Upstream version 8.37.180.0
[platform/framework/web/crosswalk.git] / src / v8 / src / mips / builtins-mips.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5
6
7 #include "src/v8.h"
8
9 #if V8_TARGET_ARCH_MIPS
10
11 #include "src/codegen.h"
12 #include "src/debug.h"
13 #include "src/deoptimizer.h"
14 #include "src/full-codegen.h"
15 #include "src/runtime.h"
16 #include "src/stub-cache.h"
17
18 namespace v8 {
19 namespace internal {
20
21
22 #define __ ACCESS_MASM(masm)
23
24
25 void Builtins::Generate_Adaptor(MacroAssembler* masm,
26                                 CFunctionId id,
27                                 BuiltinExtraArguments extra_args) {
28   // ----------- S t a t e -------------
29   //  -- a0                 : number of arguments excluding receiver
30   //  -- a1                 : called function (only guaranteed when
31   //  --                      extra_args requires it)
32   //  -- cp                 : context
33   //  -- sp[0]              : last argument
34   //  -- ...
35   //  -- sp[4 * (argc - 1)] : first argument
36   //  -- sp[4 * agrc]       : receiver
37   // -----------------------------------
38
39   // Insert extra arguments.
40   int num_extra_args = 0;
41   if (extra_args == NEEDS_CALLED_FUNCTION) {
42     num_extra_args = 1;
43     __ push(a1);
44   } else {
45     ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
46   }
47
48   // JumpToExternalReference expects s0 to contain the number of arguments
49   // including the receiver and the extra arguments.
50   __ Addu(s0, a0, num_extra_args + 1);
51   __ sll(s1, s0, kPointerSizeLog2);
52   __ Subu(s1, s1, kPointerSize);
53   __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
54 }
55
56
57 // Load the built-in InternalArray function from the current context.
58 static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
59                                               Register result) {
60   // Load the native context.
61
62   __ lw(result,
63         MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
64   __ lw(result,
65         FieldMemOperand(result, GlobalObject::kNativeContextOffset));
66   // Load the InternalArray function from the native context.
67   __ lw(result,
68          MemOperand(result,
69                     Context::SlotOffset(
70                         Context::INTERNAL_ARRAY_FUNCTION_INDEX)));
71 }
72
73
74 // Load the built-in Array function from the current context.
75 static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
76   // Load the native context.
77
78   __ lw(result,
79         MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
80   __ lw(result,
81         FieldMemOperand(result, GlobalObject::kNativeContextOffset));
82   // Load the Array function from the native context.
83   __ lw(result,
84         MemOperand(result,
85                    Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
86 }
87
88
89 void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
90   // ----------- S t a t e -------------
91   //  -- a0     : number of arguments
92   //  -- ra     : return address
93   //  -- sp[...]: constructor arguments
94   // -----------------------------------
95   Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
96
97   // Get the InternalArray function.
98   GenerateLoadInternalArrayFunction(masm, a1);
99
100   if (FLAG_debug_code) {
101     // Initial map for the builtin InternalArray functions should be maps.
102     __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
103     __ SmiTst(a2, t0);
104     __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction,
105               t0, Operand(zero_reg));
106     __ GetObjectType(a2, a3, t0);
107     __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction,
108               t0, Operand(MAP_TYPE));
109   }
110
111   // Run the native code for the InternalArray function called as a normal
112   // function.
113   // Tail call a stub.
114   InternalArrayConstructorStub stub(masm->isolate());
115   __ TailCallStub(&stub);
116 }
117
118
119 void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
120   // ----------- S t a t e -------------
121   //  -- a0     : number of arguments
122   //  -- ra     : return address
123   //  -- sp[...]: constructor arguments
124   // -----------------------------------
125   Label generic_array_code;
126
127   // Get the Array function.
128   GenerateLoadArrayFunction(masm, a1);
129
130   if (FLAG_debug_code) {
131     // Initial map for the builtin Array functions should be maps.
132     __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
133     __ SmiTst(a2, t0);
134     __ Assert(ne, kUnexpectedInitialMapForArrayFunction1,
135               t0, Operand(zero_reg));
136     __ GetObjectType(a2, a3, t0);
137     __ Assert(eq, kUnexpectedInitialMapForArrayFunction2,
138               t0, Operand(MAP_TYPE));
139   }
140
141   // Run the native code for the Array function called as a normal function.
142   // Tail call a stub.
143   __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
144   ArrayConstructorStub stub(masm->isolate());
145   __ TailCallStub(&stub);
146 }
147
148
149 void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
150   // ----------- S t a t e -------------
151   //  -- a0                     : number of arguments
152   //  -- a1                     : constructor function
153   //  -- ra                     : return address
154   //  -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
155   //  -- sp[argc * 4]           : receiver
156   // -----------------------------------
157   Counters* counters = masm->isolate()->counters();
158   __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3);
159
160   Register function = a1;
161   if (FLAG_debug_code) {
162     __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2);
163     __ Assert(eq, kUnexpectedStringFunction, function, Operand(a2));
164   }
165
166   // Load the first arguments in a0 and get rid of the rest.
167   Label no_arguments;
168   __ Branch(&no_arguments, eq, a0, Operand(zero_reg));
169   // First args = sp[(argc - 1) * 4].
170   __ Subu(a0, a0, Operand(1));
171   __ sll(a0, a0, kPointerSizeLog2);
172   __ Addu(sp, a0, sp);
173   __ lw(a0, MemOperand(sp));
174   // sp now point to args[0], drop args[0] + receiver.
175   __ Drop(2);
176
177   Register argument = a2;
178   Label not_cached, argument_is_string;
179   __ LookupNumberStringCache(a0,        // Input.
180                              argument,  // Result.
181                              a3,        // Scratch.
182                              t0,        // Scratch.
183                              t1,        // Scratch.
184                              &not_cached);
185   __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, t0);
186   __ bind(&argument_is_string);
187
188   // ----------- S t a t e -------------
189   //  -- a2     : argument converted to string
190   //  -- a1     : constructor function
191   //  -- ra     : return address
192   // -----------------------------------
193
194   Label gc_required;
195   __ Allocate(JSValue::kSize,
196               v0,  // Result.
197               a3,  // Scratch.
198               t0,  // Scratch.
199               &gc_required,
200               TAG_OBJECT);
201
202   // Initialising the String Object.
203   Register map = a3;
204   __ LoadGlobalFunctionInitialMap(function, map, t0);
205   if (FLAG_debug_code) {
206     __ lbu(t0, FieldMemOperand(map, Map::kInstanceSizeOffset));
207     __ Assert(eq, kUnexpectedStringWrapperInstanceSize,
208         t0, Operand(JSValue::kSize >> kPointerSizeLog2));
209     __ lbu(t0, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
210     __ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper,
211         t0, Operand(zero_reg));
212   }
213   __ sw(map, FieldMemOperand(v0, HeapObject::kMapOffset));
214
215   __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
216   __ sw(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
217   __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
218
219   __ sw(argument, FieldMemOperand(v0, JSValue::kValueOffset));
220
221   // Ensure the object is fully initialized.
222   STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
223
224   __ Ret();
225
226   // The argument was not found in the number to string cache. Check
227   // if it's a string already before calling the conversion builtin.
228   Label convert_argument;
229   __ bind(&not_cached);
230   __ JumpIfSmi(a0, &convert_argument);
231
232   // Is it a String?
233   __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
234   __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
235   STATIC_ASSERT(kNotStringTag != 0);
236   __ And(t0, a3, Operand(kIsNotStringMask));
237   __ Branch(&convert_argument, ne, t0, Operand(zero_reg));
238   __ mov(argument, a0);
239   __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0);
240   __ Branch(&argument_is_string);
241
242   // Invoke the conversion builtin and put the result into a2.
243   __ bind(&convert_argument);
244   __ push(function);  // Preserve the function.
245   __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0);
246   {
247     FrameScope scope(masm, StackFrame::INTERNAL);
248     __ push(a0);
249     __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
250   }
251   __ pop(function);
252   __ mov(argument, v0);
253   __ Branch(&argument_is_string);
254
255   // Load the empty string into a2, remove the receiver from the
256   // stack, and jump back to the case where the argument is a string.
257   __ bind(&no_arguments);
258   __ LoadRoot(argument, Heap::kempty_stringRootIndex);
259   __ Drop(1);
260   __ Branch(&argument_is_string);
261
262   // At this point the argument is already a string. Call runtime to
263   // create a string wrapper.
264   __ bind(&gc_required);
265   __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, t0);
266   {
267     FrameScope scope(masm, StackFrame::INTERNAL);
268     __ push(argument);
269     __ CallRuntime(Runtime::kNewStringWrapper, 1);
270   }
271   __ Ret();
272 }
273
274
275 static void CallRuntimePassFunction(
276     MacroAssembler* masm, Runtime::FunctionId function_id) {
277   FrameScope scope(masm, StackFrame::INTERNAL);
278   // Push a copy of the function onto the stack.
279   // Push call kind information and function as parameter to the runtime call.
280   __ Push(a1, a1);
281
282   __ CallRuntime(function_id, 1);
283   // Restore call kind information and receiver.
284   __ Pop(a1);
285 }
286
287
288 static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
289   __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
290   __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset));
291   __ Addu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
292   __ Jump(at);
293 }
294
295
296 static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
297   __ Addu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
298   __ Jump(at);
299 }
300
301
302 void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
303   // Checking whether the queued function is ready for install is optional,
304   // since we come across interrupts and stack checks elsewhere.  However,
305   // not checking may delay installing ready functions, and always checking
306   // would be quite expensive.  A good compromise is to first check against
307   // stack limit as a cue for an interrupt signal.
308   Label ok;
309   __ LoadRoot(t0, Heap::kStackLimitRootIndex);
310   __ Branch(&ok, hs, sp, Operand(t0));
311
312   CallRuntimePassFunction(masm, Runtime::kHiddenTryInstallOptimizedCode);
313   GenerateTailCallToReturnedCode(masm);
314
315   __ bind(&ok);
316   GenerateTailCallToSharedCode(masm);
317 }
318
319
320 static void Generate_JSConstructStubHelper(MacroAssembler* masm,
321                                            bool is_api_function,
322                                            bool create_memento) {
323   // ----------- S t a t e -------------
324   //  -- a0     : number of arguments
325   //  -- a1     : constructor function
326   //  -- a2     : allocation site or undefined
327   //  -- ra     : return address
328   //  -- sp[...]: constructor arguments
329   // -----------------------------------
330
331   // Should never create mementos for api functions.
332   ASSERT(!is_api_function || !create_memento);
333
334   Isolate* isolate = masm->isolate();
335
336   // ----------- S t a t e -------------
337   //  -- a0     : number of arguments
338   //  -- a1     : constructor function
339   //  -- ra     : return address
340   //  -- sp[...]: constructor arguments
341   // -----------------------------------
342
343   // Enter a construct frame.
344   {
345     FrameScope scope(masm, StackFrame::CONSTRUCT);
346
347     if (create_memento) {
348       __ AssertUndefinedOrAllocationSite(a2, a3);
349       __ push(a2);
350     }
351
352     // Preserve the two incoming parameters on the stack.
353     __ sll(a0, a0, kSmiTagSize);  // Tag arguments count.
354     __ MultiPushReversed(a0.bit() | a1.bit());
355
356     Label rt_call, allocated;
357     // Try to allocate the object without transitioning into C code. If any of
358     // the preconditions is not met, the code bails out to the runtime call.
359     if (FLAG_inline_new) {
360       Label undo_allocation;
361       ExternalReference debug_step_in_fp =
362           ExternalReference::debug_step_in_fp_address(isolate);
363       __ li(a2, Operand(debug_step_in_fp));
364       __ lw(a2, MemOperand(a2));
365       __ Branch(&rt_call, ne, a2, Operand(zero_reg));
366
367       // Load the initial map and verify that it is in fact a map.
368       // a1: constructor function
369       __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
370       __ JumpIfSmi(a2, &rt_call);
371       __ GetObjectType(a2, a3, t4);
372       __ Branch(&rt_call, ne, t4, Operand(MAP_TYPE));
373
374       // Check that the constructor is not constructing a JSFunction (see
375       // comments in Runtime_NewObject in runtime.cc). In which case the
376       // initial map's instance type would be JS_FUNCTION_TYPE.
377       // a1: constructor function
378       // a2: initial map
379       __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
380       __ Branch(&rt_call, eq, a3, Operand(JS_FUNCTION_TYPE));
381
382       if (!is_api_function) {
383         Label allocate;
384         MemOperand bit_field3 = FieldMemOperand(a2, Map::kBitField3Offset);
385         // Check if slack tracking is enabled.
386         __ lw(t0, bit_field3);
387         __ DecodeField<Map::ConstructionCount>(t2, t0);
388         __ Branch(&allocate, eq, t2, Operand(JSFunction::kNoSlackTracking));
389         // Decrease generous allocation count.
390         __ Subu(t0, t0, Operand(1 << Map::ConstructionCount::kShift));
391         __ Branch(USE_DELAY_SLOT,
392             &allocate, ne, t2, Operand(JSFunction::kFinishSlackTracking));
393         __ sw(t0, bit_field3);  // In delay slot.
394
395         __ Push(a1, a2, a1);  // a1 = Constructor.
396         __ CallRuntime(Runtime::kHiddenFinalizeInstanceSize, 1);
397
398         __ Pop(a1, a2);
399         // Slack tracking counter is kNoSlackTracking after runtime call.
400         ASSERT(JSFunction::kNoSlackTracking == 0);
401         __ mov(t2, zero_reg);
402
403         __ bind(&allocate);
404       }
405
406       // Now allocate the JSObject on the heap.
407       // a1: constructor function
408       // a2: initial map
409       __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
410       if (create_memento) {
411         __ Addu(a3, a3, Operand(AllocationMemento::kSize / kPointerSize));
412       }
413
414       __ Allocate(a3, t4, t5, t6, &rt_call, SIZE_IN_WORDS);
415
416       // Allocated the JSObject, now initialize the fields. Map is set to
417       // initial map and properties and elements are set to empty fixed array.
418       // a1: constructor function
419       // a2: initial map
420       // a3: object size (not including memento if create_memento)
421       // t4: JSObject (not tagged)
422       __ LoadRoot(t6, Heap::kEmptyFixedArrayRootIndex);
423       __ mov(t5, t4);
424       __ sw(a2, MemOperand(t5, JSObject::kMapOffset));
425       __ sw(t6, MemOperand(t5, JSObject::kPropertiesOffset));
426       __ sw(t6, MemOperand(t5, JSObject::kElementsOffset));
427       __ Addu(t5, t5, Operand(3*kPointerSize));
428       ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
429       ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
430       ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
431
432       // Fill all the in-object properties with appropriate filler.
433       // a1: constructor function
434       // a2: initial map
435       // a3: object size (in words, including memento if create_memento)
436       // t4: JSObject (not tagged)
437       // t5: First in-object property of JSObject (not tagged)
438       // t2: slack tracking counter (non-API function case)
439       ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
440
441       // Use t7 to hold undefined, which is used in several places below.
442       __ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
443
444       if (!is_api_function) {
445         Label no_inobject_slack_tracking;
446
447         // Check if slack tracking is enabled.
448         __ Branch(&no_inobject_slack_tracking,
449             eq, t2, Operand(JSFunction::kNoSlackTracking));
450
451         // Allocate object with a slack.
452         __ lbu(a0, FieldMemOperand(a2, Map::kPreAllocatedPropertyFieldsOffset));
453         __ sll(at, a0, kPointerSizeLog2);
454         __ addu(a0, t5, at);
455         // a0: offset of first field after pre-allocated fields
456         if (FLAG_debug_code) {
457           __ sll(at, a3, kPointerSizeLog2);
458           __ Addu(t6, t4, Operand(at));   // End of object.
459           __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields,
460               a0, Operand(t6));
461         }
462         __ InitializeFieldsWithFiller(t5, a0, t7);
463         // To allow for truncation.
464         __ LoadRoot(t7, Heap::kOnePointerFillerMapRootIndex);
465         // Fill the remaining fields with one pointer filler map.
466
467         __ bind(&no_inobject_slack_tracking);
468       }
469
470       if (create_memento) {
471         __ Subu(a0, a3, Operand(AllocationMemento::kSize / kPointerSize));
472         __ sll(a0, a0, kPointerSizeLog2);
473         __ Addu(a0, t4, Operand(a0));  // End of object.
474         __ InitializeFieldsWithFiller(t5, a0, t7);
475
476         // Fill in memento fields.
477         // t5: points to the allocated but uninitialized memento.
478         __ LoadRoot(t7, Heap::kAllocationMementoMapRootIndex);
479         ASSERT_EQ(0 * kPointerSize, AllocationMemento::kMapOffset);
480         __ sw(t7, MemOperand(t5));
481         __ Addu(t5, t5, kPointerSize);
482         // Load the AllocationSite.
483         __ lw(t7, MemOperand(sp, 2 * kPointerSize));
484         ASSERT_EQ(1 * kPointerSize, AllocationMemento::kAllocationSiteOffset);
485         __ sw(t7, MemOperand(t5));
486         __ Addu(t5, t5, kPointerSize);
487       } else {
488         __ sll(at, a3, kPointerSizeLog2);
489         __ Addu(a0, t4, Operand(at));  // End of object.
490         __ InitializeFieldsWithFiller(t5, a0, t7);
491       }
492
493       // Add the object tag to make the JSObject real, so that we can continue
494       // and jump into the continuation code at any time from now on. Any
495       // failures need to undo the allocation, so that the heap is in a
496       // consistent state and verifiable.
497       __ Addu(t4, t4, Operand(kHeapObjectTag));
498
499       // Check if a non-empty properties array is needed. Continue with
500       // allocated object if not fall through to runtime call if it is.
501       // a1: constructor function
502       // t4: JSObject
503       // t5: start of next object (not tagged)
504       __ lbu(a3, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
505       // The field instance sizes contains both pre-allocated property fields
506       // and in-object properties.
507       __ lbu(t6, FieldMemOperand(a2, Map::kPreAllocatedPropertyFieldsOffset));
508       __ Addu(a3, a3, Operand(t6));
509       __ lbu(t6, FieldMemOperand(a2, Map::kInObjectPropertiesOffset));
510       __ subu(a3, a3, t6);
511
512       // Done if no extra properties are to be allocated.
513       __ Branch(&allocated, eq, a3, Operand(zero_reg));
514       __ Assert(greater_equal, kPropertyAllocationCountFailed,
515           a3, Operand(zero_reg));
516
517       // Scale the number of elements by pointer size and add the header for
518       // FixedArrays to the start of the next object calculation from above.
519       // a1: constructor
520       // a3: number of elements in properties array
521       // t4: JSObject
522       // t5: start of next object
523       __ Addu(a0, a3, Operand(FixedArray::kHeaderSize / kPointerSize));
524       __ Allocate(
525           a0,
526           t5,
527           t6,
528           a2,
529           &undo_allocation,
530           static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
531
532       // Initialize the FixedArray.
533       // a1: constructor
534       // a3: number of elements in properties array (untagged)
535       // t4: JSObject
536       // t5: start of next object
537       __ LoadRoot(t6, Heap::kFixedArrayMapRootIndex);
538       __ mov(a2, t5);
539       __ sw(t6, MemOperand(a2, JSObject::kMapOffset));
540       __ sll(a0, a3, kSmiTagSize);
541       __ sw(a0, MemOperand(a2, FixedArray::kLengthOffset));
542       __ Addu(a2, a2, Operand(2 * kPointerSize));
543
544       ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
545       ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
546
547       // Initialize the fields to undefined.
548       // a1: constructor
549       // a2: First element of FixedArray (not tagged)
550       // a3: number of elements in properties array
551       // t4: JSObject
552       // t5: FixedArray (not tagged)
553       __ sll(t3, a3, kPointerSizeLog2);
554       __ addu(t6, a2, t3);  // End of object.
555       ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
556       { Label loop, entry;
557         if (!is_api_function || create_memento) {
558           __ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
559         } else if (FLAG_debug_code) {
560           __ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
561           __ Assert(eq, kUndefinedValueNotLoaded, t7, Operand(t2));
562         }
563         __ jmp(&entry);
564         __ bind(&loop);
565         __ sw(t7, MemOperand(a2));
566         __ addiu(a2, a2, kPointerSize);
567         __ bind(&entry);
568         __ Branch(&loop, less, a2, Operand(t6));
569       }
570
571       // Store the initialized FixedArray into the properties field of
572       // the JSObject.
573       // a1: constructor function
574       // t4: JSObject
575       // t5: FixedArray (not tagged)
576       __ Addu(t5, t5, Operand(kHeapObjectTag));  // Add the heap tag.
577       __ sw(t5, FieldMemOperand(t4, JSObject::kPropertiesOffset));
578
579       // Continue with JSObject being successfully allocated.
580       // a1: constructor function
581       // a4: JSObject
582       __ jmp(&allocated);
583
584       // Undo the setting of the new top so that the heap is verifiable. For
585       // example, the map's unused properties potentially do not match the
586       // allocated objects unused properties.
587       // t4: JSObject (previous new top)
588       __ bind(&undo_allocation);
589       __ UndoAllocationInNewSpace(t4, t5);
590     }
591
592     // Allocate the new receiver object using the runtime call.
593     // a1: constructor function
594     __ bind(&rt_call);
595     if (create_memento) {
596       // Get the cell or allocation site.
597       __ lw(a2, MemOperand(sp, 2 * kPointerSize));
598       __ push(a2);
599     }
600
601     __ push(a1);  // Argument for Runtime_NewObject.
602     if (create_memento) {
603       __ CallRuntime(Runtime::kHiddenNewObjectWithAllocationSite, 2);
604     } else {
605       __ CallRuntime(Runtime::kHiddenNewObject, 1);
606     }
607     __ mov(t4, v0);
608
609     // If we ended up using the runtime, and we want a memento, then the
610     // runtime call made it for us, and we shouldn't do create count
611     // increment.
612     Label count_incremented;
613     if (create_memento) {
614       __ jmp(&count_incremented);
615     }
616
617     // Receiver for constructor call allocated.
618     // t4: JSObject
619     __ bind(&allocated);
620
621     if (create_memento) {
622       __ lw(a2, MemOperand(sp, kPointerSize * 2));
623       __ LoadRoot(t5, Heap::kUndefinedValueRootIndex);
624       __ Branch(&count_incremented, eq, a2, Operand(t5));
625       // a2 is an AllocationSite. We are creating a memento from it, so we
626       // need to increment the memento create count.
627       __ lw(a3, FieldMemOperand(a2,
628                                 AllocationSite::kPretenureCreateCountOffset));
629       __ Addu(a3, a3, Operand(Smi::FromInt(1)));
630       __ sw(a3, FieldMemOperand(a2,
631                                 AllocationSite::kPretenureCreateCountOffset));
632       __ bind(&count_incremented);
633     }
634
635     __ Push(t4, t4);
636
637     // Reload the number of arguments from the stack.
638     // sp[0]: receiver
639     // sp[1]: receiver
640     // sp[2]: constructor function
641     // sp[3]: number of arguments (smi-tagged)
642     __ lw(a1, MemOperand(sp, 2 * kPointerSize));
643     __ lw(a3, MemOperand(sp, 3 * kPointerSize));
644
645     // Set up pointer to last argument.
646     __ Addu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
647
648     // Set up number of arguments for function call below.
649     __ srl(a0, a3, kSmiTagSize);
650
651     // Copy arguments and receiver to the expression stack.
652     // a0: number of arguments
653     // a1: constructor function
654     // a2: address of last argument (caller sp)
655     // a3: number of arguments (smi-tagged)
656     // sp[0]: receiver
657     // sp[1]: receiver
658     // sp[2]: constructor function
659     // sp[3]: number of arguments (smi-tagged)
660     Label loop, entry;
661     __ jmp(&entry);
662     __ bind(&loop);
663     __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize);
664     __ Addu(t0, a2, Operand(t0));
665     __ lw(t1, MemOperand(t0));
666     __ push(t1);
667     __ bind(&entry);
668     __ Addu(a3, a3, Operand(-2));
669     __ Branch(&loop, greater_equal, a3, Operand(zero_reg));
670
671     // Call the function.
672     // a0: number of arguments
673     // a1: constructor function
674     if (is_api_function) {
675       __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
676       Handle<Code> code =
677           masm->isolate()->builtins()->HandleApiCallConstruct();
678       __ Call(code, RelocInfo::CODE_TARGET);
679     } else {
680       ParameterCount actual(a0);
681       __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
682     }
683
684     // Store offset of return address for deoptimizer.
685     if (!is_api_function) {
686       masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
687     }
688
689     // Restore context from the frame.
690     __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
691
692     // If the result is an object (in the ECMA sense), we should get rid
693     // of the receiver and use the result; see ECMA-262 section 13.2.2-7
694     // on page 74.
695     Label use_receiver, exit;
696
697     // If the result is a smi, it is *not* an object in the ECMA sense.
698     // v0: result
699     // sp[0]: receiver (newly allocated object)
700     // sp[1]: constructor function
701     // sp[2]: number of arguments (smi-tagged)
702     __ JumpIfSmi(v0, &use_receiver);
703
704     // If the type of the result (stored in its map) is less than
705     // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
706     __ GetObjectType(v0, a1, a3);
707     __ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
708
709     // Throw away the result of the constructor invocation and use the
710     // on-stack receiver as the result.
711     __ bind(&use_receiver);
712     __ lw(v0, MemOperand(sp));
713
714     // Remove receiver from the stack, remove caller arguments, and
715     // return.
716     __ bind(&exit);
717     // v0: result
718     // sp[0]: receiver (newly allocated object)
719     // sp[1]: constructor function
720     // sp[2]: number of arguments (smi-tagged)
721     __ lw(a1, MemOperand(sp, 2 * kPointerSize));
722
723     // Leave construct frame.
724   }
725
726   __ sll(t0, a1, kPointerSizeLog2 - 1);
727   __ Addu(sp, sp, t0);
728   __ Addu(sp, sp, kPointerSize);
729   __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
730   __ Ret();
731 }
732
733
734 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
735   Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new);
736 }
737
738
739 void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
740   Generate_JSConstructStubHelper(masm, true, false);
741 }
742
743
744 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
745                                              bool is_construct) {
746   // Called from JSEntryStub::GenerateBody
747
748   // ----------- S t a t e -------------
749   //  -- a0: code entry
750   //  -- a1: function
751   //  -- a2: receiver_pointer
752   //  -- a3: argc
753   //  -- s0: argv
754   // -----------------------------------
755   ProfileEntryHookStub::MaybeCallEntryHook(masm);
756
757   // Clear the context before we push it when entering the JS frame.
758   __ mov(cp, zero_reg);
759
760   // Enter an internal frame.
761   {
762     FrameScope scope(masm, StackFrame::INTERNAL);
763
764     // Set up the context from the function argument.
765     __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
766
767     // Push the function and the receiver onto the stack.
768     __ Push(a1, a2);
769
770     // Copy arguments to the stack in a loop.
771     // a3: argc
772     // s0: argv, i.e. points to first arg
773     Label loop, entry;
774     __ sll(t0, a3, kPointerSizeLog2);
775     __ addu(t2, s0, t0);
776     __ b(&entry);
777     __ nop();   // Branch delay slot nop.
778     // t2 points past last arg.
779     __ bind(&loop);
780     __ lw(t0, MemOperand(s0));  // Read next parameter.
781     __ addiu(s0, s0, kPointerSize);
782     __ lw(t0, MemOperand(t0));  // Dereference handle.
783     __ push(t0);  // Push parameter.
784     __ bind(&entry);
785     __ Branch(&loop, ne, s0, Operand(t2));
786
787     // Initialize all JavaScript callee-saved registers, since they will be seen
788     // by the garbage collector as part of handlers.
789     __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
790     __ mov(s1, t0);
791     __ mov(s2, t0);
792     __ mov(s3, t0);
793     __ mov(s4, t0);
794     __ mov(s5, t0);
795     // s6 holds the root address. Do not clobber.
796     // s7 is cp. Do not init.
797
798     // Invoke the code and pass argc as a0.
799     __ mov(a0, a3);
800     if (is_construct) {
801       // No type feedback cell is available
802       __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
803       CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
804       __ CallStub(&stub);
805     } else {
806       ParameterCount actual(a0);
807       __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
808     }
809
810     // Leave internal frame.
811   }
812
813   __ Jump(ra);
814 }
815
816
817 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
818   Generate_JSEntryTrampolineHelper(masm, false);
819 }
820
821
822 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
823   Generate_JSEntryTrampolineHelper(masm, true);
824 }
825
826
827 void Builtins::Generate_CompileUnoptimized(MacroAssembler* masm) {
828   CallRuntimePassFunction(masm, Runtime::kHiddenCompileUnoptimized);
829   GenerateTailCallToReturnedCode(masm);
830 }
831
832
833 static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) {
834   FrameScope scope(masm, StackFrame::INTERNAL);
835   // Push a copy of the function onto the stack.
836   // Push function as parameter to the runtime call.
837   __ Push(a1, a1);
838   // Whether to compile in a background thread.
839   __ Push(masm->isolate()->factory()->ToBoolean(concurrent));
840
841   __ CallRuntime(Runtime::kHiddenCompileOptimized, 2);
842   // Restore receiver.
843   __ Pop(a1);
844 }
845
846
847 void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
848   CallCompileOptimized(masm, false);
849   GenerateTailCallToReturnedCode(masm);
850 }
851
852
853 void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
854   CallCompileOptimized(masm, true);
855   GenerateTailCallToReturnedCode(masm);
856 }
857
858
859
860 static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
861   // For now, we are relying on the fact that make_code_young doesn't do any
862   // garbage collection which allows us to save/restore the registers without
863   // worrying about which of them contain pointers. We also don't build an
864   // internal frame to make the code faster, since we shouldn't have to do stack
865   // crawls in MakeCodeYoung. This seems a bit fragile.
866
867   // Set a0 to point to the head of the PlatformCodeAge sequence.
868   __ Subu(a0, a0,
869       Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
870
871   // The following registers must be saved and restored when calling through to
872   // the runtime:
873   //   a0 - contains return address (beginning of patch sequence)
874   //   a1 - isolate
875   RegList saved_regs =
876       (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
877   FrameScope scope(masm, StackFrame::MANUAL);
878   __ MultiPush(saved_regs);
879   __ PrepareCallCFunction(2, 0, a2);
880   __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
881   __ CallCFunction(
882       ExternalReference::get_make_code_young_function(masm->isolate()), 2);
883   __ MultiPop(saved_regs);
884   __ Jump(a0);
885 }
886
887 #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C)                 \
888 void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking(  \
889     MacroAssembler* masm) {                                  \
890   GenerateMakeCodeYoungAgainCommon(masm);                    \
891 }                                                            \
892 void Builtins::Generate_Make##C##CodeYoungAgainOddMarking(   \
893     MacroAssembler* masm) {                                  \
894   GenerateMakeCodeYoungAgainCommon(masm);                    \
895 }
896 CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
897 #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
898
899
900 void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
901   // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
902   // that make_code_young doesn't do any garbage collection which allows us to
903   // save/restore the registers without worrying about which of them contain
904   // pointers.
905
906   // Set a0 to point to the head of the PlatformCodeAge sequence.
907   __ Subu(a0, a0,
908       Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
909
910   // The following registers must be saved and restored when calling through to
911   // the runtime:
912   //   a0 - contains return address (beginning of patch sequence)
913   //   a1 - isolate
914   RegList saved_regs =
915       (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
916   FrameScope scope(masm, StackFrame::MANUAL);
917   __ MultiPush(saved_regs);
918   __ PrepareCallCFunction(2, 0, a2);
919   __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
920   __ CallCFunction(
921       ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
922       2);
923   __ MultiPop(saved_regs);
924
925   // Perform prologue operations usually performed by the young code stub.
926   __ Push(ra, fp, cp, a1);
927   __ Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
928
929   // Jump to point after the code-age stub.
930   __ Addu(a0, a0, Operand(kNoCodeAgeSequenceLength));
931   __ Jump(a0);
932 }
933
934
935 void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
936   GenerateMakeCodeYoungAgainCommon(masm);
937 }
938
939
940 static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
941                                              SaveFPRegsMode save_doubles) {
942   {
943     FrameScope scope(masm, StackFrame::INTERNAL);
944
945     // Preserve registers across notification, this is important for compiled
946     // stubs that tail call the runtime on deopts passing their parameters in
947     // registers.
948     __ MultiPush(kJSCallerSaved | kCalleeSaved);
949     // Pass the function and deoptimization type to the runtime system.
950     __ CallRuntime(Runtime::kHiddenNotifyStubFailure, 0, save_doubles);
951     __ MultiPop(kJSCallerSaved | kCalleeSaved);
952   }
953
954   __ Addu(sp, sp, Operand(kPointerSize));  // Ignore state
955   __ Jump(ra);  // Jump to miss handler
956 }
957
958
959 void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
960   Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
961 }
962
963
964 void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
965   Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
966 }
967
968
969 static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
970                                              Deoptimizer::BailoutType type) {
971   {
972     FrameScope scope(masm, StackFrame::INTERNAL);
973     // Pass the function and deoptimization type to the runtime system.
974     __ li(a0, Operand(Smi::FromInt(static_cast<int>(type))));
975     __ push(a0);
976     __ CallRuntime(Runtime::kHiddenNotifyDeoptimized, 1);
977   }
978
979   // Get the full codegen state from the stack and untag it -> t2.
980   __ lw(t2, MemOperand(sp, 0 * kPointerSize));
981   __ SmiUntag(t2);
982   // Switch on the state.
983   Label with_tos_register, unknown_state;
984   __ Branch(&with_tos_register,
985             ne, t2, Operand(FullCodeGenerator::NO_REGISTERS));
986   __ Ret(USE_DELAY_SLOT);
987   // Safe to fill delay slot Addu will emit one instruction.
988   __ Addu(sp, sp, Operand(1 * kPointerSize));  // Remove state.
989
990   __ bind(&with_tos_register);
991   __ lw(v0, MemOperand(sp, 1 * kPointerSize));
992   __ Branch(&unknown_state, ne, t2, Operand(FullCodeGenerator::TOS_REG));
993
994   __ Ret(USE_DELAY_SLOT);
995   // Safe to fill delay slot Addu will emit one instruction.
996   __ Addu(sp, sp, Operand(2 * kPointerSize));  // Remove state.
997
998   __ bind(&unknown_state);
999   __ stop("no cases left");
1000 }
1001
1002
1003 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1004   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
1005 }
1006
1007
1008 void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
1009   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
1010 }
1011
1012
1013 void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
1014   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
1015 }
1016
1017
1018 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1019   // Lookup the function in the JavaScript frame.
1020   __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1021   {
1022     FrameScope scope(masm, StackFrame::INTERNAL);
1023     // Pass function as argument.
1024     __ push(a0);
1025     __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
1026   }
1027
1028   // If the code object is null, just return to the unoptimized code.
1029   __ Ret(eq, v0, Operand(Smi::FromInt(0)));
1030
1031   // Load deoptimization data from the code object.
1032   // <deopt_data> = <code>[#deoptimization_data_offset]
1033   __ lw(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
1034
1035   // Load the OSR entrypoint offset from the deoptimization data.
1036   // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1037   __ lw(a1, MemOperand(a1, FixedArray::OffsetOfElementAt(
1038       DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
1039   __ SmiUntag(a1);
1040
1041   // Compute the target address = code_obj + header_size + osr_offset
1042   // <entry_addr> = <code_obj> + #header_size + <osr_offset>
1043   __ addu(v0, v0, a1);
1044   __ addiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
1045
1046   // And "return" to the OSR entry point of the function.
1047   __ Ret();
1048 }
1049
1050
1051 void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
1052   // We check the stack limit as indicator that recompilation might be done.
1053   Label ok;
1054   __ LoadRoot(at, Heap::kStackLimitRootIndex);
1055   __ Branch(&ok, hs, sp, Operand(at));
1056   {
1057     FrameScope scope(masm, StackFrame::INTERNAL);
1058     __ CallRuntime(Runtime::kHiddenStackGuard, 0);
1059   }
1060   __ Jump(masm->isolate()->builtins()->OnStackReplacement(),
1061           RelocInfo::CODE_TARGET);
1062
1063   __ bind(&ok);
1064   __ Ret();
1065 }
1066
1067
1068 void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
1069   // 1. Make sure we have at least one argument.
1070   // a0: actual number of arguments
1071   { Label done;
1072     __ Branch(&done, ne, a0, Operand(zero_reg));
1073     __ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
1074     __ push(t2);
1075     __ Addu(a0, a0, Operand(1));
1076     __ bind(&done);
1077   }
1078
1079   // 2. Get the function to call (passed as receiver) from the stack, check
1080   //    if it is a function.
1081   // a0: actual number of arguments
1082   Label slow, non_function;
1083   __ sll(at, a0, kPointerSizeLog2);
1084   __ addu(at, sp, at);
1085   __ lw(a1, MemOperand(at));
1086   __ JumpIfSmi(a1, &non_function);
1087   __ GetObjectType(a1, a2, a2);
1088   __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE));
1089
1090   // 3a. Patch the first argument if necessary when calling a function.
1091   // a0: actual number of arguments
1092   // a1: function
1093   Label shift_arguments;
1094   __ li(t0, Operand(0, RelocInfo::NONE32));  // Indicate regular JS_FUNCTION.
1095   { Label convert_to_object, use_global_receiver, patch_receiver;
1096     // Change context eagerly in case we need the global receiver.
1097     __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
1098
1099     // Do not transform the receiver for strict mode functions.
1100     __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1101     __ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset));
1102     __ And(t3, a3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
1103                                  kSmiTagSize)));
1104     __ Branch(&shift_arguments, ne, t3, Operand(zero_reg));
1105
1106     // Do not transform the receiver for native (Compilerhints already in a3).
1107     __ And(t3, a3, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
1108     __ Branch(&shift_arguments, ne, t3, Operand(zero_reg));
1109
1110     // Compute the receiver in sloppy mode.
1111     // Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2).
1112     __ sll(at, a0, kPointerSizeLog2);
1113     __ addu(a2, sp, at);
1114     __ lw(a2, MemOperand(a2, -kPointerSize));
1115     // a0: actual number of arguments
1116     // a1: function
1117     // a2: first argument
1118     __ JumpIfSmi(a2, &convert_to_object, t2);
1119
1120     __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
1121     __ Branch(&use_global_receiver, eq, a2, Operand(a3));
1122     __ LoadRoot(a3, Heap::kNullValueRootIndex);
1123     __ Branch(&use_global_receiver, eq, a2, Operand(a3));
1124
1125     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1126     __ GetObjectType(a2, a3, a3);
1127     __ Branch(&shift_arguments, ge, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
1128
1129     __ bind(&convert_to_object);
1130     // Enter an internal frame in order to preserve argument count.
1131     {
1132       FrameScope scope(masm, StackFrame::INTERNAL);
1133       __ sll(a0, a0, kSmiTagSize);  // Smi tagged.
1134       __ Push(a0, a2);
1135       __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1136       __ mov(a2, v0);
1137
1138       __ pop(a0);
1139       __ sra(a0, a0, kSmiTagSize);  // Un-tag.
1140       // Leave internal frame.
1141     }
1142     // Restore the function to a1, and the flag to t0.
1143     __ sll(at, a0, kPointerSizeLog2);
1144     __ addu(at, sp, at);
1145     __ lw(a1, MemOperand(at));
1146     __ li(t0, Operand(0, RelocInfo::NONE32));
1147     __ Branch(&patch_receiver);
1148
1149     __ bind(&use_global_receiver);
1150     __ lw(a2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
1151     __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset));
1152
1153     __ bind(&patch_receiver);
1154     __ sll(at, a0, kPointerSizeLog2);
1155     __ addu(a3, sp, at);
1156     __ sw(a2, MemOperand(a3, -kPointerSize));
1157
1158     __ Branch(&shift_arguments);
1159   }
1160
1161   // 3b. Check for function proxy.
1162   __ bind(&slow);
1163   __ li(t0, Operand(1, RelocInfo::NONE32));  // Indicate function proxy.
1164   __ Branch(&shift_arguments, eq, a2, Operand(JS_FUNCTION_PROXY_TYPE));
1165
1166   __ bind(&non_function);
1167   __ li(t0, Operand(2, RelocInfo::NONE32));  // Indicate non-function.
1168
1169   // 3c. Patch the first argument when calling a non-function.  The
1170   //     CALL_NON_FUNCTION builtin expects the non-function callee as
1171   //     receiver, so overwrite the first argument which will ultimately
1172   //     become the receiver.
1173   // a0: actual number of arguments
1174   // a1: function
1175   // t0: call type (0: JS function, 1: function proxy, 2: non-function)
1176   __ sll(at, a0, kPointerSizeLog2);
1177   __ addu(a2, sp, at);
1178   __ sw(a1, MemOperand(a2, -kPointerSize));
1179
1180   // 4. Shift arguments and return address one slot down on the stack
1181   //    (overwriting the original receiver).  Adjust argument count to make
1182   //    the original first argument the new receiver.
1183   // a0: actual number of arguments
1184   // a1: function
1185   // t0: call type (0: JS function, 1: function proxy, 2: non-function)
1186   __ bind(&shift_arguments);
1187   { Label loop;
1188     // Calculate the copy start address (destination). Copy end address is sp.
1189     __ sll(at, a0, kPointerSizeLog2);
1190     __ addu(a2, sp, at);
1191
1192     __ bind(&loop);
1193     __ lw(at, MemOperand(a2, -kPointerSize));
1194     __ sw(at, MemOperand(a2));
1195     __ Subu(a2, a2, Operand(kPointerSize));
1196     __ Branch(&loop, ne, a2, Operand(sp));
1197     // Adjust the actual number of arguments and remove the top element
1198     // (which is a copy of the last argument).
1199     __ Subu(a0, a0, Operand(1));
1200     __ Pop();
1201   }
1202
1203   // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
1204   //     or a function proxy via CALL_FUNCTION_PROXY.
1205   // a0: actual number of arguments
1206   // a1: function
1207   // t0: call type (0: JS function, 1: function proxy, 2: non-function)
1208   { Label function, non_proxy;
1209     __ Branch(&function, eq, t0, Operand(zero_reg));
1210     // Expected number of arguments is 0 for CALL_NON_FUNCTION.
1211     __ mov(a2, zero_reg);
1212     __ Branch(&non_proxy, ne, t0, Operand(1));
1213
1214     __ push(a1);  // Re-add proxy object as additional argument.
1215     __ Addu(a0, a0, Operand(1));
1216     __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
1217     __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1218             RelocInfo::CODE_TARGET);
1219
1220     __ bind(&non_proxy);
1221     __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION);
1222     __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1223             RelocInfo::CODE_TARGET);
1224     __ bind(&function);
1225   }
1226
1227   // 5b. Get the code to call from the function and check that the number of
1228   //     expected arguments matches what we're providing.  If so, jump
1229   //     (tail-call) to the code in register edx without checking arguments.
1230   // a0: actual number of arguments
1231   // a1: function
1232   __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1233   __ lw(a2,
1234          FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
1235   __ sra(a2, a2, kSmiTagSize);
1236   // Check formal and actual parameter counts.
1237   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1238           RelocInfo::CODE_TARGET, ne, a2, Operand(a0));
1239
1240   __ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1241   ParameterCount expected(0);
1242   __ InvokeCode(a3, expected, expected, JUMP_FUNCTION, NullCallWrapper());
1243 }
1244
1245
1246 void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1247   const int kIndexOffset    =
1248       StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize);
1249   const int kLimitOffset    =
1250       StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize);
1251   const int kArgsOffset     = 2 * kPointerSize;
1252   const int kRecvOffset     = 3 * kPointerSize;
1253   const int kFunctionOffset = 4 * kPointerSize;
1254
1255   {
1256     FrameScope frame_scope(masm, StackFrame::INTERNAL);
1257     __ lw(a0, MemOperand(fp, kFunctionOffset));  // Get the function.
1258     __ push(a0);
1259     __ lw(a0, MemOperand(fp, kArgsOffset));  // Get the args array.
1260     __ push(a0);
1261     // Returns (in v0) number of arguments to copy to stack as Smi.
1262     __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
1263
1264     // Check the stack for overflow. We are not trying to catch
1265     // interruptions (e.g. debug break and preemption) here, so the "real stack
1266     // limit" is checked.
1267     Label okay;
1268     __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
1269     // Make a2 the space we have left. The stack might already be overflowed
1270     // here which will cause a2 to become negative.
1271     __ subu(a2, sp, a2);
1272     // Check if the arguments will overflow the stack.
1273     __ sll(t3, v0, kPointerSizeLog2 - kSmiTagSize);
1274     __ Branch(&okay, gt, a2, Operand(t3));  // Signed comparison.
1275
1276     // Out of stack space.
1277     __ lw(a1, MemOperand(fp, kFunctionOffset));
1278     __ Push(a1, v0);
1279     __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
1280     // End of stack check.
1281
1282     // Push current limit and index.
1283     __ bind(&okay);
1284     __ mov(a1, zero_reg);
1285     __ Push(v0, a1);  // Limit and initial index.
1286
1287     // Get the receiver.
1288     __ lw(a0, MemOperand(fp, kRecvOffset));
1289
1290     // Check that the function is a JS function (otherwise it must be a proxy).
1291     Label push_receiver;
1292     __ lw(a1, MemOperand(fp, kFunctionOffset));
1293     __ GetObjectType(a1, a2, a2);
1294     __ Branch(&push_receiver, ne, a2, Operand(JS_FUNCTION_TYPE));
1295
1296     // Change context eagerly to get the right global object if necessary.
1297     __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
1298     // Load the shared function info while the function is still in a1.
1299     __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1300
1301     // Compute the receiver.
1302     // Do not transform the receiver for strict mode functions.
1303     Label call_to_object, use_global_receiver;
1304     __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset));
1305     __ And(t3, a2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
1306                                  kSmiTagSize)));
1307     __ Branch(&push_receiver, ne, t3, Operand(zero_reg));
1308
1309     // Do not transform the receiver for native (Compilerhints already in a2).
1310     __ And(t3, a2, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
1311     __ Branch(&push_receiver, ne, t3, Operand(zero_reg));
1312
1313     // Compute the receiver in sloppy mode.
1314     __ JumpIfSmi(a0, &call_to_object);
1315     __ LoadRoot(a1, Heap::kNullValueRootIndex);
1316     __ Branch(&use_global_receiver, eq, a0, Operand(a1));
1317     __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
1318     __ Branch(&use_global_receiver, eq, a0, Operand(a2));
1319
1320     // Check if the receiver is already a JavaScript object.
1321     // a0: receiver
1322     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1323     __ GetObjectType(a0, a1, a1);
1324     __ Branch(&push_receiver, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
1325
1326     // Convert the receiver to a regular object.
1327     // a0: receiver
1328     __ bind(&call_to_object);
1329     __ push(a0);
1330     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1331     __ mov(a0, v0);  // Put object in a0 to match other paths to push_receiver.
1332     __ Branch(&push_receiver);
1333
1334     __ bind(&use_global_receiver);
1335     __ lw(a0, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
1336     __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset));
1337
1338     // Push the receiver.
1339     // a0: receiver
1340     __ bind(&push_receiver);
1341     __ push(a0);
1342
1343     // Copy all arguments from the array to the stack.
1344     Label entry, loop;
1345     __ lw(a0, MemOperand(fp, kIndexOffset));
1346     __ Branch(&entry);
1347
1348     // Load the current argument from the arguments array and push it to the
1349     // stack.
1350     // a0: current argument index
1351     __ bind(&loop);
1352     __ lw(a1, MemOperand(fp, kArgsOffset));
1353     __ Push(a1, a0);
1354
1355     // Call the runtime to access the property in the arguments array.
1356     __ CallRuntime(Runtime::kGetProperty, 2);
1357     __ push(v0);
1358
1359     // Use inline caching to access the arguments.
1360     __ lw(a0, MemOperand(fp, kIndexOffset));
1361     __ Addu(a0, a0, Operand(1 << kSmiTagSize));
1362     __ sw(a0, MemOperand(fp, kIndexOffset));
1363
1364     // Test if the copy loop has finished copying all the elements from the
1365     // arguments object.
1366     __ bind(&entry);
1367     __ lw(a1, MemOperand(fp, kLimitOffset));
1368     __ Branch(&loop, ne, a0, Operand(a1));
1369
1370     // Call the function.
1371     Label call_proxy;
1372     ParameterCount actual(a0);
1373     __ sra(a0, a0, kSmiTagSize);
1374     __ lw(a1, MemOperand(fp, kFunctionOffset));
1375     __ GetObjectType(a1, a2, a2);
1376     __ Branch(&call_proxy, ne, a2, Operand(JS_FUNCTION_TYPE));
1377
1378     __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
1379
1380     frame_scope.GenerateLeaveFrame();
1381     __ Ret(USE_DELAY_SLOT);
1382     __ Addu(sp, sp, Operand(3 * kPointerSize));  // In delay slot.
1383
1384     // Call the function proxy.
1385     __ bind(&call_proxy);
1386     __ push(a1);  // Add function proxy as last argument.
1387     __ Addu(a0, a0, Operand(1));
1388     __ li(a2, Operand(0, RelocInfo::NONE32));
1389     __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
1390     __ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1391             RelocInfo::CODE_TARGET);
1392     // Tear down the internal frame and remove function, receiver and args.
1393   }
1394
1395   __ Ret(USE_DELAY_SLOT);
1396   __ Addu(sp, sp, Operand(3 * kPointerSize));  // In delay slot.
1397 }
1398
1399
1400 static void ArgumentAdaptorStackCheck(MacroAssembler* masm,
1401                                       Label* stack_overflow) {
1402   // ----------- S t a t e -------------
1403   //  -- a0 : actual number of arguments
1404   //  -- a1 : function (passed through to callee)
1405   //  -- a2 : expected number of arguments
1406   // -----------------------------------
1407   // Check the stack for overflow. We are not trying to catch
1408   // interruptions (e.g. debug break and preemption) here, so the "real stack
1409   // limit" is checked.
1410   __ LoadRoot(t1, Heap::kRealStackLimitRootIndex);
1411   // Make t1 the space we have left. The stack might already be overflowed
1412   // here which will cause t1 to become negative.
1413   __ subu(t1, sp, t1);
1414   // Check if the arguments will overflow the stack.
1415   __ sll(at, a2, kPointerSizeLog2);
1416   // Signed comparison.
1417   __ Branch(stack_overflow, le, t1, Operand(at));
1418 }
1419
1420
1421 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1422   __ sll(a0, a0, kSmiTagSize);
1423   __ li(t0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1424   __ MultiPush(a0.bit() | a1.bit() | t0.bit() | fp.bit() | ra.bit());
1425   __ Addu(fp, sp,
1426       Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
1427 }
1428
1429
1430 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1431   // ----------- S t a t e -------------
1432   //  -- v0 : result being passed through
1433   // -----------------------------------
1434   // Get the number of arguments passed (as a smi), tear down the frame and
1435   // then tear down the parameters.
1436   __ lw(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
1437                              kPointerSize)));
1438   __ mov(sp, fp);
1439   __ MultiPop(fp.bit() | ra.bit());
1440   __ sll(t0, a1, kPointerSizeLog2 - kSmiTagSize);
1441   __ Addu(sp, sp, t0);
1442   // Adjust for the receiver.
1443   __ Addu(sp, sp, Operand(kPointerSize));
1444 }
1445
1446
1447 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1448   // State setup as expected by MacroAssembler::InvokePrologue.
1449   // ----------- S t a t e -------------
1450   //  -- a0: actual arguments count
1451   //  -- a1: function (passed through to callee)
1452   //  -- a2: expected arguments count
1453   // -----------------------------------
1454
1455   Label stack_overflow;
1456   ArgumentAdaptorStackCheck(masm, &stack_overflow);
1457   Label invoke, dont_adapt_arguments;
1458
1459   Label enough, too_few;
1460   __ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1461   __ Branch(&dont_adapt_arguments, eq,
1462       a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1463   // We use Uless as the number of argument should always be greater than 0.
1464   __ Branch(&too_few, Uless, a0, Operand(a2));
1465
1466   {  // Enough parameters: actual >= expected.
1467     // a0: actual number of arguments as a smi
1468     // a1: function
1469     // a2: expected number of arguments
1470     // a3: code entry to call
1471     __ bind(&enough);
1472     EnterArgumentsAdaptorFrame(masm);
1473
1474     // Calculate copy start address into a0 and copy end address into a2.
1475     __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize);
1476     __ Addu(a0, fp, a0);
1477     // Adjust for return address and receiver.
1478     __ Addu(a0, a0, Operand(2 * kPointerSize));
1479     // Compute copy end address.
1480     __ sll(a2, a2, kPointerSizeLog2);
1481     __ subu(a2, a0, a2);
1482
1483     // Copy the arguments (including the receiver) to the new stack frame.
1484     // a0: copy start address
1485     // a1: function
1486     // a2: copy end address
1487     // a3: code entry to call
1488
1489     Label copy;
1490     __ bind(&copy);
1491     __ lw(t0, MemOperand(a0));
1492     __ push(t0);
1493     __ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a2));
1494     __ addiu(a0, a0, -kPointerSize);  // In delay slot.
1495
1496     __ jmp(&invoke);
1497   }
1498
1499   {  // Too few parameters: Actual < expected.
1500     __ bind(&too_few);
1501     EnterArgumentsAdaptorFrame(masm);
1502
1503     // Calculate copy start address into a0 and copy end address is fp.
1504     // a0: actual number of arguments as a smi
1505     // a1: function
1506     // a2: expected number of arguments
1507     // a3: code entry to call
1508     __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize);
1509     __ Addu(a0, fp, a0);
1510     // Adjust for return address and receiver.
1511     __ Addu(a0, a0, Operand(2 * kPointerSize));
1512     // Compute copy end address. Also adjust for return address.
1513     __ Addu(t3, fp, kPointerSize);
1514
1515     // Copy the arguments (including the receiver) to the new stack frame.
1516     // a0: copy start address
1517     // a1: function
1518     // a2: expected number of arguments
1519     // a3: code entry to call
1520     // t3: copy end address
1521     Label copy;
1522     __ bind(&copy);
1523     __ lw(t0, MemOperand(a0));  // Adjusted above for return addr and receiver.
1524     __ Subu(sp, sp, kPointerSize);
1525     __ Subu(a0, a0, kPointerSize);
1526     __ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(t3));
1527     __ sw(t0, MemOperand(sp));  // In the delay slot.
1528
1529     // Fill the remaining expected arguments with undefined.
1530     // a1: function
1531     // a2: expected number of arguments
1532     // a3: code entry to call
1533     __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
1534     __ sll(t2, a2, kPointerSizeLog2);
1535     __ Subu(a2, fp, Operand(t2));
1536     // Adjust for frame.
1537     __ Subu(a2, a2, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
1538                             2 * kPointerSize));
1539
1540     Label fill;
1541     __ bind(&fill);
1542     __ Subu(sp, sp, kPointerSize);
1543     __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a2));
1544     __ sw(t0, MemOperand(sp));
1545   }
1546
1547   // Call the entry point.
1548   __ bind(&invoke);
1549
1550   __ Call(a3);
1551
1552   // Store offset of return address for deoptimizer.
1553   masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
1554
1555   // Exit frame and return.
1556   LeaveArgumentsAdaptorFrame(masm);
1557   __ Ret();
1558
1559
1560   // -------------------------------------------
1561   // Don't adapt arguments.
1562   // -------------------------------------------
1563   __ bind(&dont_adapt_arguments);
1564   __ Jump(a3);
1565
1566   __ bind(&stack_overflow);
1567   {
1568     FrameScope frame(masm, StackFrame::MANUAL);
1569     EnterArgumentsAdaptorFrame(masm);
1570     __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
1571     __ break_(0xCC);
1572   }
1573 }
1574
1575
1576 #undef __
1577
1578 } }  // namespace v8::internal
1579
1580 #endif  // V8_TARGET_ARCH_MIPS