Upstream version 11.39.256.0
[platform/framework/web/crosswalk.git] / src / v8 / src / mips / assembler-mips.h
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
38
39 #include <stdio.h>
40
41 #include "src/assembler.h"
42 #include "src/mips/constants-mips.h"
43 #include "src/serialize.h"
44
45 namespace v8 {
46 namespace internal {
47
48 // CPU Registers.
49 //
50 // 1) We would prefer to use an enum, but enum values are assignment-
51 // compatible with int, which has caused code-generation bugs.
52 //
53 // 2) We would prefer to use a class instead of a struct but we don't like
54 // the register initialization to depend on the particular initialization
55 // order (which appears to be different on OS X, Linux, and Windows for the
56 // installed versions of C++ we tried). Using a struct permits C-style
57 // "initialization". Also, the Register objects cannot be const as this
58 // forces initialization stubs in MSVC, making us dependent on initialization
59 // order.
60 //
61 // 3) By not using an enum, we are possibly preventing the compiler from
62 // doing certain constant folds, which may significantly reduce the
63 // code generated for some assembly instructions (because they boil down
64 // to a few constants). If this is a problem, we could change the code
65 // such that we use an enum in optimized mode, and the struct in debug
66 // mode. This way we get the compile-time error checking in debug mode
67 // and best performance in optimized code.
68
69
70 // -----------------------------------------------------------------------------
71 // Implementation of Register and FPURegister.
72
73 // Core register.
74 struct Register {
75   static const int kNumRegisters = v8::internal::kNumRegisters;
76   static const int kMaxNumAllocatableRegisters = 14;  // v0 through t6 and cp.
77   static const int kSizeInBytes = 4;
78   static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
79
80 #if defined(V8_TARGET_LITTLE_ENDIAN)
81   static const int kMantissaOffset = 0;
82   static const int kExponentOffset = 4;
83 #elif defined(V8_TARGET_BIG_ENDIAN)
84   static const int kMantissaOffset = 4;
85   static const int kExponentOffset = 0;
86 #else
87 #error Unknown endianness
88 #endif
89
90   inline static int NumAllocatableRegisters();
91
92   static int ToAllocationIndex(Register reg) {
93     DCHECK((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) ||
94            reg.is(from_code(kCpRegister)));
95     return reg.is(from_code(kCpRegister)) ?
96            kMaxNumAllocatableRegisters - 1 :  // Return last index for 'cp'.
97            reg.code() - 2;  // zero_reg and 'at' are skipped.
98   }
99
100   static Register FromAllocationIndex(int index) {
101     DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
102     return index == kMaxNumAllocatableRegisters - 1 ?
103            from_code(kCpRegister) :  // Last index is always the 'cp' register.
104            from_code(index + 2);  // zero_reg and 'at' are skipped.
105   }
106
107   static const char* AllocationIndexToString(int index) {
108     DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
109     const char* const names[] = {
110       "v0",
111       "v1",
112       "a0",
113       "a1",
114       "a2",
115       "a3",
116       "t0",
117       "t1",
118       "t2",
119       "t3",
120       "t4",
121       "t5",
122       "t6",
123       "s7",
124     };
125     return names[index];
126   }
127
128   static Register from_code(int code) {
129     Register r = { code };
130     return r;
131   }
132
133   bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
134   bool is(Register reg) const { return code_ == reg.code_; }
135   int code() const {
136     DCHECK(is_valid());
137     return code_;
138   }
139   int bit() const {
140     DCHECK(is_valid());
141     return 1 << code_;
142   }
143
144   // Unfortunately we can't make this private in a struct.
145   int code_;
146 };
147
148 #define REGISTER(N, C) \
149   const int kRegister_ ## N ## _Code = C; \
150   const Register N = { C }
151
152 REGISTER(no_reg, -1);
153 // Always zero.
154 REGISTER(zero_reg, 0);
155 // at: Reserved for synthetic instructions.
156 REGISTER(at, 1);
157 // v0, v1: Used when returning multiple values from subroutines.
158 REGISTER(v0, 2);
159 REGISTER(v1, 3);
160 // a0 - a4: Used to pass non-FP parameters.
161 REGISTER(a0, 4);
162 REGISTER(a1, 5);
163 REGISTER(a2, 6);
164 REGISTER(a3, 7);
165 // t0 - t9: Can be used without reservation, act as temporary registers and are
166 // allowed to be destroyed by subroutines.
167 REGISTER(t0, 8);
168 REGISTER(t1, 9);
169 REGISTER(t2, 10);
170 REGISTER(t3, 11);
171 REGISTER(t4, 12);
172 REGISTER(t5, 13);
173 REGISTER(t6, 14);
174 REGISTER(t7, 15);
175 // s0 - s7: Subroutine register variables. Subroutines that write to these
176 // registers must restore their values before exiting so that the caller can
177 // expect the values to be preserved.
178 REGISTER(s0, 16);
179 REGISTER(s1, 17);
180 REGISTER(s2, 18);
181 REGISTER(s3, 19);
182 REGISTER(s4, 20);
183 REGISTER(s5, 21);
184 REGISTER(s6, 22);
185 REGISTER(s7, 23);
186 REGISTER(t8, 24);
187 REGISTER(t9, 25);
188 // k0, k1: Reserved for system calls and interrupt handlers.
189 REGISTER(k0, 26);
190 REGISTER(k1, 27);
191 // gp: Reserved.
192 REGISTER(gp, 28);
193 // sp: Stack pointer.
194 REGISTER(sp, 29);
195 // fp: Frame pointer.
196 REGISTER(fp, 30);
197 // ra: Return address pointer.
198 REGISTER(ra, 31);
199
200 #undef REGISTER
201
202
203 int ToNumber(Register reg);
204
205 Register ToRegister(int num);
206
207 // Coprocessor register.
208 struct FPURegister {
209   static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;
210
211   // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
212   // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
213   // number of Double regs (64-bit regs, or FPU-reg-pairs).
214
215   // A few double registers are reserved: one as a scratch register and one to
216   // hold 0.0.
217   //  f28: 0.0
218   //  f30: scratch register.
219   static const int kNumReservedRegisters = 2;
220   static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
221       kNumReservedRegisters;
222
223   inline static int NumRegisters();
224   inline static int NumAllocatableRegisters();
225   inline static int ToAllocationIndex(FPURegister reg);
226   static const char* AllocationIndexToString(int index);
227
228   static FPURegister FromAllocationIndex(int index) {
229     DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
230     return from_code(index * 2);
231   }
232
233   static FPURegister from_code(int code) {
234     FPURegister r = { code };
235     return r;
236   }
237
238   bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
239   bool is(FPURegister creg) const { return code_ == creg.code_; }
240   FPURegister low() const {
241     // Find low reg of a Double-reg pair, which is the reg itself.
242     DCHECK(code_ % 2 == 0);  // Specified Double reg must be even.
243     FPURegister reg;
244     reg.code_ = code_;
245     DCHECK(reg.is_valid());
246     return reg;
247   }
248   FPURegister high() const {
249     // Find high reg of a Doubel-reg pair, which is reg + 1.
250     DCHECK(code_ % 2 == 0);  // Specified Double reg must be even.
251     FPURegister reg;
252     reg.code_ = code_ + 1;
253     DCHECK(reg.is_valid());
254     return reg;
255   }
256
257   int code() const {
258     DCHECK(is_valid());
259     return code_;
260   }
261   int bit() const {
262     DCHECK(is_valid());
263     return 1 << code_;
264   }
265   void setcode(int f) {
266     code_ = f;
267     DCHECK(is_valid());
268   }
269   // Unfortunately we can't make this private in a struct.
270   int code_;
271 };
272
273 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
274 // 32-bit registers, f0 through f31. When used as 'double' they are used
275 // in pairs, starting with the even numbered register. So a double operation
276 // on f0 really uses f0 and f1.
277 // (Modern mips hardware also supports 32 64-bit registers, via setting
278 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
279 // but it is not in common use. Someday we will want to support this in v8.)
280
281 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
282 typedef FPURegister DoubleRegister;
283 typedef FPURegister FloatRegister;
284
285 const FPURegister no_freg = { -1 };
286
287 const FPURegister f0 = { 0 };  // Return value in hard float mode.
288 const FPURegister f1 = { 1 };
289 const FPURegister f2 = { 2 };
290 const FPURegister f3 = { 3 };
291 const FPURegister f4 = { 4 };
292 const FPURegister f5 = { 5 };
293 const FPURegister f6 = { 6 };
294 const FPURegister f7 = { 7 };
295 const FPURegister f8 = { 8 };
296 const FPURegister f9 = { 9 };
297 const FPURegister f10 = { 10 };
298 const FPURegister f11 = { 11 };
299 const FPURegister f12 = { 12 };  // Arg 0 in hard float mode.
300 const FPURegister f13 = { 13 };
301 const FPURegister f14 = { 14 };  // Arg 1 in hard float mode.
302 const FPURegister f15 = { 15 };
303 const FPURegister f16 = { 16 };
304 const FPURegister f17 = { 17 };
305 const FPURegister f18 = { 18 };
306 const FPURegister f19 = { 19 };
307 const FPURegister f20 = { 20 };
308 const FPURegister f21 = { 21 };
309 const FPURegister f22 = { 22 };
310 const FPURegister f23 = { 23 };
311 const FPURegister f24 = { 24 };
312 const FPURegister f25 = { 25 };
313 const FPURegister f26 = { 26 };
314 const FPURegister f27 = { 27 };
315 const FPURegister f28 = { 28 };
316 const FPURegister f29 = { 29 };
317 const FPURegister f30 = { 30 };
318 const FPURegister f31 = { 31 };
319
320 // Register aliases.
321 // cp is assumed to be a callee saved register.
322 // Defined using #define instead of "static const Register&" because Clang
323 // complains otherwise when a compilation unit that includes this header
324 // doesn't use the variables.
325 #define kRootRegister s6
326 #define cp s7
327 #define kLithiumScratchReg s3
328 #define kLithiumScratchReg2 s4
329 #define kLithiumScratchDouble f30
330 #define kDoubleRegZero f28
331 // Used on mips32r6 for compare operations.
332 #define kDoubleCompareReg f31
333
334 // FPU (coprocessor 1) control registers.
335 // Currently only FCSR (#31) is implemented.
336 struct FPUControlRegister {
337   bool is_valid() const { return code_ == kFCSRRegister; }
338   bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
339   int code() const {
340     DCHECK(is_valid());
341     return code_;
342   }
343   int bit() const {
344     DCHECK(is_valid());
345     return 1 << code_;
346   }
347   void setcode(int f) {
348     code_ = f;
349     DCHECK(is_valid());
350   }
351   // Unfortunately we can't make this private in a struct.
352   int code_;
353 };
354
355 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
356 const FPUControlRegister FCSR = { kFCSRRegister };
357
358
359 // -----------------------------------------------------------------------------
360 // Machine instruction Operands.
361
362 // Class Operand represents a shifter operand in data processing instructions.
363 class Operand BASE_EMBEDDED {
364  public:
365   // Immediate.
366   INLINE(explicit Operand(int32_t immediate,
367          RelocInfo::Mode rmode = RelocInfo::NONE32));
368   INLINE(explicit Operand(const ExternalReference& f));
369   INLINE(explicit Operand(const char* s));
370   INLINE(explicit Operand(Object** opp));
371   INLINE(explicit Operand(Context** cpp));
372   explicit Operand(Handle<Object> handle);
373   INLINE(explicit Operand(Smi* value));
374
375   // Register.
376   INLINE(explicit Operand(Register rm));
377
378   // Return true if this is a register operand.
379   INLINE(bool is_reg() const);
380
381   inline int32_t immediate() const {
382     DCHECK(!is_reg());
383     return imm32_;
384   }
385
386   Register rm() const { return rm_; }
387
388  private:
389   Register rm_;
390   int32_t imm32_;  // Valid if rm_ == no_reg.
391   RelocInfo::Mode rmode_;
392
393   friend class Assembler;
394   friend class MacroAssembler;
395 };
396
397
398 // On MIPS we have only one adressing mode with base_reg + offset.
399 // Class MemOperand represents a memory operand in load and store instructions.
400 class MemOperand : public Operand {
401  public:
402   // Immediate value attached to offset.
403   enum OffsetAddend {
404     offset_minus_one = -1,
405     offset_zero = 0
406   };
407
408   explicit MemOperand(Register rn, int32_t offset = 0);
409   explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
410                       OffsetAddend offset_addend = offset_zero);
411   int32_t offset() const { return offset_; }
412
413   bool OffsetIsInt16Encodable() const {
414     return is_int16(offset_);
415   }
416
417  private:
418   int32_t offset_;
419
420   friend class Assembler;
421 };
422
423
424 class Assembler : public AssemblerBase {
425  public:
426   // Create an assembler. Instructions and relocation information are emitted
427   // into a buffer, with the instructions starting from the beginning and the
428   // relocation information starting from the end of the buffer. See CodeDesc
429   // for a detailed comment on the layout (globals.h).
430   //
431   // If the provided buffer is NULL, the assembler allocates and grows its own
432   // buffer, and buffer_size determines the initial buffer size. The buffer is
433   // owned by the assembler and deallocated upon destruction of the assembler.
434   //
435   // If the provided buffer is not NULL, the assembler uses the provided buffer
436   // for code generation and assumes its size to be buffer_size. If the buffer
437   // is too small, a fatal error occurs. No deallocation of the buffer is done
438   // upon destruction of the assembler.
439   Assembler(Isolate* isolate, void* buffer, int buffer_size);
440   virtual ~Assembler() { }
441
442   // GetCode emits any pending (non-emitted) code and fills the descriptor
443   // desc. GetCode() is idempotent; it returns the same result if no other
444   // Assembler functions are invoked in between GetCode() calls.
445   void GetCode(CodeDesc* desc);
446
447   // Label operations & relative jumps (PPUM Appendix D).
448   //
449   // Takes a branch opcode (cc) and a label (L) and generates
450   // either a backward branch or a forward branch and links it
451   // to the label fixup chain. Usage:
452   //
453   // Label L;    // unbound label
454   // j(cc, &L);  // forward branch to unbound label
455   // bind(&L);   // bind label to the current pc
456   // j(cc, &L);  // backward branch to bound label
457   // bind(&L);   // illegal: a label may be bound only once
458   //
459   // Note: The same Label can be used for forward and backward branches
460   // but it may be bound only once.
461   void bind(Label* L);  // Binds an unbound label L to current code position.
462   // Determines if Label is bound and near enough so that branch instruction
463   // can be used to reach it, instead of jump instruction.
464   bool is_near(Label* L);
465
466   // Returns the branch offset to the given label from the current code
467   // position. Links the label to the current position if it is still unbound.
468   // Manages the jump elimination optimization if the second parameter is true.
469   int32_t branch_offset(Label* L, bool jump_elimination_allowed);
470   int32_t branch_offset_compact(Label* L, bool jump_elimination_allowed);
471   int32_t branch_offset21(Label* L, bool jump_elimination_allowed);
472   int32_t branch_offset21_compact(Label* L, bool jump_elimination_allowed);
473   int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
474     int32_t o = branch_offset(L, jump_elimination_allowed);
475     DCHECK((o & 3) == 0);   // Assert the offset is aligned.
476     return o >> 2;
477   }
478   int32_t shifted_branch_offset_compact(Label* L,
479       bool jump_elimination_allowed) {
480     int32_t o = branch_offset_compact(L, jump_elimination_allowed);
481     DCHECK((o & 3) == 0);   // Assert the offset is aligned.
482     return o >> 2;
483   }
484   uint32_t jump_address(Label* L);
485
486   // Puts a labels target address at the given position.
487   // The high 8 bits are set to zero.
488   void label_at_put(Label* L, int at_offset);
489
490   // Read/Modify the code target address in the branch/call instruction at pc.
491   static Address target_address_at(Address pc);
492   static void set_target_address_at(Address pc,
493                                     Address target,
494                                     ICacheFlushMode icache_flush_mode =
495                                         FLUSH_ICACHE_IF_NEEDED);
496   // On MIPS there is no Constant Pool so we skip that parameter.
497   INLINE(static Address target_address_at(Address pc,
498                                           ConstantPoolArray* constant_pool)) {
499     return target_address_at(pc);
500   }
501   INLINE(static void set_target_address_at(Address pc,
502                                            ConstantPoolArray* constant_pool,
503                                            Address target,
504                                            ICacheFlushMode icache_flush_mode =
505                                                FLUSH_ICACHE_IF_NEEDED)) {
506     set_target_address_at(pc, target, icache_flush_mode);
507   }
508   INLINE(static Address target_address_at(Address pc, Code* code)) {
509     ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
510     return target_address_at(pc, constant_pool);
511   }
512   INLINE(static void set_target_address_at(Address pc,
513                                            Code* code,
514                                            Address target,
515                                            ICacheFlushMode icache_flush_mode =
516                                                FLUSH_ICACHE_IF_NEEDED)) {
517     ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
518     set_target_address_at(pc, constant_pool, target, icache_flush_mode);
519   }
520
521   // Return the code target address at a call site from the return address
522   // of that call in the instruction stream.
523   inline static Address target_address_from_return_address(Address pc);
524
525   // Return the code target address of the patch debug break slot
526   inline static Address break_address_from_return_address(Address pc);
527
528   static void JumpLabelToJumpRegister(Address pc);
529
530   static void QuietNaN(HeapObject* nan);
531
532   // This sets the branch destination (which gets loaded at the call address).
533   // This is for calls and branches within generated code.  The serializer
534   // has already deserialized the lui/ori instructions etc.
535   inline static void deserialization_set_special_target_at(
536       Address instruction_payload, Code* code, Address target) {
537     set_target_address_at(
538         instruction_payload - kInstructionsFor32BitConstant * kInstrSize,
539         code,
540         target);
541   }
542
543   // Size of an instruction.
544   static const int kInstrSize = sizeof(Instr);
545
546   // Difference between address of current opcode and target address offset.
547   static const int kBranchPCOffset = 4;
548
549   // Here we are patching the address in the LUI/ORI instruction pair.
550   // These values are used in the serialization process and must be zero for
551   // MIPS platform, as Code, Embedded Object or External-reference pointers
552   // are split across two consecutive instructions and don't exist separately
553   // in the code, so the serializer should not step forwards in memory after
554   // a target is resolved and written.
555   static const int kSpecialTargetSize = 0;
556
557   // Number of consecutive instructions used to store 32bit constant.
558   // Before jump-optimizations, this constant was used in
559   // RelocInfo::target_address_address() function to tell serializer address of
560   // the instruction that follows LUI/ORI instruction pair. Now, with new jump
561   // optimization, where jump-through-register instruction that usually
562   // follows LUI/ORI pair is substituted with J/JAL, this constant equals
563   // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
564   static const int kInstructionsFor32BitConstant = 3;
565
566   // Distance between the instruction referring to the address of the call
567   // target and the return address.
568   static const int kCallTargetAddressOffset = 4 * kInstrSize;
569
570   // Distance between start of patched return sequence and the emitted address
571   // to jump to.
572   static const int kPatchReturnSequenceAddressOffset = 0;
573
574   // Distance between start of patched debug break slot and the emitted address
575   // to jump to.
576   static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
577
578   // Difference between address of current opcode and value read from pc
579   // register.
580   static const int kPcLoadDelta = 4;
581
582   static const int kPatchDebugBreakSlotReturnOffset = 4 * kInstrSize;
583
584   // Number of instructions used for the JS return sequence. The constant is
585   // used by the debugger to patch the JS return sequence.
586   static const int kJSReturnSequenceInstructions = 7;
587   static const int kDebugBreakSlotInstructions = 4;
588   static const int kDebugBreakSlotLength =
589       kDebugBreakSlotInstructions * kInstrSize;
590
591
592   // ---------------------------------------------------------------------------
593   // Code generation.
594
595   // Insert the smallest number of nop instructions
596   // possible to align the pc offset to a multiple
597   // of m. m must be a power of 2 (>= 4).
598   void Align(int m);
599   // Aligns code to something that's optimal for a jump target for the platform.
600   void CodeTargetAlign();
601
602   // Different nop operations are used by the code generator to detect certain
603   // states of the generated code.
604   enum NopMarkerTypes {
605     NON_MARKING_NOP = 0,
606     DEBUG_BREAK_NOP,
607     // IC markers.
608     PROPERTY_ACCESS_INLINED,
609     PROPERTY_ACCESS_INLINED_CONTEXT,
610     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
611     // Helper values.
612     LAST_CODE_MARKER,
613     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
614     // Code aging
615     CODE_AGE_MARKER_NOP = 6,
616     CODE_AGE_SEQUENCE_NOP
617   };
618
619   // Type == 0 is the default non-marking nop. For mips this is a
620   // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
621   // marking, to avoid conflict with ssnop and ehb instructions.
622   void nop(unsigned int type = 0) {
623     DCHECK(type < 32);
624     Register nop_rt_reg = (type == 0) ? zero_reg : at;
625     sll(zero_reg, nop_rt_reg, type, true);
626   }
627
628
629   // --------Branch-and-jump-instructions----------
630   // We don't use likely variant of instructions.
631   void b(int16_t offset);
632   void b(Label* L) { b(branch_offset(L, false)>>2); }
633   void bal(int16_t offset);
634   void bal(Label* L) { bal(branch_offset(L, false)>>2); }
635
636   void beq(Register rs, Register rt, int16_t offset);
637   void beq(Register rs, Register rt, Label* L) {
638     beq(rs, rt, branch_offset(L, false) >> 2);
639   }
640   void bgez(Register rs, int16_t offset);
641   void bgezc(Register rt, int16_t offset);
642   void bgezc(Register rt, Label* L) {
643     bgezc(rt, branch_offset_compact(L, false)>>2);
644   }
645   void bgeuc(Register rs, Register rt, int16_t offset);
646   void bgeuc(Register rs, Register rt, Label* L) {
647     bgeuc(rs, rt, branch_offset_compact(L, false)>>2);
648   }
649   void bgec(Register rs, Register rt, int16_t offset);
650   void bgec(Register rs, Register rt, Label* L) {
651     bgec(rs, rt, branch_offset_compact(L, false)>>2);
652   }
653   void bgezal(Register rs, int16_t offset);
654   void bgezalc(Register rt, int16_t offset);
655   void bgezalc(Register rt, Label* L) {
656     bgezalc(rt, branch_offset_compact(L, false)>>2);
657   }
658   void bgezall(Register rs, int16_t offset);
659   void bgezall(Register rs, Label* L) {
660     bgezall(rs, branch_offset(L, false)>>2);
661   }
662   void bgtz(Register rs, int16_t offset);
663   void bgtzc(Register rt, int16_t offset);
664   void bgtzc(Register rt, Label* L) {
665     bgtzc(rt, branch_offset_compact(L, false)>>2);
666   }
667   void blez(Register rs, int16_t offset);
668   void blezc(Register rt, int16_t offset);
669   void blezc(Register rt, Label* L) {
670     blezc(rt, branch_offset_compact(L, false)>>2);
671   }
672   void bltz(Register rs, int16_t offset);
673   void bltzc(Register rt, int16_t offset);
674   void bltzc(Register rt, Label* L) {
675     bltzc(rt, branch_offset_compact(L, false)>>2);
676   }
677   void bltuc(Register rs, Register rt, int16_t offset);
678   void bltuc(Register rs, Register rt, Label* L) {
679     bltuc(rs, rt, branch_offset_compact(L, false)>>2);
680   }
681   void bltc(Register rs, Register rt, int16_t offset);
682   void bltc(Register rs, Register rt, Label* L) {
683     bltc(rs, rt, branch_offset_compact(L, false)>>2);
684   }
685   void bltzal(Register rs, int16_t offset);
686   void blezalc(Register rt, int16_t offset);
687   void blezalc(Register rt, Label* L) {
688     blezalc(rt, branch_offset_compact(L, false)>>2);
689   }
690   void bltzalc(Register rt, int16_t offset);
691   void bltzalc(Register rt, Label* L) {
692     bltzalc(rt, branch_offset_compact(L, false)>>2);
693   }
694   void bgtzalc(Register rt, int16_t offset);
695   void bgtzalc(Register rt, Label* L) {
696     bgtzalc(rt, branch_offset_compact(L, false)>>2);
697   }
698   void beqzalc(Register rt, int16_t offset);
699   void beqzalc(Register rt, Label* L) {
700     beqzalc(rt, branch_offset_compact(L, false)>>2);
701   }
702   void beqc(Register rs, Register rt, int16_t offset);
703   void beqc(Register rs, Register rt, Label* L) {
704     beqc(rs, rt, branch_offset_compact(L, false)>>2);
705   }
706   void beqzc(Register rs, int32_t offset);
707   void beqzc(Register rs, Label* L) {
708     beqzc(rs, branch_offset21_compact(L, false)>>2);
709   }
710   void bnezalc(Register rt, int16_t offset);
711   void bnezalc(Register rt, Label* L) {
712     bnezalc(rt, branch_offset_compact(L, false)>>2);
713   }
714   void bnec(Register rs, Register rt, int16_t offset);
715   void bnec(Register rs, Register rt, Label* L) {
716     bnec(rs, rt, branch_offset_compact(L, false)>>2);
717   }
718   void bnezc(Register rt, int32_t offset);
719   void bnezc(Register rt, Label* L) {
720     bnezc(rt, branch_offset21_compact(L, false)>>2);
721   }
722   void bne(Register rs, Register rt, int16_t offset);
723   void bne(Register rs, Register rt, Label* L) {
724     bne(rs, rt, branch_offset(L, false)>>2);
725   }
726   void bovc(Register rs, Register rt, int16_t offset);
727   void bovc(Register rs, Register rt, Label* L) {
728     bovc(rs, rt, branch_offset_compact(L, false)>>2);
729   }
730   void bnvc(Register rs, Register rt, int16_t offset);
731   void bnvc(Register rs, Register rt, Label* L) {
732     bnvc(rs, rt, branch_offset_compact(L, false)>>2);
733   }
734
735   // Never use the int16_t b(l)cond version with a branch offset
736   // instead of using the Label* version.
737
738   // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
739   void j(int32_t target);
740   void jal(int32_t target);
741   void jalr(Register rs, Register rd = ra);
742   void jr(Register target);
743   void j_or_jr(int32_t target, Register rs);
744   void jal_or_jalr(int32_t target, Register rs);
745
746
747   // -------Data-processing-instructions---------
748
749   // Arithmetic.
750   void addu(Register rd, Register rs, Register rt);
751   void subu(Register rd, Register rs, Register rt);
752   void mult(Register rs, Register rt);
753   void multu(Register rs, Register rt);
754   void div(Register rs, Register rt);
755   void divu(Register rs, Register rt);
756   void div(Register rd, Register rs, Register rt);
757   void divu(Register rd, Register rs, Register rt);
758   void mod(Register rd, Register rs, Register rt);
759   void modu(Register rd, Register rs, Register rt);
760   void mul(Register rd, Register rs, Register rt);
761   void muh(Register rd, Register rs, Register rt);
762   void mulu(Register rd, Register rs, Register rt);
763   void muhu(Register rd, Register rs, Register rt);
764
765   void addiu(Register rd, Register rs, int32_t j);
766
767   // Logical.
768   void and_(Register rd, Register rs, Register rt);
769   void or_(Register rd, Register rs, Register rt);
770   void xor_(Register rd, Register rs, Register rt);
771   void nor(Register rd, Register rs, Register rt);
772
773   void andi(Register rd, Register rs, int32_t j);
774   void ori(Register rd, Register rs, int32_t j);
775   void xori(Register rd, Register rs, int32_t j);
776   void lui(Register rd, int32_t j);
777   void aui(Register rs, Register rt, int32_t j);
778
779   // Shifts.
780   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
781   // and may cause problems in normal code. coming_from_nop makes sure this
782   // doesn't happen.
783   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
784   void sllv(Register rd, Register rt, Register rs);
785   void srl(Register rd, Register rt, uint16_t sa);
786   void srlv(Register rd, Register rt, Register rs);
787   void sra(Register rt, Register rd, uint16_t sa);
788   void srav(Register rt, Register rd, Register rs);
789   void rotr(Register rd, Register rt, uint16_t sa);
790   void rotrv(Register rd, Register rt, Register rs);
791
792
793   // ------------Memory-instructions-------------
794
795   void lb(Register rd, const MemOperand& rs);
796   void lbu(Register rd, const MemOperand& rs);
797   void lh(Register rd, const MemOperand& rs);
798   void lhu(Register rd, const MemOperand& rs);
799   void lw(Register rd, const MemOperand& rs);
800   void lwl(Register rd, const MemOperand& rs);
801   void lwr(Register rd, const MemOperand& rs);
802   void sb(Register rd, const MemOperand& rs);
803   void sh(Register rd, const MemOperand& rs);
804   void sw(Register rd, const MemOperand& rs);
805   void swl(Register rd, const MemOperand& rs);
806   void swr(Register rd, const MemOperand& rs);
807
808
809   // ----------------Prefetch--------------------
810
811   void pref(int32_t hint, const MemOperand& rs);
812
813
814   // -------------Misc-instructions--------------
815
816   // Break / Trap instructions.
817   void break_(uint32_t code, bool break_as_stop = false);
818   void stop(const char* msg, uint32_t code = kMaxStopCode);
819   void tge(Register rs, Register rt, uint16_t code);
820   void tgeu(Register rs, Register rt, uint16_t code);
821   void tlt(Register rs, Register rt, uint16_t code);
822   void tltu(Register rs, Register rt, uint16_t code);
823   void teq(Register rs, Register rt, uint16_t code);
824   void tne(Register rs, Register rt, uint16_t code);
825
826   // Move from HI/LO register.
827   void mfhi(Register rd);
828   void mflo(Register rd);
829
830   // Set on less than.
831   void slt(Register rd, Register rs, Register rt);
832   void sltu(Register rd, Register rs, Register rt);
833   void slti(Register rd, Register rs, int32_t j);
834   void sltiu(Register rd, Register rs, int32_t j);
835
836   // Conditional move.
837   void movz(Register rd, Register rs, Register rt);
838   void movn(Register rd, Register rs, Register rt);
839   void movt(Register rd, Register rs, uint16_t cc = 0);
840   void movf(Register rd, Register rs, uint16_t cc = 0);
841
842   void sel(SecondaryField fmt, FPURegister fd, FPURegister ft,
843       FPURegister fs, uint8_t sel);
844   void seleqz(Register rs, Register rt, Register rd);
845   void seleqz(SecondaryField fmt, FPURegister fd, FPURegister ft,
846       FPURegister fs);
847   void selnez(Register rs, Register rt, Register rd);
848   void selnez(SecondaryField fmt, FPURegister fd, FPURegister ft,
849       FPURegister fs);
850
851   // Bit twiddling.
852   void clz(Register rd, Register rs);
853   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
854   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
855
856   // --------Coprocessor-instructions----------------
857
858   // Load, store, and move.
859   void lwc1(FPURegister fd, const MemOperand& src);
860   void ldc1(FPURegister fd, const MemOperand& src);
861
862   void swc1(FPURegister fs, const MemOperand& dst);
863   void sdc1(FPURegister fs, const MemOperand& dst);
864
865   void mtc1(Register rt, FPURegister fs);
866   void mthc1(Register rt, FPURegister fs);
867
868   void mfc1(Register rt, FPURegister fs);
869   void mfhc1(Register rt, FPURegister fs);
870
871   void ctc1(Register rt, FPUControlRegister fs);
872   void cfc1(Register rt, FPUControlRegister fs);
873
874   // Arithmetic.
875   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
876   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
877   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
878   void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
879   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
880   void abs_d(FPURegister fd, FPURegister fs);
881   void mov_d(FPURegister fd, FPURegister fs);
882   void neg_d(FPURegister fd, FPURegister fs);
883   void sqrt_d(FPURegister fd, FPURegister fs);
884
885   // Conversion.
886   void cvt_w_s(FPURegister fd, FPURegister fs);
887   void cvt_w_d(FPURegister fd, FPURegister fs);
888   void trunc_w_s(FPURegister fd, FPURegister fs);
889   void trunc_w_d(FPURegister fd, FPURegister fs);
890   void round_w_s(FPURegister fd, FPURegister fs);
891   void round_w_d(FPURegister fd, FPURegister fs);
892   void floor_w_s(FPURegister fd, FPURegister fs);
893   void floor_w_d(FPURegister fd, FPURegister fs);
894   void ceil_w_s(FPURegister fd, FPURegister fs);
895   void ceil_w_d(FPURegister fd, FPURegister fs);
896
897   void cvt_l_s(FPURegister fd, FPURegister fs);
898   void cvt_l_d(FPURegister fd, FPURegister fs);
899   void trunc_l_s(FPURegister fd, FPURegister fs);
900   void trunc_l_d(FPURegister fd, FPURegister fs);
901   void round_l_s(FPURegister fd, FPURegister fs);
902   void round_l_d(FPURegister fd, FPURegister fs);
903   void floor_l_s(FPURegister fd, FPURegister fs);
904   void floor_l_d(FPURegister fd, FPURegister fs);
905   void ceil_l_s(FPURegister fd, FPURegister fs);
906   void ceil_l_d(FPURegister fd, FPURegister fs);
907
908   void min(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
909   void mina(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
910   void max(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
911   void maxa(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
912
913   void cvt_s_w(FPURegister fd, FPURegister fs);
914   void cvt_s_l(FPURegister fd, FPURegister fs);
915   void cvt_s_d(FPURegister fd, FPURegister fs);
916
917   void cvt_d_w(FPURegister fd, FPURegister fs);
918   void cvt_d_l(FPURegister fd, FPURegister fs);
919   void cvt_d_s(FPURegister fd, FPURegister fs);
920
921   // Conditions and branches for MIPSr6.
922   void cmp(FPUCondition cond, SecondaryField fmt,
923          FPURegister fd, FPURegister ft, FPURegister fs);
924
925   void bc1eqz(int16_t offset, FPURegister ft);
926   void bc1eqz(Label* L, FPURegister ft) {
927     bc1eqz(branch_offset(L, false)>>2, ft);
928   }
929   void bc1nez(int16_t offset, FPURegister ft);
930   void bc1nez(Label* L, FPURegister ft) {
931     bc1nez(branch_offset(L, false)>>2, ft);
932   }
933
934   // Conditions and branches for non MIPSr6.
935   void c(FPUCondition cond, SecondaryField fmt,
936          FPURegister ft, FPURegister fs, uint16_t cc = 0);
937
938   void bc1f(int16_t offset, uint16_t cc = 0);
939   void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
940   void bc1t(int16_t offset, uint16_t cc = 0);
941   void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
942   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
943
944   // Check the code size generated from label to here.
945   int SizeOfCodeGeneratedSince(Label* label) {
946     return pc_offset() - label->pos();
947   }
948
949   // Check the number of instructions generated from label to here.
950   int InstructionsGeneratedSince(Label* label) {
951     return SizeOfCodeGeneratedSince(label) / kInstrSize;
952   }
953
954   // Class for scoping postponing the trampoline pool generation.
955   class BlockTrampolinePoolScope {
956    public:
957     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
958       assem_->StartBlockTrampolinePool();
959     }
960     ~BlockTrampolinePoolScope() {
961       assem_->EndBlockTrampolinePool();
962     }
963
964    private:
965     Assembler* assem_;
966
967     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
968   };
969
970   // Class for postponing the assembly buffer growth. Typically used for
971   // sequences of instructions that must be emitted as a unit, before
972   // buffer growth (and relocation) can occur.
973   // This blocking scope is not nestable.
974   class BlockGrowBufferScope {
975    public:
976     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
977       assem_->StartBlockGrowBuffer();
978     }
979     ~BlockGrowBufferScope() {
980       assem_->EndBlockGrowBuffer();
981     }
982
983    private:
984     Assembler* assem_;
985
986     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
987   };
988
989   // Debugging.
990
991   // Mark address of the ExitJSFrame code.
992   void RecordJSReturn();
993
994   // Mark address of a debug break slot.
995   void RecordDebugBreakSlot();
996
997   // Record the AST id of the CallIC being compiled, so that it can be placed
998   // in the relocation information.
999   void SetRecordedAstId(TypeFeedbackId ast_id) {
1000     DCHECK(recorded_ast_id_.IsNone());
1001     recorded_ast_id_ = ast_id;
1002   }
1003
1004   TypeFeedbackId RecordedAstId() {
1005     DCHECK(!recorded_ast_id_.IsNone());
1006     return recorded_ast_id_;
1007   }
1008
1009   void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1010
1011   // Record a comment relocation entry that can be used by a disassembler.
1012   // Use --code-comments to enable.
1013   void RecordComment(const char* msg);
1014
1015   static int RelocateInternalReference(byte* pc, intptr_t pc_delta);
1016
1017   // Writes a single byte or word of data in the code stream.  Used for
1018   // inline tables, e.g., jump-tables.
1019   void db(uint8_t data);
1020   void dd(uint32_t data);
1021
1022   // Emits the address of the code stub's first instruction.
1023   void emit_code_stub_address(Code* stub);
1024
1025   PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1026
1027   // Postpone the generation of the trampoline pool for the specified number of
1028   // instructions.
1029   void BlockTrampolinePoolFor(int instructions);
1030
1031   // Check if there is less than kGap bytes available in the buffer.
1032   // If this is the case, we need to grow the buffer before emitting
1033   // an instruction or relocation information.
1034   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1035
1036   // Get the number of bytes available in the buffer.
1037   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1038
1039   // Read/patch instructions.
1040   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
1041   static void instr_at_put(byte* pc, Instr instr) {
1042     *reinterpret_cast<Instr*>(pc) = instr;
1043   }
1044   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
1045   void instr_at_put(int pos, Instr instr) {
1046     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1047   }
1048
1049   // Check if an instruction is a branch of some kind.
1050   static bool IsBranch(Instr instr);
1051   static bool IsBeq(Instr instr);
1052   static bool IsBne(Instr instr);
1053
1054   static bool IsJump(Instr instr);
1055   static bool IsJ(Instr instr);
1056   static bool IsLui(Instr instr);
1057   static bool IsOri(Instr instr);
1058
1059   static bool IsJal(Instr instr);
1060   static bool IsJr(Instr instr);
1061   static bool IsJalr(Instr instr);
1062
1063   static bool IsNop(Instr instr, unsigned int type);
1064   static bool IsPop(Instr instr);
1065   static bool IsPush(Instr instr);
1066   static bool IsLwRegFpOffset(Instr instr);
1067   static bool IsSwRegFpOffset(Instr instr);
1068   static bool IsLwRegFpNegOffset(Instr instr);
1069   static bool IsSwRegFpNegOffset(Instr instr);
1070
1071   static Register GetRtReg(Instr instr);
1072   static Register GetRsReg(Instr instr);
1073   static Register GetRdReg(Instr instr);
1074
1075   static uint32_t GetRt(Instr instr);
1076   static uint32_t GetRtField(Instr instr);
1077   static uint32_t GetRs(Instr instr);
1078   static uint32_t GetRsField(Instr instr);
1079   static uint32_t GetRd(Instr instr);
1080   static uint32_t GetRdField(Instr instr);
1081   static uint32_t GetSa(Instr instr);
1082   static uint32_t GetSaField(Instr instr);
1083   static uint32_t GetOpcodeField(Instr instr);
1084   static uint32_t GetFunction(Instr instr);
1085   static uint32_t GetFunctionField(Instr instr);
1086   static uint32_t GetImmediate16(Instr instr);
1087   static uint32_t GetLabelConst(Instr instr);
1088
1089   static int32_t GetBranchOffset(Instr instr);
1090   static bool IsLw(Instr instr);
1091   static int16_t GetLwOffset(Instr instr);
1092   static Instr SetLwOffset(Instr instr, int16_t offset);
1093
1094   static bool IsSw(Instr instr);
1095   static Instr SetSwOffset(Instr instr, int16_t offset);
1096   static bool IsAddImmediate(Instr instr);
1097   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1098
1099   static bool IsAndImmediate(Instr instr);
1100   static bool IsEmittedConstant(Instr instr);
1101
1102   void CheckTrampolinePool();
1103
1104   // Allocate a constant pool of the correct size for the generated code.
1105   Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
1106
1107   // Generate the constant pool for the generated code.
1108   void PopulateConstantPool(ConstantPoolArray* constant_pool);
1109
1110  protected:
1111   // Relocation for a type-recording IC has the AST id added to it.  This
1112   // member variable is a way to pass the information from the call site to
1113   // the relocation info.
1114   TypeFeedbackId recorded_ast_id_;
1115
1116   int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1117
1118   // Decode branch instruction at pos and return branch target pos.
1119   int target_at(int32_t pos);
1120
1121   // Patch branch instruction at pos to branch to given branch target pos.
1122   void target_at_put(int32_t pos, int32_t target_pos);
1123
1124   // Say if we need to relocate with this mode.
1125   bool MustUseReg(RelocInfo::Mode rmode);
1126
1127   // Record reloc info for current pc_.
1128   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1129
1130   // Block the emission of the trampoline pool before pc_offset.
1131   void BlockTrampolinePoolBefore(int pc_offset) {
1132     if (no_trampoline_pool_before_ < pc_offset)
1133       no_trampoline_pool_before_ = pc_offset;
1134   }
1135
1136   void StartBlockTrampolinePool() {
1137     trampoline_pool_blocked_nesting_++;
1138   }
1139
1140   void EndBlockTrampolinePool() {
1141     trampoline_pool_blocked_nesting_--;
1142   }
1143
1144   bool is_trampoline_pool_blocked() const {
1145     return trampoline_pool_blocked_nesting_ > 0;
1146   }
1147
1148   bool has_exception() const {
1149     return internal_trampoline_exception_;
1150   }
1151
1152   void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1153
1154   bool is_trampoline_emitted() const {
1155     return trampoline_emitted_;
1156   }
1157
1158   // Temporarily block automatic assembly buffer growth.
1159   void StartBlockGrowBuffer() {
1160     DCHECK(!block_buffer_growth_);
1161     block_buffer_growth_ = true;
1162   }
1163
1164   void EndBlockGrowBuffer() {
1165     DCHECK(block_buffer_growth_);
1166     block_buffer_growth_ = false;
1167   }
1168
1169   bool is_buffer_growth_blocked() const {
1170     return block_buffer_growth_;
1171   }
1172
1173  private:
1174   // Buffer size and constant pool distance are checked together at regular
1175   // intervals of kBufferCheckInterval emitted bytes.
1176   static const int kBufferCheckInterval = 1*KB/2;
1177
1178   // Code generation.
1179   // The relocation writer's position is at least kGap bytes below the end of
1180   // the generated instructions. This is so that multi-instruction sequences do
1181   // not have to check for overflow. The same is true for writes of large
1182   // relocation info entries.
1183   static const int kGap = 32;
1184
1185
1186   // Repeated checking whether the trampoline pool should be emitted is rather
1187   // expensive. By default we only check again once a number of instructions
1188   // has been generated.
1189   static const int kCheckConstIntervalInst = 32;
1190   static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1191
1192   int next_buffer_check_;  // pc offset of next buffer check.
1193
1194   // Emission of the trampoline pool may be blocked in some code sequences.
1195   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1196   int no_trampoline_pool_before_;  // Block emission before this pc offset.
1197
1198   // Keep track of the last emitted pool to guarantee a maximal distance.
1199   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1200
1201   // Automatic growth of the assembly buffer may be blocked for some sequences.
1202   bool block_buffer_growth_;  // Block growth when true.
1203
1204   // Relocation information generation.
1205   // Each relocation is encoded as a variable size value.
1206   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1207   RelocInfoWriter reloc_info_writer;
1208
1209   // The bound position, before this we cannot do instruction elimination.
1210   int last_bound_pos_;
1211
1212   // Code emission.
1213   inline void CheckBuffer();
1214   void GrowBuffer();
1215   inline void emit(Instr x);
1216   inline void CheckTrampolinePoolQuick();
1217
1218   // Instruction generation.
1219   // We have 3 different kind of encoding layout on MIPS.
1220   // However due to many different types of objects encoded in the same fields
1221   // we have quite a few aliases for each mode.
1222   // Using the same structure to refer to Register and FPURegister would spare a
1223   // few aliases, but mixing both does not look clean to me.
1224   // Anyway we could surely implement this differently.
1225
1226   void GenInstrRegister(Opcode opcode,
1227                         Register rs,
1228                         Register rt,
1229                         Register rd,
1230                         uint16_t sa = 0,
1231                         SecondaryField func = NULLSF);
1232
1233   void GenInstrRegister(Opcode opcode,
1234                         Register rs,
1235                         Register rt,
1236                         uint16_t msb,
1237                         uint16_t lsb,
1238                         SecondaryField func);
1239
1240   void GenInstrRegister(Opcode opcode,
1241                         SecondaryField fmt,
1242                         FPURegister ft,
1243                         FPURegister fs,
1244                         FPURegister fd,
1245                         SecondaryField func = NULLSF);
1246
1247   void GenInstrRegister(Opcode opcode,
1248                         FPURegister fr,
1249                         FPURegister ft,
1250                         FPURegister fs,
1251                         FPURegister fd,
1252                         SecondaryField func = NULLSF);
1253
1254   void GenInstrRegister(Opcode opcode,
1255                         SecondaryField fmt,
1256                         Register rt,
1257                         FPURegister fs,
1258                         FPURegister fd,
1259                         SecondaryField func = NULLSF);
1260
1261   void GenInstrRegister(Opcode opcode,
1262                         SecondaryField fmt,
1263                         Register rt,
1264                         FPUControlRegister fs,
1265                         SecondaryField func = NULLSF);
1266
1267
1268   void GenInstrImmediate(Opcode opcode,
1269                          Register rs,
1270                          Register rt,
1271                          int32_t  j);
1272   void GenInstrImmediate(Opcode opcode,
1273                          Register rs,
1274                          SecondaryField SF,
1275                          int32_t  j);
1276   void GenInstrImmediate(Opcode opcode,
1277                          Register r1,
1278                          FPURegister r2,
1279                          int32_t  j);
1280
1281
1282   void GenInstrJump(Opcode opcode,
1283                      uint32_t address);
1284
1285   // Helpers.
1286   void LoadRegPlusOffsetToAt(const MemOperand& src);
1287
1288   // Labels.
1289   void print(Label* L);
1290   void bind_to(Label* L, int pos);
1291   void next(Label* L);
1292
1293   // One trampoline consists of:
1294   // - space for trampoline slots,
1295   // - space for labels.
1296   //
1297   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1298   // Space for trampoline slots preceeds space for labels. Each label is of one
1299   // instruction size, so total amount for labels is equal to
1300   // label_count *  kInstrSize.
1301   class Trampoline {
1302    public:
1303     Trampoline() {
1304       start_ = 0;
1305       next_slot_ = 0;
1306       free_slot_count_ = 0;
1307       end_ = 0;
1308     }
1309     Trampoline(int start, int slot_count) {
1310       start_ = start;
1311       next_slot_ = start;
1312       free_slot_count_ = slot_count;
1313       end_ = start + slot_count * kTrampolineSlotsSize;
1314     }
1315     int start() {
1316       return start_;
1317     }
1318     int end() {
1319       return end_;
1320     }
1321     int take_slot() {
1322       int trampoline_slot = kInvalidSlotPos;
1323       if (free_slot_count_ <= 0) {
1324         // We have run out of space on trampolines.
1325         // Make sure we fail in debug mode, so we become aware of each case
1326         // when this happens.
1327         DCHECK(0);
1328         // Internal exception will be caught.
1329       } else {
1330         trampoline_slot = next_slot_;
1331         free_slot_count_--;
1332         next_slot_ += kTrampolineSlotsSize;
1333       }
1334       return trampoline_slot;
1335     }
1336
1337    private:
1338     int start_;
1339     int end_;
1340     int next_slot_;
1341     int free_slot_count_;
1342   };
1343
1344   int32_t get_trampoline_entry(int32_t pos);
1345   int unbound_labels_count_;
1346   // If trampoline is emitted, generated code is becoming large. As this is
1347   // already a slow case which can possibly break our code generation for the
1348   // extreme case, we use this information to trigger different mode of
1349   // branch instruction generation, where we use jump instructions rather
1350   // than regular branch instructions.
1351   bool trampoline_emitted_;
1352   static const int kTrampolineSlotsSize = 4 * kInstrSize;
1353   static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1354   static const int kInvalidSlotPos = -1;
1355
1356   Trampoline trampoline_;
1357   bool internal_trampoline_exception_;
1358
1359   friend class RegExpMacroAssemblerMIPS;
1360   friend class RelocInfo;
1361   friend class CodePatcher;
1362   friend class BlockTrampolinePoolScope;
1363
1364   PositionsRecorder positions_recorder_;
1365   friend class PositionsRecorder;
1366   friend class EnsureSpace;
1367 };
1368
1369
1370 class EnsureSpace BASE_EMBEDDED {
1371  public:
1372   explicit EnsureSpace(Assembler* assembler) {
1373     assembler->CheckBuffer();
1374   }
1375 };
1376
1377 } }  // namespace v8::internal
1378
1379 #endif  // V8_ARM_ASSEMBLER_MIPS_H_