d73cf83f8f2429f5afe7084ff485af8dc85c0a5c
[platform/framework/web/crosswalk.git] / src / v8 / src / ic.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "v8.h"
29
30 #include "accessors.h"
31 #include "api.h"
32 #include "arguments.h"
33 #include "codegen.h"
34 #include "execution.h"
35 #include "ic-inl.h"
36 #include "runtime.h"
37 #include "stub-cache.h"
38 #include "v8conversions.h"
39
40 namespace v8 {
41 namespace internal {
42
43 #ifdef DEBUG
44 char IC::TransitionMarkFromState(IC::State state) {
45   switch (state) {
46     case UNINITIALIZED: return '0';
47     case PREMONOMORPHIC: return '.';
48     case MONOMORPHIC: return '1';
49     case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
50     case POLYMORPHIC: return 'P';
51     case MEGAMORPHIC: return 'N';
52     case GENERIC: return 'G';
53
54     // We never see the debugger states here, because the state is
55     // computed from the original code - not the patched code. Let
56     // these cases fall through to the unreachable code below.
57     case DEBUG_STUB: break;
58   }
59   UNREACHABLE();
60   return 0;
61 }
62
63
64 const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
65   if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
66   if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
67     return ".IGNORE_OOB";
68   }
69   if (IsGrowStoreMode(mode)) return ".GROW";
70   return "";
71 }
72
73
74 void IC::TraceIC(const char* type,
75                  Handle<Object> name) {
76   if (FLAG_trace_ic) {
77     Code* new_target = raw_target();
78     State new_state = new_target->ic_state();
79     PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type);
80     StackFrameIterator it(isolate());
81     while (it.frame()->fp() != this->fp()) it.Advance();
82     StackFrame* raw_frame = it.frame();
83     if (raw_frame->is_internal()) {
84       Code* apply_builtin = isolate()->builtins()->builtin(
85           Builtins::kFunctionApply);
86       if (raw_frame->unchecked_code() == apply_builtin) {
87         PrintF("apply from ");
88         it.Advance();
89         raw_frame = it.frame();
90       }
91     }
92     JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
93     ExtraICState extra_state = new_target->extra_ic_state();
94     const char* modifier =
95         GetTransitionMarkModifier(
96             KeyedStoreIC::GetKeyedAccessStoreMode(extra_state));
97     PrintF(" (%c->%c%s)",
98            TransitionMarkFromState(state()),
99            TransitionMarkFromState(new_state),
100            modifier);
101     name->Print();
102     PrintF("]\n");
103   }
104 }
105
106 #define TRACE_GENERIC_IC(isolate, type, reason)                 \
107   do {                                                          \
108     if (FLAG_trace_ic) {                                        \
109       PrintF("[%s patching generic stub in ", type);            \
110       JavaScriptFrame::PrintTop(isolate, stdout, false, true);  \
111       PrintF(" (%s)]\n", reason);                               \
112     }                                                           \
113   } while (false)
114
115 #else
116 #define TRACE_GENERIC_IC(isolate, type, reason)
117 #endif  // DEBUG
118
119 #define TRACE_IC(type, name)             \
120   ASSERT((TraceIC(type, name), true))
121
122 IC::IC(FrameDepth depth, Isolate* isolate)
123     : isolate_(isolate),
124       target_set_(false) {
125   // To improve the performance of the (much used) IC code, we unfold a few
126   // levels of the stack frame iteration code. This yields a ~35% speedup when
127   // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
128   const Address entry =
129       Isolate::c_entry_fp(isolate->thread_local_top());
130   Address* pc_address =
131       reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
132   Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
133   // If there's another JavaScript frame on the stack or a
134   // StubFailureTrampoline, we need to look one frame further down the stack to
135   // find the frame pointer and the return address stack slot.
136   if (depth == EXTRA_CALL_FRAME) {
137     const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
138     pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
139     fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
140   }
141 #ifdef DEBUG
142   StackFrameIterator it(isolate);
143   for (int i = 0; i < depth + 1; i++) it.Advance();
144   StackFrame* frame = it.frame();
145   ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
146 #endif
147   fp_ = fp;
148   pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address);
149   target_ = handle(raw_target(), isolate);
150   state_ = target_->ic_state();
151   extra_ic_state_ = target_->needs_extended_extra_ic_state(target_->kind())
152       ? target_->extended_extra_ic_state()
153       : target_->extra_ic_state();
154 }
155
156
157 #ifdef ENABLE_DEBUGGER_SUPPORT
158 Address IC::OriginalCodeAddress() const {
159   HandleScope scope(isolate());
160   // Compute the JavaScript frame for the frame pointer of this IC
161   // structure. We need this to be able to find the function
162   // corresponding to the frame.
163   StackFrameIterator it(isolate());
164   while (it.frame()->fp() != this->fp()) it.Advance();
165   JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
166   // Find the function on the stack and both the active code for the
167   // function and the original code.
168   JSFunction* function = frame->function();
169   Handle<SharedFunctionInfo> shared(function->shared(), isolate());
170   Code* code = shared->code();
171   ASSERT(Debug::HasDebugInfo(shared));
172   Code* original_code = Debug::GetDebugInfo(shared)->original_code();
173   ASSERT(original_code->IsCode());
174   // Get the address of the call site in the active code. This is the
175   // place where the call to DebugBreakXXX is and where the IC
176   // normally would be.
177   Address addr = Assembler::target_address_from_return_address(pc());
178   // Return the address in the original code. This is the place where
179   // the call which has been overwritten by the DebugBreakXXX resides
180   // and the place where the inline cache system should look.
181   intptr_t delta =
182       original_code->instruction_start() - code->instruction_start();
183   return addr + delta;
184 }
185 #endif
186
187
188 static bool HasInterceptorGetter(JSObject* object) {
189   return !object->GetNamedInterceptor()->getter()->IsUndefined();
190 }
191
192
193 static bool HasInterceptorSetter(JSObject* object) {
194   return !object->GetNamedInterceptor()->setter()->IsUndefined();
195 }
196
197
198 static void LookupForRead(Handle<Object> object,
199                           Handle<String> name,
200                           LookupResult* lookup) {
201   // Skip all the objects with named interceptors, but
202   // without actual getter.
203   while (true) {
204     object->Lookup(*name, lookup);
205     // Besides normal conditions (property not found or it's not
206     // an interceptor), bail out if lookup is not cacheable: we won't
207     // be able to IC it anyway and regular lookup should work fine.
208     if (!lookup->IsInterceptor() || !lookup->IsCacheable()) {
209       return;
210     }
211
212     Handle<JSObject> holder(lookup->holder(), lookup->isolate());
213     if (HasInterceptorGetter(*holder)) {
214       return;
215     }
216
217     holder->LocalLookupRealNamedProperty(*name, lookup);
218     if (lookup->IsFound()) {
219       ASSERT(!lookup->IsInterceptor());
220       return;
221     }
222
223     Handle<Object> proto(holder->GetPrototype(), lookup->isolate());
224     if (proto->IsNull()) {
225       ASSERT(!lookup->IsFound());
226       return;
227     }
228
229     object = proto;
230   }
231 }
232
233
234 bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,
235                                                 Handle<String> name) {
236   if (target()->is_keyed_stub()) {
237     // Determine whether the failure is due to a name failure.
238     if (!name->IsName()) return false;
239     Name* stub_name = target()->FindFirstName();
240     if (*name != stub_name) return false;
241   }
242
243   InlineCacheHolderFlag cache_holder =
244       Code::ExtractCacheHolderFromFlags(target()->flags());
245
246   switch (cache_holder) {
247     case OWN_MAP:
248       // The stub was generated for JSObject but called for non-JSObject.
249       // IC::GetCodeCacheHolder is not applicable.
250       if (!receiver->IsJSObject()) return false;
251       break;
252     case PROTOTYPE_MAP:
253       // IC::GetCodeCacheHolder is not applicable.
254       if (receiver->GetPrototype(isolate())->IsNull()) return false;
255       break;
256   }
257
258   Handle<Map> map(
259       IC::GetCodeCacheHolder(isolate(), *receiver, cache_holder)->map());
260
261   // Decide whether the inline cache failed because of changes to the
262   // receiver itself or changes to one of its prototypes.
263   //
264   // If there are changes to the receiver itself, the map of the
265   // receiver will have changed and the current target will not be in
266   // the receiver map's code cache.  Therefore, if the current target
267   // is in the receiver map's code cache, the inline cache failed due
268   // to prototype check failure.
269   int index = map->IndexInCodeCache(*name, *target());
270   if (index >= 0) {
271     map->RemoveFromCodeCache(*name, *target(), index);
272     // Handlers are stored in addition to the ICs on the map. Remove those, too.
273     TryRemoveInvalidHandlers(map, name);
274     return true;
275   }
276
277   // The stub is not in the cache. We've ruled out all other kinds of failure
278   // except for proptotype chain changes, a deprecated map, a map that's
279   // different from the one that the stub expects, elements kind changes, or a
280   // constant global property that will become mutable. Threat all those
281   // situations as prototype failures (stay monomorphic if possible).
282
283   // If the IC is shared between multiple receivers (slow dictionary mode), then
284   // the map cannot be deprecated and the stub invalidated.
285   if (cache_holder == OWN_MAP) {
286     Map* old_map = target()->FindFirstMap();
287     if (old_map == *map) return true;
288     if (old_map != NULL) {
289       if (old_map->is_deprecated()) return true;
290       if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(),
291                                               map->elements_kind())) {
292         return true;
293       }
294     }
295   }
296
297   if (receiver->IsGlobalObject()) {
298     LookupResult lookup(isolate());
299     GlobalObject* global = GlobalObject::cast(*receiver);
300     global->LocalLookupRealNamedProperty(*name, &lookup);
301     if (!lookup.IsFound()) return false;
302     PropertyCell* cell = global->GetPropertyCell(&lookup);
303     return cell->type()->IsConstant();
304   }
305
306   return false;
307 }
308
309
310 void IC::TryRemoveInvalidHandlers(Handle<Map> map, Handle<String> name) {
311   CodeHandleList handlers;
312   target()->FindHandlers(&handlers);
313   for (int i = 0; i < handlers.length(); i++) {
314     Handle<Code> handler = handlers.at(i);
315     int index = map->IndexInCodeCache(*name, *handler);
316     if (index >= 0) {
317       map->RemoveFromCodeCache(*name, *handler, index);
318       return;
319     }
320   }
321 }
322
323
324 void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) {
325   if (!name->IsString()) return;
326   if (state() != MONOMORPHIC) {
327     if (state() == POLYMORPHIC && receiver->IsHeapObject()) {
328       TryRemoveInvalidHandlers(
329           handle(Handle<HeapObject>::cast(receiver)->map()),
330           Handle<String>::cast(name));
331     }
332     return;
333   }
334   if (receiver->IsUndefined() || receiver->IsNull()) return;
335
336   // Remove the target from the code cache if it became invalid
337   // because of changes in the prototype chain to avoid hitting it
338   // again.
339   if (TryRemoveInvalidPrototypeDependentStub(
340           receiver, Handle<String>::cast(name))) {
341     return MarkMonomorphicPrototypeFailure();
342   }
343
344   // The builtins object is special.  It only changes when JavaScript
345   // builtins are loaded lazily.  It is important to keep inline
346   // caches for the builtins object monomorphic.  Therefore, if we get
347   // an inline cache miss for the builtins object after lazily loading
348   // JavaScript builtins, we return uninitialized as the state to
349   // force the inline cache back to monomorphic state.
350   if (receiver->IsJSBuiltinsObject()) state_ = UNINITIALIZED;
351 }
352
353
354 Failure* IC::TypeError(const char* type,
355                        Handle<Object> object,
356                        Handle<Object> key) {
357   HandleScope scope(isolate());
358   Handle<Object> args[2] = { key, object };
359   Handle<Object> error = isolate()->factory()->NewTypeError(
360       type, HandleVector(args, 2));
361   return isolate()->Throw(*error);
362 }
363
364
365 Failure* IC::ReferenceError(const char* type, Handle<String> name) {
366   HandleScope scope(isolate());
367   Handle<Object> error = isolate()->factory()->NewReferenceError(
368       type, HandleVector(&name, 1));
369   return isolate()->Throw(*error);
370 }
371
372
373 static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) {
374   bool was_uninitialized =
375       old_state == UNINITIALIZED || old_state == PREMONOMORPHIC;
376   bool is_uninitialized =
377       new_state == UNINITIALIZED || new_state == PREMONOMORPHIC;
378   return (was_uninitialized && !is_uninitialized) ?  1 :
379          (!was_uninitialized && is_uninitialized) ? -1 : 0;
380 }
381
382
383 void IC::PostPatching(Address address, Code* target, Code* old_target) {
384   Isolate* isolate = target->GetHeap()->isolate();
385   Code* host = isolate->
386       inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
387   if (host->kind() != Code::FUNCTION) return;
388
389   if (FLAG_type_info_threshold > 0 &&
390       old_target->is_inline_cache_stub() &&
391       target->is_inline_cache_stub()) {
392     int delta = ComputeTypeInfoCountDelta(old_target->ic_state(),
393                                           target->ic_state());
394     // Not all Code objects have TypeFeedbackInfo.
395     if (host->type_feedback_info()->IsTypeFeedbackInfo() && delta != 0) {
396       TypeFeedbackInfo* info =
397           TypeFeedbackInfo::cast(host->type_feedback_info());
398       info->change_ic_with_type_info_count(delta);
399     }
400   }
401   if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
402     TypeFeedbackInfo* info =
403         TypeFeedbackInfo::cast(host->type_feedback_info());
404     info->change_own_type_change_checksum();
405   }
406   host->set_profiler_ticks(0);
407   isolate->runtime_profiler()->NotifyICChanged();
408   // TODO(2029): When an optimized function is patched, it would
409   // be nice to propagate the corresponding type information to its
410   // unoptimized version for the benefit of later inlining.
411 }
412
413
414 void IC::Clear(Isolate* isolate, Address address) {
415   Code* target = GetTargetAtAddress(address);
416
417   // Don't clear debug break inline cache as it will remove the break point.
418   if (target->is_debug_stub()) return;
419
420   switch (target->kind()) {
421     case Code::LOAD_IC: return LoadIC::Clear(isolate, address, target);
422     case Code::KEYED_LOAD_IC:
423       return KeyedLoadIC::Clear(isolate, address, target);
424     case Code::STORE_IC: return StoreIC::Clear(isolate, address, target);
425     case Code::KEYED_STORE_IC:
426       return KeyedStoreIC::Clear(isolate, address, target);
427     case Code::COMPARE_IC: return CompareIC::Clear(isolate, address, target);
428     case Code::COMPARE_NIL_IC: return CompareNilIC::Clear(address, target);
429     case Code::BINARY_OP_IC:
430     case Code::TO_BOOLEAN_IC:
431       // Clearing these is tricky and does not
432       // make any performance difference.
433       return;
434     default: UNREACHABLE();
435   }
436 }
437
438
439 void KeyedLoadIC::Clear(Isolate* isolate, Address address, Code* target) {
440   if (IsCleared(target)) return;
441   // Make sure to also clear the map used in inline fast cases.  If we
442   // do not clear these maps, cached code can keep objects alive
443   // through the embedded maps.
444   SetTargetAtAddress(address, *pre_monomorphic_stub(isolate));
445 }
446
447
448 void LoadIC::Clear(Isolate* isolate, Address address, Code* target) {
449   if (IsCleared(target)) return;
450   Code* code = target->GetIsolate()->stub_cache()->FindPreMonomorphicIC(
451       Code::LOAD_IC, target->extra_ic_state());
452   SetTargetAtAddress(address, code);
453 }
454
455
456 void StoreIC::Clear(Isolate* isolate, Address address, Code* target) {
457   if (IsCleared(target)) return;
458   Code* code = target->GetIsolate()->stub_cache()->FindPreMonomorphicIC(
459       Code::STORE_IC, target->extra_ic_state());
460   SetTargetAtAddress(address, code);
461 }
462
463
464 void KeyedStoreIC::Clear(Isolate* isolate, Address address, Code* target) {
465   if (IsCleared(target)) return;
466   SetTargetAtAddress(address,
467       *pre_monomorphic_stub(
468           isolate, StoreIC::GetStrictMode(target->extra_ic_state())));
469 }
470
471
472 void CompareIC::Clear(Isolate* isolate, Address address, Code* target) {
473   ASSERT(target->major_key() == CodeStub::CompareIC);
474   CompareIC::State handler_state;
475   Token::Value op;
476   ICCompareStub::DecodeMinorKey(target->stub_info(), NULL, NULL,
477                                 &handler_state, &op);
478   // Only clear CompareICs that can retain objects.
479   if (handler_state != KNOWN_OBJECT) return;
480   SetTargetAtAddress(address, GetRawUninitialized(isolate, op));
481   PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
482 }
483
484
485 static bool MigrateDeprecated(Handle<Object> object) {
486   if (!object->IsJSObject()) return false;
487   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
488   if (!receiver->map()->is_deprecated()) return false;
489   JSObject::MigrateInstance(Handle<JSObject>::cast(object));
490   return true;
491 }
492
493
494 MaybeObject* LoadIC::Load(Handle<Object> object,
495                           Handle<String> name) {
496   // If the object is undefined or null it's illegal to try to get any
497   // of its properties; throw a TypeError in that case.
498   if (object->IsUndefined() || object->IsNull()) {
499     return TypeError("non_object_property_load", object, name);
500   }
501
502   if (FLAG_use_ic) {
503     // Use specialized code for getting the length of strings and
504     // string wrapper objects.  The length property of string wrapper
505     // objects is read-only and therefore always returns the length of
506     // the underlying string value.  See ECMA-262 15.5.5.1.
507     if (object->IsStringWrapper() &&
508         name->Equals(isolate()->heap()->length_string())) {
509       Handle<Code> stub;
510       if (state() == UNINITIALIZED) {
511         stub = pre_monomorphic_stub();
512       } else if (state() == PREMONOMORPHIC || state() == MONOMORPHIC) {
513         StringLengthStub string_length_stub(kind());
514         stub = string_length_stub.GetCode(isolate());
515       } else if (state() != MEGAMORPHIC) {
516         ASSERT(state() != GENERIC);
517         stub = megamorphic_stub();
518       }
519       if (!stub.is_null()) {
520         set_target(*stub);
521         if (FLAG_trace_ic) PrintF("[LoadIC : +#length /stringwrapper]\n");
522       }
523       // Get the string if we have a string wrapper object.
524       String* string = String::cast(JSValue::cast(*object)->value());
525       return Smi::FromInt(string->length());
526     }
527
528     // Use specialized code for getting prototype of functions.
529     if (object->IsJSFunction() &&
530         name->Equals(isolate()->heap()->prototype_string()) &&
531         Handle<JSFunction>::cast(object)->should_have_prototype()) {
532       Handle<Code> stub;
533       if (state() == UNINITIALIZED) {
534         stub = pre_monomorphic_stub();
535       } else if (state() == PREMONOMORPHIC) {
536         FunctionPrototypeStub function_prototype_stub(kind());
537         stub = function_prototype_stub.GetCode(isolate());
538       } else if (state() != MEGAMORPHIC) {
539         ASSERT(state() != GENERIC);
540         stub = megamorphic_stub();
541       }
542       if (!stub.is_null()) {
543         set_target(*stub);
544         if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
545       }
546       return *Accessors::FunctionGetPrototype(Handle<JSFunction>::cast(object));
547     }
548   }
549
550   // Check if the name is trivially convertible to an index and get
551   // the element or char if so.
552   uint32_t index;
553   if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) {
554     // Rewrite to the generic keyed load stub.
555     if (FLAG_use_ic) set_target(*generic_stub());
556     return Runtime::GetElementOrCharAtOrFail(isolate(), object, index);
557   }
558
559   bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
560
561   // Named lookup in the object.
562   LookupResult lookup(isolate());
563   LookupForRead(object, name, &lookup);
564
565   // If we did not find a property, check if we need to throw an exception.
566   if (!lookup.IsFound()) {
567     if (IsUndeclaredGlobal(object)) {
568       return ReferenceError("not_defined", name);
569     }
570     LOG(isolate(), SuspectReadEvent(*name, *object));
571   }
572
573   // Update inline cache and stub cache.
574   if (use_ic) UpdateCaches(&lookup, object, name);
575
576   PropertyAttributes attr;
577   // Get the property.
578   Handle<Object> result =
579       Object::GetProperty(object, object, &lookup, name, &attr);
580   RETURN_IF_EMPTY_HANDLE(isolate(), result);
581   // If the property is not present, check if we need to throw an
582   // exception.
583   if ((lookup.IsInterceptor() || lookup.IsHandler()) &&
584       attr == ABSENT && IsUndeclaredGlobal(object)) {
585     return ReferenceError("not_defined", name);
586   }
587
588   return *result;
589 }
590
591
592 static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
593                                        Handle<Map> new_receiver_map) {
594   ASSERT(!new_receiver_map.is_null());
595   for (int current = 0; current < receiver_maps->length(); ++current) {
596     if (!receiver_maps->at(current).is_null() &&
597         receiver_maps->at(current).is_identical_to(new_receiver_map)) {
598       return false;
599     }
600   }
601   receiver_maps->Add(new_receiver_map);
602   return true;
603 }
604
605
606 bool IC::UpdatePolymorphicIC(Handle<HeapType> type,
607                              Handle<String> name,
608                              Handle<Code> code) {
609   if (!code->is_handler()) return false;
610   TypeHandleList types;
611   CodeHandleList handlers;
612
613   int number_of_valid_types;
614   int handler_to_overwrite = -1;
615
616   target()->FindAllTypes(&types);
617   int number_of_types = types.length();
618   number_of_valid_types = number_of_types;
619
620   for (int i = 0; i < number_of_types; i++) {
621     Handle<HeapType> current_type = types.at(i);
622     // Filter out deprecated maps to ensure their instances get migrated.
623     if (current_type->IsClass() && current_type->AsClass()->is_deprecated()) {
624       number_of_valid_types--;
625     // If the receiver type is already in the polymorphic IC, this indicates
626     // there was a prototoype chain failure. In that case, just overwrite the
627     // handler.
628     } else if (type->IsCurrently(current_type)) {
629       ASSERT(handler_to_overwrite == -1);
630       number_of_valid_types--;
631       handler_to_overwrite = i;
632     }
633   }
634
635   if (number_of_valid_types >= 4) return false;
636   if (number_of_types == 0) return false;
637   if (!target()->FindHandlers(&handlers, types.length())) return false;
638
639   number_of_valid_types++;
640   if (handler_to_overwrite >= 0) {
641     handlers.Set(handler_to_overwrite, code);
642   } else {
643     types.Add(type);
644     handlers.Add(code);
645   }
646
647   Handle<Code> ic = isolate()->stub_cache()->ComputePolymorphicIC(
648       &types, &handlers, number_of_valid_types, name, extra_ic_state());
649   set_target(*ic);
650   return true;
651 }
652
653
654 Handle<HeapType> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) {
655   return object->IsJSGlobalObject()
656       ? HeapType::Constant(Handle<JSGlobalObject>::cast(object), isolate)
657       : HeapType::OfCurrently(object, isolate);
658 }
659
660
661 Handle<Map> IC::TypeToMap(HeapType* type, Isolate* isolate) {
662   if (type->Is(HeapType::Number()))
663     return isolate->factory()->heap_number_map();
664   if (type->Is(HeapType::Float32x4()))
665     return isolate->factory()->float32x4_map();
666   if (type->Is(HeapType::Int32x4()))
667     return isolate->factory()->int32x4_map();
668   if (type->Is(HeapType::Boolean())) return isolate->factory()->oddball_map();
669   if (type->IsConstant()) {
670     return handle(Handle<JSGlobalObject>::cast(type->AsConstant())->map());
671   }
672   ASSERT(type->IsClass());
673   return type->AsClass();
674 }
675
676
677 template <class T>
678 typename T::TypeHandle IC::MapToType(Handle<Map> map,
679                                      typename T::Region* region) {
680   if (map->instance_type() == HEAP_NUMBER_TYPE) {
681     return T::Number(region);
682   } else if (map->instance_type() == FLOAT32x4_TYPE) {
683     return T::Float32x4(region);
684   } else if (map->instance_type() == INT32x4_TYPE) {
685     return T::Int32x4(region);
686   } else if (map->instance_type() == ODDBALL_TYPE) {
687     // The only oddballs that can be recorded in ICs are booleans.
688     return T::Boolean(region);
689   } else {
690     return T::Class(map, region);
691   }
692 }
693
694
695 template
696 Type* IC::MapToType<Type>(Handle<Map> map, Zone* zone);
697
698
699 template
700 Handle<HeapType> IC::MapToType<HeapType>(Handle<Map> map, Isolate* region);
701
702
703 void IC::UpdateMonomorphicIC(Handle<HeapType> type,
704                              Handle<Code> handler,
705                              Handle<String> name) {
706   if (!handler->is_handler()) return set_target(*handler);
707   Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicIC(
708       name, type, handler, extra_ic_state());
709   set_target(*ic);
710 }
711
712
713 void IC::CopyICToMegamorphicCache(Handle<String> name) {
714   TypeHandleList types;
715   CodeHandleList handlers;
716   target()->FindAllTypes(&types);
717   if (!target()->FindHandlers(&handlers, types.length())) return;
718   for (int i = 0; i < types.length(); i++) {
719     UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i));
720   }
721 }
722
723
724 bool IC::IsTransitionOfMonomorphicTarget(Handle<HeapType> type) {
725   if (!type->IsClass()) return false;
726   Map* receiver_map = *type->AsClass();
727   Map* current_map = target()->FindFirstMap();
728   ElementsKind receiver_elements_kind = receiver_map->elements_kind();
729   bool more_general_transition =
730       IsMoreGeneralElementsKindTransition(
731         current_map->elements_kind(), receiver_elements_kind);
732   Map* transitioned_map = more_general_transition
733       ? current_map->LookupElementsTransitionMap(receiver_elements_kind)
734       : NULL;
735
736   return transitioned_map == receiver_map;
737 }
738
739
740 void IC::PatchCache(Handle<HeapType> type,
741                     Handle<String> name,
742                     Handle<Code> code) {
743   switch (state()) {
744     case UNINITIALIZED:
745     case PREMONOMORPHIC:
746     case MONOMORPHIC_PROTOTYPE_FAILURE:
747       UpdateMonomorphicIC(type, code, name);
748       break;
749     case MONOMORPHIC: {
750       // For now, call stubs are allowed to rewrite to the same stub. This
751       // happens e.g., when the field does not contain a function.
752       ASSERT(!target().is_identical_to(code));
753       Code* old_handler = target()->FindFirstHandler();
754       if (old_handler == *code && IsTransitionOfMonomorphicTarget(type)) {
755         UpdateMonomorphicIC(type, code, name);
756         break;
757       }
758       // Fall through.
759     }
760     case POLYMORPHIC:
761       if (!target()->is_keyed_stub()) {
762         if (UpdatePolymorphicIC(type, name, code)) break;
763         CopyICToMegamorphicCache(name);
764       }
765       set_target(*megamorphic_stub());
766       // Fall through.
767     case MEGAMORPHIC:
768       UpdateMegamorphicCache(*type, *name, *code);
769       break;
770     case DEBUG_STUB:
771       break;
772     case GENERIC:
773       UNREACHABLE();
774       break;
775   }
776 }
777
778
779 Handle<Code> LoadIC::initialize_stub(Isolate* isolate,
780                                      ExtraICState extra_state) {
781   return isolate->stub_cache()->ComputeLoad(UNINITIALIZED, extra_state);
782 }
783
784
785 Handle<Code> LoadIC::pre_monomorphic_stub(Isolate* isolate,
786                                           ExtraICState extra_state) {
787   return isolate->stub_cache()->ComputeLoad(PREMONOMORPHIC, extra_state);
788 }
789
790
791 Handle<Code> LoadIC::megamorphic_stub() {
792   return isolate()->stub_cache()->ComputeLoad(MEGAMORPHIC, extra_ic_state());
793 }
794
795
796 Handle<Code> LoadIC::SimpleFieldLoad(int offset,
797                                      bool inobject,
798                                      Representation representation) {
799   if (kind() == Code::LOAD_IC) {
800     LoadFieldStub stub(inobject, offset, representation);
801     return stub.GetCode(isolate());
802   } else {
803     KeyedLoadFieldStub stub(inobject, offset, representation);
804     return stub.GetCode(isolate());
805   }
806 }
807
808
809 void LoadIC::UpdateCaches(LookupResult* lookup,
810                           Handle<Object> object,
811                           Handle<String> name) {
812   if (state() == UNINITIALIZED) {
813     // This is the first time we execute this inline cache.
814     // Set the target to the pre monomorphic stub to delay
815     // setting the monomorphic state.
816     set_target(*pre_monomorphic_stub());
817     TRACE_IC("LoadIC", name);
818     return;
819   }
820
821   Handle<HeapType> type = CurrentTypeOf(object, isolate());
822   Handle<Code> code;
823   if (!lookup->IsCacheable()) {
824     // Bail out if the result is not cacheable.
825     code = slow_stub();
826   } else if (!lookup->IsProperty()) {
827     if (kind() == Code::LOAD_IC) {
828       code = isolate()->stub_cache()->ComputeLoadNonexistent(name, type);
829     } else {
830       code = slow_stub();
831     }
832   } else {
833     code = ComputeHandler(lookup, object, name);
834   }
835
836   PatchCache(type, name, code);
837   TRACE_IC("LoadIC", name);
838 }
839
840
841 void IC::UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) {
842   // Cache code holding map should be consistent with
843   // GenerateMonomorphicCacheProbe.
844   Map* map = *TypeToMap(type, isolate());
845   isolate()->stub_cache()->Set(name, map, code);
846 }
847
848
849 Handle<Code> IC::ComputeHandler(LookupResult* lookup,
850                                 Handle<Object> object,
851                                 Handle<String> name,
852                                 Handle<Object> value) {
853   InlineCacheHolderFlag cache_holder = GetCodeCacheForObject(*object);
854   Handle<HeapObject> stub_holder(GetCodeCacheHolder(
855       isolate(), *object, cache_holder));
856
857   Handle<Code> code = isolate()->stub_cache()->FindHandler(
858       name, handle(stub_holder->map()), kind(), cache_holder);
859   if (!code.is_null()) return code;
860
861   code = CompileHandler(lookup, object, name, value, cache_holder);
862   ASSERT(code->is_handler());
863
864   if (code->type() != Code::NORMAL) {
865     HeapObject::UpdateMapCodeCache(stub_holder, name, code);
866   }
867
868   return code;
869 }
870
871
872 Handle<Code> LoadIC::CompileHandler(LookupResult* lookup,
873                                     Handle<Object> object,
874                                     Handle<String> name,
875                                     Handle<Object> unused,
876                                     InlineCacheHolderFlag cache_holder) {
877   if (object->IsString() && name->Equals(isolate()->heap()->length_string())) {
878     int length_index = String::kLengthOffset / kPointerSize;
879     return SimpleFieldLoad(length_index);
880   }
881
882   Handle<HeapType> type = CurrentTypeOf(object, isolate());
883   Handle<JSObject> holder(lookup->holder());
884   LoadStubCompiler compiler(isolate(), kNoExtraICState, cache_holder, kind());
885
886   switch (lookup->type()) {
887     case FIELD: {
888       PropertyIndex field = lookup->GetFieldIndex();
889       if (object.is_identical_to(holder)) {
890         return SimpleFieldLoad(field.translate(holder),
891                                field.is_inobject(holder),
892                                lookup->representation());
893       }
894       return compiler.CompileLoadField(
895           type, holder, name, field, lookup->representation());
896     }
897     case CONSTANT: {
898       Handle<Object> constant(lookup->GetConstant(), isolate());
899       // TODO(2803): Don't compute a stub for cons strings because they cannot
900       // be embedded into code.
901       if (constant->IsConsString()) break;
902       return compiler.CompileLoadConstant(type, holder, name, constant);
903     }
904     case NORMAL:
905       if (kind() != Code::LOAD_IC) break;
906       if (holder->IsGlobalObject()) {
907         Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
908         Handle<PropertyCell> cell(
909             global->GetPropertyCell(lookup), isolate());
910         Handle<Code> code = compiler.CompileLoadGlobal(
911             type, global, cell, name, lookup->IsDontDelete());
912         // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
913         Handle<HeapObject> stub_holder(GetCodeCacheHolder(
914             isolate(), *object, cache_holder));
915         HeapObject::UpdateMapCodeCache(stub_holder, name, code);
916         return code;
917       }
918       // There is only one shared stub for loading normalized
919       // properties. It does not traverse the prototype chain, so the
920       // property must be found in the object for the stub to be
921       // applicable.
922       if (!object.is_identical_to(holder)) break;
923       return isolate()->builtins()->LoadIC_Normal();
924     case CALLBACKS: {
925       // Use simple field loads for some well-known callback properties.
926       if (object->IsJSObject()) {
927         Handle<JSObject> receiver = Handle<JSObject>::cast(object);
928         Handle<HeapType> type = IC::MapToType<HeapType>(
929             handle(receiver->map()), isolate());
930         int object_offset;
931         if (Accessors::IsJSObjectFieldAccessor<HeapType>(
932                 type, name, &object_offset)) {
933           return SimpleFieldLoad(object_offset / kPointerSize);
934         }
935       }
936
937       Handle<Object> callback(lookup->GetCallbackObject(), isolate());
938       if (callback->IsExecutableAccessorInfo()) {
939         Handle<ExecutableAccessorInfo> info =
940             Handle<ExecutableAccessorInfo>::cast(callback);
941         if (v8::ToCData<Address>(info->getter()) == 0) break;
942         if (!info->IsCompatibleReceiver(*object)) break;
943         return compiler.CompileLoadCallback(type, holder, name, info);
944       } else if (callback->IsAccessorPair()) {
945         Handle<Object> getter(Handle<AccessorPair>::cast(callback)->getter(),
946                               isolate());
947         if (!getter->IsJSFunction()) break;
948         if (holder->IsGlobalObject()) break;
949         if (!holder->HasFastProperties()) break;
950         Handle<JSFunction> function = Handle<JSFunction>::cast(getter);
951         if (!object->IsJSObject() &&
952             !function->IsBuiltin() &&
953             function->shared()->is_classic_mode()) {
954           // Calling non-strict non-builtins with a value as the receiver
955           // requires boxing.
956           break;
957         }
958         CallOptimization call_optimization(function);
959         if (call_optimization.is_simple_api_call() &&
960             call_optimization.IsCompatibleReceiver(object, holder)) {
961           return compiler.CompileLoadCallback(
962               type, holder, name, call_optimization);
963         }
964         return compiler.CompileLoadViaGetter(type, holder, name, function);
965       }
966       // TODO(dcarney): Handle correctly.
967       if (callback->IsDeclaredAccessorInfo()) break;
968       ASSERT(callback->IsForeign());
969       // No IC support for old-style native accessors.
970       break;
971     }
972     case INTERCEPTOR:
973       ASSERT(HasInterceptorGetter(*holder));
974       return compiler.CompileLoadInterceptor(type, holder, name);
975     default:
976       break;
977   }
978
979   return slow_stub();
980 }
981
982
983 static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
984   // This helper implements a few common fast cases for converting
985   // non-smi keys of keyed loads/stores to a smi or a string.
986   if (key->IsHeapNumber()) {
987     double value = Handle<HeapNumber>::cast(key)->value();
988     if (std::isnan(value)) {
989       key = isolate->factory()->nan_string();
990     } else {
991       int int_value = FastD2I(value);
992       if (value == int_value && Smi::IsValid(int_value)) {
993         key = Handle<Smi>(Smi::FromInt(int_value), isolate);
994       }
995     }
996   } else if (key->IsUndefined()) {
997     key = isolate->factory()->undefined_string();
998   }
999   return key;
1000 }
1001
1002
1003 Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) {
1004   // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1005   // via megamorphic stubs, since they don't have a map in their relocation info
1006   // and so the stubs can't be harvested for the object needed for a map check.
1007   if (target()->type() != Code::NORMAL) {
1008     TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1009     return generic_stub();
1010   }
1011
1012   Handle<Map> receiver_map(receiver->map(), isolate());
1013   MapHandleList target_receiver_maps;
1014   if (state() == UNINITIALIZED || state() == PREMONOMORPHIC) {
1015     // Optimistically assume that ICs that haven't reached the MONOMORPHIC state
1016     // yet will do so and stay there.
1017     return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1018   }
1019
1020   if (target().is_identical_to(string_stub())) {
1021     target_receiver_maps.Add(isolate()->factory()->string_map());
1022   } else {
1023     target()->FindAllMaps(&target_receiver_maps);
1024     if (target_receiver_maps.length() == 0) {
1025       return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1026     }
1027   }
1028
1029   // The first time a receiver is seen that is a transitioned version of the
1030   // previous monomorphic receiver type, assume the new ElementsKind is the
1031   // monomorphic type. This benefits global arrays that only transition
1032   // once, and all call sites accessing them are faster if they remain
1033   // monomorphic. If this optimistic assumption is not true, the IC will
1034   // miss again and it will become polymorphic and support both the
1035   // untransitioned and transitioned maps.
1036   if (state() == MONOMORPHIC &&
1037       IsMoreGeneralElementsKindTransition(
1038           target_receiver_maps.at(0)->elements_kind(),
1039           receiver->GetElementsKind())) {
1040     return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1041   }
1042
1043   ASSERT(state() != GENERIC);
1044
1045   // Determine the list of receiver maps that this call site has seen,
1046   // adding the map that was just encountered.
1047   if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
1048     // If the miss wasn't due to an unseen map, a polymorphic stub
1049     // won't help, use the generic stub.
1050     TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1051     return generic_stub();
1052   }
1053
1054   // If the maximum number of receiver maps has been exceeded, use the generic
1055   // version of the IC.
1056   if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1057     TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1058     return generic_stub();
1059   }
1060
1061   return isolate()->stub_cache()->ComputeLoadElementPolymorphic(
1062       &target_receiver_maps);
1063 }
1064
1065
1066 MaybeObject* KeyedLoadIC::Load(Handle<Object> object, Handle<Object> key) {
1067   if (MigrateDeprecated(object)) {
1068     return Runtime::GetObjectPropertyOrFail(isolate(), object, key);
1069   }
1070
1071   MaybeObject* maybe_object = NULL;
1072   Handle<Code> stub = generic_stub();
1073
1074   // Check for values that can be converted into an internalized string directly
1075   // or is representable as a smi.
1076   key = TryConvertKey(key, isolate());
1077
1078   if (key->IsInternalizedString()) {
1079     maybe_object = LoadIC::Load(object, Handle<String>::cast(key));
1080     if (maybe_object->IsFailure()) return maybe_object;
1081   } else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) {
1082     ASSERT(!object->IsJSGlobalProxy());
1083     if (object->IsString() && key->IsNumber()) {
1084       if (state() == UNINITIALIZED) stub = string_stub();
1085     } else if (object->IsJSObject()) {
1086       Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1087       if (receiver->elements()->map() ==
1088           isolate()->heap()->non_strict_arguments_elements_map()) {
1089         stub = non_strict_arguments_stub();
1090       } else if (receiver->HasIndexedInterceptor()) {
1091         stub = indexed_interceptor_stub();
1092       } else if (!key->ToSmi()->IsFailure() &&
1093                  (!target().is_identical_to(non_strict_arguments_stub()))) {
1094         stub = LoadElementStub(receiver);
1095       }
1096     }
1097   }
1098
1099   if (!is_target_set()) {
1100     if (*stub == *generic_stub()) {
1101       TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic");
1102     }
1103     ASSERT(!stub.is_null());
1104     set_target(*stub);
1105     TRACE_IC("LoadIC", key);
1106   }
1107
1108   if (maybe_object != NULL) return maybe_object;
1109   return Runtime::GetObjectPropertyOrFail(isolate(), object, key);
1110 }
1111
1112
1113 static bool LookupForWrite(Handle<JSObject> receiver,
1114                            Handle<String> name,
1115                            Handle<Object> value,
1116                            LookupResult* lookup,
1117                            IC* ic) {
1118   Handle<JSObject> holder = receiver;
1119   receiver->Lookup(*name, lookup);
1120   if (lookup->IsFound()) {
1121     if (lookup->IsReadOnly() || !lookup->IsCacheable()) return false;
1122
1123     if (lookup->holder() == *receiver) {
1124       if (lookup->IsInterceptor() && !HasInterceptorSetter(*receiver)) {
1125         receiver->LocalLookupRealNamedProperty(*name, lookup);
1126         return lookup->IsFound() &&
1127             !lookup->IsReadOnly() &&
1128             lookup->CanHoldValue(value) &&
1129             lookup->IsCacheable();
1130       }
1131       return lookup->CanHoldValue(value);
1132     }
1133
1134     if (lookup->IsPropertyCallbacks()) return true;
1135     // JSGlobalProxy always goes via the runtime, so it's safe to cache.
1136     if (receiver->IsJSGlobalProxy()) return true;
1137     // Currently normal holders in the prototype chain are not supported. They
1138     // would require a runtime positive lookup and verification that the details
1139     // have not changed.
1140     if (lookup->IsInterceptor() || lookup->IsNormal()) return false;
1141     holder = Handle<JSObject>(lookup->holder(), lookup->isolate());
1142   }
1143
1144   // While normally LookupTransition gets passed the receiver, in this case we
1145   // pass the holder of the property that we overwrite. This keeps the holder in
1146   // the LookupResult intact so we can later use it to generate a prototype
1147   // chain check. This avoids a double lookup, but requires us to pass in the
1148   // receiver when trying to fetch extra information from the transition.
1149   receiver->map()->LookupTransition(*holder, *name, lookup);
1150   if (!lookup->IsTransition()) return false;
1151   PropertyDetails target_details = lookup->GetTransitionDetails();
1152   if (target_details.IsReadOnly()) return false;
1153
1154   // If the value that's being stored does not fit in the field that the
1155   // instance would transition to, create a new transition that fits the value.
1156   // This has to be done before generating the IC, since that IC will embed the
1157   // transition target.
1158   // Ensure the instance and its map were migrated before trying to update the
1159   // transition target.
1160   ASSERT(!receiver->map()->is_deprecated());
1161   if (!value->FitsRepresentation(target_details.representation())) {
1162     Handle<Map> target(lookup->GetTransitionTarget());
1163     Map::GeneralizeRepresentation(
1164         target, target->LastAdded(),
1165         value->OptimalRepresentation(), FORCE_FIELD);
1166     // Lookup the transition again since the transition tree may have changed
1167     // entirely by the migration above.
1168     receiver->map()->LookupTransition(*holder, *name, lookup);
1169     if (!lookup->IsTransition()) return false;
1170     ic->MarkMonomorphicPrototypeFailure();
1171   }
1172   return true;
1173 }
1174
1175
1176 MaybeObject* StoreIC::Store(Handle<Object> object,
1177                             Handle<String> name,
1178                             Handle<Object> value,
1179                             JSReceiver::StoreFromKeyed store_mode) {
1180   if (MigrateDeprecated(object) || object->IsJSProxy()) {
1181     Handle<Object> result = JSReceiver::SetProperty(
1182         Handle<JSReceiver>::cast(object), name, value, NONE, strict_mode());
1183     RETURN_IF_EMPTY_HANDLE(isolate(), result);
1184     return *result;
1185   }
1186
1187   // If the object is undefined or null it's illegal to try to set any
1188   // properties on it; throw a TypeError in that case.
1189   if (object->IsUndefined() || object->IsNull()) {
1190     return TypeError("non_object_property_store", object, name);
1191   }
1192
1193   // The length property of string values is read-only. Throw in strict mode.
1194   if (strict_mode() == kStrictMode && object->IsString() &&
1195       name->Equals(isolate()->heap()->length_string())) {
1196     return TypeError("strict_read_only_property", object, name);
1197   }
1198
1199   // Ignore other stores where the receiver is not a JSObject.
1200   // TODO(1475): Must check prototype chains of object wrappers.
1201   if (!object->IsJSObject()) return *value;
1202
1203   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1204
1205   // Check if the given name is an array index.
1206   uint32_t index;
1207   if (name->AsArrayIndex(&index)) {
1208     Handle<Object> result =
1209         JSObject::SetElement(receiver, index, value, NONE, strict_mode());
1210     RETURN_IF_EMPTY_HANDLE(isolate(), result);
1211     return *value;
1212   }
1213
1214   // Observed objects are always modified through the runtime.
1215   if (FLAG_harmony_observation && receiver->map()->is_observed()) {
1216     Handle<Object> result = JSReceiver::SetProperty(
1217         receiver, name, value, NONE, strict_mode(), store_mode);
1218     RETURN_IF_EMPTY_HANDLE(isolate(), result);
1219     return *result;
1220   }
1221
1222   // Use specialized code for setting the length of arrays with fast
1223   // properties. Slow properties might indicate redefinition of the length
1224   // property. Note that when redefined using Object.freeze, it's possible
1225   // to have fast properties but a read-only length.
1226   if (FLAG_use_ic &&
1227       receiver->IsJSArray() &&
1228       name->Equals(isolate()->heap()->length_string()) &&
1229       Handle<JSArray>::cast(receiver)->AllowsSetElementsLength() &&
1230       receiver->HasFastProperties() &&
1231       !receiver->map()->is_frozen()) {
1232     Handle<Code> stub =
1233         StoreArrayLengthStub(kind(), strict_mode()).GetCode(isolate());
1234     set_target(*stub);
1235     TRACE_IC("StoreIC", name);
1236     Handle<Object> result = JSReceiver::SetProperty(
1237         receiver, name, value, NONE, strict_mode(), store_mode);
1238     RETURN_IF_EMPTY_HANDLE(isolate(), result);
1239     return *result;
1240   }
1241
1242   LookupResult lookup(isolate());
1243   bool can_store = LookupForWrite(receiver, name, value, &lookup, this);
1244   if (!can_store &&
1245       strict_mode() == kStrictMode &&
1246       !(lookup.IsProperty() && lookup.IsReadOnly()) &&
1247       object->IsGlobalObject()) {
1248     // Strict mode doesn't allow setting non-existent global property.
1249     return ReferenceError("not_defined", name);
1250   }
1251   if (FLAG_use_ic) {
1252     if (state() == UNINITIALIZED) {
1253       Handle<Code> stub = pre_monomorphic_stub();
1254       set_target(*stub);
1255       TRACE_IC("StoreIC", name);
1256     } else if (can_store) {
1257       UpdateCaches(&lookup, receiver, name, value);
1258     } else if (!name->IsCacheable(isolate()) ||
1259                lookup.IsNormal() ||
1260                (lookup.IsField() && lookup.CanHoldValue(value))) {
1261       Handle<Code> stub = generic_stub();
1262       set_target(*stub);
1263     }
1264   }
1265
1266   // Set the property.
1267   Handle<Object> result = JSReceiver::SetProperty(
1268       receiver, name, value, NONE, strict_mode(), store_mode);
1269   RETURN_IF_EMPTY_HANDLE(isolate(), result);
1270   return *result;
1271 }
1272
1273
1274 Handle<Code> StoreIC::initialize_stub(Isolate* isolate,
1275                                       StrictModeFlag strict_mode) {
1276   ExtraICState extra_state = ComputeExtraICState(strict_mode);
1277   Handle<Code> ic = isolate->stub_cache()->ComputeStore(
1278       UNINITIALIZED, extra_state);
1279   return ic;
1280 }
1281
1282
1283 Handle<Code> StoreIC::megamorphic_stub() {
1284   return isolate()->stub_cache()->ComputeStore(MEGAMORPHIC, extra_ic_state());
1285 }
1286
1287
1288 Handle<Code> StoreIC::generic_stub() const {
1289   return isolate()->stub_cache()->ComputeStore(GENERIC, extra_ic_state());
1290 }
1291
1292
1293 Handle<Code> StoreIC::pre_monomorphic_stub(Isolate* isolate,
1294                                            StrictModeFlag strict_mode) {
1295   ExtraICState state = ComputeExtraICState(strict_mode);
1296   return isolate->stub_cache()->ComputeStore(PREMONOMORPHIC, state);
1297 }
1298
1299
1300 void StoreIC::UpdateCaches(LookupResult* lookup,
1301                            Handle<JSObject> receiver,
1302                            Handle<String> name,
1303                            Handle<Object> value) {
1304   ASSERT(lookup->IsFound());
1305
1306   // These are not cacheable, so we never see such LookupResults here.
1307   ASSERT(!lookup->IsHandler());
1308
1309   Handle<Code> code = ComputeHandler(lookup, receiver, name, value);
1310
1311   PatchCache(CurrentTypeOf(receiver, isolate()), name, code);
1312   TRACE_IC("StoreIC", name);
1313 }
1314
1315
1316 Handle<Code> StoreIC::CompileHandler(LookupResult* lookup,
1317                                      Handle<Object> object,
1318                                      Handle<String> name,
1319                                      Handle<Object> value,
1320                                      InlineCacheHolderFlag cache_holder) {
1321   if (object->IsJSGlobalProxy()) return slow_stub();
1322   ASSERT(cache_holder == OWN_MAP);
1323   // This is currently guaranteed by checks in StoreIC::Store.
1324   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1325
1326   Handle<JSObject> holder(lookup->holder());
1327   // Handlers do not use strict mode.
1328   StoreStubCompiler compiler(isolate(), kNonStrictMode, kind());
1329   switch (lookup->type()) {
1330     case FIELD:
1331       return compiler.CompileStoreField(receiver, lookup, name);
1332     case TRANSITION: {
1333       // Explicitly pass in the receiver map since LookupForWrite may have
1334       // stored something else than the receiver in the holder.
1335       Handle<Map> transition(lookup->GetTransitionTarget());
1336       PropertyDetails details = transition->GetLastDescriptorDetails();
1337
1338       if (details.type() == CALLBACKS || details.attributes() != NONE) break;
1339
1340       return compiler.CompileStoreTransition(
1341           receiver, lookup, transition, name);
1342     }
1343     case NORMAL:
1344       if (kind() == Code::KEYED_STORE_IC) break;
1345       if (receiver->IsGlobalObject()) {
1346         // The stub generated for the global object picks the value directly
1347         // from the property cell. So the property must be directly on the
1348         // global object.
1349         Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
1350         Handle<PropertyCell> cell(global->GetPropertyCell(lookup), isolate());
1351         Handle<HeapType> union_type = PropertyCell::UpdatedType(cell, value);
1352         StoreGlobalStub stub(union_type->IsConstant());
1353
1354         Handle<Code> code = stub.GetCodeCopyFromTemplate(
1355             isolate(), receiver->map(), *cell);
1356         // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1357         HeapObject::UpdateMapCodeCache(receiver, name, code);
1358         return code;
1359       }
1360       ASSERT(holder.is_identical_to(receiver));
1361       return isolate()->builtins()->StoreIC_Normal();
1362     case CALLBACKS: {
1363       if (kind() == Code::KEYED_STORE_IC) break;
1364       Handle<Object> callback(lookup->GetCallbackObject(), isolate());
1365       if (callback->IsExecutableAccessorInfo()) {
1366         Handle<ExecutableAccessorInfo> info =
1367             Handle<ExecutableAccessorInfo>::cast(callback);
1368         if (v8::ToCData<Address>(info->setter()) == 0) break;
1369         if (!holder->HasFastProperties()) break;
1370         if (!info->IsCompatibleReceiver(*receiver)) break;
1371         return compiler.CompileStoreCallback(receiver, holder, name, info);
1372       } else if (callback->IsAccessorPair()) {
1373         Handle<Object> setter(
1374             Handle<AccessorPair>::cast(callback)->setter(), isolate());
1375         if (!setter->IsJSFunction()) break;
1376         if (holder->IsGlobalObject()) break;
1377         if (!holder->HasFastProperties()) break;
1378         Handle<JSFunction> function = Handle<JSFunction>::cast(setter);
1379         CallOptimization call_optimization(function);
1380         if (call_optimization.is_simple_api_call() &&
1381             call_optimization.IsCompatibleReceiver(receiver, holder)) {
1382           return compiler.CompileStoreCallback(
1383               receiver, holder, name, call_optimization);
1384         }
1385         return compiler.CompileStoreViaSetter(
1386             receiver, holder, name, Handle<JSFunction>::cast(setter));
1387       }
1388       // TODO(dcarney): Handle correctly.
1389       if (callback->IsDeclaredAccessorInfo()) break;
1390       ASSERT(callback->IsForeign());
1391       // No IC support for old-style native accessors.
1392       break;
1393     }
1394     case INTERCEPTOR:
1395       if (kind() == Code::KEYED_STORE_IC) break;
1396       ASSERT(HasInterceptorSetter(*receiver));
1397       return compiler.CompileStoreInterceptor(receiver, name);
1398     case CONSTANT:
1399       break;
1400     case NONEXISTENT:
1401     case HANDLER:
1402       UNREACHABLE();
1403       break;
1404   }
1405   return slow_stub();
1406 }
1407
1408
1409 Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver,
1410                                             KeyedAccessStoreMode store_mode) {
1411   // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1412   // via megamorphic stubs, since they don't have a map in their relocation info
1413   // and so the stubs can't be harvested for the object needed for a map check.
1414   if (target()->type() != Code::NORMAL) {
1415     TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1416     return generic_stub();
1417   }
1418
1419   Handle<Map> receiver_map(receiver->map(), isolate());
1420   if (state() == UNINITIALIZED || state() == PREMONOMORPHIC) {
1421     // Optimistically assume that ICs that haven't reached the MONOMORPHIC state
1422     // yet will do so and stay there.
1423     Handle<Map> monomorphic_map = ComputeTransitionedMap(receiver, store_mode);
1424     store_mode = GetNonTransitioningStoreMode(store_mode);
1425     return isolate()->stub_cache()->ComputeKeyedStoreElement(
1426         monomorphic_map, strict_mode(), store_mode);
1427   }
1428
1429   MapHandleList target_receiver_maps;
1430   target()->FindAllMaps(&target_receiver_maps);
1431   if (target_receiver_maps.length() == 0) {
1432     // In the case that there is a non-map-specific IC is installed (e.g. keyed
1433     // stores into properties in dictionary mode), then there will be not
1434     // receiver maps in the target.
1435     return generic_stub();
1436   }
1437
1438   // There are several special cases where an IC that is MONOMORPHIC can still
1439   // transition to a different GetNonTransitioningStoreMode IC that handles a
1440   // superset of the original IC. Handle those here if the receiver map hasn't
1441   // changed or it has transitioned to a more general kind.
1442   KeyedAccessStoreMode old_store_mode =
1443       KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state());
1444   Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
1445   if (state() == MONOMORPHIC) {
1446       // If the "old" and "new" maps are in the same elements map family, stay
1447       // MONOMORPHIC and use the map for the most generic ElementsKind.
1448     Handle<Map> transitioned_receiver_map = receiver_map;
1449     if (IsTransitionStoreMode(store_mode)) {
1450       transitioned_receiver_map =
1451           ComputeTransitionedMap(receiver, store_mode);
1452     }
1453     if (IsTransitionOfMonomorphicTarget(
1454             MapToType<HeapType>(transitioned_receiver_map, isolate()))) {
1455       // Element family is the same, use the "worst" case map.
1456       store_mode = GetNonTransitioningStoreMode(store_mode);
1457       return isolate()->stub_cache()->ComputeKeyedStoreElement(
1458           transitioned_receiver_map, strict_mode(), store_mode);
1459     } else if (*previous_receiver_map == receiver->map() &&
1460                old_store_mode == STANDARD_STORE &&
1461                (IsGrowStoreMode(store_mode) ||
1462                 store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
1463                 store_mode == STORE_NO_TRANSITION_HANDLE_COW)) {
1464       // A "normal" IC that handles stores can switch to a version that can
1465       // grow at the end of the array, handle OOB accesses or copy COW arrays
1466       // and still stay MONOMORPHIC.
1467       return isolate()->stub_cache()->ComputeKeyedStoreElement(
1468           receiver_map, strict_mode(), store_mode);
1469     }
1470   }
1471
1472   ASSERT(state() != GENERIC);
1473
1474   bool map_added =
1475       AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
1476
1477   if (IsTransitionStoreMode(store_mode)) {
1478     Handle<Map> transitioned_receiver_map =
1479         ComputeTransitionedMap(receiver, store_mode);
1480     map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
1481                                             transitioned_receiver_map);
1482   }
1483
1484   if (!map_added) {
1485     // If the miss wasn't due to an unseen map, a polymorphic stub
1486     // won't help, use the generic stub.
1487     TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1488     return generic_stub();
1489   }
1490
1491   // If the maximum number of receiver maps has been exceeded, use the generic
1492   // version of the IC.
1493   if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1494     TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1495     return generic_stub();
1496   }
1497
1498   // Make sure all polymorphic handlers have the same store mode, otherwise the
1499   // generic stub must be used.
1500   store_mode = GetNonTransitioningStoreMode(store_mode);
1501   if (old_store_mode != STANDARD_STORE) {
1502     if (store_mode == STANDARD_STORE) {
1503       store_mode = old_store_mode;
1504     } else if (store_mode != old_store_mode) {
1505       TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch");
1506       return generic_stub();
1507     }
1508   }
1509
1510   // If the store mode isn't the standard mode, make sure that all polymorphic
1511   // receivers are either external arrays, or all "normal" arrays. Otherwise,
1512   // use the generic stub.
1513   if (store_mode != STANDARD_STORE) {
1514     int external_arrays = 0;
1515     for (int i = 0; i < target_receiver_maps.length(); ++i) {
1516       if (target_receiver_maps[i]->has_external_array_elements() ||
1517           target_receiver_maps[i]->has_fixed_typed_array_elements()) {
1518         external_arrays++;
1519       }
1520     }
1521     if (external_arrays != 0 &&
1522         external_arrays != target_receiver_maps.length()) {
1523       TRACE_GENERIC_IC(isolate(), "KeyedIC",
1524           "unsupported combination of external and normal arrays");
1525       return generic_stub();
1526     }
1527   }
1528
1529   return isolate()->stub_cache()->ComputeStoreElementPolymorphic(
1530       &target_receiver_maps, store_mode, strict_mode());
1531 }
1532
1533
1534 Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
1535     Handle<JSObject> receiver,
1536     KeyedAccessStoreMode store_mode) {
1537   switch (store_mode) {
1538     case STORE_TRANSITION_SMI_TO_OBJECT:
1539     case STORE_TRANSITION_DOUBLE_TO_OBJECT:
1540     case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
1541     case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
1542       return JSObject::GetElementsTransitionMap(receiver, FAST_ELEMENTS);
1543     case STORE_TRANSITION_SMI_TO_DOUBLE:
1544     case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
1545       return JSObject::GetElementsTransitionMap(receiver, FAST_DOUBLE_ELEMENTS);
1546     case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT:
1547     case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1548     case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT:
1549     case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1550       return JSObject::GetElementsTransitionMap(receiver,
1551                                                 FAST_HOLEY_ELEMENTS);
1552     case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1553     case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1554       return JSObject::GetElementsTransitionMap(receiver,
1555                                                 FAST_HOLEY_DOUBLE_ELEMENTS);
1556     case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
1557       ASSERT(receiver->map()->has_external_array_elements());
1558       // Fall through
1559     case STORE_NO_TRANSITION_HANDLE_COW:
1560     case STANDARD_STORE:
1561     case STORE_AND_GROW_NO_TRANSITION:
1562       return Handle<Map>(receiver->map(), isolate());
1563   }
1564   return Handle<Map>::null();
1565 }
1566
1567
1568 bool IsOutOfBoundsAccess(Handle<JSObject> receiver,
1569                          int index) {
1570   if (receiver->IsJSArray()) {
1571     return JSArray::cast(*receiver)->length()->IsSmi() &&
1572         index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
1573   }
1574   return index >= receiver->elements()->length();
1575 }
1576
1577
1578 KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver,
1579                                                 Handle<Object> key,
1580                                                 Handle<Object> value) {
1581   ASSERT(!key->ToSmi()->IsFailure());
1582   Smi* smi_key = NULL;
1583   key->ToSmi()->To(&smi_key);
1584   int index = smi_key->value();
1585   bool oob_access = IsOutOfBoundsAccess(receiver, index);
1586   bool allow_growth = receiver->IsJSArray() && oob_access;
1587   if (allow_growth) {
1588     // Handle growing array in stub if necessary.
1589     if (receiver->HasFastSmiElements()) {
1590       if (value->IsHeapNumber()) {
1591         if (receiver->HasFastHoleyElements()) {
1592           return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1593         } else {
1594           return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
1595         }
1596       }
1597       if (value->IsHeapObject()) {
1598         if (receiver->HasFastHoleyElements()) {
1599           return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT;
1600         } else {
1601           return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
1602         }
1603       }
1604     } else if (receiver->HasFastDoubleElements()) {
1605       if (!value->IsSmi() && !value->IsHeapNumber()) {
1606         if (receiver->HasFastHoleyElements()) {
1607           return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1608         } else {
1609           return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
1610         }
1611       }
1612     }
1613     return STORE_AND_GROW_NO_TRANSITION;
1614   } else {
1615     // Handle only in-bounds elements accesses.
1616     if (receiver->HasFastSmiElements()) {
1617       if (value->IsHeapNumber()) {
1618         if (receiver->HasFastHoleyElements()) {
1619           return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1620         } else {
1621           return STORE_TRANSITION_SMI_TO_DOUBLE;
1622         }
1623       } else if (value->IsHeapObject()) {
1624         if (receiver->HasFastHoleyElements()) {
1625           return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT;
1626         } else {
1627           return STORE_TRANSITION_SMI_TO_OBJECT;
1628         }
1629       }
1630     } else if (receiver->HasFastDoubleElements()) {
1631       if (!value->IsSmi() && !value->IsHeapNumber()) {
1632         if (receiver->HasFastHoleyElements()) {
1633           return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1634         } else {
1635           return STORE_TRANSITION_DOUBLE_TO_OBJECT;
1636         }
1637       }
1638     }
1639     if (!FLAG_trace_external_array_abuse &&
1640         receiver->map()->has_external_array_elements() && oob_access) {
1641       return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
1642     }
1643     Heap* heap = receiver->GetHeap();
1644     if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
1645       return STORE_NO_TRANSITION_HANDLE_COW;
1646     } else {
1647       return STANDARD_STORE;
1648     }
1649   }
1650 }
1651
1652
1653 MaybeObject* KeyedStoreIC::Store(Handle<Object> object,
1654                                  Handle<Object> key,
1655                                  Handle<Object> value) {
1656   if (MigrateDeprecated(object)) {
1657     Handle<Object> result = Runtime::SetObjectProperty(isolate(), object,
1658                                                        key,
1659                                                        value,
1660                                                        NONE,
1661                                                        strict_mode());
1662     RETURN_IF_EMPTY_HANDLE(isolate(), result);
1663     return *result;
1664   }
1665
1666   // Check for values that can be converted into an internalized string directly
1667   // or is representable as a smi.
1668   key = TryConvertKey(key, isolate());
1669
1670   MaybeObject* maybe_object = NULL;
1671   Handle<Code> stub = generic_stub();
1672
1673   if (key->IsInternalizedString()) {
1674     maybe_object = StoreIC::Store(object,
1675                                   Handle<String>::cast(key),
1676                                   value,
1677                                   JSReceiver::MAY_BE_STORE_FROM_KEYED);
1678     if (maybe_object->IsFailure()) return maybe_object;
1679   } else {
1680     bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded() &&
1681         !(FLAG_harmony_observation && object->IsJSObject() &&
1682           JSObject::cast(*object)->map()->is_observed());
1683     if (use_ic && !object->IsSmi()) {
1684       // Don't use ICs for maps of the objects in Array's prototype chain. We
1685       // expect to be able to trap element sets to objects with those maps in
1686       // the runtime to enable optimization of element hole access.
1687       Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
1688       if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false;
1689     }
1690
1691     if (use_ic) {
1692       ASSERT(!object->IsJSGlobalProxy());
1693
1694       if (object->IsJSObject()) {
1695         Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1696         bool key_is_smi_like = key->IsSmi() || !key->ToSmi()->IsFailure();
1697         if (receiver->elements()->map() ==
1698             isolate()->heap()->non_strict_arguments_elements_map()) {
1699           stub = non_strict_arguments_stub();
1700         } else if (key_is_smi_like &&
1701                    !(target().is_identical_to(non_strict_arguments_stub()))) {
1702           // We should go generic if receiver isn't a dictionary, but our
1703           // prototype chain does have dictionary elements. This ensures that
1704           // other non-dictionary receivers in the polymorphic case benefit
1705           // from fast path keyed stores.
1706           if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) {
1707             KeyedAccessStoreMode store_mode =
1708                 GetStoreMode(receiver, key, value);
1709             stub = StoreElementStub(receiver, store_mode);
1710           }
1711         }
1712       }
1713     }
1714   }
1715
1716   if (!is_target_set()) {
1717     if (*stub == *generic_stub()) {
1718       TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
1719     }
1720     ASSERT(!stub.is_null());
1721     set_target(*stub);
1722     TRACE_IC("StoreIC", key);
1723   }
1724
1725   if (maybe_object) return maybe_object;
1726   Handle<Object> result = Runtime::SetObjectProperty(isolate(), object, key,
1727                                                      value,
1728                                                      NONE,
1729                                                      strict_mode());
1730   RETURN_IF_EMPTY_HANDLE(isolate(), result);
1731   return *result;
1732 }
1733
1734
1735 #undef TRACE_IC
1736
1737
1738 // ----------------------------------------------------------------------------
1739 // Static IC stub generators.
1740 //
1741
1742 // Used from ic-<arch>.cc.
1743 // Used from ic-<arch>.cc.
1744 RUNTIME_FUNCTION(MaybeObject*, LoadIC_Miss) {
1745   HandleScope scope(isolate);
1746   ASSERT(args.length() == 2);
1747   LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
1748   Handle<Object> receiver = args.at<Object>(0);
1749   Handle<String> key = args.at<String>(1);
1750   ic.UpdateState(receiver, key);
1751   return ic.Load(receiver, key);
1752 }
1753
1754
1755 // Used from ic-<arch>.cc
1756 RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_Miss) {
1757   HandleScope scope(isolate);
1758   ASSERT(args.length() == 2);
1759   KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
1760   Handle<Object> receiver = args.at<Object>(0);
1761   Handle<Object> key = args.at<Object>(1);
1762   ic.UpdateState(receiver, key);
1763   return ic.Load(receiver, key);
1764 }
1765
1766
1767 RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissFromStubFailure) {
1768   HandleScope scope(isolate);
1769   ASSERT(args.length() == 2);
1770   KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate);
1771   Handle<Object> receiver = args.at<Object>(0);
1772   Handle<Object> key = args.at<Object>(1);
1773   ic.UpdateState(receiver, key);
1774   return ic.Load(receiver, key);
1775 }
1776
1777
1778 // Used from ic-<arch>.cc.
1779 RUNTIME_FUNCTION(MaybeObject*, StoreIC_Miss) {
1780   HandleScope scope(isolate);
1781   ASSERT(args.length() == 3);
1782   StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
1783   Handle<Object> receiver = args.at<Object>(0);
1784   Handle<String> key = args.at<String>(1);
1785   ic.UpdateState(receiver, key);
1786   return ic.Store(receiver, key, args.at<Object>(2));
1787 }
1788
1789
1790 RUNTIME_FUNCTION(MaybeObject*, StoreIC_MissFromStubFailure) {
1791   HandleScope scope(isolate);
1792   ASSERT(args.length() == 3);
1793   StoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
1794   Handle<Object> receiver = args.at<Object>(0);
1795   Handle<String> key = args.at<String>(1);
1796   ic.UpdateState(receiver, key);
1797   return ic.Store(receiver, key, args.at<Object>(2));
1798 }
1799
1800
1801 RUNTIME_FUNCTION(MaybeObject*, StoreIC_ArrayLength) {
1802   SealHandleScope shs(isolate);
1803
1804   ASSERT(args.length() == 2);
1805   JSArray* receiver = JSArray::cast(args[0]);
1806   Object* len = args[1];
1807
1808   // The generated code should filter out non-Smis before we get here.
1809   ASSERT(len->IsSmi());
1810
1811 #ifdef DEBUG
1812   // The length property has to be a writable callback property.
1813   LookupResult debug_lookup(isolate);
1814   receiver->LocalLookup(isolate->heap()->length_string(), &debug_lookup);
1815   ASSERT(debug_lookup.IsPropertyCallbacks() && !debug_lookup.IsReadOnly());
1816 #endif
1817
1818   Object* result;
1819   MaybeObject* maybe_result = receiver->SetElementsLength(len);
1820   if (!maybe_result->To(&result)) return maybe_result;
1821
1822   return len;
1823 }
1824
1825
1826 // Extend storage is called in a store inline cache when
1827 // it is necessary to extend the properties array of a
1828 // JSObject.
1829 RUNTIME_FUNCTION(MaybeObject*, SharedStoreIC_ExtendStorage) {
1830   SealHandleScope shs(isolate);
1831   ASSERT(args.length() == 3);
1832
1833   // Convert the parameters
1834   JSObject* object = JSObject::cast(args[0]);
1835   Map* transition = Map::cast(args[1]);
1836   Object* value = args[2];
1837
1838   // Check the object has run out out property space.
1839   ASSERT(object->HasFastProperties());
1840   ASSERT(object->map()->unused_property_fields() == 0);
1841
1842   // Expand the properties array.
1843   FixedArray* old_storage = object->properties();
1844   int new_unused = transition->unused_property_fields();
1845   int new_size = old_storage->length() + new_unused + 1;
1846   Object* result;
1847   MaybeObject* maybe_result = old_storage->CopySize(new_size);
1848   if (!maybe_result->ToObject(&result)) return maybe_result;
1849
1850   FixedArray* new_storage = FixedArray::cast(result);
1851
1852   Object* to_store = value;
1853
1854   if (FLAG_track_double_fields) {
1855     DescriptorArray* descriptors = transition->instance_descriptors();
1856     PropertyDetails details = descriptors->GetDetails(transition->LastAdded());
1857     if (details.representation().IsDouble()) {
1858       MaybeObject* maybe_storage =
1859           isolate->heap()->AllocateHeapNumber(value->Number());
1860       if (!maybe_storage->To(&to_store)) return maybe_storage;
1861     }
1862   }
1863
1864   new_storage->set(old_storage->length(), to_store);
1865
1866   // Set the new property value and do the map transition.
1867   object->set_properties(new_storage);
1868   object->set_map(transition);
1869
1870   // Return the stored value.
1871   return value;
1872 }
1873
1874
1875 // Used from ic-<arch>.cc.
1876 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Miss) {
1877   HandleScope scope(isolate);
1878   ASSERT(args.length() == 3);
1879   KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
1880   Handle<Object> receiver = args.at<Object>(0);
1881   Handle<Object> key = args.at<Object>(1);
1882   ic.UpdateState(receiver, key);
1883   return ic.Store(receiver, key, args.at<Object>(2));
1884 }
1885
1886
1887 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissFromStubFailure) {
1888   HandleScope scope(isolate);
1889   ASSERT(args.length() == 3);
1890   KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
1891   Handle<Object> receiver = args.at<Object>(0);
1892   Handle<Object> key = args.at<Object>(1);
1893   ic.UpdateState(receiver, key);
1894   return ic.Store(receiver, key, args.at<Object>(2));
1895 }
1896
1897
1898 RUNTIME_FUNCTION(MaybeObject*, StoreIC_Slow) {
1899   HandleScope scope(isolate);
1900   ASSERT(args.length() == 3);
1901   StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
1902   Handle<Object> object = args.at<Object>(0);
1903   Handle<Object> key = args.at<Object>(1);
1904   Handle<Object> value = args.at<Object>(2);
1905   StrictModeFlag strict_mode = ic.strict_mode();
1906   Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key,
1907                                                      value,
1908                                                      NONE,
1909                                                      strict_mode);
1910   RETURN_IF_EMPTY_HANDLE(isolate, result);
1911   return *result;
1912 }
1913
1914
1915 RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Slow) {
1916   HandleScope scope(isolate);
1917   ASSERT(args.length() == 3);
1918   KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
1919   Handle<Object> object = args.at<Object>(0);
1920   Handle<Object> key = args.at<Object>(1);
1921   Handle<Object> value = args.at<Object>(2);
1922   StrictModeFlag strict_mode = ic.strict_mode();
1923   Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key,
1924                                                      value,
1925                                                      NONE,
1926                                                      strict_mode);
1927   RETURN_IF_EMPTY_HANDLE(isolate, result);
1928   return *result;
1929 }
1930
1931
1932 RUNTIME_FUNCTION(MaybeObject*, ElementsTransitionAndStoreIC_Miss) {
1933   HandleScope scope(isolate);
1934   ASSERT(args.length() == 4);
1935   KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
1936   Handle<Object> value = args.at<Object>(0);
1937   Handle<Map> map = args.at<Map>(1);
1938   Handle<Object> key = args.at<Object>(2);
1939   Handle<Object> object = args.at<Object>(3);
1940   StrictModeFlag strict_mode = ic.strict_mode();
1941   if (object->IsJSObject()) {
1942     JSObject::TransitionElementsKind(Handle<JSObject>::cast(object),
1943                                      map->elements_kind());
1944   }
1945   Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key,
1946                                                      value,
1947                                                      NONE,
1948                                                      strict_mode);
1949   RETURN_IF_EMPTY_HANDLE(isolate, result);
1950   return *result;
1951 }
1952
1953
1954 BinaryOpIC::State::State(ExtraICState extra_ic_state) {
1955   // We don't deserialize the SSE2 Field, since this is only used to be able
1956   // to include SSE2 as well as non-SSE2 versions in the snapshot. For code
1957   // generation we always want it to reflect the current state.
1958   op_ = static_cast<Token::Value>(
1959       FIRST_TOKEN + OpField::decode(extra_ic_state));
1960   mode_ = OverwriteModeField::decode(extra_ic_state);
1961   fixed_right_arg_ = Maybe<int>(
1962       HasFixedRightArgField::decode(extra_ic_state),
1963       1 << FixedRightArgValueField::decode(extra_ic_state));
1964   left_kind_ = LeftKindField::decode(extra_ic_state);
1965   if (fixed_right_arg_.has_value) {
1966     right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32;
1967   } else {
1968     right_kind_ = RightKindField::decode(extra_ic_state);
1969   }
1970   result_kind_ = ResultKindField::decode(extra_ic_state);
1971   ASSERT_LE(FIRST_TOKEN, op_);
1972   ASSERT_LE(op_, LAST_TOKEN);
1973 }
1974
1975
1976 ExtraICState BinaryOpIC::State::GetExtraICState() const {
1977   bool sse2 = (Max(result_kind_, Max(left_kind_, right_kind_)) > SMI &&
1978                CpuFeatures::IsSafeForSnapshot(SSE2));
1979   ExtraICState extra_ic_state =
1980       SSE2Field::encode(sse2) |
1981       OpField::encode(op_ - FIRST_TOKEN) |
1982       OverwriteModeField::encode(mode_) |
1983       LeftKindField::encode(left_kind_) |
1984       ResultKindField::encode(result_kind_) |
1985       HasFixedRightArgField::encode(fixed_right_arg_.has_value);
1986   if (fixed_right_arg_.has_value) {
1987     extra_ic_state = FixedRightArgValueField::update(
1988         extra_ic_state, WhichPowerOf2(fixed_right_arg_.value));
1989   } else {
1990     extra_ic_state = RightKindField::update(extra_ic_state, right_kind_);
1991   }
1992   return extra_ic_state;
1993 }
1994
1995
1996 // static
1997 void BinaryOpIC::State::GenerateAheadOfTime(
1998     Isolate* isolate, void (*Generate)(Isolate*, const State&)) {
1999   // TODO(olivf) We should investigate why adding stubs to the snapshot is so
2000   // expensive at runtime. When solved we should be able to add most binops to
2001   // the snapshot instead of hand-picking them.
2002   // Generated list of commonly used stubs
2003 #define GENERATE(op, left_kind, right_kind, result_kind, mode)  \
2004   do {                                                          \
2005     State state(op, mode);                                      \
2006     state.left_kind_ = left_kind;                               \
2007     state.fixed_right_arg_.has_value = false;                   \
2008     state.right_kind_ = right_kind;                             \
2009     state.result_kind_ = result_kind;                           \
2010     Generate(isolate, state);                                   \
2011   } while (false)
2012   GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE);
2013   GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT);
2014   GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE);
2015   GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT);
2016   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2017   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2018   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2019   GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE);
2020   GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT);
2021   GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT);
2022   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2023   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2024   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2025   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2026   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2027   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2028   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2029   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2030   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2031   GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE);
2032   GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT);
2033   GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE);
2034   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2035   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2036   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2037   GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT);
2038   GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT);
2039   GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE);
2040   GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT);
2041   GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT);
2042   GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE);
2043   GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT);
2044   GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE);
2045   GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT);
2046   GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE);
2047   GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT);
2048   GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT);
2049   GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT);
2050   GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE);
2051   GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2052   GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE);
2053   GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT);
2054   GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT);
2055   GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE);
2056   GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT);
2057   GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT);
2058   GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT);
2059   GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2060   GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT);
2061   GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE);
2062   GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT);
2063   GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2064   GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE);
2065   GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2066   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE);
2067   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT);
2068   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2069   GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE);
2070   GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2071   GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT);
2072   GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT);
2073   GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT);
2074   GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT);
2075   GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2076   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE);
2077   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT);
2078   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2079   GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE);
2080   GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT);
2081   GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE);
2082   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE);
2083   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT);
2084   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2085   GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE);
2086   GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE);
2087   GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE);
2088   GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE);
2089   GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT);
2090   GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT);
2091   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE);
2092   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT);
2093   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2094   GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE);
2095   GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE);
2096   GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2097   GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2098   GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE);
2099   GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE);
2100   GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2101   GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2102   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2103   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2104   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2105   GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2106   GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2107   GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE);
2108   GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE);
2109   GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT);
2110   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2111   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2112   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2113   GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE);
2114   GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2115   GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT);
2116   GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE);
2117   GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT);
2118   GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT);
2119   GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2120   GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE);
2121   GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT);
2122   GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE);
2123   GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE);
2124   GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2125   GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2126   GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE);
2127   GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT);
2128   GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE);
2129   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2130   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2131   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2132   GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2133   GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2134   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2135   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2136   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2137   GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE);
2138   GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT);
2139   GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE);
2140   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2141   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2142   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2143   GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE);
2144   GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE);
2145   GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2146   GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE);
2147   GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT);
2148   GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2149   GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2150   GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE);
2151   GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2152   GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE);
2153   GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2154   GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT);
2155   GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2156   GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE);
2157   GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT);
2158   GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE);
2159   GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT);
2160   GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2161   GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE);
2162   GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT);
2163   GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT);
2164   GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE);
2165   GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT);
2166   GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2167   GENERATE(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE);
2168   GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT);
2169   GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2170   GENERATE(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE);
2171   GENERATE(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2172   GENERATE(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2173   GENERATE(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE);
2174   GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT);
2175   GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2176   GENERATE(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE);
2177   GENERATE(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT);
2178   GENERATE(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2179   GENERATE(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2180   GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT);
2181   GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT);
2182   GENERATE(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2183   GENERATE(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2184   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2185   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2186   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2187   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2188   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2189   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2190   GENERATE(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE);
2191   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2192   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2193   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2194   GENERATE(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE);
2195   GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT);
2196   GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT);
2197 #undef GENERATE
2198 #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind, mode) \
2199   do {                                                                    \
2200     State state(op, mode);                                                \
2201     state.left_kind_ = left_kind;                                         \
2202     state.fixed_right_arg_.has_value = true;                              \
2203     state.fixed_right_arg_.value = fixed_right_arg_value;                 \
2204     state.right_kind_ = SMI;                                              \
2205     state.result_kind_ = result_kind;                                     \
2206     Generate(isolate, state);                                             \
2207   } while (false)
2208   GENERATE(Token::MOD, SMI, 2, SMI, NO_OVERWRITE);
2209   GENERATE(Token::MOD, SMI, 4, SMI, NO_OVERWRITE);
2210   GENERATE(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT);
2211   GENERATE(Token::MOD, SMI, 8, SMI, NO_OVERWRITE);
2212   GENERATE(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT);
2213   GENERATE(Token::MOD, SMI, 32, SMI, NO_OVERWRITE);
2214   GENERATE(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE);
2215 #undef GENERATE
2216 }
2217
2218
2219 Type* BinaryOpIC::State::GetResultType(Zone* zone) const {
2220   Kind result_kind = result_kind_;
2221   if (HasSideEffects()) {
2222     result_kind = NONE;
2223   } else if (result_kind == GENERIC && op_ == Token::ADD) {
2224     return Type::Union(Type::Number(zone), Type::String(zone), zone);
2225   } else if (result_kind == NUMBER && op_ == Token::SHR) {
2226     return Type::Unsigned32(zone);
2227   }
2228   ASSERT_NE(GENERIC, result_kind);
2229   return KindToType(result_kind, zone);
2230 }
2231
2232
2233 void BinaryOpIC::State::Print(StringStream* stream) const {
2234   stream->Add("(%s", Token::Name(op_));
2235   if (mode_ == OVERWRITE_LEFT) stream->Add("_ReuseLeft");
2236   else if (mode_ == OVERWRITE_RIGHT) stream->Add("_ReuseRight");
2237   if (CouldCreateAllocationMementos()) stream->Add("_CreateAllocationMementos");
2238   stream->Add(":%s*", KindToString(left_kind_));
2239   if (fixed_right_arg_.has_value) {
2240     stream->Add("%d", fixed_right_arg_.value);
2241   } else {
2242     stream->Add("%s", KindToString(right_kind_));
2243   }
2244   stream->Add("->%s)", KindToString(result_kind_));
2245 }
2246
2247
2248 void BinaryOpIC::State::Update(Handle<Object> left,
2249                                Handle<Object> right,
2250                                Handle<Object> result) {
2251   ExtraICState old_extra_ic_state = GetExtraICState();
2252
2253   left_kind_ = UpdateKind(left, left_kind_);
2254   right_kind_ = UpdateKind(right, right_kind_);
2255
2256   int32_t fixed_right_arg_value = 0;
2257   bool has_fixed_right_arg =
2258       op_ == Token::MOD &&
2259       right->ToInt32(&fixed_right_arg_value) &&
2260       fixed_right_arg_value > 0 &&
2261       IsPowerOf2(fixed_right_arg_value) &&
2262       FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) &&
2263       (left_kind_ == SMI || left_kind_ == INT32) &&
2264       (result_kind_ == NONE || !fixed_right_arg_.has_value);
2265   fixed_right_arg_ = Maybe<int32_t>(has_fixed_right_arg,
2266                                     fixed_right_arg_value);
2267
2268   result_kind_ = UpdateKind(result, result_kind_);
2269
2270   if (!Token::IsTruncatingBinaryOp(op_)) {
2271     Kind input_kind = Max(left_kind_, right_kind_);
2272     if (result_kind_ < input_kind && input_kind <= NUMBER) {
2273       result_kind_ = input_kind;
2274     }
2275   }
2276
2277   // We don't want to distinguish INT32 and NUMBER for string add (because
2278   // NumberToString can't make use of this anyway).
2279   if (left_kind_ == STRING && right_kind_ == INT32) {
2280     ASSERT_EQ(STRING, result_kind_);
2281     ASSERT_EQ(Token::ADD, op_);
2282     right_kind_ = NUMBER;
2283   } else if (right_kind_ == STRING && left_kind_ == INT32) {
2284     ASSERT_EQ(STRING, result_kind_);
2285     ASSERT_EQ(Token::ADD, op_);
2286     left_kind_ = NUMBER;
2287   }
2288
2289   // Reset overwrite mode unless we can actually make use of it, or may be able
2290   // to make use of it at some point in the future.
2291   if ((mode_ == OVERWRITE_LEFT && left_kind_ > NUMBER) ||
2292       (mode_ == OVERWRITE_RIGHT && right_kind_ > NUMBER) ||
2293       result_kind_ > NUMBER) {
2294     mode_ = NO_OVERWRITE;
2295   }
2296
2297   if (old_extra_ic_state == GetExtraICState()) {
2298     // Tagged operations can lead to non-truncating HChanges
2299     if (left->IsUndefined() || left->IsBoolean()) {
2300       left_kind_ = GENERIC;
2301     } else if (right->IsUndefined() || right->IsBoolean()) {
2302       right_kind_ = GENERIC;
2303     } else {
2304       // Since the X87 is too precise, we might bail out on numbers which
2305       // actually would truncate with 64 bit precision.
2306       ASSERT(!CpuFeatures::IsSupported(SSE2));
2307       ASSERT(result_kind_ < NUMBER);
2308       result_kind_ = NUMBER;
2309     }
2310   }
2311 }
2312
2313
2314 BinaryOpIC::State::Kind BinaryOpIC::State::UpdateKind(Handle<Object> object,
2315                                                       Kind kind) const {
2316   Kind new_kind = GENERIC;
2317   bool is_truncating = Token::IsTruncatingBinaryOp(op());
2318   if (object->IsBoolean() && is_truncating) {
2319     // Booleans will be automatically truncated by HChange.
2320     new_kind = INT32;
2321   } else if (object->IsUndefined()) {
2322     // Undefined will be automatically truncated by HChange.
2323     new_kind = is_truncating ? INT32 : NUMBER;
2324   } else if (object->IsSmi()) {
2325     new_kind = SMI;
2326   } else if (object->IsHeapNumber()) {
2327     double value = Handle<HeapNumber>::cast(object)->value();
2328     new_kind = IsInt32Double(value) ? INT32 : NUMBER;
2329   } else if (object->IsString() && op() == Token::ADD) {
2330     new_kind = STRING;
2331   }
2332   if (new_kind == INT32 && SmiValuesAre32Bits()) {
2333     new_kind = NUMBER;
2334   }
2335   if (kind != NONE &&
2336       ((new_kind <= NUMBER && kind > NUMBER) ||
2337        (new_kind > NUMBER && kind <= NUMBER))) {
2338     new_kind = GENERIC;
2339   }
2340   return Max(kind, new_kind);
2341 }
2342
2343
2344 // static
2345 const char* BinaryOpIC::State::KindToString(Kind kind) {
2346   switch (kind) {
2347     case NONE: return "None";
2348     case SMI: return "Smi";
2349     case INT32: return "Int32";
2350     case NUMBER: return "Number";
2351     case STRING: return "String";
2352     case GENERIC: return "Generic";
2353   }
2354   UNREACHABLE();
2355   return NULL;
2356 }
2357
2358
2359 // static
2360 Type* BinaryOpIC::State::KindToType(Kind kind, Zone* zone) {
2361   switch (kind) {
2362     case NONE: return Type::None(zone);
2363     case SMI: return Type::Smi(zone);
2364     case INT32: return Type::Signed32(zone);
2365     case NUMBER: return Type::Number(zone);
2366     case STRING: return Type::String(zone);
2367     case GENERIC: return Type::Any(zone);
2368   }
2369   UNREACHABLE();
2370   return NULL;
2371 }
2372
2373
2374 MaybeObject* BinaryOpIC::Transition(Handle<AllocationSite> allocation_site,
2375                                     Handle<Object> left,
2376                                     Handle<Object> right) {
2377   State state(target()->extended_extra_ic_state());
2378
2379   // Compute the actual result using the builtin for the binary operation.
2380   Object* builtin = isolate()->js_builtins_object()->javascript_builtin(
2381       TokenToJSBuiltin(state.op()));
2382   Handle<JSFunction> function = handle(JSFunction::cast(builtin), isolate());
2383   bool caught_exception;
2384   Handle<Object> result = Execution::Call(
2385       isolate(), function, left, 1, &right, &caught_exception);
2386   if (caught_exception) return Failure::Exception();
2387
2388   // Compute the new state.
2389   State old_state = state;
2390   state.Update(left, right, result);
2391
2392   // Check if we have a string operation here.
2393   Handle<Code> target;
2394   if (!allocation_site.is_null() || state.ShouldCreateAllocationMementos()) {
2395     // Setup the allocation site on-demand.
2396     if (allocation_site.is_null()) {
2397       allocation_site = isolate()->factory()->NewAllocationSite();
2398     }
2399
2400     // Install the stub with an allocation site.
2401     BinaryOpICWithAllocationSiteStub stub(state);
2402     target = stub.GetCodeCopyFromTemplate(isolate(), allocation_site);
2403
2404     // Sanity check the trampoline stub.
2405     ASSERT_EQ(*allocation_site, target->FindFirstAllocationSite());
2406   } else {
2407     // Install the generic stub.
2408     BinaryOpICStub stub(state);
2409     target = stub.GetCode(isolate());
2410
2411     // Sanity check the generic stub.
2412     ASSERT_EQ(NULL, target->FindFirstAllocationSite());
2413   }
2414   set_target(*target);
2415
2416   if (FLAG_trace_ic) {
2417     char buffer[150];
2418     NoAllocationStringAllocator allocator(
2419         buffer, static_cast<unsigned>(sizeof(buffer)));
2420     StringStream stream(&allocator);
2421     stream.Add("[BinaryOpIC");
2422     old_state.Print(&stream);
2423     stream.Add(" => ");
2424     state.Print(&stream);
2425     stream.Add(" @ %p <- ", static_cast<void*>(*target));
2426     stream.OutputToStdOut();
2427     JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2428     if (!allocation_site.is_null()) {
2429       PrintF(" using allocation site %p", static_cast<void*>(*allocation_site));
2430     }
2431     PrintF("]\n");
2432   }
2433
2434   // Patch the inlined smi code as necessary.
2435   if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) {
2436     PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2437   } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) {
2438     PatchInlinedSmiCode(address(), DISABLE_INLINED_SMI_CHECK);
2439   }
2440
2441   return *result;
2442 }
2443
2444
2445 RUNTIME_FUNCTION(MaybeObject*, BinaryOpIC_Miss) {
2446   HandleScope scope(isolate);
2447   ASSERT_EQ(2, args.length());
2448   Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft);
2449   Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight);
2450   BinaryOpIC ic(isolate);
2451   return ic.Transition(Handle<AllocationSite>::null(), left, right);
2452 }
2453
2454
2455 RUNTIME_FUNCTION(MaybeObject*, BinaryOpIC_MissWithAllocationSite) {
2456   HandleScope scope(isolate);
2457   ASSERT_EQ(3, args.length());
2458   Handle<AllocationSite> allocation_site = args.at<AllocationSite>(
2459       BinaryOpWithAllocationSiteStub::kAllocationSite);
2460   Handle<Object> left = args.at<Object>(
2461       BinaryOpWithAllocationSiteStub::kLeft);
2462   Handle<Object> right = args.at<Object>(
2463       BinaryOpWithAllocationSiteStub::kRight);
2464   BinaryOpIC ic(isolate);
2465   return ic.Transition(allocation_site, left, right);
2466 }
2467
2468
2469 Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) {
2470   ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2471   Code* code = NULL;
2472   CHECK(stub.FindCodeInCache(&code, isolate));
2473   return code;
2474 }
2475
2476
2477 Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) {
2478   ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2479   return stub.GetCode(isolate);
2480 }
2481
2482
2483 const char* CompareIC::GetStateName(State state) {
2484   switch (state) {
2485     case UNINITIALIZED: return "UNINITIALIZED";
2486     case SMI: return "SMI";
2487     case NUMBER: return "NUMBER";
2488     case INTERNALIZED_STRING: return "INTERNALIZED_STRING";
2489     case STRING: return "STRING";
2490     case UNIQUE_NAME: return "UNIQUE_NAME";
2491     case OBJECT: return "OBJECT";
2492     case KNOWN_OBJECT: return "KNOWN_OBJECT";
2493     case GENERIC: return "GENERIC";
2494   }
2495   UNREACHABLE();
2496   return NULL;
2497 }
2498
2499
2500 Type* CompareIC::StateToType(
2501     Zone* zone,
2502     CompareIC::State state,
2503     Handle<Map> map) {
2504   switch (state) {
2505     case CompareIC::UNINITIALIZED: return Type::None(zone);
2506     case CompareIC::SMI: return Type::Smi(zone);
2507     case CompareIC::NUMBER: return Type::Number(zone);
2508     case CompareIC::STRING: return Type::String(zone);
2509     case CompareIC::INTERNALIZED_STRING: return Type::InternalizedString(zone);
2510     case CompareIC::UNIQUE_NAME: return Type::UniqueName(zone);
2511     case CompareIC::OBJECT: return Type::Receiver(zone);
2512     case CompareIC::KNOWN_OBJECT:
2513       return map.is_null() ? Type::Receiver(zone) : Type::Class(map, zone);
2514     case CompareIC::GENERIC: return Type::Any(zone);
2515   }
2516   UNREACHABLE();
2517   return NULL;
2518 }
2519
2520
2521 void CompareIC::StubInfoToType(int stub_minor_key,
2522                                Type** left_type,
2523                                Type** right_type,
2524                                Type** overall_type,
2525                                Handle<Map> map,
2526                                Zone* zone) {
2527   State left_state, right_state, handler_state;
2528   ICCompareStub::DecodeMinorKey(stub_minor_key, &left_state, &right_state,
2529                                 &handler_state, NULL);
2530   *left_type = StateToType(zone, left_state);
2531   *right_type = StateToType(zone, right_state);
2532   *overall_type = StateToType(zone, handler_state, map);
2533 }
2534
2535
2536 CompareIC::State CompareIC::NewInputState(State old_state,
2537                                           Handle<Object> value) {
2538   switch (old_state) {
2539     case UNINITIALIZED:
2540       if (value->IsSmi()) return SMI;
2541       if (value->IsHeapNumber()) return NUMBER;
2542       if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2543       if (value->IsString()) return STRING;
2544       if (value->IsSymbol()) return UNIQUE_NAME;
2545       if (value->IsJSObject()) return OBJECT;
2546       break;
2547     case SMI:
2548       if (value->IsSmi()) return SMI;
2549       if (value->IsHeapNumber()) return NUMBER;
2550       break;
2551     case NUMBER:
2552       if (value->IsNumber()) return NUMBER;
2553       break;
2554     case INTERNALIZED_STRING:
2555       if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2556       if (value->IsString()) return STRING;
2557       if (value->IsSymbol()) return UNIQUE_NAME;
2558       break;
2559     case STRING:
2560       if (value->IsString()) return STRING;
2561       break;
2562     case UNIQUE_NAME:
2563       if (value->IsUniqueName()) return UNIQUE_NAME;
2564       break;
2565     case OBJECT:
2566       if (value->IsJSObject()) return OBJECT;
2567       break;
2568     case GENERIC:
2569       break;
2570     case KNOWN_OBJECT:
2571       UNREACHABLE();
2572       break;
2573   }
2574   return GENERIC;
2575 }
2576
2577
2578 CompareIC::State CompareIC::TargetState(State old_state,
2579                                         State old_left,
2580                                         State old_right,
2581                                         bool has_inlined_smi_code,
2582                                         Handle<Object> x,
2583                                         Handle<Object> y) {
2584   switch (old_state) {
2585     case UNINITIALIZED:
2586       if (x->IsSmi() && y->IsSmi()) return SMI;
2587       if (x->IsNumber() && y->IsNumber()) return NUMBER;
2588       if (Token::IsOrderedRelationalCompareOp(op_)) {
2589         // Ordered comparisons treat undefined as NaN, so the
2590         // NUMBER stub will do the right thing.
2591         if ((x->IsNumber() && y->IsUndefined()) ||
2592             (y->IsNumber() && x->IsUndefined())) {
2593           return NUMBER;
2594         }
2595       }
2596       if (x->IsInternalizedString() && y->IsInternalizedString()) {
2597         // We compare internalized strings as plain ones if we need to determine
2598         // the order in a non-equality compare.
2599         return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING;
2600       }
2601       if (x->IsString() && y->IsString()) return STRING;
2602       if (!Token::IsEqualityOp(op_)) return GENERIC;
2603       if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2604       if (x->IsJSObject() && y->IsJSObject()) {
2605         if (Handle<JSObject>::cast(x)->map() ==
2606             Handle<JSObject>::cast(y)->map()) {
2607           return KNOWN_OBJECT;
2608         } else {
2609           return OBJECT;
2610         }
2611       }
2612       return GENERIC;
2613     case SMI:
2614       return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
2615     case INTERNALIZED_STRING:
2616       ASSERT(Token::IsEqualityOp(op_));
2617       if (x->IsString() && y->IsString()) return STRING;
2618       if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2619       return GENERIC;
2620     case NUMBER:
2621       // If the failure was due to one side changing from smi to heap number,
2622       // then keep the state (if other changed at the same time, we will get
2623       // a second miss and then go to generic).
2624       if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
2625       if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
2626       return GENERIC;
2627     case KNOWN_OBJECT:
2628       ASSERT(Token::IsEqualityOp(op_));
2629       if (x->IsJSObject() && y->IsJSObject()) return OBJECT;
2630       return GENERIC;
2631     case STRING:
2632     case UNIQUE_NAME:
2633     case OBJECT:
2634     case GENERIC:
2635       return GENERIC;
2636   }
2637   UNREACHABLE();
2638   return GENERIC;  // Make the compiler happy.
2639 }
2640
2641
2642 Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
2643   HandleScope scope(isolate());
2644   State previous_left, previous_right, previous_state;
2645   ICCompareStub::DecodeMinorKey(target()->stub_info(), &previous_left,
2646                                 &previous_right, &previous_state, NULL);
2647   State new_left = NewInputState(previous_left, x);
2648   State new_right = NewInputState(previous_right, y);
2649   State state = TargetState(previous_state, previous_left, previous_right,
2650                             HasInlinedSmiCode(address()), x, y);
2651   ICCompareStub stub(op_, new_left, new_right, state);
2652   if (state == KNOWN_OBJECT) {
2653     stub.set_known_map(
2654         Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate()));
2655   }
2656   Handle<Code> new_target = stub.GetCode(isolate());
2657   set_target(*new_target);
2658
2659   if (FLAG_trace_ic) {
2660     PrintF("[CompareIC in ");
2661     JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2662     PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n",
2663            GetStateName(previous_left),
2664            GetStateName(previous_right),
2665            GetStateName(previous_state),
2666            GetStateName(new_left),
2667            GetStateName(new_right),
2668            GetStateName(state),
2669            Token::Name(op_),
2670            static_cast<void*>(*stub.GetCode(isolate())));
2671   }
2672
2673   // Activate inlined smi code.
2674   if (previous_state == UNINITIALIZED) {
2675     PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2676   }
2677
2678   return *new_target;
2679 }
2680
2681
2682 // Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc.
2683 RUNTIME_FUNCTION(Code*, CompareIC_Miss) {
2684   HandleScope scope(isolate);
2685   ASSERT(args.length() == 3);
2686   CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
2687   return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
2688 }
2689
2690
2691 void CompareNilIC::Clear(Address address, Code* target) {
2692   if (IsCleared(target)) return;
2693   ExtraICState state = target->extended_extra_ic_state();
2694
2695   CompareNilICStub stub(state, HydrogenCodeStub::UNINITIALIZED);
2696   stub.ClearState();
2697
2698   Code* code = NULL;
2699   CHECK(stub.FindCodeInCache(&code, target->GetIsolate()));
2700
2701   SetTargetAtAddress(address, code);
2702 }
2703
2704
2705 MaybeObject* CompareNilIC::DoCompareNilSlow(NilValue nil,
2706                                             Handle<Object> object) {
2707   if (object->IsNull() || object->IsUndefined()) {
2708     return Smi::FromInt(true);
2709   }
2710   return Smi::FromInt(object->IsUndetectableObject());
2711 }
2712
2713
2714 MaybeObject* CompareNilIC::CompareNil(Handle<Object> object) {
2715   ExtraICState extra_ic_state = target()->extended_extra_ic_state();
2716
2717   CompareNilICStub stub(extra_ic_state);
2718
2719   // Extract the current supported types from the patched IC and calculate what
2720   // types must be supported as a result of the miss.
2721   bool already_monomorphic = stub.IsMonomorphic();
2722
2723   stub.UpdateStatus(object);
2724
2725   NilValue nil = stub.GetNilValue();
2726
2727   // Find or create the specialized stub to support the new set of types.
2728   Handle<Code> code;
2729   if (stub.IsMonomorphic()) {
2730     Handle<Map> monomorphic_map(already_monomorphic
2731                                 ? target()->FindFirstMap()
2732                                 : HeapObject::cast(*object)->map());
2733     code = isolate()->stub_cache()->ComputeCompareNil(monomorphic_map, stub);
2734   } else {
2735     code = stub.GetCode(isolate());
2736   }
2737   set_target(*code);
2738   return DoCompareNilSlow(nil, object);
2739 }
2740
2741
2742 RUNTIME_FUNCTION(MaybeObject*, CompareNilIC_Miss) {
2743   HandleScope scope(isolate);
2744   Handle<Object> object = args.at<Object>(0);
2745   CompareNilIC ic(isolate);
2746   return ic.CompareNil(object);
2747 }
2748
2749
2750 RUNTIME_FUNCTION(MaybeObject*, Unreachable) {
2751   UNREACHABLE();
2752   CHECK(false);
2753   return isolate->heap()->undefined_value();
2754 }
2755
2756
2757 Builtins::JavaScript BinaryOpIC::TokenToJSBuiltin(Token::Value op) {
2758   switch (op) {
2759     default:
2760       UNREACHABLE();
2761     case Token::ADD:
2762       return Builtins::ADD;
2763       break;
2764     case Token::SUB:
2765       return Builtins::SUB;
2766       break;
2767     case Token::MUL:
2768       return Builtins::MUL;
2769       break;
2770     case Token::DIV:
2771       return Builtins::DIV;
2772       break;
2773     case Token::MOD:
2774       return Builtins::MOD;
2775       break;
2776     case Token::BIT_OR:
2777       return Builtins::BIT_OR;
2778       break;
2779     case Token::BIT_AND:
2780       return Builtins::BIT_AND;
2781       break;
2782     case Token::BIT_XOR:
2783       return Builtins::BIT_XOR;
2784       break;
2785     case Token::SAR:
2786       return Builtins::SAR;
2787       break;
2788     case Token::SHR:
2789       return Builtins::SHR;
2790       break;
2791     case Token::SHL:
2792       return Builtins::SHL;
2793       break;
2794   }
2795 }
2796
2797
2798 MaybeObject* ToBooleanIC::ToBoolean(Handle<Object> object) {
2799   ToBooleanStub stub(target()->extended_extra_ic_state());
2800   bool to_boolean_value = stub.UpdateStatus(object);
2801   Handle<Code> code = stub.GetCode(isolate());
2802   set_target(*code);
2803   return Smi::FromInt(to_boolean_value ? 1 : 0);
2804 }
2805
2806
2807 RUNTIME_FUNCTION(MaybeObject*, ToBooleanIC_Miss) {
2808   ASSERT(args.length() == 1);
2809   HandleScope scope(isolate);
2810   Handle<Object> object = args.at<Object>(0);
2811   ToBooleanIC ic(isolate);
2812   return ic.ToBoolean(object);
2813 }
2814
2815
2816 static const Address IC_utilities[] = {
2817 #define ADDR(name) FUNCTION_ADDR(name),
2818     IC_UTIL_LIST(ADDR)
2819     NULL
2820 #undef ADDR
2821 };
2822
2823
2824 Address IC::AddressFromUtilityId(IC::UtilityId id) {
2825   return IC_utilities[id];
2826 }
2827
2828
2829 } }  // namespace v8::internal