Upstream version 5.34.92.0
[platform/framework/web/crosswalk.git] / src / v8 / test / cctest / test-spaces.cc
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <stdlib.h>
29
30 #include "v8.h"
31 #include "cctest.h"
32
33 using namespace v8::internal;
34
35 #if 0
36 static void VerifyRegionMarking(Address page_start) {
37 #ifdef ENABLE_CARDMARKING_WRITE_BARRIER
38   Page* p = Page::FromAddress(page_start);
39
40   p->SetRegionMarks(Page::kAllRegionsCleanMarks);
41
42   for (Address addr = p->ObjectAreaStart();
43        addr < p->ObjectAreaEnd();
44        addr += kPointerSize) {
45     CHECK(!Page::FromAddress(addr)->IsRegionDirty(addr));
46   }
47
48   for (Address addr = p->ObjectAreaStart();
49        addr < p->ObjectAreaEnd();
50        addr += kPointerSize) {
51     Page::FromAddress(addr)->MarkRegionDirty(addr);
52   }
53
54   for (Address addr = p->ObjectAreaStart();
55        addr < p->ObjectAreaEnd();
56        addr += kPointerSize) {
57     CHECK(Page::FromAddress(addr)->IsRegionDirty(addr));
58   }
59 #endif
60 }
61 #endif
62
63
64 // TODO(gc) you can no longer allocate pages like this. Details are hidden.
65 #if 0
66 TEST(Page) {
67   byte* mem = NewArray<byte>(2*Page::kPageSize);
68   CHECK(mem != NULL);
69
70   Address start = reinterpret_cast<Address>(mem);
71   Address page_start = RoundUp(start, Page::kPageSize);
72
73   Page* p = Page::FromAddress(page_start);
74   // Initialized Page has heap pointer, normally set by memory_allocator.
75   p->heap_ = CcTest::heap();
76   CHECK(p->address() == page_start);
77   CHECK(p->is_valid());
78
79   p->opaque_header = 0;
80   p->SetIsLargeObjectPage(false);
81   CHECK(!p->next_page()->is_valid());
82
83   CHECK(p->ObjectAreaStart() == page_start + Page::kObjectStartOffset);
84   CHECK(p->ObjectAreaEnd() == page_start + Page::kPageSize);
85
86   CHECK(p->Offset(page_start + Page::kObjectStartOffset) ==
87         Page::kObjectStartOffset);
88   CHECK(p->Offset(page_start + Page::kPageSize) == Page::kPageSize);
89
90   CHECK(p->OffsetToAddress(Page::kObjectStartOffset) == p->ObjectAreaStart());
91   CHECK(p->OffsetToAddress(Page::kPageSize) == p->ObjectAreaEnd());
92
93   // test region marking
94   VerifyRegionMarking(page_start);
95
96   DeleteArray(mem);
97 }
98 #endif
99
100
101 namespace v8 {
102 namespace internal {
103
104 // Temporarily sets a given allocator in an isolate.
105 class TestMemoryAllocatorScope {
106  public:
107   TestMemoryAllocatorScope(Isolate* isolate, MemoryAllocator* allocator)
108       : isolate_(isolate),
109         old_allocator_(isolate->memory_allocator_) {
110     isolate->memory_allocator_ = allocator;
111   }
112
113   ~TestMemoryAllocatorScope() {
114     isolate_->memory_allocator_ = old_allocator_;
115   }
116
117  private:
118   Isolate* isolate_;
119   MemoryAllocator* old_allocator_;
120
121   DISALLOW_COPY_AND_ASSIGN(TestMemoryAllocatorScope);
122 };
123
124
125 // Temporarily sets a given code range in an isolate.
126 class TestCodeRangeScope {
127  public:
128   TestCodeRangeScope(Isolate* isolate, CodeRange* code_range)
129       : isolate_(isolate),
130         old_code_range_(isolate->code_range_) {
131     isolate->code_range_ = code_range;
132   }
133
134   ~TestCodeRangeScope() {
135     isolate_->code_range_ = old_code_range_;
136   }
137
138  private:
139   Isolate* isolate_;
140   CodeRange* old_code_range_;
141
142   DISALLOW_COPY_AND_ASSIGN(TestCodeRangeScope);
143 };
144
145 } }  // namespace v8::internal
146
147
148 static void VerifyMemoryChunk(Isolate* isolate,
149                               Heap* heap,
150                               CodeRange* code_range,
151                               size_t reserve_area_size,
152                               size_t commit_area_size,
153                               size_t second_commit_area_size,
154                               Executability executable) {
155   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
156   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
157                                 heap->MaxExecutableSize()));
158   TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator);
159   TestCodeRangeScope test_code_range_scope(isolate, code_range);
160
161   size_t header_size = (executable == EXECUTABLE)
162                        ? MemoryAllocator::CodePageGuardStartOffset()
163                        : MemoryChunk::kObjectStartOffset;
164   size_t guard_size = (executable == EXECUTABLE)
165                        ? MemoryAllocator::CodePageGuardSize()
166                        : 0;
167
168   MemoryChunk* memory_chunk = memory_allocator->AllocateChunk(reserve_area_size,
169                                                               commit_area_size,
170                                                               executable,
171                                                               NULL);
172   size_t alignment = code_range->exists() ?
173                      MemoryChunk::kAlignment : OS::CommitPageSize();
174   size_t reserved_size = ((executable == EXECUTABLE))
175       ? RoundUp(header_size + guard_size + reserve_area_size + guard_size,
176                 alignment)
177       : RoundUp(header_size + reserve_area_size, OS::CommitPageSize());
178   CHECK(memory_chunk->size() == reserved_size);
179   CHECK(memory_chunk->area_start() < memory_chunk->address() +
180                                      memory_chunk->size());
181   CHECK(memory_chunk->area_end() <= memory_chunk->address() +
182                                     memory_chunk->size());
183   CHECK(static_cast<size_t>(memory_chunk->area_size()) == commit_area_size);
184
185   Address area_start = memory_chunk->area_start();
186
187   memory_chunk->CommitArea(second_commit_area_size);
188   CHECK(area_start == memory_chunk->area_start());
189   CHECK(memory_chunk->area_start() < memory_chunk->address() +
190                                      memory_chunk->size());
191   CHECK(memory_chunk->area_end() <= memory_chunk->address() +
192                                     memory_chunk->size());
193   CHECK(static_cast<size_t>(memory_chunk->area_size()) ==
194       second_commit_area_size);
195
196   memory_allocator->Free(memory_chunk);
197   memory_allocator->TearDown();
198   delete memory_allocator;
199 }
200
201
202 static unsigned int Pseudorandom() {
203   static uint32_t lo = 2345;
204   lo = 18273 * (lo & 0xFFFFF) + (lo >> 16);
205   return lo & 0xFFFFF;
206 }
207
208
209 TEST(MemoryChunk) {
210   Isolate* isolate = CcTest::i_isolate();
211   isolate->InitializeLoggingAndCounters();
212   Heap* heap = isolate->heap();
213   CHECK(heap->ConfigureHeapDefault());
214
215   size_t reserve_area_size = 1 * MB;
216   size_t initial_commit_area_size, second_commit_area_size;
217
218   for (int i = 0; i < 100; i++) {
219     initial_commit_area_size = Pseudorandom();
220     second_commit_area_size = Pseudorandom();
221
222     // With CodeRange.
223     CodeRange* code_range = new CodeRange(isolate);
224     const int code_range_size = 32 * MB;
225     if (!code_range->SetUp(code_range_size)) return;
226
227     VerifyMemoryChunk(isolate,
228                       heap,
229                       code_range,
230                       reserve_area_size,
231                       initial_commit_area_size,
232                       second_commit_area_size,
233                       EXECUTABLE);
234
235     VerifyMemoryChunk(isolate,
236                       heap,
237                       code_range,
238                       reserve_area_size,
239                       initial_commit_area_size,
240                       second_commit_area_size,
241                       NOT_EXECUTABLE);
242     delete code_range;
243
244     // Without CodeRange.
245     code_range = NULL;
246     VerifyMemoryChunk(isolate,
247                       heap,
248                       code_range,
249                       reserve_area_size,
250                       initial_commit_area_size,
251                       second_commit_area_size,
252                       EXECUTABLE);
253
254     VerifyMemoryChunk(isolate,
255                       heap,
256                       code_range,
257                       reserve_area_size,
258                       initial_commit_area_size,
259                       second_commit_area_size,
260                       NOT_EXECUTABLE);
261   }
262 }
263
264
265 TEST(MemoryAllocator) {
266   Isolate* isolate = CcTest::i_isolate();
267   isolate->InitializeLoggingAndCounters();
268   Heap* heap = isolate->heap();
269   CHECK(isolate->heap()->ConfigureHeapDefault());
270
271   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
272   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
273                                 heap->MaxExecutableSize()));
274
275   int total_pages = 0;
276   OldSpace faked_space(heap,
277                        heap->MaxReserved(),
278                        OLD_POINTER_SPACE,
279                        NOT_EXECUTABLE);
280   Page* first_page = memory_allocator->AllocatePage(
281       faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE);
282
283   first_page->InsertAfter(faked_space.anchor()->prev_page());
284   CHECK(first_page->is_valid());
285   CHECK(first_page->next_page() == faked_space.anchor());
286   total_pages++;
287
288   for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) {
289     CHECK(p->owner() == &faked_space);
290   }
291
292   // Again, we should get n or n - 1 pages.
293   Page* other = memory_allocator->AllocatePage(
294       faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE);
295   CHECK(other->is_valid());
296   total_pages++;
297   other->InsertAfter(first_page);
298   int page_count = 0;
299   for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) {
300     CHECK(p->owner() == &faked_space);
301     page_count++;
302   }
303   CHECK(total_pages == page_count);
304
305   Page* second_page = first_page->next_page();
306   CHECK(second_page->is_valid());
307   memory_allocator->Free(first_page);
308   memory_allocator->Free(second_page);
309   memory_allocator->TearDown();
310   delete memory_allocator;
311 }
312
313
314 TEST(NewSpace) {
315   Isolate* isolate = CcTest::i_isolate();
316   isolate->InitializeLoggingAndCounters();
317   Heap* heap = isolate->heap();
318   CHECK(heap->ConfigureHeapDefault());
319   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
320   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
321                                 heap->MaxExecutableSize()));
322   TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
323
324   NewSpace new_space(heap);
325
326   CHECK(new_space.SetUp(CcTest::heap()->ReservedSemiSpaceSize(),
327                         CcTest::heap()->ReservedSemiSpaceSize()));
328   CHECK(new_space.HasBeenSetUp());
329
330   while (new_space.Available() >= Page::kMaxRegularHeapObjectSize) {
331     Object* obj =
332         new_space.AllocateRaw(Page::kMaxRegularHeapObjectSize)->
333         ToObjectUnchecked();
334     CHECK(new_space.Contains(HeapObject::cast(obj)));
335   }
336
337   new_space.TearDown();
338   memory_allocator->TearDown();
339   delete memory_allocator;
340 }
341
342
343 TEST(OldSpace) {
344   Isolate* isolate = CcTest::i_isolate();
345   isolate->InitializeLoggingAndCounters();
346   Heap* heap = isolate->heap();
347   CHECK(heap->ConfigureHeapDefault());
348   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
349   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
350                                 heap->MaxExecutableSize()));
351   TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
352
353   OldSpace* s = new OldSpace(heap,
354                              heap->MaxOldGenerationSize(),
355                              OLD_POINTER_SPACE,
356                              NOT_EXECUTABLE);
357   CHECK(s != NULL);
358
359   CHECK(s->SetUp());
360
361   while (s->Available() > 0) {
362     s->AllocateRaw(Page::kMaxRegularHeapObjectSize)->ToObjectUnchecked();
363   }
364
365   s->TearDown();
366   delete s;
367   memory_allocator->TearDown();
368   delete memory_allocator;
369 }
370
371
372 TEST(LargeObjectSpace) {
373   v8::V8::Initialize();
374
375   LargeObjectSpace* lo = CcTest::heap()->lo_space();
376   CHECK(lo != NULL);
377
378   int lo_size = Page::kPageSize;
379
380   Object* obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE)->ToObjectUnchecked();
381   CHECK(obj->IsHeapObject());
382
383   HeapObject* ho = HeapObject::cast(obj);
384
385   CHECK(lo->Contains(HeapObject::cast(obj)));
386
387   CHECK(lo->FindObject(ho->address()) == obj);
388
389   CHECK(lo->Contains(ho));
390
391   while (true) {
392     intptr_t available = lo->Available();
393     { MaybeObject* maybe_obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE);
394       if (!maybe_obj->ToObject(&obj)) break;
395     }
396     CHECK(lo->Available() < available);
397   };
398
399   CHECK(!lo->IsEmpty());
400
401   CHECK(lo->AllocateRaw(lo_size, NOT_EXECUTABLE)->IsFailure());
402 }
403
404
405 TEST(SizeOfFirstPageIsLargeEnough) {
406   if (i::FLAG_always_opt) return;
407   CcTest::InitializeVM();
408   Isolate* isolate = CcTest::i_isolate();
409
410   // Freshly initialized VM gets by with one page per space.
411   for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) {
412     CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages());
413   }
414
415   // Executing the empty script gets by with one page per space.
416   HandleScope scope(isolate);
417   CompileRun("/*empty*/");
418   for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) {
419     CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages());
420   }
421
422   // No large objects required to perform the above steps.
423   CHECK(isolate->heap()->lo_space()->IsEmpty());
424 }