Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / v8 / src / scopes.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/scopes.h"
8
9 #include "src/accessors.h"
10 #include "src/bootstrapper.h"
11 #include "src/compiler.h"
12 #include "src/messages.h"
13 #include "src/scopeinfo.h"
14
15 namespace v8 {
16 namespace internal {
17
18 // ----------------------------------------------------------------------------
19 // Implementation of LocalsMap
20 //
21 // Note: We are storing the handle locations as key values in the hash map.
22 //       When inserting a new variable via Declare(), we rely on the fact that
23 //       the handle location remains alive for the duration of that variable
24 //       use. Because a Variable holding a handle with the same location exists
25 //       this is ensured.
26
27 VariableMap::VariableMap(Zone* zone)
28     : ZoneHashMap(ZoneHashMap::PointersMatch, 8, ZoneAllocationPolicy(zone)),
29       zone_(zone) {}
30 VariableMap::~VariableMap() {}
31
32
33 Variable* VariableMap::Declare(Scope* scope, const AstRawString* name,
34                                VariableMode mode, bool is_valid_lhs,
35                                Variable::Kind kind,
36                                InitializationFlag initialization_flag,
37                                MaybeAssignedFlag maybe_assigned_flag,
38                                Interface* interface) {
39   // AstRawStrings are unambiguous, i.e., the same string is always represented
40   // by the same AstRawString*.
41   // FIXME(marja): fix the type of Lookup.
42   Entry* p = ZoneHashMap::Lookup(const_cast<AstRawString*>(name), name->hash(),
43                                  true, ZoneAllocationPolicy(zone()));
44   if (p->value == NULL) {
45     // The variable has not been declared yet -> insert it.
46     DCHECK(p->key == name);
47     p->value = new (zone())
48         Variable(scope, name, mode, is_valid_lhs, kind, initialization_flag,
49                  maybe_assigned_flag, interface);
50   }
51   return reinterpret_cast<Variable*>(p->value);
52 }
53
54
55 Variable* VariableMap::Lookup(const AstRawString* name) {
56   Entry* p = ZoneHashMap::Lookup(const_cast<AstRawString*>(name), name->hash(),
57                                  false, ZoneAllocationPolicy(NULL));
58   if (p != NULL) {
59     DCHECK(reinterpret_cast<const AstRawString*>(p->key) == name);
60     DCHECK(p->value != NULL);
61     return reinterpret_cast<Variable*>(p->value);
62   }
63   return NULL;
64 }
65
66
67 // ----------------------------------------------------------------------------
68 // Implementation of Scope
69
70 Scope::Scope(Scope* outer_scope, ScopeType scope_type,
71              AstValueFactory* ast_value_factory, Zone* zone)
72     : isolate_(zone->isolate()),
73       inner_scopes_(4, zone),
74       variables_(zone),
75       internals_(4, zone),
76       temps_(4, zone),
77       params_(4, zone),
78       unresolved_(16, zone),
79       decls_(4, zone),
80       interface_(FLAG_harmony_modules &&
81                  (scope_type == MODULE_SCOPE || scope_type == GLOBAL_SCOPE)
82                      ? Interface::NewModule(zone) : NULL),
83       already_resolved_(false),
84       ast_value_factory_(ast_value_factory),
85       zone_(zone) {
86   SetDefaults(scope_type, outer_scope, Handle<ScopeInfo>::null());
87   // The outermost scope must be a global scope.
88   DCHECK(scope_type == GLOBAL_SCOPE || outer_scope != NULL);
89   DCHECK(!HasIllegalRedeclaration());
90 }
91
92
93 Scope::Scope(Scope* inner_scope,
94              ScopeType scope_type,
95              Handle<ScopeInfo> scope_info,
96              AstValueFactory* value_factory,
97              Zone* zone)
98     : isolate_(zone->isolate()),
99       inner_scopes_(4, zone),
100       variables_(zone),
101       internals_(4, zone),
102       temps_(4, zone),
103       params_(4, zone),
104       unresolved_(16, zone),
105       decls_(4, zone),
106       interface_(NULL),
107       already_resolved_(true),
108       ast_value_factory_(value_factory),
109       zone_(zone) {
110   SetDefaults(scope_type, NULL, scope_info);
111   if (!scope_info.is_null()) {
112     num_heap_slots_ = scope_info_->ContextLength();
113   }
114   // Ensure at least MIN_CONTEXT_SLOTS to indicate a materialized context.
115   num_heap_slots_ = Max(num_heap_slots_,
116                         static_cast<int>(Context::MIN_CONTEXT_SLOTS));
117   AddInnerScope(inner_scope);
118 }
119
120
121 Scope::Scope(Scope* inner_scope, const AstRawString* catch_variable_name,
122              AstValueFactory* value_factory, Zone* zone)
123     : isolate_(zone->isolate()),
124       inner_scopes_(1, zone),
125       variables_(zone),
126       internals_(0, zone),
127       temps_(0, zone),
128       params_(0, zone),
129       unresolved_(0, zone),
130       decls_(0, zone),
131       interface_(NULL),
132       already_resolved_(true),
133       ast_value_factory_(value_factory),
134       zone_(zone) {
135   SetDefaults(CATCH_SCOPE, NULL, Handle<ScopeInfo>::null());
136   AddInnerScope(inner_scope);
137   ++num_var_or_const_;
138   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
139   Variable* variable = variables_.Declare(this,
140                                           catch_variable_name,
141                                           VAR,
142                                           true,  // Valid left-hand side.
143                                           Variable::NORMAL,
144                                           kCreatedInitialized);
145   AllocateHeapSlot(variable);
146 }
147
148
149 void Scope::SetDefaults(ScopeType scope_type,
150                         Scope* outer_scope,
151                         Handle<ScopeInfo> scope_info) {
152   outer_scope_ = outer_scope;
153   scope_type_ = scope_type;
154   scope_name_ = ast_value_factory_->empty_string();
155   dynamics_ = NULL;
156   receiver_ = NULL;
157   function_ = NULL;
158   arguments_ = NULL;
159   illegal_redecl_ = NULL;
160   scope_inside_with_ = false;
161   scope_contains_with_ = false;
162   scope_calls_eval_ = false;
163   asm_module_ = false;
164   asm_function_ = outer_scope != NULL && outer_scope->asm_module_;
165   // Inherit the strict mode from the parent scope.
166   strict_mode_ = outer_scope != NULL ? outer_scope->strict_mode_ : SLOPPY;
167   outer_scope_calls_sloppy_eval_ = false;
168   inner_scope_calls_eval_ = false;
169   force_eager_compilation_ = false;
170   force_context_allocation_ = (outer_scope != NULL && !is_function_scope())
171       ? outer_scope->has_forced_context_allocation() : false;
172   num_var_or_const_ = 0;
173   num_stack_slots_ = 0;
174   num_heap_slots_ = 0;
175   num_modules_ = 0;
176   module_var_ = NULL,
177   scope_info_ = scope_info;
178   start_position_ = RelocInfo::kNoPosition;
179   end_position_ = RelocInfo::kNoPosition;
180   if (!scope_info.is_null()) {
181     scope_calls_eval_ = scope_info->CallsEval();
182     strict_mode_ = scope_info->strict_mode();
183   }
184 }
185
186
187 Scope* Scope::DeserializeScopeChain(Context* context, Scope* global_scope,
188                                     Zone* zone) {
189   // Reconstruct the outer scope chain from a closure's context chain.
190   Scope* current_scope = NULL;
191   Scope* innermost_scope = NULL;
192   bool contains_with = false;
193   while (!context->IsNativeContext()) {
194     if (context->IsWithContext()) {
195       Scope* with_scope = new(zone) Scope(current_scope,
196                                           WITH_SCOPE,
197                                           Handle<ScopeInfo>::null(),
198                                           global_scope->ast_value_factory_,
199                                           zone);
200       current_scope = with_scope;
201       // All the inner scopes are inside a with.
202       contains_with = true;
203       for (Scope* s = innermost_scope; s != NULL; s = s->outer_scope()) {
204         s->scope_inside_with_ = true;
205       }
206     } else if (context->IsGlobalContext()) {
207       ScopeInfo* scope_info = ScopeInfo::cast(context->extension());
208       current_scope = new(zone) Scope(current_scope,
209                                       GLOBAL_SCOPE,
210                                       Handle<ScopeInfo>(scope_info),
211                                       global_scope->ast_value_factory_,
212                                       zone);
213     } else if (context->IsModuleContext()) {
214       ScopeInfo* scope_info = ScopeInfo::cast(context->module()->scope_info());
215       current_scope = new(zone) Scope(current_scope,
216                                       MODULE_SCOPE,
217                                       Handle<ScopeInfo>(scope_info),
218                                       global_scope->ast_value_factory_,
219                                       zone);
220     } else if (context->IsFunctionContext()) {
221       ScopeInfo* scope_info = context->closure()->shared()->scope_info();
222       current_scope = new(zone) Scope(current_scope,
223                                       FUNCTION_SCOPE,
224                                       Handle<ScopeInfo>(scope_info),
225                                       global_scope->ast_value_factory_,
226                                       zone);
227       if (scope_info->IsAsmFunction()) current_scope->asm_function_ = true;
228       if (scope_info->IsAsmModule()) current_scope->asm_module_ = true;
229     } else if (context->IsBlockContext()) {
230       ScopeInfo* scope_info = ScopeInfo::cast(context->extension());
231       current_scope = new(zone) Scope(current_scope,
232                                       BLOCK_SCOPE,
233                                       Handle<ScopeInfo>(scope_info),
234                                       global_scope->ast_value_factory_,
235                                       zone);
236     } else {
237       DCHECK(context->IsCatchContext());
238       String* name = String::cast(context->extension());
239       current_scope = new (zone) Scope(
240           current_scope,
241           global_scope->ast_value_factory_->GetString(Handle<String>(name)),
242           global_scope->ast_value_factory_, zone);
243     }
244     if (contains_with) current_scope->RecordWithStatement();
245     if (innermost_scope == NULL) innermost_scope = current_scope;
246
247     // Forget about a with when we move to a context for a different function.
248     if (context->previous()->closure() != context->closure()) {
249       contains_with = false;
250     }
251     context = context->previous();
252   }
253
254   global_scope->AddInnerScope(current_scope);
255   global_scope->PropagateScopeInfo(false);
256   return (innermost_scope == NULL) ? global_scope : innermost_scope;
257 }
258
259
260 bool Scope::Analyze(CompilationInfo* info) {
261   DCHECK(info->function() != NULL);
262   Scope* scope = info->function()->scope();
263   Scope* top = scope;
264
265   // Traverse the scope tree up to the first unresolved scope or the global
266   // scope and start scope resolution and variable allocation from that scope.
267   while (!top->is_global_scope() &&
268          !top->outer_scope()->already_resolved()) {
269     top = top->outer_scope();
270   }
271
272   // Allocate the variables.
273   {
274     AstNodeFactory<AstNullVisitor> ast_node_factory(
275         info->zone(), info->ast_value_factory(), info->ast_node_id_gen());
276     if (!top->AllocateVariables(info, &ast_node_factory)) return false;
277   }
278
279 #ifdef DEBUG
280   if (info->isolate()->bootstrapper()->IsActive()
281           ? FLAG_print_builtin_scopes
282           : FLAG_print_scopes) {
283     scope->Print();
284   }
285
286   if (FLAG_harmony_modules && FLAG_print_interfaces && top->is_global_scope()) {
287     PrintF("global : ");
288     top->interface()->Print();
289   }
290 #endif
291
292   info->PrepareForCompilation(scope);
293   return true;
294 }
295
296
297 void Scope::Initialize() {
298   DCHECK(!already_resolved());
299
300   // Add this scope as a new inner scope of the outer scope.
301   if (outer_scope_ != NULL) {
302     outer_scope_->inner_scopes_.Add(this, zone());
303     scope_inside_with_ = outer_scope_->scope_inside_with_ || is_with_scope();
304   } else {
305     scope_inside_with_ = is_with_scope();
306   }
307
308   // Declare convenience variables.
309   // Declare and allocate receiver (even for the global scope, and even
310   // if naccesses_ == 0).
311   // NOTE: When loading parameters in the global scope, we must take
312   // care not to access them as properties of the global object, but
313   // instead load them directly from the stack. Currently, the only
314   // such parameter is 'this' which is passed on the stack when
315   // invoking scripts
316   if (is_declaration_scope()) {
317     Variable* var =
318         variables_.Declare(this,
319                            ast_value_factory_->this_string(),
320                            VAR,
321                            false,
322                            Variable::THIS,
323                            kCreatedInitialized);
324     var->AllocateTo(Variable::PARAMETER, -1);
325     receiver_ = var;
326   } else {
327     DCHECK(outer_scope() != NULL);
328     receiver_ = outer_scope()->receiver();
329   }
330
331   if (is_function_scope()) {
332     // Declare 'arguments' variable which exists in all functions.
333     // Note that it might never be accessed, in which case it won't be
334     // allocated during variable allocation.
335     variables_.Declare(this,
336                        ast_value_factory_->arguments_string(),
337                        VAR,
338                        true,
339                        Variable::ARGUMENTS,
340                        kCreatedInitialized);
341   }
342 }
343
344
345 Scope* Scope::FinalizeBlockScope() {
346   DCHECK(is_block_scope());
347   DCHECK(internals_.is_empty());
348   DCHECK(temps_.is_empty());
349   DCHECK(params_.is_empty());
350
351   if (num_var_or_const() > 0) return this;
352
353   // Remove this scope from outer scope.
354   for (int i = 0; i < outer_scope_->inner_scopes_.length(); i++) {
355     if (outer_scope_->inner_scopes_[i] == this) {
356       outer_scope_->inner_scopes_.Remove(i);
357       break;
358     }
359   }
360
361   // Reparent inner scopes.
362   for (int i = 0; i < inner_scopes_.length(); i++) {
363     outer_scope()->AddInnerScope(inner_scopes_[i]);
364   }
365
366   // Move unresolved variables
367   for (int i = 0; i < unresolved_.length(); i++) {
368     outer_scope()->unresolved_.Add(unresolved_[i], zone());
369   }
370
371   return NULL;
372 }
373
374
375 Variable* Scope::LookupLocal(const AstRawString* name) {
376   Variable* result = variables_.Lookup(name);
377   if (result != NULL || scope_info_.is_null()) {
378     return result;
379   }
380   // The Scope is backed up by ScopeInfo. This means it cannot operate in a
381   // heap-independent mode, and all strings must be internalized immediately. So
382   // it's ok to get the Handle<String> here.
383   Handle<String> name_handle = name->string();
384   // If we have a serialized scope info, we might find the variable there.
385   // There should be no local slot with the given name.
386   DCHECK(scope_info_->StackSlotIndex(*name_handle) < 0);
387
388   // Check context slot lookup.
389   VariableMode mode;
390   Variable::Location location = Variable::CONTEXT;
391   InitializationFlag init_flag;
392   MaybeAssignedFlag maybe_assigned_flag;
393   int index = ScopeInfo::ContextSlotIndex(scope_info_, name_handle, &mode,
394                                           &init_flag, &maybe_assigned_flag);
395   if (index < 0) {
396     // Check parameters.
397     index = scope_info_->ParameterIndex(*name_handle);
398     if (index < 0) return NULL;
399
400     mode = DYNAMIC;
401     location = Variable::LOOKUP;
402     init_flag = kCreatedInitialized;
403     // Be conservative and flag parameters as maybe assigned. Better information
404     // would require ScopeInfo to serialize the maybe_assigned bit also for
405     // parameters.
406     maybe_assigned_flag = kMaybeAssigned;
407   }
408
409   Variable* var = variables_.Declare(this, name, mode, true, Variable::NORMAL,
410                                      init_flag, maybe_assigned_flag);
411   var->AllocateTo(location, index);
412   return var;
413 }
414
415
416 Variable* Scope::LookupFunctionVar(const AstRawString* name,
417                                    AstNodeFactory<AstNullVisitor>* factory) {
418   if (function_ != NULL && function_->proxy()->raw_name() == name) {
419     return function_->proxy()->var();
420   } else if (!scope_info_.is_null()) {
421     // If we are backed by a scope info, try to lookup the variable there.
422     VariableMode mode;
423     int index = scope_info_->FunctionContextSlotIndex(*(name->string()), &mode);
424     if (index < 0) return NULL;
425     Variable* var = new(zone()) Variable(
426         this, name, mode, true /* is valid LHS */,
427         Variable::NORMAL, kCreatedInitialized);
428     VariableProxy* proxy = factory->NewVariableProxy(var);
429     VariableDeclaration* declaration = factory->NewVariableDeclaration(
430         proxy, mode, this, RelocInfo::kNoPosition);
431     DeclareFunctionVar(declaration);
432     var->AllocateTo(Variable::CONTEXT, index);
433     return var;
434   } else {
435     return NULL;
436   }
437 }
438
439
440 Variable* Scope::Lookup(const AstRawString* name) {
441   for (Scope* scope = this;
442        scope != NULL;
443        scope = scope->outer_scope()) {
444     Variable* var = scope->LookupLocal(name);
445     if (var != NULL) return var;
446   }
447   return NULL;
448 }
449
450
451 Variable* Scope::DeclareParameter(const AstRawString* name, VariableMode mode) {
452   DCHECK(!already_resolved());
453   DCHECK(is_function_scope());
454   Variable* var = variables_.Declare(this, name, mode, true, Variable::NORMAL,
455                                      kCreatedInitialized);
456   params_.Add(var, zone());
457   return var;
458 }
459
460
461 Variable* Scope::DeclareLocal(const AstRawString* name, VariableMode mode,
462                               InitializationFlag init_flag,
463                               MaybeAssignedFlag maybe_assigned_flag,
464                               Interface* interface) {
465   DCHECK(!already_resolved());
466   // This function handles VAR, LET, and CONST modes.  DYNAMIC variables are
467   // introduces during variable allocation, INTERNAL variables are allocated
468   // explicitly, and TEMPORARY variables are allocated via NewTemporary().
469   DCHECK(IsDeclaredVariableMode(mode));
470   ++num_var_or_const_;
471   return variables_.Declare(this, name, mode, true, Variable::NORMAL, init_flag,
472                             maybe_assigned_flag, interface);
473 }
474
475
476 Variable* Scope::DeclareDynamicGlobal(const AstRawString* name) {
477   DCHECK(is_global_scope());
478   return variables_.Declare(this,
479                             name,
480                             DYNAMIC_GLOBAL,
481                             true,
482                             Variable::NORMAL,
483                             kCreatedInitialized);
484 }
485
486
487 void Scope::RemoveUnresolved(VariableProxy* var) {
488   // Most likely (always?) any variable we want to remove
489   // was just added before, so we search backwards.
490   for (int i = unresolved_.length(); i-- > 0;) {
491     if (unresolved_[i] == var) {
492       unresolved_.Remove(i);
493       return;
494     }
495   }
496 }
497
498
499 Variable* Scope::NewInternal(const AstRawString* name) {
500   DCHECK(!already_resolved());
501   Variable* var = new(zone()) Variable(this,
502                                        name,
503                                        INTERNAL,
504                                        false,
505                                        Variable::NORMAL,
506                                        kCreatedInitialized);
507   internals_.Add(var, zone());
508   return var;
509 }
510
511
512 Variable* Scope::NewTemporary(const AstRawString* name) {
513   DCHECK(!already_resolved());
514   Variable* var = new(zone()) Variable(this,
515                                        name,
516                                        TEMPORARY,
517                                        true,
518                                        Variable::NORMAL,
519                                        kCreatedInitialized);
520   temps_.Add(var, zone());
521   return var;
522 }
523
524
525 void Scope::AddDeclaration(Declaration* declaration) {
526   decls_.Add(declaration, zone());
527 }
528
529
530 void Scope::SetIllegalRedeclaration(Expression* expression) {
531   // Record only the first illegal redeclaration.
532   if (!HasIllegalRedeclaration()) {
533     illegal_redecl_ = expression;
534   }
535   DCHECK(HasIllegalRedeclaration());
536 }
537
538
539 void Scope::VisitIllegalRedeclaration(AstVisitor* visitor) {
540   DCHECK(HasIllegalRedeclaration());
541   illegal_redecl_->Accept(visitor);
542 }
543
544
545 Declaration* Scope::CheckConflictingVarDeclarations() {
546   int length = decls_.length();
547   for (int i = 0; i < length; i++) {
548     Declaration* decl = decls_[i];
549     if (decl->mode() != VAR) continue;
550     const AstRawString* name = decl->proxy()->raw_name();
551
552     // Iterate through all scopes until and including the declaration scope.
553     Scope* previous = NULL;
554     Scope* current = decl->scope();
555     do {
556       // There is a conflict if there exists a non-VAR binding.
557       Variable* other_var = current->variables_.Lookup(name);
558       if (other_var != NULL && other_var->mode() != VAR) {
559         return decl;
560       }
561       previous = current;
562       current = current->outer_scope_;
563     } while (!previous->is_declaration_scope());
564   }
565   return NULL;
566 }
567
568
569 class VarAndOrder {
570  public:
571   VarAndOrder(Variable* var, int order) : var_(var), order_(order) { }
572   Variable* var() const { return var_; }
573   int order() const { return order_; }
574   static int Compare(const VarAndOrder* a, const VarAndOrder* b) {
575     return a->order_ - b->order_;
576   }
577
578  private:
579   Variable* var_;
580   int order_;
581 };
582
583
584 void Scope::CollectStackAndContextLocals(ZoneList<Variable*>* stack_locals,
585                                          ZoneList<Variable*>* context_locals) {
586   DCHECK(stack_locals != NULL);
587   DCHECK(context_locals != NULL);
588
589   // Collect internals which are always allocated on the heap.
590   for (int i = 0; i < internals_.length(); i++) {
591     Variable* var = internals_[i];
592     if (var->is_used()) {
593       DCHECK(var->IsContextSlot());
594       context_locals->Add(var, zone());
595     }
596   }
597
598   // Collect temporaries which are always allocated on the stack, unless the
599   // context as a whole has forced context allocation.
600   for (int i = 0; i < temps_.length(); i++) {
601     Variable* var = temps_[i];
602     if (var->is_used()) {
603       if (var->IsContextSlot()) {
604         DCHECK(has_forced_context_allocation());
605         context_locals->Add(var, zone());
606       } else {
607         DCHECK(var->IsStackLocal());
608         stack_locals->Add(var, zone());
609       }
610     }
611   }
612
613   // Collect declared local variables.
614   ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
615   for (VariableMap::Entry* p = variables_.Start();
616        p != NULL;
617        p = variables_.Next(p)) {
618     Variable* var = reinterpret_cast<Variable*>(p->value);
619     if (var->is_used()) {
620       vars.Add(VarAndOrder(var, p->order), zone());
621     }
622   }
623   vars.Sort(VarAndOrder::Compare);
624   int var_count = vars.length();
625   for (int i = 0; i < var_count; i++) {
626     Variable* var = vars[i].var();
627     if (var->IsStackLocal()) {
628       stack_locals->Add(var, zone());
629     } else if (var->IsContextSlot()) {
630       context_locals->Add(var, zone());
631     }
632   }
633 }
634
635
636 bool Scope::AllocateVariables(CompilationInfo* info,
637                               AstNodeFactory<AstNullVisitor>* factory) {
638   // 1) Propagate scope information.
639   bool outer_scope_calls_sloppy_eval = false;
640   if (outer_scope_ != NULL) {
641     outer_scope_calls_sloppy_eval =
642         outer_scope_->outer_scope_calls_sloppy_eval() |
643         outer_scope_->calls_sloppy_eval();
644   }
645   PropagateScopeInfo(outer_scope_calls_sloppy_eval);
646
647   // 2) Allocate module instances.
648   if (FLAG_harmony_modules && (is_global_scope() || is_module_scope())) {
649     DCHECK(num_modules_ == 0);
650     AllocateModulesRecursively(this);
651   }
652
653   // 3) Resolve variables.
654   if (!ResolveVariablesRecursively(info, factory)) return false;
655
656   // 4) Allocate variables.
657   AllocateVariablesRecursively();
658
659   return true;
660 }
661
662
663 bool Scope::HasTrivialContext() const {
664   // A function scope has a trivial context if it always is the global
665   // context. We iteratively scan out the context chain to see if
666   // there is anything that makes this scope non-trivial; otherwise we
667   // return true.
668   for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
669     if (scope->is_eval_scope()) return false;
670     if (scope->scope_inside_with_) return false;
671     if (scope->num_heap_slots_ > 0) return false;
672   }
673   return true;
674 }
675
676
677 bool Scope::HasTrivialOuterContext() const {
678   Scope* outer = outer_scope_;
679   if (outer == NULL) return true;
680   // Note that the outer context may be trivial in general, but the current
681   // scope may be inside a 'with' statement in which case the outer context
682   // for this scope is not trivial.
683   return !scope_inside_with_ && outer->HasTrivialContext();
684 }
685
686
687 bool Scope::HasLazyCompilableOuterContext() const {
688   Scope* outer = outer_scope_;
689   if (outer == NULL) return true;
690   // We have to prevent lazy compilation if this scope is inside a with scope
691   // and all declaration scopes between them have empty contexts. Such
692   // declaration scopes may become invisible during scope info deserialization.
693   outer = outer->DeclarationScope();
694   bool found_non_trivial_declarations = false;
695   for (const Scope* scope = outer; scope != NULL; scope = scope->outer_scope_) {
696     if (scope->is_with_scope() && !found_non_trivial_declarations) return false;
697     if (scope->is_declaration_scope() && scope->num_heap_slots() > 0) {
698       found_non_trivial_declarations = true;
699     }
700   }
701   return true;
702 }
703
704
705 bool Scope::AllowsLazyCompilation() const {
706   return !force_eager_compilation_ && HasLazyCompilableOuterContext();
707 }
708
709
710 bool Scope::AllowsLazyCompilationWithoutContext() const {
711   return !force_eager_compilation_ && HasTrivialOuterContext();
712 }
713
714
715 int Scope::ContextChainLength(Scope* scope) {
716   int n = 0;
717   for (Scope* s = this; s != scope; s = s->outer_scope_) {
718     DCHECK(s != NULL);  // scope must be in the scope chain
719     if (s->is_with_scope() || s->num_heap_slots() > 0) n++;
720     // Catch and module scopes always have heap slots.
721     DCHECK(!s->is_catch_scope() || s->num_heap_slots() > 0);
722     DCHECK(!s->is_module_scope() || s->num_heap_slots() > 0);
723   }
724   return n;
725 }
726
727
728 Scope* Scope::GlobalScope() {
729   Scope* scope = this;
730   while (!scope->is_global_scope()) {
731     scope = scope->outer_scope();
732   }
733   return scope;
734 }
735
736
737 Scope* Scope::DeclarationScope() {
738   Scope* scope = this;
739   while (!scope->is_declaration_scope()) {
740     scope = scope->outer_scope();
741   }
742   return scope;
743 }
744
745
746 Handle<ScopeInfo> Scope::GetScopeInfo() {
747   if (scope_info_.is_null()) {
748     scope_info_ = ScopeInfo::Create(this, zone());
749   }
750   return scope_info_;
751 }
752
753
754 void Scope::GetNestedScopeChain(
755     List<Handle<ScopeInfo> >* chain,
756     int position) {
757   if (!is_eval_scope()) chain->Add(Handle<ScopeInfo>(GetScopeInfo()));
758
759   for (int i = 0; i < inner_scopes_.length(); i++) {
760     Scope* scope = inner_scopes_[i];
761     int beg_pos = scope->start_position();
762     int end_pos = scope->end_position();
763     DCHECK(beg_pos >= 0 && end_pos >= 0);
764     if (beg_pos <= position && position < end_pos) {
765       scope->GetNestedScopeChain(chain, position);
766       return;
767     }
768   }
769 }
770
771
772 #ifdef DEBUG
773 static const char* Header(ScopeType scope_type) {
774   switch (scope_type) {
775     case EVAL_SCOPE: return "eval";
776     case FUNCTION_SCOPE: return "function";
777     case MODULE_SCOPE: return "module";
778     case GLOBAL_SCOPE: return "global";
779     case CATCH_SCOPE: return "catch";
780     case BLOCK_SCOPE: return "block";
781     case WITH_SCOPE: return "with";
782   }
783   UNREACHABLE();
784   return NULL;
785 }
786
787
788 static void Indent(int n, const char* str) {
789   PrintF("%*s%s", n, "", str);
790 }
791
792
793 static void PrintName(const AstRawString* name) {
794   PrintF("%.*s", name->length(), name->raw_data());
795 }
796
797
798 static void PrintLocation(Variable* var) {
799   switch (var->location()) {
800     case Variable::UNALLOCATED:
801       break;
802     case Variable::PARAMETER:
803       PrintF("parameter[%d]", var->index());
804       break;
805     case Variable::LOCAL:
806       PrintF("local[%d]", var->index());
807       break;
808     case Variable::CONTEXT:
809       PrintF("context[%d]", var->index());
810       break;
811     case Variable::LOOKUP:
812       PrintF("lookup");
813       break;
814   }
815 }
816
817
818 static void PrintVar(int indent, Variable* var) {
819   if (var->is_used() || !var->IsUnallocated()) {
820     Indent(indent, Variable::Mode2String(var->mode()));
821     PrintF(" ");
822     PrintName(var->raw_name());
823     PrintF(";  // ");
824     PrintLocation(var);
825     bool comma = !var->IsUnallocated();
826     if (var->has_forced_context_allocation()) {
827       if (comma) PrintF(", ");
828       PrintF("forced context allocation");
829       comma = true;
830     }
831     if (var->maybe_assigned() == kMaybeAssigned) {
832       if (comma) PrintF(", ");
833       PrintF("maybe assigned");
834     }
835     PrintF("\n");
836   }
837 }
838
839
840 static void PrintMap(int indent, VariableMap* map) {
841   for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
842     Variable* var = reinterpret_cast<Variable*>(p->value);
843     PrintVar(indent, var);
844   }
845 }
846
847
848 void Scope::Print(int n) {
849   int n0 = (n > 0 ? n : 0);
850   int n1 = n0 + 2;  // indentation
851
852   // Print header.
853   Indent(n0, Header(scope_type_));
854   if (!scope_name_->IsEmpty()) {
855     PrintF(" ");
856     PrintName(scope_name_);
857   }
858
859   // Print parameters, if any.
860   if (is_function_scope()) {
861     PrintF(" (");
862     for (int i = 0; i < params_.length(); i++) {
863       if (i > 0) PrintF(", ");
864       PrintName(params_[i]->raw_name());
865     }
866     PrintF(")");
867   }
868
869   PrintF(" { // (%d, %d)\n", start_position(), end_position());
870
871   // Function name, if any (named function literals, only).
872   if (function_ != NULL) {
873     Indent(n1, "// (local) function name: ");
874     PrintName(function_->proxy()->raw_name());
875     PrintF("\n");
876   }
877
878   // Scope info.
879   if (HasTrivialOuterContext()) {
880     Indent(n1, "// scope has trivial outer context\n");
881   }
882   if (strict_mode() == STRICT) {
883     Indent(n1, "// strict mode scope\n");
884   }
885   if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
886   if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n");
887   if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
888   if (outer_scope_calls_sloppy_eval_) {
889     Indent(n1, "// outer scope calls 'eval' in sloppy context\n");
890   }
891   if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
892   if (num_stack_slots_ > 0) { Indent(n1, "// ");
893   PrintF("%d stack slots\n", num_stack_slots_); }
894   if (num_heap_slots_ > 0) { Indent(n1, "// ");
895   PrintF("%d heap slots\n", num_heap_slots_); }
896
897   // Print locals.
898   if (function_ != NULL) {
899     Indent(n1, "// function var:\n");
900     PrintVar(n1, function_->proxy()->var());
901   }
902
903   if (temps_.length() > 0) {
904     Indent(n1, "// temporary vars:\n");
905     for (int i = 0; i < temps_.length(); i++) {
906       PrintVar(n1, temps_[i]);
907     }
908   }
909
910   if (internals_.length() > 0) {
911     Indent(n1, "// internal vars:\n");
912     for (int i = 0; i < internals_.length(); i++) {
913       PrintVar(n1, internals_[i]);
914     }
915   }
916
917   if (variables_.Start() != NULL) {
918     Indent(n1, "// local vars:\n");
919     PrintMap(n1, &variables_);
920   }
921
922   if (dynamics_ != NULL) {
923     Indent(n1, "// dynamic vars:\n");
924     PrintMap(n1, dynamics_->GetMap(DYNAMIC));
925     PrintMap(n1, dynamics_->GetMap(DYNAMIC_LOCAL));
926     PrintMap(n1, dynamics_->GetMap(DYNAMIC_GLOBAL));
927   }
928
929   // Print inner scopes (disable by providing negative n).
930   if (n >= 0) {
931     for (int i = 0; i < inner_scopes_.length(); i++) {
932       PrintF("\n");
933       inner_scopes_[i]->Print(n1);
934     }
935   }
936
937   Indent(n0, "}\n");
938 }
939 #endif  // DEBUG
940
941
942 Variable* Scope::NonLocal(const AstRawString* name, VariableMode mode) {
943   if (dynamics_ == NULL) dynamics_ = new (zone()) DynamicScopePart(zone());
944   VariableMap* map = dynamics_->GetMap(mode);
945   Variable* var = map->Lookup(name);
946   if (var == NULL) {
947     // Declare a new non-local.
948     InitializationFlag init_flag = (mode == VAR)
949         ? kCreatedInitialized : kNeedsInitialization;
950     var = map->Declare(NULL,
951                        name,
952                        mode,
953                        true,
954                        Variable::NORMAL,
955                        init_flag);
956     // Allocate it by giving it a dynamic lookup.
957     var->AllocateTo(Variable::LOOKUP, -1);
958   }
959   return var;
960 }
961
962
963 Variable* Scope::LookupRecursive(VariableProxy* proxy,
964                                  BindingKind* binding_kind,
965                                  AstNodeFactory<AstNullVisitor>* factory) {
966   DCHECK(binding_kind != NULL);
967   if (already_resolved() && is_with_scope()) {
968     // Short-cut: if the scope is deserialized from a scope info, variable
969     // allocation is already fixed.  We can simply return with dynamic lookup.
970     *binding_kind = DYNAMIC_LOOKUP;
971     return NULL;
972   }
973
974   // Try to find the variable in this scope.
975   Variable* var = LookupLocal(proxy->raw_name());
976
977   // We found a variable and we are done. (Even if there is an 'eval' in
978   // this scope which introduces the same variable again, the resulting
979   // variable remains the same.)
980   if (var != NULL) {
981     *binding_kind = BOUND;
982     return var;
983   }
984
985   // We did not find a variable locally. Check against the function variable,
986   // if any. We can do this for all scopes, since the function variable is
987   // only present - if at all - for function scopes.
988   *binding_kind = UNBOUND;
989   var = LookupFunctionVar(proxy->raw_name(), factory);
990   if (var != NULL) {
991     *binding_kind = BOUND;
992   } else if (outer_scope_ != NULL) {
993     var = outer_scope_->LookupRecursive(proxy, binding_kind, factory);
994     if (*binding_kind == BOUND && (is_function_scope() || is_with_scope())) {
995       var->ForceContextAllocation();
996     }
997   } else {
998     DCHECK(is_global_scope());
999   }
1000
1001   if (is_with_scope()) {
1002     DCHECK(!already_resolved());
1003     // The current scope is a with scope, so the variable binding can not be
1004     // statically resolved. However, note that it was necessary to do a lookup
1005     // in the outer scope anyway, because if a binding exists in an outer scope,
1006     // the associated variable has to be marked as potentially being accessed
1007     // from inside of an inner with scope (the property may not be in the 'with'
1008     // object).
1009     if (var != NULL && proxy->is_assigned()) var->set_maybe_assigned();
1010     *binding_kind = DYNAMIC_LOOKUP;
1011     return NULL;
1012   } else if (calls_sloppy_eval()) {
1013     // A variable binding may have been found in an outer scope, but the current
1014     // scope makes a sloppy 'eval' call, so the found variable may not be
1015     // the correct one (the 'eval' may introduce a binding with the same name).
1016     // In that case, change the lookup result to reflect this situation.
1017     if (*binding_kind == BOUND) {
1018       *binding_kind = BOUND_EVAL_SHADOWED;
1019     } else if (*binding_kind == UNBOUND) {
1020       *binding_kind = UNBOUND_EVAL_SHADOWED;
1021     }
1022   }
1023   return var;
1024 }
1025
1026
1027 bool Scope::ResolveVariable(CompilationInfo* info,
1028                             VariableProxy* proxy,
1029                             AstNodeFactory<AstNullVisitor>* factory) {
1030   DCHECK(info->global_scope()->is_global_scope());
1031
1032   // If the proxy is already resolved there's nothing to do
1033   // (functions and consts may be resolved by the parser).
1034   if (proxy->var() != NULL) return true;
1035
1036   // Otherwise, try to resolve the variable.
1037   BindingKind binding_kind;
1038   Variable* var = LookupRecursive(proxy, &binding_kind, factory);
1039   switch (binding_kind) {
1040     case BOUND:
1041       // We found a variable binding.
1042       break;
1043
1044     case BOUND_EVAL_SHADOWED:
1045       // We either found a variable binding that might be shadowed by eval  or
1046       // gave up on it (e.g. by encountering a local with the same in the outer
1047       // scope which was not promoted to a context, this can happen if we use
1048       // debugger to evaluate arbitrary expressions at a break point).
1049       if (var->IsGlobalObjectProperty()) {
1050         var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL);
1051       } else if (var->is_dynamic()) {
1052         var = NonLocal(proxy->raw_name(), DYNAMIC);
1053       } else {
1054         Variable* invalidated = var;
1055         var = NonLocal(proxy->raw_name(), DYNAMIC_LOCAL);
1056         var->set_local_if_not_shadowed(invalidated);
1057       }
1058       break;
1059
1060     case UNBOUND:
1061       // No binding has been found. Declare a variable on the global object.
1062       var = info->global_scope()->DeclareDynamicGlobal(proxy->raw_name());
1063       break;
1064
1065     case UNBOUND_EVAL_SHADOWED:
1066       // No binding has been found. But some scope makes a sloppy 'eval' call.
1067       var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL);
1068       break;
1069
1070     case DYNAMIC_LOOKUP:
1071       // The variable could not be resolved statically.
1072       var = NonLocal(proxy->raw_name(), DYNAMIC);
1073       break;
1074   }
1075
1076   DCHECK(var != NULL);
1077   if (proxy->is_assigned()) var->set_maybe_assigned();
1078
1079   if (FLAG_harmony_scoping && strict_mode() == STRICT &&
1080       var->is_const_mode() && proxy->is_assigned()) {
1081     // Assignment to const. Throw a syntax error.
1082     MessageLocation location(
1083         info->script(), proxy->position(), proxy->position());
1084     Isolate* isolate = info->isolate();
1085     Factory* factory = isolate->factory();
1086     Handle<JSArray> array = factory->NewJSArray(0);
1087     Handle<Object> error;
1088     MaybeHandle<Object> maybe_error =
1089         factory->NewSyntaxError("harmony_const_assign", array);
1090     if (maybe_error.ToHandle(&error)) isolate->Throw(*error, &location);
1091     return false;
1092   }
1093
1094   if (FLAG_harmony_modules) {
1095     bool ok;
1096 #ifdef DEBUG
1097     if (FLAG_print_interface_details) {
1098       PrintF("# Resolve %.*s:\n", var->raw_name()->length(),
1099              var->raw_name()->raw_data());
1100     }
1101 #endif
1102     proxy->interface()->Unify(var->interface(), zone(), &ok);
1103     if (!ok) {
1104 #ifdef DEBUG
1105       if (FLAG_print_interfaces) {
1106         PrintF("SCOPES TYPE ERROR\n");
1107         PrintF("proxy: ");
1108         proxy->interface()->Print();
1109         PrintF("var: ");
1110         var->interface()->Print();
1111       }
1112 #endif
1113
1114       // Inconsistent use of module. Throw a syntax error.
1115       // TODO(rossberg): generate more helpful error message.
1116       MessageLocation location(
1117           info->script(), proxy->position(), proxy->position());
1118       Isolate* isolate = info->isolate();
1119       Factory* factory = isolate->factory();
1120       Handle<JSArray> array = factory->NewJSArray(1);
1121       JSObject::SetElement(array, 0, var->name(), NONE, STRICT).Assert();
1122       Handle<Object> error;
1123       MaybeHandle<Object> maybe_error =
1124           factory->NewSyntaxError("module_type_error", array);
1125       if (maybe_error.ToHandle(&error)) isolate->Throw(*error, &location);
1126       return false;
1127     }
1128   }
1129
1130   proxy->BindTo(var);
1131
1132   return true;
1133 }
1134
1135
1136 bool Scope::ResolveVariablesRecursively(
1137     CompilationInfo* info,
1138     AstNodeFactory<AstNullVisitor>* factory) {
1139   DCHECK(info->global_scope()->is_global_scope());
1140
1141   // Resolve unresolved variables for this scope.
1142   for (int i = 0; i < unresolved_.length(); i++) {
1143     if (!ResolveVariable(info, unresolved_[i], factory)) return false;
1144   }
1145
1146   // Resolve unresolved variables for inner scopes.
1147   for (int i = 0; i < inner_scopes_.length(); i++) {
1148     if (!inner_scopes_[i]->ResolveVariablesRecursively(info, factory))
1149       return false;
1150   }
1151
1152   return true;
1153 }
1154
1155
1156 void Scope::PropagateScopeInfo(bool outer_scope_calls_sloppy_eval ) {
1157   if (outer_scope_calls_sloppy_eval) {
1158     outer_scope_calls_sloppy_eval_ = true;
1159   }
1160
1161   bool calls_sloppy_eval =
1162       this->calls_sloppy_eval() || outer_scope_calls_sloppy_eval_;
1163   for (int i = 0; i < inner_scopes_.length(); i++) {
1164     Scope* inner = inner_scopes_[i];
1165     inner->PropagateScopeInfo(calls_sloppy_eval);
1166     if (inner->scope_calls_eval_ || inner->inner_scope_calls_eval_) {
1167       inner_scope_calls_eval_ = true;
1168     }
1169     if (inner->force_eager_compilation_) {
1170       force_eager_compilation_ = true;
1171     }
1172     if (asm_module_ && inner->scope_type() == FUNCTION_SCOPE) {
1173       inner->asm_function_ = true;
1174     }
1175   }
1176 }
1177
1178
1179 bool Scope::MustAllocate(Variable* var) {
1180   // Give var a read/write use if there is a chance it might be accessed
1181   // via an eval() call.  This is only possible if the variable has a
1182   // visible name.
1183   if ((var->is_this() || !var->raw_name()->IsEmpty()) &&
1184       (var->has_forced_context_allocation() ||
1185        scope_calls_eval_ ||
1186        inner_scope_calls_eval_ ||
1187        scope_contains_with_ ||
1188        is_catch_scope() ||
1189        is_block_scope() ||
1190        is_module_scope() ||
1191        is_global_scope())) {
1192     var->set_is_used();
1193     if (scope_calls_eval_ || inner_scope_calls_eval_) var->set_maybe_assigned();
1194   }
1195   // Global variables do not need to be allocated.
1196   return !var->IsGlobalObjectProperty() && var->is_used();
1197 }
1198
1199
1200 bool Scope::MustAllocateInContext(Variable* var) {
1201   // If var is accessed from an inner scope, or if there is a possibility
1202   // that it might be accessed from the current or an inner scope (through
1203   // an eval() call or a runtime with lookup), it must be allocated in the
1204   // context.
1205   //
1206   // Exceptions: If the scope as a whole has forced context allocation, all
1207   // variables will have context allocation, even temporaries.  Otherwise
1208   // temporary variables are always stack-allocated.  Catch-bound variables are
1209   // always context-allocated.
1210   if (has_forced_context_allocation()) return true;
1211   if (var->mode() == TEMPORARY) return false;
1212   if (var->mode() == INTERNAL) return true;
1213   if (is_catch_scope() || is_block_scope() || is_module_scope()) return true;
1214   if (is_global_scope() && IsLexicalVariableMode(var->mode())) return true;
1215   return var->has_forced_context_allocation() ||
1216       scope_calls_eval_ ||
1217       inner_scope_calls_eval_ ||
1218       scope_contains_with_;
1219 }
1220
1221
1222 bool Scope::HasArgumentsParameter() {
1223   for (int i = 0; i < params_.length(); i++) {
1224     if (params_[i]->name().is_identical_to(
1225             isolate_->factory()->arguments_string())) {
1226       return true;
1227     }
1228   }
1229   return false;
1230 }
1231
1232
1233 void Scope::AllocateStackSlot(Variable* var) {
1234   var->AllocateTo(Variable::LOCAL, num_stack_slots_++);
1235 }
1236
1237
1238 void Scope::AllocateHeapSlot(Variable* var) {
1239   var->AllocateTo(Variable::CONTEXT, num_heap_slots_++);
1240 }
1241
1242
1243 void Scope::AllocateParameterLocals() {
1244   DCHECK(is_function_scope());
1245   Variable* arguments = LookupLocal(ast_value_factory_->arguments_string());
1246   DCHECK(arguments != NULL);  // functions have 'arguments' declared implicitly
1247
1248   bool uses_sloppy_arguments = false;
1249
1250   if (MustAllocate(arguments) && !HasArgumentsParameter()) {
1251     // 'arguments' is used. Unless there is also a parameter called
1252     // 'arguments', we must be conservative and allocate all parameters to
1253     // the context assuming they will be captured by the arguments object.
1254     // If we have a parameter named 'arguments', a (new) value is always
1255     // assigned to it via the function invocation. Then 'arguments' denotes
1256     // that specific parameter value and cannot be used to access the
1257     // parameters, which is why we don't need to allocate an arguments
1258     // object in that case.
1259
1260     // We are using 'arguments'. Tell the code generator that is needs to
1261     // allocate the arguments object by setting 'arguments_'.
1262     arguments_ = arguments;
1263
1264     // In strict mode 'arguments' does not alias formal parameters.
1265     // Therefore in strict mode we allocate parameters as if 'arguments'
1266     // were not used.
1267     uses_sloppy_arguments = strict_mode() == SLOPPY;
1268   }
1269
1270   // The same parameter may occur multiple times in the parameters_ list.
1271   // If it does, and if it is not copied into the context object, it must
1272   // receive the highest parameter index for that parameter; thus iteration
1273   // order is relevant!
1274   for (int i = params_.length() - 1; i >= 0; --i) {
1275     Variable* var = params_[i];
1276     DCHECK(var->scope() == this);
1277     if (uses_sloppy_arguments || has_forced_context_allocation()) {
1278       // Force context allocation of the parameter.
1279       var->ForceContextAllocation();
1280     }
1281
1282     if (MustAllocate(var)) {
1283       if (MustAllocateInContext(var)) {
1284         DCHECK(var->IsUnallocated() || var->IsContextSlot());
1285         if (var->IsUnallocated()) {
1286           AllocateHeapSlot(var);
1287         }
1288       } else {
1289         DCHECK(var->IsUnallocated() || var->IsParameter());
1290         if (var->IsUnallocated()) {
1291           var->AllocateTo(Variable::PARAMETER, i);
1292         }
1293       }
1294     }
1295   }
1296 }
1297
1298
1299 void Scope::AllocateNonParameterLocal(Variable* var) {
1300   DCHECK(var->scope() == this);
1301   DCHECK(!var->IsVariable(isolate_->factory()->dot_result_string()) ||
1302          !var->IsStackLocal());
1303   if (var->IsUnallocated() && MustAllocate(var)) {
1304     if (MustAllocateInContext(var)) {
1305       AllocateHeapSlot(var);
1306     } else {
1307       AllocateStackSlot(var);
1308     }
1309   }
1310 }
1311
1312
1313 void Scope::AllocateNonParameterLocals() {
1314   // All variables that have no rewrite yet are non-parameter locals.
1315   for (int i = 0; i < temps_.length(); i++) {
1316     AllocateNonParameterLocal(temps_[i]);
1317   }
1318
1319   for (int i = 0; i < internals_.length(); i++) {
1320     AllocateNonParameterLocal(internals_[i]);
1321   }
1322
1323   ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
1324   for (VariableMap::Entry* p = variables_.Start();
1325        p != NULL;
1326        p = variables_.Next(p)) {
1327     Variable* var = reinterpret_cast<Variable*>(p->value);
1328     vars.Add(VarAndOrder(var, p->order), zone());
1329   }
1330   vars.Sort(VarAndOrder::Compare);
1331   int var_count = vars.length();
1332   for (int i = 0; i < var_count; i++) {
1333     AllocateNonParameterLocal(vars[i].var());
1334   }
1335
1336   // For now, function_ must be allocated at the very end.  If it gets
1337   // allocated in the context, it must be the last slot in the context,
1338   // because of the current ScopeInfo implementation (see
1339   // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
1340   if (function_ != NULL) {
1341     AllocateNonParameterLocal(function_->proxy()->var());
1342   }
1343 }
1344
1345
1346 void Scope::AllocateVariablesRecursively() {
1347   // Allocate variables for inner scopes.
1348   for (int i = 0; i < inner_scopes_.length(); i++) {
1349     inner_scopes_[i]->AllocateVariablesRecursively();
1350   }
1351
1352   // If scope is already resolved, we still need to allocate
1353   // variables in inner scopes which might not had been resolved yet.
1354   if (already_resolved()) return;
1355   // The number of slots required for variables.
1356   num_stack_slots_ = 0;
1357   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
1358
1359   // Allocate variables for this scope.
1360   // Parameters must be allocated first, if any.
1361   if (is_function_scope()) AllocateParameterLocals();
1362   AllocateNonParameterLocals();
1363
1364   // Force allocation of a context for this scope if necessary. For a 'with'
1365   // scope and for a function scope that makes an 'eval' call we need a context,
1366   // even if no local variables were statically allocated in the scope.
1367   // Likewise for modules.
1368   bool must_have_context = is_with_scope() || is_module_scope() ||
1369       (is_function_scope() && calls_eval());
1370
1371   // If we didn't allocate any locals in the local context, then we only
1372   // need the minimal number of slots if we must have a context.
1373   if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) {
1374     num_heap_slots_ = 0;
1375   }
1376
1377   // Allocation done.
1378   DCHECK(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
1379 }
1380
1381
1382 void Scope::AllocateModulesRecursively(Scope* host_scope) {
1383   if (already_resolved()) return;
1384   if (is_module_scope()) {
1385     DCHECK(interface_->IsFrozen());
1386     DCHECK(module_var_ == NULL);
1387     module_var_ =
1388         host_scope->NewInternal(ast_value_factory_->dot_module_string());
1389     ++host_scope->num_modules_;
1390   }
1391
1392   for (int i = 0; i < inner_scopes_.length(); i++) {
1393     Scope* inner_scope = inner_scopes_.at(i);
1394     inner_scope->AllocateModulesRecursively(host_scope);
1395   }
1396 }
1397
1398
1399 int Scope::StackLocalCount() const {
1400   return num_stack_slots() -
1401       (function_ != NULL && function_->proxy()->var()->IsStackLocal() ? 1 : 0);
1402 }
1403
1404
1405 int Scope::ContextLocalCount() const {
1406   if (num_heap_slots() == 0) return 0;
1407   return num_heap_slots() - Context::MIN_CONTEXT_SLOTS -
1408       (function_ != NULL && function_->proxy()->var()->IsContextSlot() ? 1 : 0);
1409 }
1410
1411 } }  // namespace v8::internal