
3763 // key we are looking for.
3765 // Check if the entry name is not a unique name.
3766 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
3767 __ JumpIfNotUniqueNameInstanceType(
3768 FieldOperand(scratch, Map::kInstanceTypeOffset),
3769 &maybe_in_dictionary);
3773 __ bind(&maybe_in_dictionary);
3774 // If we are doing negative lookup then probing failure should be
3775 // treated as a lookup success. For positive lookup probing failure
3776 // should be treated as lookup failure.
3777 if (mode() == POSITIVE_LOOKUP) {
3778 __ mov(result(), Immediate(0));
3780 __ ret(2 * kPointerSize);
3783 __ bind(&in_dictionary);
3784 __ mov(result(), Immediate(1));
3786 __ ret(2 * kPointerSize);
3788 __ bind(¬_in_dictionary);
3789 __ mov(result(), Immediate(0));
3791 __ ret(2 * kPointerSize);
3795 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3797 StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
3799 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
3804 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
3805 // the value has just been written into the object, now this stub makes sure
3806 // we keep the GC informed. The word in the object where the value has been
3807 // written is in the address register.
3808 void RecordWriteStub::Generate(MacroAssembler* masm) {
3809 Label skip_to_incremental_noncompacting;
3810 Label skip_to_incremental_compacting;
3812 // The first two instructions are generated with labels so as to get the
3813 // offset fixed up correctly by the bind(Label*) call. We patch it back and
3814 // forth between a compare instructions (a nop in this position) and the
3815 // real branch when we start and stop incremental heap marking.
3816 __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
3817 __ jmp(&skip_to_incremental_compacting, Label::kFar);
3819 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3820 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3821 MacroAssembler::kReturnAtEnd);
3826 __ bind(&skip_to_incremental_noncompacting);
3827 GenerateIncremental(masm, INCREMENTAL);
3829 __ bind(&skip_to_incremental_compacting);
3830 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3832 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3833 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3834 masm->set_byte_at(0, kTwoByteNopInstruction);
3835 masm->set_byte_at(2, kFiveByteNopInstruction);
3839 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3842 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3843 Label dont_need_remembered_set;
3845 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
3846 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
3848 &dont_need_remembered_set);
3850 __ CheckPageFlag(regs_.object(),
3852 1 << MemoryChunk::SCAN_ON_SCAVENGE,
3854 &dont_need_remembered_set);
3856 // First notify the incremental marker if necessary, then update the
3858 CheckNeedsToInformIncrementalMarker(
3860 kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
3862 InformIncrementalMarker(masm);
3863 regs_.Restore(masm);
3864 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3865 MacroAssembler::kReturnAtEnd);
3867 __ bind(&dont_need_remembered_set);
3870 CheckNeedsToInformIncrementalMarker(
3872 kReturnOnNoNeedToInformIncrementalMarker,
3874 InformIncrementalMarker(masm);
3875 regs_.Restore(masm);
3880 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3881 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3882 int argument_count = 3;
3883 __ PrepareCallCFunction(argument_count, regs_.scratch0());
3884 __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
3885 __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
3886 __ mov(Operand(esp, 2 * kPointerSize),
3887 Immediate(ExternalReference::isolate_address(isolate())));
3889 AllowExternalCallThatCantCauseGC scope(masm);
3891 ExternalReference::incremental_marking_record_write_function(isolate()),
3894 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3898 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
3899 MacroAssembler* masm,
3900 OnNoNeedToInformIncrementalMarker on_no_need,
3902 Label object_is_black, need_incremental, need_incremental_pop_object;
3904 __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
3905 __ and_(regs_.scratch0(), regs_.object());
3906 __ mov(regs_.scratch1(),
3907 Operand(regs_.scratch0(),
3908 MemoryChunk::kWriteBarrierCounterOffset));
3909 __ sub(regs_.scratch1(), Immediate(1));
3910 __ mov(Operand(regs_.scratch0(),
3911 MemoryChunk::kWriteBarrierCounterOffset),
3913 __ j(negative, &need_incremental);
3915 // Let's look at the color of the object: If it is not black we don't have
3916 // to inform the incremental marker.
3917 __ JumpIfBlack(regs_.object(),
3923 regs_.Restore(masm);
3924 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3925 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3926 MacroAssembler::kReturnAtEnd);
3931 __ bind(&object_is_black);
3933 // Get the value from the slot.
3934 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
3936 if (mode == INCREMENTAL_COMPACTION) {
3937 Label ensure_not_white;
3939 __ CheckPageFlag(regs_.scratch0(), // Contains value.
3940 regs_.scratch1(), // Scratch.
3941 MemoryChunk::kEvacuationCandidateMask,
3946 __ CheckPageFlag(regs_.object(),
3947 regs_.scratch1(), // Scratch.
3948 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
3953 __ jmp(&need_incremental);
3955 __ bind(&ensure_not_white);
3958 // We need an extra register for this, so we push the object register
3960 __ push(regs_.object());
3961 __ EnsureNotWhite(regs_.scratch0(), // The value.
3962 regs_.scratch1(), // Scratch.
3963 regs_.object(), // Scratch.
3964 &need_incremental_pop_object,
3966 __ pop(regs_.object());
3968 regs_.Restore(masm);
3969 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3970 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3971 MacroAssembler::kReturnAtEnd);
3976 __ bind(&need_incremental_pop_object);
3977 __ pop(regs_.object());
3979 __ bind(&need_incremental);
3981 // Fall through when we need to inform the incremental marker.
3985 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
3986 // ----------- S t a t e -------------
3987 // -- eax : element value to store
3988 // -- ecx : element index as smi
3989 // -- esp[0] : return address
3990 // -- esp[4] : array literal index in function
3991 // -- esp[8] : array literal
3992 // clobbers ebx, edx, edi
3993 // -----------------------------------
3996 Label double_elements;
3998 Label slow_elements;
3999 Label slow_elements_from_double;
4000 Label fast_elements;
4002 // Get array literal index, array literal and its map.
4003 __ mov(edx, Operand(esp, 1 * kPointerSize));
4004 __ mov(ebx, Operand(esp, 2 * kPointerSize));
4005 __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
4007 __ CheckFastElements(edi, &double_elements);
4009 // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
4010 __ JumpIfSmi(eax, &smi_element);
4011 __ CheckFastSmiElements(edi, &fast_elements, Label::kNear);
4013 // Store into the array literal requires a elements transition. Call into
4016 __ bind(&slow_elements);
4017 __ pop(edi); // Pop return address and remember to put back later for tail
4022 __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
4023 __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
4025 __ push(edi); // Return return address so that tail call returns to right
4027 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4029 __ bind(&slow_elements_from_double);
4031 __ jmp(&slow_elements);
4033 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4034 __ bind(&fast_elements);
4035 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4036 __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
4037 FixedArrayBase::kHeaderSize));
4038 __ mov(Operand(ecx, 0), eax);
4039 // Update the write barrier for the array store.
4040 __ RecordWrite(ebx, ecx, eax, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
4044 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4045 // and value is Smi.
4046 __ bind(&smi_element);
4047 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4048 __ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
4049 FixedArrayBase::kHeaderSize), eax);
4052 // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
4053 __ bind(&double_elements);
4056 __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
4057 __ StoreNumberToDoubleElements(eax,
4061 &slow_elements_from_double,
4068 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4069 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4070 __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
4071 int parameter_count_offset =
4072 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4073 __ mov(ebx, MemOperand(ebp, parameter_count_offset));
4074 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4076 int additional_offset =
4077 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
4078 __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
4079 __ jmp(ecx); // Return to IC Miss stub, continuation still on stack.
4083 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4084 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4085 LoadICStub stub(isolate(), state());
4086 stub.GenerateForTrampoline(masm);
4090 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4091 EmitLoadTypeFeedbackVector(masm, LoadWithVectorDescriptor::VectorRegister());
4092 KeyedLoadICStub stub(isolate());
4093 stub.GenerateForTrampoline(masm);
4097 static void HandleArrayCases(MacroAssembler* masm, Register receiver,
4098 Register key, Register vector, Register slot,
4099 Register feedback, bool is_polymorphic,
4101 // feedback initially contains the feedback array
4102 Label next, next_loop, prepare_next;
4103 Label load_smi_map, compare_map;
4104 Label start_polymorphic;
4109 Register receiver_map = receiver;
4110 Register cached_map = vector;
4112 // Receiver might not be a heap object.
4113 __ JumpIfSmi(receiver, &load_smi_map);
4114 __ mov(receiver_map, FieldOperand(receiver, 0));
4115 __ bind(&compare_map);
4116 __ mov(cached_map, FieldOperand(feedback, FixedArray::OffsetOfElementAt(0)));
4118 // A named keyed load might have a 2 element array, all other cases can count
4119 // on an array with at least 2 {map, handler} pairs, so they can go right
4120 // into polymorphic array handling.
4121 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4122 __ j(not_equal, is_polymorphic ? &start_polymorphic : &next);
4124 // found, now call handler.
4125 Register handler = feedback;
4126 __ mov(handler, FieldOperand(feedback, FixedArray::OffsetOfElementAt(1)));
4129 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4132 if (!is_polymorphic) {
4134 __ cmp(FieldOperand(feedback, FixedArray::kLengthOffset),
4135 Immediate(Smi::FromInt(2)));
4136 __ j(not_equal, &start_polymorphic);
4142 // Polymorphic, we have to loop from 2 to N
4143 __ bind(&start_polymorphic);
4145 Register counter = key;
4146 __ mov(counter, Immediate(Smi::FromInt(2)));
4147 __ bind(&next_loop);
4148 __ mov(cached_map, FieldOperand(feedback, counter, times_half_pointer_size,
4149 FixedArray::kHeaderSize));
4150 __ cmp(receiver_map, FieldOperand(cached_map, WeakCell::kValueOffset));
4151 __ j(not_equal, &prepare_next);
4152 __ mov(handler, FieldOperand(feedback, counter, times_half_pointer_size,
4153 FixedArray::kHeaderSize + kPointerSize));
4157 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4160 __ bind(&prepare_next);
4161 __ add(counter, Immediate(Smi::FromInt(2)));
4162 __ cmp(counter, FieldOperand(feedback, FixedArray::kLengthOffset));
4163 __ j(less, &next_loop);
4165 // We exhausted our array of map handler pairs.
4171 __ bind(&load_smi_map);
4172 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4173 __ jmp(&compare_map);
4177 static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
4178 Register key, Register vector, Register slot,
4179 Register weak_cell, Label* miss) {
4180 // feedback initially contains the feedback array
4181 Label compare_smi_map;
4183 // Move the weak map into the weak_cell register.
4184 Register ic_map = weak_cell;
4185 __ mov(ic_map, FieldOperand(weak_cell, WeakCell::kValueOffset));
4187 // Receiver might not be a heap object.
4188 __ JumpIfSmi(receiver, &compare_smi_map);
4189 __ cmp(ic_map, FieldOperand(receiver, 0));
4190 __ j(not_equal, miss);
4191 Register handler = weak_cell;
4192 __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
4193 FixedArray::kHeaderSize + kPointerSize));
4194 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4197 // In microbenchmarks, it made sense to unroll this code so that the call to
4198 // the handler is duplicated for a HeapObject receiver and a Smi receiver.
4199 __ bind(&compare_smi_map);
4200 __ CompareRoot(ic_map, Heap::kHeapNumberMapRootIndex);
4201 __ j(not_equal, miss);
4202 __ mov(handler, FieldOperand(vector, slot, times_half_pointer_size,
4203 FixedArray::kHeaderSize + kPointerSize));
4204 __ lea(handler, FieldOperand(handler, Code::kHeaderSize));
4209 void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
4212 void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4213 GenerateImpl(masm, true);
4217 void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4218 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // edx
4219 Register name = LoadWithVectorDescriptor::NameRegister(); // ecx
4220 Register vector = LoadWithVectorDescriptor::VectorRegister(); // ebx
4221 Register slot = LoadWithVectorDescriptor::SlotRegister(); // eax
4222 Register scratch = edi;
4223 __ mov(scratch, FieldOperand(vector, slot, times_half_pointer_size,
4224 FixedArray::kHeaderSize));
4226 // Is it a weak cell?
4228 Label not_array, smi_key, key_okay, miss;
4229 __ CompareRoot(FieldOperand(scratch, 0), Heap::kWeakCellMapRootIndex);
4230 __ j(not_equal, &try_array);
4231 HandleMonomorphicCase(masm, receiver, name, vector, slot, scratch, &miss);
4233 // Is it a fixed array?
4234 __ bind(&try_array);
4235 __ CompareRoot(FieldOperand(scratch, 0), Heap::kFixedArrayMapRootIndex);
4236 __ j(not_equal, ¬_array);
4237 HandleArrayCases(masm, receiver, name, vector, slot, scratch, true, &miss);
4239 __ bind(¬_array);
4240 __ CompareRoot(scratch, Heap::kmegamorphic_symbolRootIndex);
4241 __ j(not_equal, &miss);
4244 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4245 Code::ComputeHandlerFlags(Code::LOAD_IC));
4246 masm->isolate()->stub_cache()->GenerateProbe(
4247 masm, Code::LOAD_IC, code_flags, false, receiver, name, vector, scratch);
4252 LoadIC::GenerateMiss(masm);
4256 void KeyedLoadICStub::Generate(MacroAssembler* masm) {
4257 GenerateImpl(masm, false);
4261 void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
4262 GenerateImpl(masm, true);
4266 void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4267 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // edx
4268 Register key = LoadWithVectorDescriptor::NameRegister(); // ecx
4269 Register vector = LoadWithVectorDescriptor::VectorRegister(); // ebx
4270 Register slot = LoadWithVectorDescriptor::SlotRegister(); // eax
4271 Register feedback = edi;
4272 __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
4273 FixedArray::kHeaderSize));
4274 // Is it a weak cell?
4276 Label not_array, smi_key, key_okay, miss;
4277 __ CompareRoot(FieldOperand(feedback, 0), Heap::kWeakCellMapRootIndex);
4278 __ j(not_equal, &try_array);
4279 HandleMonomorphicCase(masm, receiver, key, vector, slot, feedback, &miss);
4281 __ bind(&try_array);
4282 // Is it a fixed array?
4283 __ CompareRoot(FieldOperand(feedback, 0), Heap::kFixedArrayMapRootIndex);
4284 __ j(not_equal, ¬_array);
4286 // We have a polymorphic element handler.
4287 Label polymorphic, try_poly_name;
4288 __ bind(&polymorphic);
4289 HandleArrayCases(masm, receiver, key, vector, slot, feedback, true, &miss);
4291 __ bind(¬_array);
4293 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4294 __ j(not_equal, &try_poly_name);
4295 Handle<Code> megamorphic_stub =
4296 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate());
4297 __ jmp(megamorphic_stub, RelocInfo::CODE_TARGET);
4299 __ bind(&try_poly_name);
4300 // We might have a name in feedback, and a fixed array in the next slot.
4301 __ cmp(key, feedback);
4302 __ j(not_equal, &miss);
4303 // If the name comparison succeeded, we know we have a fixed array with
4304 // at least one map/handler pair.
4305 __ mov(feedback, FieldOperand(vector, slot, times_half_pointer_size,
4306 FixedArray::kHeaderSize + kPointerSize));
4307 HandleArrayCases(masm, receiver, key, vector, slot, feedback, false, &miss);
4310 KeyedLoadIC::GenerateMiss(masm);
4314 void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4315 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4316 VectorStoreICStub stub(isolate(), state());
4317 stub.GenerateForTrampoline(masm);
4321 void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
4322 EmitLoadTypeFeedbackVector(masm, VectorStoreICDescriptor::VectorRegister());
4323 VectorKeyedStoreICStub stub(isolate(), state());
4324 stub.GenerateForTrampoline(masm);
4328 void VectorStoreICStub::Generate(MacroAssembler* masm) {
4329 GenerateImpl(masm, false);
4333 void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4334 GenerateImpl(masm, true);
4338 void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4341 // TODO(mvstanton): Implement.
4343 StoreIC::GenerateMiss(masm);
4347 void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4348 GenerateImpl(masm, false);
4352 void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4353 GenerateImpl(masm, true);
4357 void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4360 // TODO(mvstanton): Implement.
4362 KeyedStoreIC::GenerateMiss(masm);
4366 void CallICTrampolineStub::Generate(MacroAssembler* masm) {
4367 EmitLoadTypeFeedbackVector(masm, ebx);
4368 CallICStub stub(isolate(), state());
4369 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4373 void CallIC_ArrayTrampolineStub::Generate(MacroAssembler* masm) {
4374 EmitLoadTypeFeedbackVector(masm, ebx);
4375 CallIC_ArrayStub stub(isolate(), state());
4376 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4380 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4381 if (masm->isolate()->function_entry_hook() != NULL) {
4382 ProfileEntryHookStub stub(masm->isolate());
4383 masm->CallStub(&stub);
4388 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4389 // Save volatile registers.
4390 const int kNumSavedRegisters = 3;
4395 // Calculate and push the original stack pointer.
4396 __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4399 // Retrieve our return address and use it to calculate the calling
4400 // function's address.
4401 __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4402 __ sub(eax, Immediate(Assembler::kCallInstructionLength));
4405 // Call the entry hook.
4406 DCHECK(isolate()->function_entry_hook() != NULL);
4407 __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
4408 RelocInfo::RUNTIME_ENTRY);
4409 __ add(esp, Immediate(2 * kPointerSize));
4421 static void CreateArrayDispatch(MacroAssembler* masm,
4422 AllocationSiteOverrideMode mode) {
4423 if (mode == DISABLE_ALLOCATION_SITES) {
4424 T stub(masm->isolate(),
4425 GetInitialFastElementsKind(),
4427 __ TailCallStub(&stub);
4428 } else if (mode == DONT_OVERRIDE) {
4429 int last_index = GetSequenceIndexFromFastElementsKind(
4430 TERMINAL_FAST_ELEMENTS_KIND);
4431 for (int i = 0; i <= last_index; ++i) {
4433 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4435 __ j(not_equal, &next);
4436 T stub(masm->isolate(), kind);
4437 __ TailCallStub(&stub);
4441 // If we reached this point there is a problem.
4442 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4449 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4450 AllocationSiteOverrideMode mode) {
4451 // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4452 // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
4453 // eax - number of arguments
4454 // edi - constructor?
4455 // esp[0] - return address
4456 // esp[4] - last argument
4457 Label normal_sequence;
4458 if (mode == DONT_OVERRIDE) {
4459 DCHECK(FAST_SMI_ELEMENTS == 0);
4460 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4461 DCHECK(FAST_ELEMENTS == 2);
4462 DCHECK(FAST_HOLEY_ELEMENTS == 3);
4463 DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4464 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4466 // is the low bit set? If so, we are holey and that is good.
4468 __ j(not_zero, &normal_sequence);
4471 // look at the first argument
4472 __ mov(ecx, Operand(esp, kPointerSize));
4474 __ j(zero, &normal_sequence);
4476 if (mode == DISABLE_ALLOCATION_SITES) {
4477 ElementsKind initial = GetInitialFastElementsKind();
4478 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4480 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4482 DISABLE_ALLOCATION_SITES);
4483 __ TailCallStub(&stub_holey);
4485 __ bind(&normal_sequence);
4486 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4488 DISABLE_ALLOCATION_SITES);
4489 __ TailCallStub(&stub);
4490 } else if (mode == DONT_OVERRIDE) {
4491 // We are going to create a holey array, but our kind is non-holey.
4492 // Fix kind and retry.
4495 if (FLAG_debug_code) {
4496 Handle<Map> allocation_site_map =
4497 masm->isolate()->factory()->allocation_site_map();
4498 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
4499 __ Assert(equal, kExpectedAllocationSite);
4502 // Save the resulting elements kind in type info. We can't just store r3
4503 // in the AllocationSite::transition_info field because elements kind is
4504 // restricted to a portion of the field...upper bits need to be left alone.
4505 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4506 __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
4507 Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
4509 __ bind(&normal_sequence);
4510 int last_index = GetSequenceIndexFromFastElementsKind(
4511 TERMINAL_FAST_ELEMENTS_KIND);
4512 for (int i = 0; i <= last_index; ++i) {
4514 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4516 __ j(not_equal, &next);
4517 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4518 __ TailCallStub(&stub);
4522 // If we reached this point there is a problem.
4523 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4531 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4532 int to_index = GetSequenceIndexFromFastElementsKind(
4533 TERMINAL_FAST_ELEMENTS_KIND);
4534 for (int i = 0; i <= to_index; ++i) {
4535 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4536 T stub(isolate, kind);
4538 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4539 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4546 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4547 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4549 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4551 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4556 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4558 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4559 for (int i = 0; i < 2; i++) {
4560 // For internal arrays we only need a few things
4561 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4563 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4565 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4571 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4572 MacroAssembler* masm,
4573 AllocationSiteOverrideMode mode) {
4574 if (argument_count() == ANY) {
4575 Label not_zero_case, not_one_case;
4577 __ j(not_zero, ¬_zero_case);
4578 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4580 __ bind(¬_zero_case);
4582 __ j(greater, ¬_one_case);
4583 CreateArrayDispatchOneArgument(masm, mode);
4585 __ bind(¬_one_case);
4586 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4587 } else if (argument_count() == NONE) {
4588 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4589 } else if (argument_count() == ONE) {
4590 CreateArrayDispatchOneArgument(masm, mode);
4591 } else if (argument_count() == MORE_THAN_ONE) {
4592 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4599 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4600 // ----------- S t a t e -------------
4601 // -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE)
4602 // -- ebx : AllocationSite or undefined
4603 // -- edi : constructor
4604 // -- edx : Original constructor
4605 // -- esp[0] : return address
4606 // -- esp[4] : last argument
4607 // -----------------------------------
4608 if (FLAG_debug_code) {
4609 // The array construct code is only set for the global and natives
4610 // builtin Array functions which always have maps.
4612 // Initial map for the builtin Array function should be a map.
4613 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4614 // Will both indicate a NULL and a Smi.
4615 __ test(ecx, Immediate(kSmiTagMask));
4616 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
4617 __ CmpObjectType(ecx, MAP_TYPE, ecx);
4618 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
4620 // We should either have undefined in ebx or a valid AllocationSite
4621 __ AssertUndefinedOrAllocationSite(ebx);
4627 __ j(not_equal, &subclassing);
4630 // If the feedback vector is the undefined value call an array constructor
4631 // that doesn't use AllocationSites.
4632 __ cmp(ebx, isolate()->factory()->undefined_value());
4633 __ j(equal, &no_info);
4635 // Only look at the lower 16 bits of the transition info.
4636 __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
4638 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4639 __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
4640 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4643 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4646 __ bind(&subclassing);
4647 __ pop(ecx); // return address.
4652 switch (argument_count()) {
4655 __ add(eax, Immediate(2));
4658 __ mov(eax, Immediate(2));
4661 __ mov(eax, Immediate(3));
4666 __ JumpToExternalReference(
4667 ExternalReference(Runtime::kArrayConstructorWithSubclassing, isolate()));
4671 void InternalArrayConstructorStub::GenerateCase(
4672 MacroAssembler* masm, ElementsKind kind) {
4673 Label not_zero_case, not_one_case;
4674 Label normal_sequence;
4677 __ j(not_zero, ¬_zero_case);
4678 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4679 __ TailCallStub(&stub0);
4681 __ bind(¬_zero_case);
4683 __ j(greater, ¬_one_case);
4685 if (IsFastPackedElementsKind(kind)) {
4686 // We might need to create a holey array
4687 // look at the first argument
4688 __ mov(ecx, Operand(esp, kPointerSize));
4690 __ j(zero, &normal_sequence);
4692 InternalArraySingleArgumentConstructorStub
4693 stub1_holey(isolate(), GetHoleyElementsKind(kind));
4694 __ TailCallStub(&stub1_holey);
4697 __ bind(&normal_sequence);
4698 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4699 __ TailCallStub(&stub1);
4701 __ bind(¬_one_case);
4702 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4703 __ TailCallStub(&stubN);
4707 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4708 // ----------- S t a t e -------------
4710 // -- edi : constructor
4711 // -- esp[0] : return address
4712 // -- esp[4] : last argument
4713 // -----------------------------------
4715 if (FLAG_debug_code) {
4716 // The array construct code is only set for the global and natives
4717 // builtin Array functions which always have maps.
4719 // Initial map for the builtin Array function should be a map.
4720 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4721 // Will both indicate a NULL and a Smi.
4722 __ test(ecx, Immediate(kSmiTagMask));
4723 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
4724 __ CmpObjectType(ecx, MAP_TYPE, ecx);
4725 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
4728 // Figure out the right elements kind
4729 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4731 // Load the map's "bit field 2" into |result|. We only need the first byte,
4732 // but the following masking takes care of that anyway.
4733 __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
4734 // Retrieve elements_kind from bit field 2.
4735 __ DecodeField<Map::ElementsKindBits>(ecx);
4737 if (FLAG_debug_code) {
4739 __ cmp(ecx, Immediate(FAST_ELEMENTS));
4741 __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
4743 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4747 Label fast_elements_case;
4748 __ cmp(ecx, Immediate(FAST_ELEMENTS));
4749 __ j(equal, &fast_elements_case);
4750 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4752 __ bind(&fast_elements_case);
4753 GenerateCase(masm, FAST_ELEMENTS);
4757 // Generates an Operand for saving parameters after PrepareCallApiFunction.
4758 static Operand ApiParameterOperand(int index) {
4759 return Operand(esp, index * kPointerSize);
4763 // Prepares stack to put arguments (aligns and so on). Reserves
4764 // space for return value if needed (assumes the return value is a handle).
4765 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
4766 // etc. Saves context (esi). If space was reserved for return value then
4767 // stores the pointer to the reserved slot into esi.
4768 static void PrepareCallApiFunction(MacroAssembler* masm, int argc) {
4769 __ EnterApiExitFrame(argc);
4770 if (__ emit_debug_code()) {
4771 __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
4776 // Calls an API function. Allocates HandleScope, extracts returned value
4777 // from handle and propagates exceptions. Clobbers ebx, edi and
4778 // caller-save registers. Restores context. On return removes
4779 // stack_space * kPointerSize (GCed).
4780 static void CallApiFunctionAndReturn(MacroAssembler* masm,
4781 Register function_address,
4782 ExternalReference thunk_ref,
4783 Operand thunk_last_arg, int stack_space,
4784 Operand* stack_space_operand,
4785 Operand return_value_operand,
4786 Operand* context_restore_operand) {
4787 Isolate* isolate = masm->isolate();
4789 ExternalReference next_address =
4790 ExternalReference::handle_scope_next_address(isolate);
4791 ExternalReference limit_address =
4792 ExternalReference::handle_scope_limit_address(isolate);
4793 ExternalReference level_address =
4794 ExternalReference::handle_scope_level_address(isolate);
4796 DCHECK(edx.is(function_address));
4797 // Allocate HandleScope in callee-save registers.
4798 __ mov(ebx, Operand::StaticVariable(next_address));
4799 __ mov(edi, Operand::StaticVariable(limit_address));
4800 __ add(Operand::StaticVariable(level_address), Immediate(1));
4802 if (FLAG_log_timer_events) {
4803 FrameScope frame(masm, StackFrame::MANUAL);
4804 __ PushSafepointRegisters();
4805 __ PrepareCallCFunction(1, eax);
4806 __ mov(Operand(esp, 0),
4807 Immediate(ExternalReference::isolate_address(isolate)));
4808 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
4810 __ PopSafepointRegisters();
4814 Label profiler_disabled;
4815 Label end_profiler_check;
4816 __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
4817 __ cmpb(Operand(eax, 0), 0);
4818 __ j(zero, &profiler_disabled);
4820 // Additional parameter is the address of the actual getter function.
4821 __ mov(thunk_last_arg, function_address);
4822 // Call the api function.
4823 __ mov(eax, Immediate(thunk_ref));
4825 __ jmp(&end_profiler_check);
4827 __ bind(&profiler_disabled);
4828 // Call the api function.
4829 __ call(function_address);
4830 __ bind(&end_profiler_check);
4832 if (FLAG_log_timer_events) {
4833 FrameScope frame(masm, StackFrame::MANUAL);
4834 __ PushSafepointRegisters();
4835 __ PrepareCallCFunction(1, eax);
4836 __ mov(Operand(esp, 0),
4837 Immediate(ExternalReference::isolate_address(isolate)));
4838 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
4840 __ PopSafepointRegisters();
4844 // Load the value from ReturnValue
4845 __ mov(eax, return_value_operand);
4847 Label promote_scheduled_exception;
4848 Label delete_allocated_handles;
4849 Label leave_exit_frame;
4852 // No more valid handles (the result handle was the last one). Restore
4853 // previous handle scope.
4854 __ mov(Operand::StaticVariable(next_address), ebx);
4855 __ sub(Operand::StaticVariable(level_address), Immediate(1));
4856 __ Assert(above_equal, kInvalidHandleScopeLevel);
4857 __ cmp(edi, Operand::StaticVariable(limit_address));
4858 __ j(not_equal, &delete_allocated_handles);
4860 // Leave the API exit frame.
4861 __ bind(&leave_exit_frame);
4862 bool restore_context = context_restore_operand != NULL;
4863 if (restore_context) {
4864 __ mov(esi, *context_restore_operand);
4866 if (stack_space_operand != nullptr) {
4867 __ mov(ebx, *stack_space_operand);
4869 __ LeaveApiExitFrame(!restore_context);
4871 // Check if the function scheduled an exception.
4872 ExternalReference scheduled_exception_address =
4873 ExternalReference::scheduled_exception_address(isolate);
4874 __ cmp(Operand::StaticVariable(scheduled_exception_address),
4875 Immediate(isolate->factory()->the_hole_value()));
4876 __ j(not_equal, &promote_scheduled_exception);
4879 // Check if the function returned a valid JavaScript value.
4881 Register return_value = eax;
4884 __ JumpIfSmi(return_value, &ok, Label::kNear);
4885 __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
4887 __ CmpInstanceType(map, LAST_NAME_TYPE);
4888 __ j(below_equal, &ok, Label::kNear);
4890 __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
4891 __ j(above_equal, &ok, Label::kNear);
4893 __ cmp(map, isolate->factory()->heap_number_map());
4894 __ j(equal, &ok, Label::kNear);
4896 __ cmp(return_value, isolate->factory()->undefined_value());
4897 __ j(equal, &ok, Label::kNear);
4899 __ cmp(return_value, isolate->factory()->true_value());
4900 __ j(equal, &ok, Label::kNear);
4902 __ cmp(return_value, isolate->factory()->false_value());
4903 __ j(equal, &ok, Label::kNear);
4905 __ cmp(return_value, isolate->factory()->null_value());
4906 __ j(equal, &ok, Label::kNear);
4908 __ Abort(kAPICallReturnedInvalidObject);
4913 if (stack_space_operand != nullptr) {
4914 DCHECK_EQ(0, stack_space);
4919 __ ret(stack_space * kPointerSize);
4922 // Re-throw by promoting a scheduled exception.
4923 __ bind(&promote_scheduled_exception);
4924 __ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
4926 // HandleScope limit has changed. Delete allocated extensions.
4927 ExternalReference delete_extensions =
4928 ExternalReference::delete_handle_scope_extensions(isolate);
4929 __ bind(&delete_allocated_handles);
4930 __ mov(Operand::StaticVariable(limit_address), edi);
4932 __ mov(Operand(esp, 0),
4933 Immediate(ExternalReference::isolate_address(isolate)));
4934 __ mov(eax, Immediate(delete_extensions));
4937 __ jmp(&leave_exit_frame);
4941 static void CallApiFunctionStubHelper(MacroAssembler* masm,
4942 const ParameterCount& argc,
4943 bool return_first_arg,
4944 bool call_data_undefined) {
4945 // ----------- S t a t e -------------
4947 // -- ebx : call_data
4949 // -- edx : api_function_address
4951 // -- eax : number of arguments if argc is a register
4953 // -- esp[0] : return address
4954 // -- esp[4] : last argument
4956 // -- esp[argc * 4] : first argument
4957 // -- esp[(argc + 1) * 4] : receiver
4958 // -----------------------------------
4960 Register callee = edi;
4961 Register call_data = ebx;
4962 Register holder = ecx;
4963 Register api_function_address = edx;
4964 Register context = esi;
4965 Register return_address = eax;
4967 typedef FunctionCallbackArguments FCA;
4969 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4970 STATIC_ASSERT(FCA::kCalleeIndex == 5);
4971 STATIC_ASSERT(FCA::kDataIndex == 4);
4972 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4973 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4974 STATIC_ASSERT(FCA::kIsolateIndex == 1);
4975 STATIC_ASSERT(FCA::kHolderIndex == 0);
4976 STATIC_ASSERT(FCA::kArgsLength == 7);
4978 DCHECK(argc.is_immediate() || eax.is(argc.reg()));
4980 if (argc.is_immediate()) {
4981 __ pop(return_address);
4985 // pop return address and save context
4986 __ xchg(context, Operand(esp, 0));
4987 return_address = context;
4996 Register scratch = call_data;
4997 if (!call_data_undefined) {
4999 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
5000 // return value default
5001 __ push(Immediate(masm->isolate()->factory()->undefined_value()));
5005 // return value default
5009 __ push(Immediate(reinterpret_cast<int>(masm->isolate())));
5013 __ mov(scratch, esp);
5015 // push return address
5016 __ push(return_address);
5018 // load context from callee
5019 __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
5021 // API function gets reference to the v8::Arguments. If CPU profiler
5022 // is enabled wrapper function will be called and we need to pass
5023 // address of the callback as additional parameter, always allocate
5025 const int kApiArgc = 1 + 1;
5027 // Allocate the v8::Arguments structure in the arguments' space since
5028 // it's not controlled by GC.
5029 const int kApiStackSpace = 4;
5031 PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace);
5033 // FunctionCallbackInfo::implicit_args_.
5034 __ mov(ApiParameterOperand(2), scratch);
5035 if (argc.is_immediate()) {
5037 Immediate((argc.immediate() + FCA::kArgsLength - 1) * kPointerSize));
5038 // FunctionCallbackInfo::values_.
5039 __ mov(ApiParameterOperand(3), scratch);
5040 // FunctionCallbackInfo::length_.
5041 __ Move(ApiParameterOperand(4), Immediate(argc.immediate()));
5042 // FunctionCallbackInfo::is_construct_call_.
5043 __ Move(ApiParameterOperand(5), Immediate(0));
5045 __ lea(scratch, Operand(scratch, argc.reg(), times_pointer_size,
5046 (FCA::kArgsLength - 1) * kPointerSize));
5047 // FunctionCallbackInfo::values_.
5048 __ mov(ApiParameterOperand(3), scratch);
5049 // FunctionCallbackInfo::length_.
5050 __ mov(ApiParameterOperand(4), argc.reg());
5051 // FunctionCallbackInfo::is_construct_call_.
5052 __ lea(argc.reg(), Operand(argc.reg(), times_pointer_size,
5053 (FCA::kArgsLength + 1) * kPointerSize));
5054 __ mov(ApiParameterOperand(5), argc.reg());
5057 // v8::InvocationCallback's argument.
5058 __ lea(scratch, ApiParameterOperand(2));
5059 __ mov(ApiParameterOperand(0), scratch);
5061 ExternalReference thunk_ref =
5062 ExternalReference::invoke_function_callback(masm->isolate());
5064 Operand context_restore_operand(ebp,
5065 (2 + FCA::kContextSaveIndex) * kPointerSize);
5066 // Stores return the first js argument
5067 int return_value_offset = 0;
5068 if (return_first_arg) {
5069 return_value_offset = 2 + FCA::kArgsLength;
5071 return_value_offset = 2 + FCA::kReturnValueOffset;
5073 Operand return_value_operand(ebp, return_value_offset * kPointerSize);
5074 int stack_space = 0;
5075 Operand is_construct_call_operand = ApiParameterOperand(5);
5076 Operand* stack_space_operand = &is_construct_call_operand;
5077 if (argc.is_immediate()) {
5078 stack_space = argc.immediate() + FCA::kArgsLength + 1;
5079 stack_space_operand = nullptr;
5081 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5082 ApiParameterOperand(1), stack_space,
5083 stack_space_operand, return_value_operand,
5084 &context_restore_operand);
5088 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
5089 bool call_data_undefined = this->call_data_undefined();
5090 CallApiFunctionStubHelper(masm, ParameterCount(eax), false,
5091 call_data_undefined);
5095 void CallApiAccessorStub::Generate(MacroAssembler* masm) {
5096 bool is_store = this->is_store();
5097 int argc = this->argc();
5098 bool call_data_undefined = this->call_data_undefined();
5099 CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store,
5100 call_data_undefined);
5104 void CallApiGetterStub::Generate(MacroAssembler* masm) {
5105 // ----------- S t a t e -------------
5106 // -- esp[0] : return address
5108 // -- esp[8 - kArgsLength*4] : PropertyCallbackArguments object
5110 // -- edx : api_function_address
5111 // -----------------------------------
5112 DCHECK(edx.is(ApiGetterDescriptor::function_address()));
5114 // array for v8::Arguments::values_, handler for name and pointer
5115 // to the values (it considered as smi in GC).
5116 const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
5117 // Allocate space for opional callback address parameter in case
5118 // CPU profiler is active.
5119 const int kApiArgc = 2 + 1;
5121 Register api_function_address = edx;
5122 Register scratch = ebx;
5124 // load address of name
5125 __ lea(scratch, Operand(esp, 1 * kPointerSize));
5127 PrepareCallApiFunction(masm, kApiArgc);
5128 __ mov(ApiParameterOperand(0), scratch); // name.
5129 __ add(scratch, Immediate(kPointerSize));
5130 __ mov(ApiParameterOperand(1), scratch); // arguments pointer.
5132 ExternalReference thunk_ref =
5133 ExternalReference::invoke_accessor_getter_callback(isolate());
5135 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5136 ApiParameterOperand(2), kStackSpace, nullptr,
5137 Operand(ebp, 7 * kPointerSize), NULL);
5143 } // namespace internal
5146 #endif // V8_TARGET_ARCH_X87