Upstream version 9.38.198.0
[platform/framework/web/crosswalk.git] / src / v8 / test / cctest / test-spaces.cc
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <stdlib.h>
29
30 #include "src/snapshot.h"
31 #include "src/v8.h"
32 #include "test/cctest/cctest.h"
33
34
35 using namespace v8::internal;
36
37 #if 0
38 static void VerifyRegionMarking(Address page_start) {
39 #ifdef ENABLE_CARDMARKING_WRITE_BARRIER
40   Page* p = Page::FromAddress(page_start);
41
42   p->SetRegionMarks(Page::kAllRegionsCleanMarks);
43
44   for (Address addr = p->ObjectAreaStart();
45        addr < p->ObjectAreaEnd();
46        addr += kPointerSize) {
47     CHECK(!Page::FromAddress(addr)->IsRegionDirty(addr));
48   }
49
50   for (Address addr = p->ObjectAreaStart();
51        addr < p->ObjectAreaEnd();
52        addr += kPointerSize) {
53     Page::FromAddress(addr)->MarkRegionDirty(addr);
54   }
55
56   for (Address addr = p->ObjectAreaStart();
57        addr < p->ObjectAreaEnd();
58        addr += kPointerSize) {
59     CHECK(Page::FromAddress(addr)->IsRegionDirty(addr));
60   }
61 #endif
62 }
63 #endif
64
65
66 // TODO(gc) you can no longer allocate pages like this. Details are hidden.
67 #if 0
68 TEST(Page) {
69   byte* mem = NewArray<byte>(2*Page::kPageSize);
70   CHECK(mem != NULL);
71
72   Address start = reinterpret_cast<Address>(mem);
73   Address page_start = RoundUp(start, Page::kPageSize);
74
75   Page* p = Page::FromAddress(page_start);
76   // Initialized Page has heap pointer, normally set by memory_allocator.
77   p->heap_ = CcTest::heap();
78   CHECK(p->address() == page_start);
79   CHECK(p->is_valid());
80
81   p->opaque_header = 0;
82   p->SetIsLargeObjectPage(false);
83   CHECK(!p->next_page()->is_valid());
84
85   CHECK(p->ObjectAreaStart() == page_start + Page::kObjectStartOffset);
86   CHECK(p->ObjectAreaEnd() == page_start + Page::kPageSize);
87
88   CHECK(p->Offset(page_start + Page::kObjectStartOffset) ==
89         Page::kObjectStartOffset);
90   CHECK(p->Offset(page_start + Page::kPageSize) == Page::kPageSize);
91
92   CHECK(p->OffsetToAddress(Page::kObjectStartOffset) == p->ObjectAreaStart());
93   CHECK(p->OffsetToAddress(Page::kPageSize) == p->ObjectAreaEnd());
94
95   // test region marking
96   VerifyRegionMarking(page_start);
97
98   DeleteArray(mem);
99 }
100 #endif
101
102
103 namespace v8 {
104 namespace internal {
105
106 // Temporarily sets a given allocator in an isolate.
107 class TestMemoryAllocatorScope {
108  public:
109   TestMemoryAllocatorScope(Isolate* isolate, MemoryAllocator* allocator)
110       : isolate_(isolate),
111         old_allocator_(isolate->memory_allocator_) {
112     isolate->memory_allocator_ = allocator;
113   }
114
115   ~TestMemoryAllocatorScope() {
116     isolate_->memory_allocator_ = old_allocator_;
117   }
118
119  private:
120   Isolate* isolate_;
121   MemoryAllocator* old_allocator_;
122
123   DISALLOW_COPY_AND_ASSIGN(TestMemoryAllocatorScope);
124 };
125
126
127 // Temporarily sets a given code range in an isolate.
128 class TestCodeRangeScope {
129  public:
130   TestCodeRangeScope(Isolate* isolate, CodeRange* code_range)
131       : isolate_(isolate),
132         old_code_range_(isolate->code_range_) {
133     isolate->code_range_ = code_range;
134   }
135
136   ~TestCodeRangeScope() {
137     isolate_->code_range_ = old_code_range_;
138   }
139
140  private:
141   Isolate* isolate_;
142   CodeRange* old_code_range_;
143
144   DISALLOW_COPY_AND_ASSIGN(TestCodeRangeScope);
145 };
146
147 } }  // namespace v8::internal
148
149
150 static void VerifyMemoryChunk(Isolate* isolate,
151                               Heap* heap,
152                               CodeRange* code_range,
153                               size_t reserve_area_size,
154                               size_t commit_area_size,
155                               size_t second_commit_area_size,
156                               Executability executable) {
157   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
158   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
159                                 heap->MaxExecutableSize()));
160   TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator);
161   TestCodeRangeScope test_code_range_scope(isolate, code_range);
162
163   size_t header_size = (executable == EXECUTABLE)
164                        ? MemoryAllocator::CodePageGuardStartOffset()
165                        : MemoryChunk::kObjectStartOffset;
166   size_t guard_size = (executable == EXECUTABLE)
167                        ? MemoryAllocator::CodePageGuardSize()
168                        : 0;
169
170   MemoryChunk* memory_chunk = memory_allocator->AllocateChunk(reserve_area_size,
171                                                               commit_area_size,
172                                                               executable,
173                                                               NULL);
174   size_t alignment = code_range != NULL && code_range->valid() ?
175                      MemoryChunk::kAlignment : v8::base::OS::CommitPageSize();
176   size_t reserved_size =
177       ((executable == EXECUTABLE))
178           ? RoundUp(header_size + guard_size + reserve_area_size + guard_size,
179                     alignment)
180           : RoundUp(header_size + reserve_area_size,
181                     v8::base::OS::CommitPageSize());
182   CHECK(memory_chunk->size() == reserved_size);
183   CHECK(memory_chunk->area_start() < memory_chunk->address() +
184                                      memory_chunk->size());
185   CHECK(memory_chunk->area_end() <= memory_chunk->address() +
186                                     memory_chunk->size());
187   CHECK(static_cast<size_t>(memory_chunk->area_size()) == commit_area_size);
188
189   Address area_start = memory_chunk->area_start();
190
191   memory_chunk->CommitArea(second_commit_area_size);
192   CHECK(area_start == memory_chunk->area_start());
193   CHECK(memory_chunk->area_start() < memory_chunk->address() +
194                                      memory_chunk->size());
195   CHECK(memory_chunk->area_end() <= memory_chunk->address() +
196                                     memory_chunk->size());
197   CHECK(static_cast<size_t>(memory_chunk->area_size()) ==
198       second_commit_area_size);
199
200   memory_allocator->Free(memory_chunk);
201   memory_allocator->TearDown();
202   delete memory_allocator;
203 }
204
205
206 static unsigned int Pseudorandom() {
207   static uint32_t lo = 2345;
208   lo = 18273 * (lo & 0xFFFFF) + (lo >> 16);
209   return lo & 0xFFFFF;
210 }
211
212
213 TEST(MemoryChunk) {
214   Isolate* isolate = CcTest::i_isolate();
215   isolate->InitializeLoggingAndCounters();
216   Heap* heap = isolate->heap();
217   CHECK(heap->ConfigureHeapDefault());
218
219   size_t reserve_area_size = 1 * MB;
220   size_t initial_commit_area_size, second_commit_area_size;
221
222   for (int i = 0; i < 100; i++) {
223     initial_commit_area_size = Pseudorandom();
224     second_commit_area_size = Pseudorandom();
225
226     // With CodeRange.
227     CodeRange* code_range = new CodeRange(isolate);
228     const size_t code_range_size = 32 * MB;
229     if (!code_range->SetUp(code_range_size)) return;
230
231     VerifyMemoryChunk(isolate,
232                       heap,
233                       code_range,
234                       reserve_area_size,
235                       initial_commit_area_size,
236                       second_commit_area_size,
237                       EXECUTABLE);
238
239     VerifyMemoryChunk(isolate,
240                       heap,
241                       code_range,
242                       reserve_area_size,
243                       initial_commit_area_size,
244                       second_commit_area_size,
245                       NOT_EXECUTABLE);
246     delete code_range;
247
248     // Without CodeRange.
249     code_range = NULL;
250     VerifyMemoryChunk(isolate,
251                       heap,
252                       code_range,
253                       reserve_area_size,
254                       initial_commit_area_size,
255                       second_commit_area_size,
256                       EXECUTABLE);
257
258     VerifyMemoryChunk(isolate,
259                       heap,
260                       code_range,
261                       reserve_area_size,
262                       initial_commit_area_size,
263                       second_commit_area_size,
264                       NOT_EXECUTABLE);
265   }
266 }
267
268
269 TEST(MemoryAllocator) {
270   Isolate* isolate = CcTest::i_isolate();
271   isolate->InitializeLoggingAndCounters();
272   Heap* heap = isolate->heap();
273   CHECK(isolate->heap()->ConfigureHeapDefault());
274
275   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
276   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
277                                 heap->MaxExecutableSize()));
278
279   int total_pages = 0;
280   OldSpace faked_space(heap,
281                        heap->MaxReserved(),
282                        OLD_POINTER_SPACE,
283                        NOT_EXECUTABLE);
284   Page* first_page = memory_allocator->AllocatePage(
285       faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE);
286
287   first_page->InsertAfter(faked_space.anchor()->prev_page());
288   CHECK(first_page->is_valid());
289   CHECK(first_page->next_page() == faked_space.anchor());
290   total_pages++;
291
292   for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) {
293     CHECK(p->owner() == &faked_space);
294   }
295
296   // Again, we should get n or n - 1 pages.
297   Page* other = memory_allocator->AllocatePage(
298       faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE);
299   CHECK(other->is_valid());
300   total_pages++;
301   other->InsertAfter(first_page);
302   int page_count = 0;
303   for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) {
304     CHECK(p->owner() == &faked_space);
305     page_count++;
306   }
307   CHECK(total_pages == page_count);
308
309   Page* second_page = first_page->next_page();
310   CHECK(second_page->is_valid());
311   memory_allocator->Free(first_page);
312   memory_allocator->Free(second_page);
313   memory_allocator->TearDown();
314   delete memory_allocator;
315 }
316
317
318 TEST(NewSpace) {
319   Isolate* isolate = CcTest::i_isolate();
320   isolate->InitializeLoggingAndCounters();
321   Heap* heap = isolate->heap();
322   CHECK(heap->ConfigureHeapDefault());
323   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
324   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
325                                 heap->MaxExecutableSize()));
326   TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
327
328   NewSpace new_space(heap);
329
330   CHECK(new_space.SetUp(CcTest::heap()->ReservedSemiSpaceSize(),
331                         CcTest::heap()->ReservedSemiSpaceSize()));
332   CHECK(new_space.HasBeenSetUp());
333
334   while (new_space.Available() >= Page::kMaxRegularHeapObjectSize) {
335     Object* obj = new_space.AllocateRaw(
336         Page::kMaxRegularHeapObjectSize).ToObjectChecked();
337     CHECK(new_space.Contains(HeapObject::cast(obj)));
338   }
339
340   new_space.TearDown();
341   memory_allocator->TearDown();
342   delete memory_allocator;
343 }
344
345
346 TEST(OldSpace) {
347   Isolate* isolate = CcTest::i_isolate();
348   isolate->InitializeLoggingAndCounters();
349   Heap* heap = isolate->heap();
350   CHECK(heap->ConfigureHeapDefault());
351   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
352   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
353                                 heap->MaxExecutableSize()));
354   TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
355
356   OldSpace* s = new OldSpace(heap,
357                              heap->MaxOldGenerationSize(),
358                              OLD_POINTER_SPACE,
359                              NOT_EXECUTABLE);
360   CHECK(s != NULL);
361
362   CHECK(s->SetUp());
363
364   while (s->Available() > 0) {
365     s->AllocateRaw(Page::kMaxRegularHeapObjectSize).ToObjectChecked();
366   }
367
368   s->TearDown();
369   delete s;
370   memory_allocator->TearDown();
371   delete memory_allocator;
372 }
373
374
375 TEST(LargeObjectSpace) {
376   v8::V8::Initialize();
377
378   LargeObjectSpace* lo = CcTest::heap()->lo_space();
379   CHECK(lo != NULL);
380
381   int lo_size = Page::kPageSize;
382
383   Object* obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE).ToObjectChecked();
384   CHECK(obj->IsHeapObject());
385
386   HeapObject* ho = HeapObject::cast(obj);
387
388   CHECK(lo->Contains(HeapObject::cast(obj)));
389
390   CHECK(lo->FindObject(ho->address()) == obj);
391
392   CHECK(lo->Contains(ho));
393
394   while (true) {
395     intptr_t available = lo->Available();
396     { AllocationResult allocation = lo->AllocateRaw(lo_size, NOT_EXECUTABLE);
397       if (allocation.IsRetry()) break;
398     }
399     CHECK(lo->Available() < available);
400   }
401
402   CHECK(!lo->IsEmpty());
403
404   CHECK(lo->AllocateRaw(lo_size, NOT_EXECUTABLE).IsRetry());
405 }
406
407
408 TEST(SizeOfFirstPageIsLargeEnough) {
409   if (i::FLAG_always_opt) return;
410   // Bootstrapping without a snapshot causes more allocations.
411   if (!i::Snapshot::HaveASnapshotToStartFrom()) return;
412   CcTest::InitializeVM();
413   Isolate* isolate = CcTest::i_isolate();
414
415   // Freshly initialized VM gets by with one page per space.
416   for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) {
417     // Debug code can be very large, so skip CODE_SPACE if we are generating it.
418     if (i == CODE_SPACE && i::FLAG_debug_code) continue;
419     CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages());
420   }
421
422   // Executing the empty script gets by with one page per space.
423   HandleScope scope(isolate);
424   CompileRun("/*empty*/");
425   for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) {
426     // Debug code can be very large, so skip CODE_SPACE if we are generating it.
427     if (i == CODE_SPACE && i::FLAG_debug_code) continue;
428     CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages());
429   }
430
431   // No large objects required to perform the above steps.
432   CHECK(isolate->heap()->lo_space()->IsEmpty());
433 }