d339a3f7a2d84e451c6098de8b359dad9f0c1890
[platform/framework/web/crosswalk.git] / src / v8 / src / mips / macro-assembler-mips.h
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
7
8 #include "src/assembler.h"
9 #include "src/mips/assembler-mips.h"
10 #include "src/globals.h"
11
12 namespace v8 {
13 namespace internal {
14
15 // Forward declaration.
16 class JumpTarget;
17
18 // Reserved Register Usage Summary.
19 //
20 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
21 //
22 // The programmer should know that the MacroAssembler may clobber these three,
23 // but won't touch other registers except in special cases.
24 //
25 // Per the MIPS ABI, register t9 must be used for indirect function call
26 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
27 // trying to update gp register for position-independent-code. Whenever
28 // MIPS generated code calls C code, it must be via t9 register.
29
30
31 // Flags used for LeaveExitFrame function.
32 enum LeaveExitFrameMode {
33   EMIT_RETURN = true,
34   NO_EMIT_RETURN = false
35 };
36
37 // Flags used for AllocateHeapNumber
38 enum TaggingMode {
39   // Tag the result.
40   TAG_RESULT,
41   // Don't tag
42   DONT_TAG_RESULT
43 };
44
45 // Flags used for the ObjectToDoubleFPURegister function.
46 enum ObjectToDoubleFlags {
47   // No special flags.
48   NO_OBJECT_TO_DOUBLE_FLAGS = 0,
49   // Object is known to be a non smi.
50   OBJECT_NOT_SMI = 1 << 0,
51   // Don't load NaNs or infinities, branch to the non number case instead.
52   AVOID_NANS_AND_INFINITIES = 1 << 1
53 };
54
55 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
56 enum BranchDelaySlot {
57   USE_DELAY_SLOT,
58   PROTECT
59 };
60
61 // Flags used for the li macro-assembler function.
62 enum LiFlags {
63   // If the constant value can be represented in just 16 bits, then
64   // optimize the li to use a single instruction, rather than lui/ori pair.
65   OPTIMIZE_SIZE = 0,
66   // Always use 2 instructions (lui/ori pair), even if the constant could
67   // be loaded with just one, so that this value is patchable later.
68   CONSTANT_SIZE = 1
69 };
70
71
72 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
73 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
74 enum PointersToHereCheck {
75   kPointersToHereMaybeInteresting,
76   kPointersToHereAreAlwaysInteresting
77 };
78 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
79
80 Register GetRegisterThatIsNotOneOf(Register reg1,
81                                    Register reg2 = no_reg,
82                                    Register reg3 = no_reg,
83                                    Register reg4 = no_reg,
84                                    Register reg5 = no_reg,
85                                    Register reg6 = no_reg);
86
87 bool AreAliased(Register r1, Register r2, Register r3, Register r4);
88
89
90 // -----------------------------------------------------------------------------
91 // Static helper functions.
92
93 inline MemOperand ContextOperand(Register context, int index) {
94   return MemOperand(context, Context::SlotOffset(index));
95 }
96
97
98 inline MemOperand GlobalObjectOperand()  {
99   return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
100 }
101
102
103 // Generate a MemOperand for loading a field from an object.
104 inline MemOperand FieldMemOperand(Register object, int offset) {
105   return MemOperand(object, offset - kHeapObjectTag);
106 }
107
108
109 // Generate a MemOperand for storing arguments 5..N on the stack
110 // when calling CallCFunction().
111 inline MemOperand CFunctionArgumentOperand(int index) {
112   ASSERT(index > kCArgSlotCount);
113   // Argument 5 takes the slot just past the four Arg-slots.
114   int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
115   return MemOperand(sp, offset);
116 }
117
118
119 // MacroAssembler implements a collection of frequently used macros.
120 class MacroAssembler: public Assembler {
121  public:
122   // The isolate parameter can be NULL if the macro assembler should
123   // not use isolate-dependent functionality. In this case, it's the
124   // responsibility of the caller to never invoke such function on the
125   // macro assembler.
126   MacroAssembler(Isolate* isolate, void* buffer, int size);
127
128   // Arguments macros.
129 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
130 #define COND_ARGS cond, r1, r2
131
132   // Cases when relocation is not needed.
133 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
134   void Name(target_type target, BranchDelaySlot bd = PROTECT); \
135   inline void Name(BranchDelaySlot bd, target_type target) { \
136     Name(target, bd); \
137   } \
138   void Name(target_type target, \
139             COND_TYPED_ARGS, \
140             BranchDelaySlot bd = PROTECT); \
141   inline void Name(BranchDelaySlot bd, \
142                    target_type target, \
143                    COND_TYPED_ARGS) { \
144     Name(target, COND_ARGS, bd); \
145   }
146
147 #define DECLARE_BRANCH_PROTOTYPES(Name) \
148   DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
149   DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
150
151   DECLARE_BRANCH_PROTOTYPES(Branch)
152   DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
153   DECLARE_BRANCH_PROTOTYPES(BranchShort)
154
155 #undef DECLARE_BRANCH_PROTOTYPES
156 #undef COND_TYPED_ARGS
157 #undef COND_ARGS
158
159
160   // Jump, Call, and Ret pseudo instructions implementing inter-working.
161 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
162   const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
163
164   void Jump(Register target, COND_ARGS);
165   void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
166   void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
167   void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
168   static int CallSize(Register target, COND_ARGS);
169   void Call(Register target, COND_ARGS);
170   static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
171   void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
172   int CallSize(Handle<Code> code,
173                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
174                TypeFeedbackId ast_id = TypeFeedbackId::None(),
175                COND_ARGS);
176   void Call(Handle<Code> code,
177             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
178             TypeFeedbackId ast_id = TypeFeedbackId::None(),
179             COND_ARGS);
180   void Ret(COND_ARGS);
181   inline void Ret(BranchDelaySlot bd, Condition cond = al,
182     Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
183     Ret(cond, rs, rt, bd);
184   }
185
186   void Branch(Label* L,
187               Condition cond,
188               Register rs,
189               Heap::RootListIndex index,
190               BranchDelaySlot bdslot = PROTECT);
191
192 #undef COND_ARGS
193
194   // Emit code to discard a non-negative number of pointer-sized elements
195   // from the stack, clobbering only the sp register.
196   void Drop(int count,
197             Condition cond = cc_always,
198             Register reg = no_reg,
199             const Operand& op = Operand(no_reg));
200
201   // Trivial case of DropAndRet that utilizes the delay slot and only emits
202   // 2 instructions.
203   void DropAndRet(int drop);
204
205   void DropAndRet(int drop,
206                   Condition cond,
207                   Register reg,
208                   const Operand& op);
209
210   // Swap two registers.  If the scratch register is omitted then a slightly
211   // less efficient form using xor instead of mov is emitted.
212   void Swap(Register reg1, Register reg2, Register scratch = no_reg);
213
214   void Call(Label* target);
215
216   inline void Move(Register dst, Register src) {
217     if (!dst.is(src)) {
218       mov(dst, src);
219     }
220   }
221
222   inline void Move(FPURegister dst, FPURegister src) {
223     if (!dst.is(src)) {
224       mov_d(dst, src);
225     }
226   }
227
228   inline void Move(Register dst_low, Register dst_high, FPURegister src) {
229     mfc1(dst_low, src);
230     mfc1(dst_high, FPURegister::from_code(src.code() + 1));
231   }
232
233   inline void FmoveHigh(Register dst_high, FPURegister src) {
234     mfc1(dst_high, FPURegister::from_code(src.code() + 1));
235   }
236
237   inline void FmoveLow(Register dst_low, FPURegister src) {
238     mfc1(dst_low, src);
239   }
240
241   inline void Move(FPURegister dst, Register src_low, Register src_high) {
242     mtc1(src_low, dst);
243     mtc1(src_high, FPURegister::from_code(dst.code() + 1));
244   }
245
246   // Conditional move.
247   void Move(FPURegister dst, double imm);
248   void Movz(Register rd, Register rs, Register rt);
249   void Movn(Register rd, Register rs, Register rt);
250   void Movt(Register rd, Register rs, uint16_t cc = 0);
251   void Movf(Register rd, Register rs, uint16_t cc = 0);
252
253   void Clz(Register rd, Register rs);
254
255   // Jump unconditionally to given label.
256   // We NEED a nop in the branch delay slot, as it used by v8, for example in
257   // CodeGenerator::ProcessDeferred().
258   // Currently the branch delay slot is filled by the MacroAssembler.
259   // Use rather b(Label) for code generation.
260   void jmp(Label* L) {
261     Branch(L);
262   }
263
264   void Load(Register dst, const MemOperand& src, Representation r);
265   void Store(Register src, const MemOperand& dst, Representation r);
266
267   // Load an object from the root table.
268   void LoadRoot(Register destination,
269                 Heap::RootListIndex index);
270   void LoadRoot(Register destination,
271                 Heap::RootListIndex index,
272                 Condition cond, Register src1, const Operand& src2);
273
274   // Store an object to the root table.
275   void StoreRoot(Register source,
276                  Heap::RootListIndex index);
277   void StoreRoot(Register source,
278                  Heap::RootListIndex index,
279                  Condition cond, Register src1, const Operand& src2);
280
281   // ---------------------------------------------------------------------------
282   // GC Support
283
284   void IncrementalMarkingRecordWriteHelper(Register object,
285                                            Register value,
286                                            Register address);
287
288   enum RememberedSetFinalAction {
289     kReturnAtEnd,
290     kFallThroughAtEnd
291   };
292
293
294   // Record in the remembered set the fact that we have a pointer to new space
295   // at the address pointed to by the addr register.  Only works if addr is not
296   // in new space.
297   void RememberedSetHelper(Register object,  // Used for debug code.
298                            Register addr,
299                            Register scratch,
300                            SaveFPRegsMode save_fp,
301                            RememberedSetFinalAction and_then);
302
303   void CheckPageFlag(Register object,
304                      Register scratch,
305                      int mask,
306                      Condition cc,
307                      Label* condition_met);
308
309   void CheckMapDeprecated(Handle<Map> map,
310                           Register scratch,
311                           Label* if_deprecated);
312
313   // Check if object is in new space.  Jumps if the object is not in new space.
314   // The register scratch can be object itself, but it will be clobbered.
315   void JumpIfNotInNewSpace(Register object,
316                            Register scratch,
317                            Label* branch) {
318     InNewSpace(object, scratch, ne, branch);
319   }
320
321   // Check if object is in new space.  Jumps if the object is in new space.
322   // The register scratch can be object itself, but scratch will be clobbered.
323   void JumpIfInNewSpace(Register object,
324                         Register scratch,
325                         Label* branch) {
326     InNewSpace(object, scratch, eq, branch);
327   }
328
329   // Check if an object has a given incremental marking color.
330   void HasColor(Register object,
331                 Register scratch0,
332                 Register scratch1,
333                 Label* has_color,
334                 int first_bit,
335                 int second_bit);
336
337   void JumpIfBlack(Register object,
338                    Register scratch0,
339                    Register scratch1,
340                    Label* on_black);
341
342   // Checks the color of an object.  If the object is already grey or black
343   // then we just fall through, since it is already live.  If it is white and
344   // we can determine that it doesn't need to be scanned, then we just mark it
345   // black and fall through.  For the rest we jump to the label so the
346   // incremental marker can fix its assumptions.
347   void EnsureNotWhite(Register object,
348                       Register scratch1,
349                       Register scratch2,
350                       Register scratch3,
351                       Label* object_is_white_and_not_data);
352
353   // Detects conservatively whether an object is data-only, i.e. it does need to
354   // be scanned by the garbage collector.
355   void JumpIfDataObject(Register value,
356                         Register scratch,
357                         Label* not_data_object);
358
359   // Notify the garbage collector that we wrote a pointer into an object.
360   // |object| is the object being stored into, |value| is the object being
361   // stored.  value and scratch registers are clobbered by the operation.
362   // The offset is the offset from the start of the object, not the offset from
363   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
364   void RecordWriteField(
365       Register object,
366       int offset,
367       Register value,
368       Register scratch,
369       RAStatus ra_status,
370       SaveFPRegsMode save_fp,
371       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
372       SmiCheck smi_check = INLINE_SMI_CHECK,
373       PointersToHereCheck pointers_to_here_check_for_value =
374           kPointersToHereMaybeInteresting);
375
376   // As above, but the offset has the tag presubtracted.  For use with
377   // MemOperand(reg, off).
378   inline void RecordWriteContextSlot(
379       Register context,
380       int offset,
381       Register value,
382       Register scratch,
383       RAStatus ra_status,
384       SaveFPRegsMode save_fp,
385       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
386       SmiCheck smi_check = INLINE_SMI_CHECK,
387       PointersToHereCheck pointers_to_here_check_for_value =
388           kPointersToHereMaybeInteresting) {
389     RecordWriteField(context,
390                      offset + kHeapObjectTag,
391                      value,
392                      scratch,
393                      ra_status,
394                      save_fp,
395                      remembered_set_action,
396                      smi_check,
397                      pointers_to_here_check_for_value);
398   }
399
400   void RecordWriteForMap(
401       Register object,
402       Register map,
403       Register dst,
404       RAStatus ra_status,
405       SaveFPRegsMode save_fp);
406
407   // For a given |object| notify the garbage collector that the slot |address|
408   // has been written.  |value| is the object being stored. The value and
409   // address registers are clobbered by the operation.
410   void RecordWrite(
411       Register object,
412       Register address,
413       Register value,
414       RAStatus ra_status,
415       SaveFPRegsMode save_fp,
416       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
417       SmiCheck smi_check = INLINE_SMI_CHECK,
418       PointersToHereCheck pointers_to_here_check_for_value =
419           kPointersToHereMaybeInteresting);
420
421
422   // ---------------------------------------------------------------------------
423   // Inline caching support.
424
425   // Generate code for checking access rights - used for security checks
426   // on access to global objects across environments. The holder register
427   // is left untouched, whereas both scratch registers are clobbered.
428   void CheckAccessGlobalProxy(Register holder_reg,
429                               Register scratch,
430                               Label* miss);
431
432   void GetNumberHash(Register reg0, Register scratch);
433
434   void LoadFromNumberDictionary(Label* miss,
435                                 Register elements,
436                                 Register key,
437                                 Register result,
438                                 Register reg0,
439                                 Register reg1,
440                                 Register reg2);
441
442
443   inline void MarkCode(NopMarkerTypes type) {
444     nop(type);
445   }
446
447   // Check if the given instruction is a 'type' marker.
448   // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
449   // nop(type)). These instructions are generated to mark special location in
450   // the code, like some special IC code.
451   static inline bool IsMarkedCode(Instr instr, int type) {
452     ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
453     return IsNop(instr, type);
454   }
455
456
457   static inline int GetCodeMarker(Instr instr) {
458     uint32_t opcode = ((instr & kOpcodeMask));
459     uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
460     uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
461     uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
462
463     // Return <n> if we have a sll zero_reg, zero_reg, n
464     // else return -1.
465     bool sllzz = (opcode == SLL &&
466                   rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
467                   rs == static_cast<uint32_t>(ToNumber(zero_reg)));
468     int type =
469         (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
470     ASSERT((type == -1) ||
471            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
472     return type;
473   }
474
475
476
477   // ---------------------------------------------------------------------------
478   // Allocation support.
479
480   // Allocate an object in new space or old pointer space. The object_size is
481   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
482   // is passed. If the space is exhausted control continues at the gc_required
483   // label. The allocated object is returned in result. If the flag
484   // tag_allocated_object is true the result is tagged as as a heap object.
485   // All registers are clobbered also when control continues at the gc_required
486   // label.
487   void Allocate(int object_size,
488                 Register result,
489                 Register scratch1,
490                 Register scratch2,
491                 Label* gc_required,
492                 AllocationFlags flags);
493
494   void Allocate(Register object_size,
495                 Register result,
496                 Register scratch1,
497                 Register scratch2,
498                 Label* gc_required,
499                 AllocationFlags flags);
500
501   // Undo allocation in new space. The object passed and objects allocated after
502   // it will no longer be allocated. The caller must make sure that no pointers
503   // are left to the object(s) no longer allocated as they would be invalid when
504   // allocation is undone.
505   void UndoAllocationInNewSpace(Register object, Register scratch);
506
507
508   void AllocateTwoByteString(Register result,
509                              Register length,
510                              Register scratch1,
511                              Register scratch2,
512                              Register scratch3,
513                              Label* gc_required);
514   void AllocateAsciiString(Register result,
515                            Register length,
516                            Register scratch1,
517                            Register scratch2,
518                            Register scratch3,
519                            Label* gc_required);
520   void AllocateTwoByteConsString(Register result,
521                                  Register length,
522                                  Register scratch1,
523                                  Register scratch2,
524                                  Label* gc_required);
525   void AllocateAsciiConsString(Register result,
526                                Register length,
527                                Register scratch1,
528                                Register scratch2,
529                                Label* gc_required);
530   void AllocateTwoByteSlicedString(Register result,
531                                    Register length,
532                                    Register scratch1,
533                                    Register scratch2,
534                                    Label* gc_required);
535   void AllocateAsciiSlicedString(Register result,
536                                  Register length,
537                                  Register scratch1,
538                                  Register scratch2,
539                                  Label* gc_required);
540
541   // Allocates a heap number or jumps to the gc_required label if the young
542   // space is full and a scavenge is needed. All registers are clobbered also
543   // when control continues at the gc_required label.
544   void AllocateHeapNumber(Register result,
545                           Register scratch1,
546                           Register scratch2,
547                           Register heap_number_map,
548                           Label* gc_required,
549                           TaggingMode tagging_mode = TAG_RESULT);
550   void AllocateHeapNumberWithValue(Register result,
551                                    FPURegister value,
552                                    Register scratch1,
553                                    Register scratch2,
554                                    Label* gc_required);
555
556   // ---------------------------------------------------------------------------
557   // Instruction macros.
558
559 #define DEFINE_INSTRUCTION(instr)                                              \
560   void instr(Register rd, Register rs, const Operand& rt);                     \
561   void instr(Register rd, Register rs, Register rt) {                          \
562     instr(rd, rs, Operand(rt));                                                \
563   }                                                                            \
564   void instr(Register rs, Register rt, int32_t j) {                            \
565     instr(rs, rt, Operand(j));                                                 \
566   }
567
568 #define DEFINE_INSTRUCTION2(instr)                                             \
569   void instr(Register rs, const Operand& rt);                                  \
570   void instr(Register rs, Register rt) {                                       \
571     instr(rs, Operand(rt));                                                    \
572   }                                                                            \
573   void instr(Register rs, int32_t j) {                                         \
574     instr(rs, Operand(j));                                                     \
575   }
576
577   DEFINE_INSTRUCTION(Addu);
578   DEFINE_INSTRUCTION(Subu);
579   DEFINE_INSTRUCTION(Mul);
580   DEFINE_INSTRUCTION2(Mult);
581   DEFINE_INSTRUCTION2(Multu);
582   DEFINE_INSTRUCTION2(Div);
583   DEFINE_INSTRUCTION2(Divu);
584
585   DEFINE_INSTRUCTION(And);
586   DEFINE_INSTRUCTION(Or);
587   DEFINE_INSTRUCTION(Xor);
588   DEFINE_INSTRUCTION(Nor);
589   DEFINE_INSTRUCTION2(Neg);
590
591   DEFINE_INSTRUCTION(Slt);
592   DEFINE_INSTRUCTION(Sltu);
593
594   // MIPS32 R2 instruction macro.
595   DEFINE_INSTRUCTION(Ror);
596
597 #undef DEFINE_INSTRUCTION
598 #undef DEFINE_INSTRUCTION2
599
600   void Pref(int32_t hint, const MemOperand& rs);
601
602
603   // ---------------------------------------------------------------------------
604   // Pseudo-instructions.
605
606   void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
607
608   void Ulw(Register rd, const MemOperand& rs);
609   void Usw(Register rd, const MemOperand& rs);
610
611   // Load int32 in the rd register.
612   void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
613   inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
614     li(rd, Operand(j), mode);
615   }
616   void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
617
618   // Push multiple registers on the stack.
619   // Registers are saved in numerical order, with higher numbered registers
620   // saved in higher memory addresses.
621   void MultiPush(RegList regs);
622   void MultiPushReversed(RegList regs);
623
624   void MultiPushFPU(RegList regs);
625   void MultiPushReversedFPU(RegList regs);
626
627   void push(Register src) {
628     Addu(sp, sp, Operand(-kPointerSize));
629     sw(src, MemOperand(sp, 0));
630   }
631   void Push(Register src) { push(src); }
632
633   // Push a handle.
634   void Push(Handle<Object> handle);
635   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
636
637   // Push two registers. Pushes leftmost register first (to highest address).
638   void Push(Register src1, Register src2) {
639     Subu(sp, sp, Operand(2 * kPointerSize));
640     sw(src1, MemOperand(sp, 1 * kPointerSize));
641     sw(src2, MemOperand(sp, 0 * kPointerSize));
642   }
643
644   // Push three registers. Pushes leftmost register first (to highest address).
645   void Push(Register src1, Register src2, Register src3) {
646     Subu(sp, sp, Operand(3 * kPointerSize));
647     sw(src1, MemOperand(sp, 2 * kPointerSize));
648     sw(src2, MemOperand(sp, 1 * kPointerSize));
649     sw(src3, MemOperand(sp, 0 * kPointerSize));
650   }
651
652   // Push four registers. Pushes leftmost register first (to highest address).
653   void Push(Register src1, Register src2, Register src3, Register src4) {
654     Subu(sp, sp, Operand(4 * kPointerSize));
655     sw(src1, MemOperand(sp, 3 * kPointerSize));
656     sw(src2, MemOperand(sp, 2 * kPointerSize));
657     sw(src3, MemOperand(sp, 1 * kPointerSize));
658     sw(src4, MemOperand(sp, 0 * kPointerSize));
659   }
660
661   void Push(Register src, Condition cond, Register tst1, Register tst2) {
662     // Since we don't have conditional execution we use a Branch.
663     Branch(3, cond, tst1, Operand(tst2));
664     Subu(sp, sp, Operand(kPointerSize));
665     sw(src, MemOperand(sp, 0));
666   }
667
668   // Pops multiple values from the stack and load them in the
669   // registers specified in regs. Pop order is the opposite as in MultiPush.
670   void MultiPop(RegList regs);
671   void MultiPopReversed(RegList regs);
672
673   void MultiPopFPU(RegList regs);
674   void MultiPopReversedFPU(RegList regs);
675
676   void pop(Register dst) {
677     lw(dst, MemOperand(sp, 0));
678     Addu(sp, sp, Operand(kPointerSize));
679   }
680   void Pop(Register dst) { pop(dst); }
681
682   // Pop two registers. Pops rightmost register first (from lower address).
683   void Pop(Register src1, Register src2) {
684     ASSERT(!src1.is(src2));
685     lw(src2, MemOperand(sp, 0 * kPointerSize));
686     lw(src1, MemOperand(sp, 1 * kPointerSize));
687     Addu(sp, sp, 2 * kPointerSize);
688   }
689
690   // Pop three registers. Pops rightmost register first (from lower address).
691   void Pop(Register src1, Register src2, Register src3) {
692     lw(src3, MemOperand(sp, 0 * kPointerSize));
693     lw(src2, MemOperand(sp, 1 * kPointerSize));
694     lw(src1, MemOperand(sp, 2 * kPointerSize));
695     Addu(sp, sp, 3 * kPointerSize);
696   }
697
698   void Pop(uint32_t count = 1) {
699     Addu(sp, sp, Operand(count * kPointerSize));
700   }
701
702   // Push and pop the registers that can hold pointers, as defined by the
703   // RegList constant kSafepointSavedRegisters.
704   void PushSafepointRegisters();
705   void PopSafepointRegisters();
706   void PushSafepointRegistersAndDoubles();
707   void PopSafepointRegistersAndDoubles();
708   // Store value in register src in the safepoint stack slot for
709   // register dst.
710   void StoreToSafepointRegisterSlot(Register src, Register dst);
711   void StoreToSafepointRegistersAndDoublesSlot(Register src, Register dst);
712   // Load the value of the src register from its safepoint stack slot
713   // into register dst.
714   void LoadFromSafepointRegisterSlot(Register dst, Register src);
715
716   // Flush the I-cache from asm code. You should use CPU::FlushICache from C.
717   // Does not handle errors.
718   void FlushICache(Register address, unsigned instructions);
719
720   // MIPS32 R2 instruction macro.
721   void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
722   void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
723
724   // ---------------------------------------------------------------------------
725   // FPU macros. These do not handle special cases like NaN or +- inf.
726
727   // Convert unsigned word to double.
728   void Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch);
729   void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
730
731   // Convert double to unsigned word.
732   void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
733   void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
734
735   void Trunc_w_d(FPURegister fd, FPURegister fs);
736   void Round_w_d(FPURegister fd, FPURegister fs);
737   void Floor_w_d(FPURegister fd, FPURegister fs);
738   void Ceil_w_d(FPURegister fd, FPURegister fs);
739   // Wrapper function for the different cmp/branch types.
740   void BranchF(Label* target,
741                Label* nan,
742                Condition cc,
743                FPURegister cmp1,
744                FPURegister cmp2,
745                BranchDelaySlot bd = PROTECT);
746
747   // Alternate (inline) version for better readability with USE_DELAY_SLOT.
748   inline void BranchF(BranchDelaySlot bd,
749                       Label* target,
750                       Label* nan,
751                       Condition cc,
752                       FPURegister cmp1,
753                       FPURegister cmp2) {
754     BranchF(target, nan, cc, cmp1, cmp2, bd);
755   }
756
757   // Truncates a double using a specific rounding mode, and writes the value
758   // to the result register.
759   // The except_flag will contain any exceptions caused by the instruction.
760   // If check_inexact is kDontCheckForInexactConversion, then the inexact
761   // exception is masked.
762   void EmitFPUTruncate(FPURoundingMode rounding_mode,
763                        Register result,
764                        DoubleRegister double_input,
765                        Register scratch,
766                        DoubleRegister double_scratch,
767                        Register except_flag,
768                        CheckForInexactConversion check_inexact
769                            = kDontCheckForInexactConversion);
770
771   // Performs a truncating conversion of a floating point number as used by
772   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
773   // succeeds, otherwise falls through if result is saturated. On return
774   // 'result' either holds answer, or is clobbered on fall through.
775   //
776   // Only public for the test code in test-code-stubs-arm.cc.
777   void TryInlineTruncateDoubleToI(Register result,
778                                   DoubleRegister input,
779                                   Label* done);
780
781   // Performs a truncating conversion of a floating point number as used by
782   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
783   // Exits with 'result' holding the answer.
784   void TruncateDoubleToI(Register result, DoubleRegister double_input);
785
786   // Performs a truncating conversion of a heap number as used by
787   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
788   // must be different registers. Exits with 'result' holding the answer.
789   void TruncateHeapNumberToI(Register result, Register object);
790
791   // Converts the smi or heap number in object to an int32 using the rules
792   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
793   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
794   // different registers.
795   void TruncateNumberToI(Register object,
796                          Register result,
797                          Register heap_number_map,
798                          Register scratch,
799                          Label* not_int32);
800
801   // Loads the number from object into dst register.
802   // If |object| is neither smi nor heap number, |not_number| is jumped to
803   // with |object| still intact.
804   void LoadNumber(Register object,
805                   FPURegister dst,
806                   Register heap_number_map,
807                   Register scratch,
808                   Label* not_number);
809
810   // Loads the number from object into double_dst in the double format.
811   // Control will jump to not_int32 if the value cannot be exactly represented
812   // by a 32-bit integer.
813   // Floating point value in the 32-bit integer range that are not exact integer
814   // won't be loaded.
815   void LoadNumberAsInt32Double(Register object,
816                                DoubleRegister double_dst,
817                                Register heap_number_map,
818                                Register scratch1,
819                                Register scratch2,
820                                FPURegister double_scratch,
821                                Label* not_int32);
822
823   // Loads the number from object into dst as a 32-bit integer.
824   // Control will jump to not_int32 if the object cannot be exactly represented
825   // by a 32-bit integer.
826   // Floating point value in the 32-bit integer range that are not exact integer
827   // won't be converted.
828   void LoadNumberAsInt32(Register object,
829                          Register dst,
830                          Register heap_number_map,
831                          Register scratch1,
832                          Register scratch2,
833                          FPURegister double_scratch0,
834                          FPURegister double_scratch1,
835                          Label* not_int32);
836
837   // Enter exit frame.
838   // argc - argument count to be dropped by LeaveExitFrame.
839   // save_doubles - saves FPU registers on stack, currently disabled.
840   // stack_space - extra stack space.
841   void EnterExitFrame(bool save_doubles,
842                       int stack_space = 0);
843
844   // Leave the current exit frame.
845   void LeaveExitFrame(bool save_doubles,
846                       Register arg_count,
847                       bool restore_context,
848                       bool do_return = NO_EMIT_RETURN);
849
850   // Get the actual activation frame alignment for target environment.
851   static int ActivationFrameAlignment();
852
853   // Make sure the stack is aligned. Only emits code in debug mode.
854   void AssertStackIsAligned();
855
856   void LoadContext(Register dst, int context_chain_length);
857
858   // Conditionally load the cached Array transitioned map of type
859   // transitioned_kind from the native context if the map in register
860   // map_in_out is the cached Array map in the native context of
861   // expected_kind.
862   void LoadTransitionedArrayMapConditional(
863       ElementsKind expected_kind,
864       ElementsKind transitioned_kind,
865       Register map_in_out,
866       Register scratch,
867       Label* no_map_match);
868
869   void LoadGlobalFunction(int index, Register function);
870
871   // Load the initial map from the global function. The registers
872   // function and map can be the same, function is then overwritten.
873   void LoadGlobalFunctionInitialMap(Register function,
874                                     Register map,
875                                     Register scratch);
876
877   void InitializeRootRegister() {
878     ExternalReference roots_array_start =
879         ExternalReference::roots_array_start(isolate());
880     li(kRootRegister, Operand(roots_array_start));
881   }
882
883   // -------------------------------------------------------------------------
884   // JavaScript invokes.
885
886   // Invoke the JavaScript function code by either calling or jumping.
887   void InvokeCode(Register code,
888                   const ParameterCount& expected,
889                   const ParameterCount& actual,
890                   InvokeFlag flag,
891                   const CallWrapper& call_wrapper);
892
893   // Invoke the JavaScript function in the given register. Changes the
894   // current context to the context in the function before invoking.
895   void InvokeFunction(Register function,
896                       const ParameterCount& actual,
897                       InvokeFlag flag,
898                       const CallWrapper& call_wrapper);
899
900   void InvokeFunction(Register function,
901                       const ParameterCount& expected,
902                       const ParameterCount& actual,
903                       InvokeFlag flag,
904                       const CallWrapper& call_wrapper);
905
906   void InvokeFunction(Handle<JSFunction> function,
907                       const ParameterCount& expected,
908                       const ParameterCount& actual,
909                       InvokeFlag flag,
910                       const CallWrapper& call_wrapper);
911
912
913   void IsObjectJSObjectType(Register heap_object,
914                             Register map,
915                             Register scratch,
916                             Label* fail);
917
918   void IsInstanceJSObjectType(Register map,
919                               Register scratch,
920                               Label* fail);
921
922   void IsObjectJSStringType(Register object,
923                             Register scratch,
924                             Label* fail);
925
926   void IsObjectNameType(Register object,
927                         Register scratch,
928                         Label* fail);
929
930   // -------------------------------------------------------------------------
931   // Debugger Support.
932
933   void DebugBreak();
934
935   // -------------------------------------------------------------------------
936   // Exception handling.
937
938   // Push a new try handler and link into try handler chain.
939   void PushTryHandler(StackHandler::Kind kind, int handler_index);
940
941   // Unlink the stack handler on top of the stack from the try handler chain.
942   // Must preserve the result register.
943   void PopTryHandler();
944
945   // Passes thrown value to the handler of top of the try handler chain.
946   void Throw(Register value);
947
948   // Propagates an uncatchable exception to the top of the current JS stack's
949   // handler chain.
950   void ThrowUncatchable(Register value);
951
952   // Copies a fixed number of fields of heap objects from src to dst.
953   void CopyFields(Register dst, Register src, RegList temps, int field_count);
954
955   // Copies a number of bytes from src to dst. All registers are clobbered. On
956   // exit src and dst will point to the place just after where the last byte was
957   // read or written and length will be zero.
958   void CopyBytes(Register src,
959                  Register dst,
960                  Register length,
961                  Register scratch);
962
963   // Initialize fields with filler values.  Fields starting at |start_offset|
964   // not including end_offset are overwritten with the value in |filler|.  At
965   // the end the loop, |start_offset| takes the value of |end_offset|.
966   void InitializeFieldsWithFiller(Register start_offset,
967                                   Register end_offset,
968                                   Register filler);
969
970   // -------------------------------------------------------------------------
971   // Support functions.
972
973   // Try to get function prototype of a function and puts the value in
974   // the result register. Checks that the function really is a
975   // function and jumps to the miss label if the fast checks fail. The
976   // function register will be untouched; the other registers may be
977   // clobbered.
978   void TryGetFunctionPrototype(Register function,
979                                Register result,
980                                Register scratch,
981                                Label* miss,
982                                bool miss_on_bound_function = false);
983
984   void GetObjectType(Register function,
985                      Register map,
986                      Register type_reg);
987
988   // Check if a map for a JSObject indicates that the object has fast elements.
989   // Jump to the specified label if it does not.
990   void CheckFastElements(Register map,
991                          Register scratch,
992                          Label* fail);
993
994   // Check if a map for a JSObject indicates that the object can have both smi
995   // and HeapObject elements.  Jump to the specified label if it does not.
996   void CheckFastObjectElements(Register map,
997                                Register scratch,
998                                Label* fail);
999
1000   // Check if a map for a JSObject indicates that the object has fast smi only
1001   // elements.  Jump to the specified label if it does not.
1002   void CheckFastSmiElements(Register map,
1003                             Register scratch,
1004                             Label* fail);
1005
1006   // Check to see if maybe_number can be stored as a double in
1007   // FastDoubleElements. If it can, store it at the index specified by key in
1008   // the FastDoubleElements array elements. Otherwise jump to fail.
1009   void StoreNumberToDoubleElements(Register value_reg,
1010                                    Register key_reg,
1011                                    Register elements_reg,
1012                                    Register scratch1,
1013                                    Register scratch2,
1014                                    Register scratch3,
1015                                    Label* fail,
1016                                    int elements_offset = 0);
1017
1018   // Compare an object's map with the specified map and its transitioned
1019   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1020   // "branch_to" if the result of the comparison is "cond". If multiple map
1021   // compares are required, the compare sequences branches to early_success.
1022   void CompareMapAndBranch(Register obj,
1023                            Register scratch,
1024                            Handle<Map> map,
1025                            Label* early_success,
1026                            Condition cond,
1027                            Label* branch_to);
1028
1029   // As above, but the map of the object is already loaded into the register
1030   // which is preserved by the code generated.
1031   void CompareMapAndBranch(Register obj_map,
1032                            Handle<Map> map,
1033                            Label* early_success,
1034                            Condition cond,
1035                            Label* branch_to);
1036
1037   // Check if the map of an object is equal to a specified map and branch to
1038   // label if not. Skip the smi check if not required (object is known to be a
1039   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1040   // against maps that are ElementsKind transition maps of the specificed map.
1041   void CheckMap(Register obj,
1042                 Register scratch,
1043                 Handle<Map> map,
1044                 Label* fail,
1045                 SmiCheckType smi_check_type);
1046
1047
1048   void CheckMap(Register obj,
1049                 Register scratch,
1050                 Heap::RootListIndex index,
1051                 Label* fail,
1052                 SmiCheckType smi_check_type);
1053
1054   // Check if the map of an object is equal to a specified map and branch to a
1055   // specified target if equal. Skip the smi check if not required (object is
1056   // known to be a heap object)
1057   void DispatchMap(Register obj,
1058                    Register scratch,
1059                    Handle<Map> map,
1060                    Handle<Code> success,
1061                    SmiCheckType smi_check_type);
1062
1063
1064   // Load and check the instance type of an object for being a string.
1065   // Loads the type into the second argument register.
1066   // Returns a condition that will be enabled if the object was a string.
1067   Condition IsObjectStringType(Register obj,
1068                                Register type,
1069                                Register result) {
1070     lw(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1071     lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1072     And(type, type, Operand(kIsNotStringMask));
1073     ASSERT_EQ(0, kStringTag);
1074     return eq;
1075   }
1076
1077
1078   // Picks out an array index from the hash field.
1079   // Register use:
1080   //   hash - holds the index's hash. Clobbered.
1081   //   index - holds the overwritten index on exit.
1082   void IndexFromHash(Register hash, Register index);
1083
1084   // Get the number of least significant bits from a register.
1085   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1086   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1087
1088   // Load the value of a number object into a FPU double register. If the
1089   // object is not a number a jump to the label not_number is performed
1090   // and the FPU double register is unchanged.
1091   void ObjectToDoubleFPURegister(
1092       Register object,
1093       FPURegister value,
1094       Register scratch1,
1095       Register scratch2,
1096       Register heap_number_map,
1097       Label* not_number,
1098       ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1099
1100   // Load the value of a smi object into a FPU double register. The register
1101   // scratch1 can be the same register as smi in which case smi will hold the
1102   // untagged value afterwards.
1103   void SmiToDoubleFPURegister(Register smi,
1104                               FPURegister value,
1105                               Register scratch1);
1106
1107   // -------------------------------------------------------------------------
1108   // Overflow handling functions.
1109   // Usage: first call the appropriate arithmetic function, then call one of the
1110   // jump functions with the overflow_dst register as the second parameter.
1111
1112   void AdduAndCheckForOverflow(Register dst,
1113                                Register left,
1114                                Register right,
1115                                Register overflow_dst,
1116                                Register scratch = at);
1117
1118   void SubuAndCheckForOverflow(Register dst,
1119                                Register left,
1120                                Register right,
1121                                Register overflow_dst,
1122                                Register scratch = at);
1123
1124   void BranchOnOverflow(Label* label,
1125                         Register overflow_check,
1126                         BranchDelaySlot bd = PROTECT) {
1127     Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1128   }
1129
1130   void BranchOnNoOverflow(Label* label,
1131                           Register overflow_check,
1132                           BranchDelaySlot bd = PROTECT) {
1133     Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1134   }
1135
1136   void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1137     Ret(lt, overflow_check, Operand(zero_reg), bd);
1138   }
1139
1140   void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1141     Ret(ge, overflow_check, Operand(zero_reg), bd);
1142   }
1143
1144   // -------------------------------------------------------------------------
1145   // Runtime calls.
1146
1147   // See comments at the beginning of CEntryStub::Generate.
1148   inline void PrepareCEntryArgs(int num_args) {
1149     li(s0, num_args);
1150     li(s1, (num_args - 1) * kPointerSize);
1151   }
1152
1153   inline void PrepareCEntryFunction(const ExternalReference& ref) {
1154     li(s2, Operand(ref));
1155   }
1156
1157 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1158 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1159
1160   // Call a code stub.
1161   void CallStub(CodeStub* stub,
1162                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1163                 COND_ARGS);
1164
1165   // Tail call a code stub (jump).
1166   void TailCallStub(CodeStub* stub, COND_ARGS);
1167
1168 #undef COND_ARGS
1169
1170   void CallJSExitStub(CodeStub* stub);
1171
1172   // Call a runtime routine.
1173   void CallRuntime(const Runtime::Function* f,
1174                    int num_arguments,
1175                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1176   void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1177     const Runtime::Function* function = Runtime::FunctionForId(id);
1178     CallRuntime(function, function->nargs, kSaveFPRegs);
1179   }
1180
1181   // Convenience function: Same as above, but takes the fid instead.
1182   void CallRuntime(Runtime::FunctionId id,
1183                    int num_arguments,
1184                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1185     CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1186   }
1187
1188   // Convenience function: call an external reference.
1189   void CallExternalReference(const ExternalReference& ext,
1190                              int num_arguments,
1191                              BranchDelaySlot bd = PROTECT);
1192
1193   // Tail call of a runtime routine (jump).
1194   // Like JumpToExternalReference, but also takes care of passing the number
1195   // of parameters.
1196   void TailCallExternalReference(const ExternalReference& ext,
1197                                  int num_arguments,
1198                                  int result_size);
1199
1200   // Convenience function: tail call a runtime routine (jump).
1201   void TailCallRuntime(Runtime::FunctionId fid,
1202                        int num_arguments,
1203                        int result_size);
1204
1205   int CalculateStackPassedWords(int num_reg_arguments,
1206                                 int num_double_arguments);
1207
1208   // Before calling a C-function from generated code, align arguments on stack
1209   // and add space for the four mips argument slots.
1210   // After aligning the frame, non-register arguments must be stored on the
1211   // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1212   // The argument count assumes all arguments are word sized.
1213   // Some compilers/platforms require the stack to be aligned when calling
1214   // C++ code.
1215   // Needs a scratch register to do some arithmetic. This register will be
1216   // trashed.
1217   void PrepareCallCFunction(int num_reg_arguments,
1218                             int num_double_registers,
1219                             Register scratch);
1220   void PrepareCallCFunction(int num_reg_arguments,
1221                             Register scratch);
1222
1223   // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1224   // Arguments 5..n are stored to stack using following:
1225   //  sw(t0, CFunctionArgumentOperand(5));
1226
1227   // Calls a C function and cleans up the space for arguments allocated
1228   // by PrepareCallCFunction. The called function is not allowed to trigger a
1229   // garbage collection, since that might move the code and invalidate the
1230   // return address (unless this is somehow accounted for by the called
1231   // function).
1232   void CallCFunction(ExternalReference function, int num_arguments);
1233   void CallCFunction(Register function, int num_arguments);
1234   void CallCFunction(ExternalReference function,
1235                      int num_reg_arguments,
1236                      int num_double_arguments);
1237   void CallCFunction(Register function,
1238                      int num_reg_arguments,
1239                      int num_double_arguments);
1240   void MovFromFloatResult(DoubleRegister dst);
1241   void MovFromFloatParameter(DoubleRegister dst);
1242
1243   // There are two ways of passing double arguments on MIPS, depending on
1244   // whether soft or hard floating point ABI is used. These functions
1245   // abstract parameter passing for the three different ways we call
1246   // C functions from generated code.
1247   void MovToFloatParameter(DoubleRegister src);
1248   void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1249   void MovToFloatResult(DoubleRegister src);
1250
1251   // Calls an API function.  Allocates HandleScope, extracts returned value
1252   // from handle and propagates exceptions.  Restores context.  stack_space
1253   // - space to be unwound on exit (includes the call JS arguments space and
1254   // the additional space allocated for the fast call).
1255   void CallApiFunctionAndReturn(Register function_address,
1256                                 ExternalReference thunk_ref,
1257                                 int stack_space,
1258                                 MemOperand return_value_operand,
1259                                 MemOperand* context_restore_operand);
1260
1261   // Jump to the builtin routine.
1262   void JumpToExternalReference(const ExternalReference& builtin,
1263                                BranchDelaySlot bd = PROTECT);
1264
1265   // Invoke specified builtin JavaScript function. Adds an entry to
1266   // the unresolved list if the name does not resolve.
1267   void InvokeBuiltin(Builtins::JavaScript id,
1268                      InvokeFlag flag,
1269                      const CallWrapper& call_wrapper = NullCallWrapper());
1270
1271   // Store the code object for the given builtin in the target register and
1272   // setup the function in a1.
1273   void GetBuiltinEntry(Register target, Builtins::JavaScript id);
1274
1275   // Store the function for the given builtin in the target register.
1276   void GetBuiltinFunction(Register target, Builtins::JavaScript id);
1277
1278   struct Unresolved {
1279     int pc;
1280     uint32_t flags;  // See Bootstrapper::FixupFlags decoders/encoders.
1281     const char* name;
1282   };
1283
1284   Handle<Object> CodeObject() {
1285     ASSERT(!code_object_.is_null());
1286     return code_object_;
1287   }
1288
1289   // Emit code for a truncating division by a constant. The dividend register is
1290   // unchanged and at gets clobbered. Dividend and result must be different.
1291   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1292
1293   // -------------------------------------------------------------------------
1294   // StatsCounter support.
1295
1296   void SetCounter(StatsCounter* counter, int value,
1297                   Register scratch1, Register scratch2);
1298   void IncrementCounter(StatsCounter* counter, int value,
1299                         Register scratch1, Register scratch2);
1300   void DecrementCounter(StatsCounter* counter, int value,
1301                         Register scratch1, Register scratch2);
1302
1303
1304   // -------------------------------------------------------------------------
1305   // Debugging.
1306
1307   // Calls Abort(msg) if the condition cc is not satisfied.
1308   // Use --debug_code to enable.
1309   void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1310   void AssertFastElements(Register elements);
1311
1312   // Like Assert(), but always enabled.
1313   void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1314
1315   // Print a message to stdout and abort execution.
1316   void Abort(BailoutReason msg);
1317
1318   // Verify restrictions about code generated in stubs.
1319   void set_generating_stub(bool value) { generating_stub_ = value; }
1320   bool generating_stub() { return generating_stub_; }
1321   void set_has_frame(bool value) { has_frame_ = value; }
1322   bool has_frame() { return has_frame_; }
1323   inline bool AllowThisStubCall(CodeStub* stub);
1324
1325   // ---------------------------------------------------------------------------
1326   // Number utilities.
1327
1328   // Check whether the value of reg is a power of two and not zero. If not
1329   // control continues at the label not_power_of_two. If reg is a power of two
1330   // the register scratch contains the value of (reg - 1) when control falls
1331   // through.
1332   void JumpIfNotPowerOfTwoOrZero(Register reg,
1333                                  Register scratch,
1334                                  Label* not_power_of_two_or_zero);
1335
1336   // -------------------------------------------------------------------------
1337   // Smi utilities.
1338
1339   void SmiTag(Register reg) {
1340     Addu(reg, reg, reg);
1341   }
1342
1343   // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1344   void SmiTagCheckOverflow(Register reg, Register overflow);
1345   void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1346
1347   void SmiTag(Register dst, Register src) {
1348     Addu(dst, src, src);
1349   }
1350
1351   // Try to convert int32 to smi. If the value is to large, preserve
1352   // the original value and jump to not_a_smi. Destroys scratch and
1353   // sets flags.
1354   void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1355     TrySmiTag(reg, reg, scratch, not_a_smi);
1356   }
1357   void TrySmiTag(Register dst,
1358                  Register src,
1359                  Register scratch,
1360                  Label* not_a_smi) {
1361     SmiTagCheckOverflow(at, src, scratch);
1362     BranchOnOverflow(not_a_smi, scratch);
1363     mov(dst, at);
1364   }
1365
1366   void SmiUntag(Register reg) {
1367     sra(reg, reg, kSmiTagSize);
1368   }
1369
1370   void SmiUntag(Register dst, Register src) {
1371     sra(dst, src, kSmiTagSize);
1372   }
1373
1374   // Test if the register contains a smi.
1375   inline void SmiTst(Register value, Register scratch) {
1376     And(scratch, value, Operand(kSmiTagMask));
1377   }
1378   inline void NonNegativeSmiTst(Register value, Register scratch) {
1379     And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1380   }
1381
1382   // Untag the source value into destination and jump if source is a smi.
1383   // Souce and destination can be the same register.
1384   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1385
1386   // Untag the source value into destination and jump if source is not a smi.
1387   // Souce and destination can be the same register.
1388   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1389
1390   // Jump the register contains a smi.
1391   void JumpIfSmi(Register value,
1392                  Label* smi_label,
1393                  Register scratch = at,
1394                  BranchDelaySlot bd = PROTECT);
1395
1396   // Jump if the register contains a non-smi.
1397   void JumpIfNotSmi(Register value,
1398                     Label* not_smi_label,
1399                     Register scratch = at,
1400                     BranchDelaySlot bd = PROTECT);
1401
1402   // Jump if either of the registers contain a non-smi.
1403   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1404   // Jump if either of the registers contain a smi.
1405   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1406
1407   // Abort execution if argument is a smi, enabled via --debug-code.
1408   void AssertNotSmi(Register object);
1409   void AssertSmi(Register object);
1410
1411   // Abort execution if argument is not a string, enabled via --debug-code.
1412   void AssertString(Register object);
1413
1414   // Abort execution if argument is not a name, enabled via --debug-code.
1415   void AssertName(Register object);
1416
1417   // Abort execution if argument is not undefined or an AllocationSite, enabled
1418   // via --debug-code.
1419   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1420
1421   // Abort execution if reg is not the root value with the given index,
1422   // enabled via --debug-code.
1423   void AssertIsRoot(Register reg, Heap::RootListIndex index);
1424
1425   // ---------------------------------------------------------------------------
1426   // HeapNumber utilities.
1427
1428   void JumpIfNotHeapNumber(Register object,
1429                            Register heap_number_map,
1430                            Register scratch,
1431                            Label* on_not_heap_number);
1432
1433   // -------------------------------------------------------------------------
1434   // String utilities.
1435
1436   // Generate code to do a lookup in the number string cache. If the number in
1437   // the register object is found in the cache the generated code falls through
1438   // with the result in the result register. The object and the result register
1439   // can be the same. If the number is not found in the cache the code jumps to
1440   // the label not_found with only the content of register object unchanged.
1441   void LookupNumberStringCache(Register object,
1442                                Register result,
1443                                Register scratch1,
1444                                Register scratch2,
1445                                Register scratch3,
1446                                Label* not_found);
1447
1448   // Checks if both instance types are sequential ASCII strings and jumps to
1449   // label if either is not.
1450   void JumpIfBothInstanceTypesAreNotSequentialAscii(
1451       Register first_object_instance_type,
1452       Register second_object_instance_type,
1453       Register scratch1,
1454       Register scratch2,
1455       Label* failure);
1456
1457   // Check if instance type is sequential ASCII string and jump to label if
1458   // it is not.
1459   void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
1460                                               Register scratch,
1461                                               Label* failure);
1462
1463   void JumpIfNotUniqueName(Register reg, Label* not_unique_name);
1464
1465   void EmitSeqStringSetCharCheck(Register string,
1466                                  Register index,
1467                                  Register value,
1468                                  Register scratch,
1469                                  uint32_t encoding_mask);
1470
1471   // Test that both first and second are sequential ASCII strings.
1472   // Assume that they are non-smis.
1473   void JumpIfNonSmisNotBothSequentialAsciiStrings(Register first,
1474                                                   Register second,
1475                                                   Register scratch1,
1476                                                   Register scratch2,
1477                                                   Label* failure);
1478
1479   // Test that both first and second are sequential ASCII strings.
1480   // Check that they are non-smis.
1481   void JumpIfNotBothSequentialAsciiStrings(Register first,
1482                                            Register second,
1483                                            Register scratch1,
1484                                            Register scratch2,
1485                                            Label* failure);
1486
1487   void ClampUint8(Register output_reg, Register input_reg);
1488
1489   void ClampDoubleToUint8(Register result_reg,
1490                           DoubleRegister input_reg,
1491                           DoubleRegister temp_double_reg);
1492
1493
1494   void LoadInstanceDescriptors(Register map, Register descriptors);
1495   void EnumLength(Register dst, Register map);
1496   void NumberOfOwnDescriptors(Register dst, Register map);
1497
1498   template<typename Field>
1499   void DecodeField(Register dst, Register src) {
1500     Ext(dst, src, Field::kShift, Field::kSize);
1501   }
1502
1503   template<typename Field>
1504   void DecodeField(Register reg) {
1505     DecodeField<Field>(reg, reg);
1506   }
1507
1508   template<typename Field>
1509   void DecodeFieldToSmi(Register dst, Register src) {
1510     static const int shift = Field::kShift;
1511     static const int mask = Field::kMask >> shift << kSmiTagSize;
1512     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1513     STATIC_ASSERT(kSmiTag == 0);
1514     if (shift < kSmiTagSize) {
1515       sll(dst, src, kSmiTagSize - shift);
1516       And(dst, dst, Operand(mask));
1517     } else if (shift > kSmiTagSize) {
1518       srl(dst, src, shift - kSmiTagSize);
1519       And(dst, dst, Operand(mask));
1520     } else {
1521       And(dst, src, Operand(mask));
1522     }
1523   }
1524
1525   template<typename Field>
1526   void DecodeFieldToSmi(Register reg) {
1527     DecodeField<Field>(reg, reg);
1528   }
1529
1530   // Generates function and stub prologue code.
1531   void StubPrologue();
1532   void Prologue(bool code_pre_aging);
1533
1534   // Activation support.
1535   void EnterFrame(StackFrame::Type type);
1536   void LeaveFrame(StackFrame::Type type);
1537
1538   // Patch the relocated value (lui/ori pair).
1539   void PatchRelocatedValue(Register li_location,
1540                            Register scratch,
1541                            Register new_value);
1542   // Get the relocatad value (loaded data) from the lui/ori pair.
1543   void GetRelocatedValue(Register li_location,
1544                          Register value,
1545                          Register scratch);
1546
1547   // Expects object in a0 and returns map with validated enum cache
1548   // in a0.  Assumes that any other register can be used as a scratch.
1549   void CheckEnumCache(Register null_value, Label* call_runtime);
1550
1551   // AllocationMemento support. Arrays may have an associated
1552   // AllocationMemento object that can be checked for in order to pretransition
1553   // to another type.
1554   // On entry, receiver_reg should point to the array object.
1555   // scratch_reg gets clobbered.
1556   // If allocation info is present, jump to allocation_memento_present.
1557   void TestJSArrayForAllocationMemento(
1558       Register receiver_reg,
1559       Register scratch_reg,
1560       Label* no_memento_found,
1561       Condition cond = al,
1562       Label* allocation_memento_present = NULL);
1563
1564   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1565                                          Register scratch_reg,
1566                                          Label* memento_found) {
1567     Label no_memento_found;
1568     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1569                                     &no_memento_found, eq, memento_found);
1570     bind(&no_memento_found);
1571   }
1572
1573   // Jumps to found label if a prototype map has dictionary elements.
1574   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1575                                         Register scratch1, Label* found);
1576
1577  private:
1578   void CallCFunctionHelper(Register function,
1579                            int num_reg_arguments,
1580                            int num_double_arguments);
1581
1582   void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
1583   void BranchAndLinkShort(int16_t offset, Condition cond, Register rs,
1584                           const Operand& rt,
1585                           BranchDelaySlot bdslot = PROTECT);
1586   void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1587   void BranchAndLinkShort(Label* L, Condition cond, Register rs,
1588                           const Operand& rt,
1589                           BranchDelaySlot bdslot = PROTECT);
1590   void J(Label* L, BranchDelaySlot bdslot);
1591   void Jr(Label* L, BranchDelaySlot bdslot);
1592   void Jalr(Label* L, BranchDelaySlot bdslot);
1593
1594   // Helper functions for generating invokes.
1595   void InvokePrologue(const ParameterCount& expected,
1596                       const ParameterCount& actual,
1597                       Handle<Code> code_constant,
1598                       Register code_reg,
1599                       Label* done,
1600                       bool* definitely_mismatches,
1601                       InvokeFlag flag,
1602                       const CallWrapper& call_wrapper);
1603
1604   // Get the code for the given builtin. Returns if able to resolve
1605   // the function in the 'resolved' flag.
1606   Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
1607
1608   void InitializeNewString(Register string,
1609                            Register length,
1610                            Heap::RootListIndex map_index,
1611                            Register scratch1,
1612                            Register scratch2);
1613
1614   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1615   void InNewSpace(Register object,
1616                   Register scratch,
1617                   Condition cond,  // eq for new space, ne otherwise.
1618                   Label* branch);
1619
1620   // Helper for finding the mark bits for an address.  Afterwards, the
1621   // bitmap register points at the word with the mark bits and the mask
1622   // the position of the first bit.  Leaves addr_reg unchanged.
1623   inline void GetMarkBits(Register addr_reg,
1624                           Register bitmap_reg,
1625                           Register mask_reg);
1626
1627   // Helper for throwing exceptions.  Compute a handler address and jump to
1628   // it.  See the implementation for register usage.
1629   void JumpToHandlerEntry();
1630
1631   // Compute memory operands for safepoint stack slots.
1632   static int SafepointRegisterStackIndex(int reg_code);
1633   MemOperand SafepointRegisterSlot(Register reg);
1634   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1635
1636   bool generating_stub_;
1637   bool has_frame_;
1638   // This handle will be patched with the code object on installation.
1639   Handle<Object> code_object_;
1640
1641   // Needs access to SafepointRegisterStackIndex for compiled frame
1642   // traversal.
1643   friend class StandardFrame;
1644 };
1645
1646
1647 // The code patcher is used to patch (typically) small parts of code e.g. for
1648 // debugging and other types of instrumentation. When using the code patcher
1649 // the exact number of bytes specified must be emitted. It is not legal to emit
1650 // relocation information. If any of these constraints are violated it causes
1651 // an assertion to fail.
1652 class CodePatcher {
1653  public:
1654   enum FlushICache {
1655     FLUSH,
1656     DONT_FLUSH
1657   };
1658
1659   CodePatcher(byte* address,
1660               int instructions,
1661               FlushICache flush_cache = FLUSH);
1662   virtual ~CodePatcher();
1663
1664   // Macro assembler to emit code.
1665   MacroAssembler* masm() { return &masm_; }
1666
1667   // Emit an instruction directly.
1668   void Emit(Instr instr);
1669
1670   // Emit an address directly.
1671   void Emit(Address addr);
1672
1673   // Change the condition part of an instruction leaving the rest of the current
1674   // instruction unchanged.
1675   void ChangeBranchCondition(Condition cond);
1676
1677  private:
1678   byte* address_;  // The address of the code being patched.
1679   int size_;  // Number of bytes of the expected patch size.
1680   MacroAssembler masm_;  // Macro assembler used to generate the code.
1681   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1682 };
1683
1684
1685
1686 #ifdef GENERATED_CODE_COVERAGE
1687 #define CODE_COVERAGE_STRINGIFY(x) #x
1688 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1689 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1690 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
1691 #else
1692 #define ACCESS_MASM(masm) masm->
1693 #endif
1694
1695 } }  // namespace v8::internal
1696
1697 #endif  // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_