Upstream version 8.37.180.0
[platform/framework/web/crosswalk.git] / src / v8 / test / cctest / test-mark-compact.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <stdlib.h>
29
30 #ifdef __linux__
31 #include <sys/types.h>
32 #include <sys/stat.h>
33 #include <fcntl.h>
34 #include <unistd.h>
35 #include <errno.h>
36 #endif
37
38 #include <utility>
39
40 #include "src/v8.h"
41
42 #include "src/full-codegen.h"
43 #include "src/global-handles.h"
44 #include "src/snapshot.h"
45 #include "test/cctest/cctest.h"
46
47 using namespace v8::internal;
48
49
50 TEST(MarkingDeque) {
51   CcTest::InitializeVM();
52   int mem_size = 20 * kPointerSize;
53   byte* mem = NewArray<byte>(20*kPointerSize);
54   Address low = reinterpret_cast<Address>(mem);
55   Address high = low + mem_size;
56   MarkingDeque s;
57   s.Initialize(low, high);
58
59   Address original_address = reinterpret_cast<Address>(&s);
60   Address current_address = original_address;
61   while (!s.IsFull()) {
62     s.PushBlack(HeapObject::FromAddress(current_address));
63     current_address += kPointerSize;
64   }
65
66   while (!s.IsEmpty()) {
67     Address value = s.Pop()->address();
68     current_address -= kPointerSize;
69     CHECK_EQ(current_address, value);
70   }
71
72   CHECK_EQ(original_address, current_address);
73   DeleteArray(mem);
74 }
75
76
77 TEST(Promotion) {
78   CcTest::InitializeVM();
79   TestHeap* heap = CcTest::test_heap();
80   heap->ConfigureHeap(1, 1, 1, 0);
81
82   v8::HandleScope sc(CcTest::isolate());
83
84   // Allocate a fixed array in the new space.
85   int array_length =
86       (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
87       (4 * kPointerSize);
88   Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
89   Handle<FixedArray> array(FixedArray::cast(obj));
90
91   // Array should be in the new space.
92   CHECK(heap->InSpace(*array, NEW_SPACE));
93
94   // Call mark compact GC, so array becomes an old object.
95   heap->CollectGarbage(OLD_POINTER_SPACE);
96
97   // Array now sits in the old space
98   CHECK(heap->InSpace(*array, OLD_POINTER_SPACE));
99 }
100
101
102 TEST(NoPromotion) {
103   CcTest::InitializeVM();
104   TestHeap* heap = CcTest::test_heap();
105   heap->ConfigureHeap(1, 1, 1, 0);
106
107   v8::HandleScope sc(CcTest::isolate());
108
109   // Allocate a big fixed array in the new space.
110   int array_length =
111       (Page::kMaxRegularHeapObjectSize - FixedArray::kHeaderSize) /
112       (2 * kPointerSize);
113   Object* obj = heap->AllocateFixedArray(array_length).ToObjectChecked();
114   Handle<FixedArray> array(FixedArray::cast(obj));
115
116   // Array should be in the new space.
117   CHECK(heap->InSpace(*array, NEW_SPACE));
118
119   // Simulate a full old space to make promotion fail.
120   SimulateFullSpace(heap->old_pointer_space());
121
122   // Call mark compact GC, and it should pass.
123   heap->CollectGarbage(OLD_POINTER_SPACE);
124 }
125
126
127 TEST(MarkCompactCollector) {
128   FLAG_incremental_marking = false;
129   CcTest::InitializeVM();
130   Isolate* isolate = CcTest::i_isolate();
131   TestHeap* heap = CcTest::test_heap();
132   Factory* factory = isolate->factory();
133
134   v8::HandleScope sc(CcTest::isolate());
135   Handle<GlobalObject> global(isolate->context()->global_object());
136
137   // call mark-compact when heap is empty
138   heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 1");
139
140   // keep allocating garbage in new space until it fails
141   const int ARRAY_SIZE = 100;
142   AllocationResult allocation;
143   do {
144     allocation = heap->AllocateFixedArray(ARRAY_SIZE);
145   } while (!allocation.IsRetry());
146   heap->CollectGarbage(NEW_SPACE, "trigger 2");
147   heap->AllocateFixedArray(ARRAY_SIZE).ToObjectChecked();
148
149   // keep allocating maps until it fails
150   do {
151     allocation = heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
152   } while (!allocation.IsRetry());
153   heap->CollectGarbage(MAP_SPACE, "trigger 3");
154   heap->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize).ToObjectChecked();
155
156   { HandleScope scope(isolate);
157     // allocate a garbage
158     Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
159     Handle<JSFunction> function = factory->NewFunction(func_name);
160     JSReceiver::SetProperty(global, func_name, function, NONE, SLOPPY).Check();
161
162     factory->NewJSObject(function);
163   }
164
165   heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 4");
166
167   { HandleScope scope(isolate);
168     Handle<String> func_name = factory->InternalizeUtf8String("theFunction");
169     CHECK(JSReceiver::HasOwnProperty(global, func_name));
170     Handle<Object> func_value =
171         Object::GetProperty(global, func_name).ToHandleChecked();
172     CHECK(func_value->IsJSFunction());
173     Handle<JSFunction> function = Handle<JSFunction>::cast(func_value);
174     Handle<JSObject> obj = factory->NewJSObject(function);
175
176     Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
177     JSReceiver::SetProperty(global, obj_name, obj, NONE, SLOPPY).Check();
178     Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
179     Handle<Smi> twenty_three(Smi::FromInt(23), isolate);
180     JSReceiver::SetProperty(obj, prop_name, twenty_three, NONE, SLOPPY).Check();
181   }
182
183   heap->CollectGarbage(OLD_POINTER_SPACE, "trigger 5");
184
185   { HandleScope scope(isolate);
186     Handle<String> obj_name = factory->InternalizeUtf8String("theObject");
187     CHECK(JSReceiver::HasOwnProperty(global, obj_name));
188     Handle<Object> object =
189         Object::GetProperty(global, obj_name).ToHandleChecked();
190     CHECK(object->IsJSObject());
191     Handle<String> prop_name = factory->InternalizeUtf8String("theSlot");
192     CHECK_EQ(*Object::GetProperty(object, prop_name).ToHandleChecked(),
193              Smi::FromInt(23));
194   }
195 }
196
197
198 // TODO(1600): compaction of map space is temporary removed from GC.
199 #if 0
200 static Handle<Map> CreateMap(Isolate* isolate) {
201   return isolate->factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
202 }
203
204
205 TEST(MapCompact) {
206   FLAG_max_map_space_pages = 16;
207   CcTest::InitializeVM();
208   Isolate* isolate = CcTest::i_isolate();
209   Factory* factory = isolate->factory();
210
211   {
212     v8::HandleScope sc;
213     // keep allocating maps while pointers are still encodable and thus
214     // mark compact is permitted.
215     Handle<JSObject> root = factory->NewJSObjectFromMap(CreateMap());
216     do {
217       Handle<Map> map = CreateMap();
218       map->set_prototype(*root);
219       root = factory->NewJSObjectFromMap(map);
220     } while (CcTest::heap()->map_space()->MapPointersEncodable());
221   }
222   // Now, as we don't have any handles to just allocated maps, we should
223   // be able to trigger map compaction.
224   // To give an additional chance to fail, try to force compaction which
225   // should be impossible right now.
226   CcTest::heap()->CollectAllGarbage(Heap::kForceCompactionMask);
227   // And now map pointers should be encodable again.
228   CHECK(CcTest::heap()->map_space()->MapPointersEncodable());
229 }
230 #endif
231
232
233 static int NumberOfWeakCalls = 0;
234 static void WeakPointerCallback(
235     const v8::WeakCallbackData<v8::Value, void>& data) {
236   std::pair<v8::Persistent<v8::Value>*, int>* p =
237       reinterpret_cast<std::pair<v8::Persistent<v8::Value>*, int>*>(
238           data.GetParameter());
239   ASSERT_EQ(1234, p->second);
240   NumberOfWeakCalls++;
241   p->first->Reset();
242 }
243
244
245 TEST(ObjectGroups) {
246   FLAG_incremental_marking = false;
247   CcTest::InitializeVM();
248   GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
249   TestHeap* heap = CcTest::test_heap();
250   NumberOfWeakCalls = 0;
251   v8::HandleScope handle_scope(CcTest::isolate());
252
253   Handle<Object> g1s1 =
254       global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
255   Handle<Object> g1s2 =
256       global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
257   Handle<Object> g1c1 =
258       global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
259   std::pair<Handle<Object>*, int> g1s1_and_id(&g1s1, 1234);
260   GlobalHandles::MakeWeak(g1s1.location(),
261                           reinterpret_cast<void*>(&g1s1_and_id),
262                           &WeakPointerCallback);
263   std::pair<Handle<Object>*, int> g1s2_and_id(&g1s2, 1234);
264   GlobalHandles::MakeWeak(g1s2.location(),
265                           reinterpret_cast<void*>(&g1s2_and_id),
266                           &WeakPointerCallback);
267   std::pair<Handle<Object>*, int> g1c1_and_id(&g1c1, 1234);
268   GlobalHandles::MakeWeak(g1c1.location(),
269                           reinterpret_cast<void*>(&g1c1_and_id),
270                           &WeakPointerCallback);
271
272   Handle<Object> g2s1 =
273       global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
274   Handle<Object> g2s2 =
275     global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
276   Handle<Object> g2c1 =
277     global_handles->Create(heap->AllocateFixedArray(1).ToObjectChecked());
278   std::pair<Handle<Object>*, int> g2s1_and_id(&g2s1, 1234);
279   GlobalHandles::MakeWeak(g2s1.location(),
280                           reinterpret_cast<void*>(&g2s1_and_id),
281                           &WeakPointerCallback);
282   std::pair<Handle<Object>*, int> g2s2_and_id(&g2s2, 1234);
283   GlobalHandles::MakeWeak(g2s2.location(),
284                           reinterpret_cast<void*>(&g2s2_and_id),
285                           &WeakPointerCallback);
286   std::pair<Handle<Object>*, int> g2c1_and_id(&g2c1, 1234);
287   GlobalHandles::MakeWeak(g2c1.location(),
288                           reinterpret_cast<void*>(&g2c1_and_id),
289                           &WeakPointerCallback);
290
291   Handle<Object> root = global_handles->Create(*g1s1);  // make a root.
292
293   // Connect group 1 and 2, make a cycle.
294   Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
295   Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);
296
297   {
298     Object** g1_objects[] = { g1s1.location(), g1s2.location() };
299     Object** g1_children[] = { g1c1.location() };
300     Object** g2_objects[] = { g2s1.location(), g2s2.location() };
301     Object** g2_children[] = { g2c1.location() };
302     global_handles->AddObjectGroup(g1_objects, 2, NULL);
303     global_handles->AddImplicitReferences(
304         Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
305     global_handles->AddObjectGroup(g2_objects, 2, NULL);
306     global_handles->AddImplicitReferences(
307         Handle<HeapObject>::cast(g2s1).location(), g2_children, 1);
308   }
309   // Do a full GC
310   heap->CollectGarbage(OLD_POINTER_SPACE);
311
312   // All object should be alive.
313   CHECK_EQ(0, NumberOfWeakCalls);
314
315   // Weaken the root.
316   std::pair<Handle<Object>*, int> root_and_id(&root, 1234);
317   GlobalHandles::MakeWeak(root.location(),
318                           reinterpret_cast<void*>(&root_and_id),
319                           &WeakPointerCallback);
320   // But make children strong roots---all the objects (except for children)
321   // should be collectable now.
322   global_handles->ClearWeakness(g1c1.location());
323   global_handles->ClearWeakness(g2c1.location());
324
325   // Groups are deleted, rebuild groups.
326   {
327     Object** g1_objects[] = { g1s1.location(), g1s2.location() };
328     Object** g1_children[] = { g1c1.location() };
329     Object** g2_objects[] = { g2s1.location(), g2s2.location() };
330     Object** g2_children[] = { g2c1.location() };
331     global_handles->AddObjectGroup(g1_objects, 2, NULL);
332     global_handles->AddImplicitReferences(
333         Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
334     global_handles->AddObjectGroup(g2_objects, 2, NULL);
335     global_handles->AddImplicitReferences(
336         Handle<HeapObject>::cast(g2s1).location(), g2_children, 1);
337   }
338
339   heap->CollectGarbage(OLD_POINTER_SPACE);
340
341   // All objects should be gone. 5 global handles in total.
342   CHECK_EQ(5, NumberOfWeakCalls);
343
344   // And now make children weak again and collect them.
345   GlobalHandles::MakeWeak(g1c1.location(),
346                           reinterpret_cast<void*>(&g1c1_and_id),
347                           &WeakPointerCallback);
348   GlobalHandles::MakeWeak(g2c1.location(),
349                           reinterpret_cast<void*>(&g2c1_and_id),
350                           &WeakPointerCallback);
351
352   heap->CollectGarbage(OLD_POINTER_SPACE);
353   CHECK_EQ(7, NumberOfWeakCalls);
354 }
355
356
357 class TestRetainedObjectInfo : public v8::RetainedObjectInfo {
358  public:
359   TestRetainedObjectInfo() : has_been_disposed_(false) {}
360
361   bool has_been_disposed() { return has_been_disposed_; }
362
363   virtual void Dispose() {
364     ASSERT(!has_been_disposed_);
365     has_been_disposed_ = true;
366   }
367
368   virtual bool IsEquivalent(v8::RetainedObjectInfo* other) {
369     return other == this;
370   }
371
372   virtual intptr_t GetHash() { return 0; }
373
374   virtual const char* GetLabel() { return "whatever"; }
375
376  private:
377   bool has_been_disposed_;
378 };
379
380
381 TEST(EmptyObjectGroups) {
382   CcTest::InitializeVM();
383   GlobalHandles* global_handles = CcTest::i_isolate()->global_handles();
384
385   v8::HandleScope handle_scope(CcTest::isolate());
386
387   Handle<Object> object = global_handles->Create(
388       CcTest::test_heap()->AllocateFixedArray(1).ToObjectChecked());
389
390   TestRetainedObjectInfo info;
391   global_handles->AddObjectGroup(NULL, 0, &info);
392   ASSERT(info.has_been_disposed());
393
394   global_handles->AddImplicitReferences(
395         Handle<HeapObject>::cast(object).location(), NULL, 0);
396 }
397
398
399 #if defined(__has_feature)
400 #if __has_feature(address_sanitizer)
401 #define V8_WITH_ASAN 1
402 #endif
403 #endif
404
405
406 // Here is a memory use test that uses /proc, and is therefore Linux-only.  We
407 // do not care how much memory the simulator uses, since it is only there for
408 // debugging purposes. Testing with ASAN doesn't make sense, either.
409 #if defined(__linux__) && !defined(USE_SIMULATOR) && !defined(V8_WITH_ASAN)
410
411
412 static uintptr_t ReadLong(char* buffer, intptr_t* position, int base) {
413   char* end_address = buffer + *position;
414   uintptr_t result = strtoul(buffer + *position, &end_address, base);
415   CHECK(result != ULONG_MAX || errno != ERANGE);
416   CHECK(end_address > buffer + *position);
417   *position = end_address - buffer;
418   return result;
419 }
420
421
422 // The memory use computed this way is not entirely accurate and depends on
423 // the way malloc allocates memory.  That's why the memory use may seem to
424 // increase even though the sum of the allocated object sizes decreases.  It
425 // also means that the memory use depends on the kernel and stdlib.
426 static intptr_t MemoryInUse() {
427   intptr_t memory_use = 0;
428
429   int fd = open("/proc/self/maps", O_RDONLY);
430   if (fd < 0) return -1;
431
432   const int kBufSize = 10000;
433   char buffer[kBufSize];
434   int length = read(fd, buffer, kBufSize);
435   intptr_t line_start = 0;
436   CHECK_LT(length, kBufSize);  // Make the buffer bigger.
437   CHECK_GT(length, 0);  // We have to find some data in the file.
438   while (line_start < length) {
439     if (buffer[line_start] == '\n') {
440       line_start++;
441       continue;
442     }
443     intptr_t position = line_start;
444     uintptr_t start = ReadLong(buffer, &position, 16);
445     CHECK_EQ(buffer[position++], '-');
446     uintptr_t end = ReadLong(buffer, &position, 16);
447     CHECK_EQ(buffer[position++], ' ');
448     CHECK(buffer[position] == '-' || buffer[position] == 'r');
449     bool read_permission = (buffer[position++] == 'r');
450     CHECK(buffer[position] == '-' || buffer[position] == 'w');
451     bool write_permission = (buffer[position++] == 'w');
452     CHECK(buffer[position] == '-' || buffer[position] == 'x');
453     bool execute_permission = (buffer[position++] == 'x');
454     CHECK(buffer[position] == '-' || buffer[position] == 'p');
455     bool private_mapping = (buffer[position++] == 'p');
456     CHECK_EQ(buffer[position++], ' ');
457     uintptr_t offset = ReadLong(buffer, &position, 16);
458     USE(offset);
459     CHECK_EQ(buffer[position++], ' ');
460     uintptr_t major = ReadLong(buffer, &position, 16);
461     USE(major);
462     CHECK_EQ(buffer[position++], ':');
463     uintptr_t minor = ReadLong(buffer, &position, 16);
464     USE(minor);
465     CHECK_EQ(buffer[position++], ' ');
466     uintptr_t inode = ReadLong(buffer, &position, 10);
467     while (position < length && buffer[position] != '\n') position++;
468     if ((read_permission || write_permission || execute_permission) &&
469         private_mapping && inode == 0) {
470       memory_use += (end - start);
471     }
472
473     line_start = position;
474   }
475   close(fd);
476   return memory_use;
477 }
478
479
480 intptr_t ShortLivingIsolate() {
481   v8::Isolate* isolate = v8::Isolate::New();
482   { v8::Isolate::Scope isolate_scope(isolate);
483     v8::Locker lock(isolate);
484     v8::HandleScope handle_scope(isolate);
485     v8::Local<v8::Context> context = v8::Context::New(isolate);
486     CHECK(!context.IsEmpty());
487   }
488   isolate->Dispose();
489   return MemoryInUse();
490 }
491
492
493 TEST(RegressJoinThreadsOnIsolateDeinit) {
494   intptr_t size_limit = ShortLivingIsolate() * 2;
495   for (int i = 0; i < 10; i++) {
496     CHECK_GT(size_limit, ShortLivingIsolate());
497   }
498 }
499
500 #endif  // __linux__ and !USE_SIMULATOR