Upstream version 7.36.149.0
[platform/framework/web/crosswalk.git] / src / v8 / src / zone.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <string.h>
6
7 #include "v8.h"
8 #include "zone-inl.h"
9
10 namespace v8 {
11 namespace internal {
12
13
14 // Segments represent chunks of memory: They have starting address
15 // (encoded in the this pointer) and a size in bytes. Segments are
16 // chained together forming a LIFO structure with the newest segment
17 // available as segment_head_. Segments are allocated using malloc()
18 // and de-allocated using free().
19
20 class Segment {
21  public:
22   void Initialize(Segment* next, int size) {
23     next_ = next;
24     size_ = size;
25   }
26
27   Segment* next() const { return next_; }
28   void clear_next() { next_ = NULL; }
29
30   int size() const { return size_; }
31   int capacity() const { return size_ - sizeof(Segment); }
32
33   Address start() const { return address(sizeof(Segment)); }
34   Address end() const { return address(size_); }
35
36  private:
37   // Computes the address of the nth byte in this segment.
38   Address address(int n) const {
39     return Address(this) + n;
40   }
41
42   Segment* next_;
43   int size_;
44 };
45
46
47 Zone::Zone(Isolate* isolate)
48     : allocation_size_(0),
49       segment_bytes_allocated_(0),
50       position_(0),
51       limit_(0),
52       segment_head_(NULL),
53       isolate_(isolate) {
54 }
55
56
57 Zone::~Zone() {
58   DeleteAll();
59   DeleteKeptSegment();
60
61   ASSERT(segment_bytes_allocated_ == 0);
62 }
63
64
65 void Zone::DeleteAll() {
66 #ifdef DEBUG
67   // Constant byte value used for zapping dead memory in debug mode.
68   static const unsigned char kZapDeadByte = 0xcd;
69 #endif
70
71   // Find a segment with a suitable size to keep around.
72   Segment* keep = NULL;
73   // Traverse the chained list of segments, zapping (in debug mode)
74   // and freeing every segment except the one we wish to keep.
75   for (Segment* current = segment_head_; current != NULL; ) {
76     Segment* next = current->next();
77     if (keep == NULL && current->size() <= kMaximumKeptSegmentSize) {
78       // Unlink the segment we wish to keep from the list.
79       keep = current;
80       keep->clear_next();
81     } else {
82       int size = current->size();
83 #ifdef DEBUG
84       // Un-poison first so the zapping doesn't trigger ASan complaints.
85       ASAN_UNPOISON_MEMORY_REGION(current, size);
86       // Zap the entire current segment (including the header).
87       memset(current, kZapDeadByte, size);
88 #endif
89       DeleteSegment(current, size);
90     }
91     current = next;
92   }
93
94   // If we have found a segment we want to keep, we must recompute the
95   // variables 'position' and 'limit' to prepare for future allocate
96   // attempts. Otherwise, we must clear the position and limit to
97   // force a new segment to be allocated on demand.
98   if (keep != NULL) {
99     Address start = keep->start();
100     position_ = RoundUp(start, kAlignment);
101     limit_ = keep->end();
102     // Un-poison so we can re-use the segment later.
103     ASAN_UNPOISON_MEMORY_REGION(start, keep->capacity());
104 #ifdef DEBUG
105     // Zap the contents of the kept segment (but not the header).
106     memset(start, kZapDeadByte, keep->capacity());
107 #endif
108   } else {
109     position_ = limit_ = 0;
110   }
111
112   // Update the head segment to be the kept segment (if any).
113   segment_head_ = keep;
114 }
115
116
117 void Zone::DeleteKeptSegment() {
118 #ifdef DEBUG
119   // Constant byte value used for zapping dead memory in debug mode.
120   static const unsigned char kZapDeadByte = 0xcd;
121 #endif
122
123   ASSERT(segment_head_ == NULL || segment_head_->next() == NULL);
124   if (segment_head_ != NULL) {
125     int size = segment_head_->size();
126 #ifdef DEBUG
127     // Un-poison first so the zapping doesn't trigger ASan complaints.
128     ASAN_UNPOISON_MEMORY_REGION(segment_head_, size);
129     // Zap the entire kept segment (including the header).
130     memset(segment_head_, kZapDeadByte, size);
131 #endif
132     DeleteSegment(segment_head_, size);
133     segment_head_ = NULL;
134   }
135
136   ASSERT(segment_bytes_allocated_ == 0);
137 }
138
139
140 // Creates a new segment, sets it size, and pushes it to the front
141 // of the segment chain. Returns the new segment.
142 Segment* Zone::NewSegment(int size) {
143   Segment* result = reinterpret_cast<Segment*>(Malloced::New(size));
144   adjust_segment_bytes_allocated(size);
145   if (result != NULL) {
146     result->Initialize(segment_head_, size);
147     segment_head_ = result;
148   }
149   return result;
150 }
151
152
153 // Deletes the given segment. Does not touch the segment chain.
154 void Zone::DeleteSegment(Segment* segment, int size) {
155   adjust_segment_bytes_allocated(-size);
156   Malloced::Delete(segment);
157 }
158
159
160 Address Zone::NewExpand(int size) {
161   // Make sure the requested size is already properly aligned and that
162   // there isn't enough room in the Zone to satisfy the request.
163   ASSERT(size == RoundDown(size, kAlignment));
164   ASSERT(size > limit_ - position_);
165
166   // Compute the new segment size. We use a 'high water mark'
167   // strategy, where we increase the segment size every time we expand
168   // except that we employ a maximum segment size when we delete. This
169   // is to avoid excessive malloc() and free() overhead.
170   Segment* head = segment_head_;
171   const size_t old_size = (head == NULL) ? 0 : head->size();
172   static const size_t kSegmentOverhead = sizeof(Segment) + kAlignment;
173   const size_t new_size_no_overhead = size + (old_size << 1);
174   size_t new_size = kSegmentOverhead + new_size_no_overhead;
175   const size_t min_new_size = kSegmentOverhead + static_cast<size_t>(size);
176   // Guard against integer overflow.
177   if (new_size_no_overhead < static_cast<size_t>(size) ||
178       new_size < static_cast<size_t>(kSegmentOverhead)) {
179     V8::FatalProcessOutOfMemory("Zone");
180     return NULL;
181   }
182   if (new_size < static_cast<size_t>(kMinimumSegmentSize)) {
183     new_size = kMinimumSegmentSize;
184   } else if (new_size > static_cast<size_t>(kMaximumSegmentSize)) {
185     // Limit the size of new segments to avoid growing the segment size
186     // exponentially, thus putting pressure on contiguous virtual address space.
187     // All the while making sure to allocate a segment large enough to hold the
188     // requested size.
189     new_size = Max(min_new_size, static_cast<size_t>(kMaximumSegmentSize));
190   }
191   if (new_size > INT_MAX) {
192     V8::FatalProcessOutOfMemory("Zone");
193     return NULL;
194   }
195   Segment* segment = NewSegment(static_cast<int>(new_size));
196   if (segment == NULL) {
197     V8::FatalProcessOutOfMemory("Zone");
198     return NULL;
199   }
200
201   // Recompute 'top' and 'limit' based on the new segment.
202   Address result = RoundUp(segment->start(), kAlignment);
203   position_ = result + size;
204   // Check for address overflow.
205   // (Should not happen since the segment is guaranteed to accomodate
206   // size bytes + header and alignment padding)
207   if (reinterpret_cast<uintptr_t>(position_)
208       < reinterpret_cast<uintptr_t>(result)) {
209     V8::FatalProcessOutOfMemory("Zone");
210     return NULL;
211   }
212   limit_ = segment->end();
213   ASSERT(position_ <= limit_);
214   return result;
215 }
216
217
218 } }  // namespace v8::internal