Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / v8 / src / heap / incremental-marking.cc
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/heap/incremental-marking.h"
8
9 #include "src/code-stubs.h"
10 #include "src/compilation-cache.h"
11 #include "src/conversions.h"
12 #include "src/heap/objects-visiting.h"
13 #include "src/heap/objects-visiting-inl.h"
14
15 namespace v8 {
16 namespace internal {
17
18
19 IncrementalMarking::IncrementalMarking(Heap* heap)
20     : heap_(heap),
21       state_(STOPPED),
22       marking_deque_memory_(NULL),
23       marking_deque_memory_committed_(false),
24       steps_count_(0),
25       old_generation_space_available_at_start_of_incremental_(0),
26       old_generation_space_used_at_start_of_incremental_(0),
27       should_hurry_(false),
28       marking_speed_(0),
29       allocated_(0),
30       no_marking_scope_depth_(0),
31       unscanned_bytes_of_large_object_(0) {}
32
33
34 void IncrementalMarking::TearDown() { delete marking_deque_memory_; }
35
36
37 void IncrementalMarking::RecordWriteSlow(HeapObject* obj, Object** slot,
38                                          Object* value) {
39   if (BaseRecordWrite(obj, slot, value) && slot != NULL) {
40     MarkBit obj_bit = Marking::MarkBitFrom(obj);
41     if (Marking::IsBlack(obj_bit)) {
42       // Object is not going to be rescanned we need to record the slot.
43       heap_->mark_compact_collector()->RecordSlot(HeapObject::RawField(obj, 0),
44                                                   slot, value);
45     }
46   }
47 }
48
49
50 void IncrementalMarking::RecordWriteFromCode(HeapObject* obj, Object** slot,
51                                              Isolate* isolate) {
52   DCHECK(obj->IsHeapObject());
53   IncrementalMarking* marking = isolate->heap()->incremental_marking();
54
55   MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
56   int counter = chunk->write_barrier_counter();
57   if (counter < (MemoryChunk::kWriteBarrierCounterGranularity / 2)) {
58     marking->write_barriers_invoked_since_last_step_ +=
59         MemoryChunk::kWriteBarrierCounterGranularity -
60         chunk->write_barrier_counter();
61     chunk->set_write_barrier_counter(
62         MemoryChunk::kWriteBarrierCounterGranularity);
63   }
64
65   marking->RecordWrite(obj, slot, *slot);
66 }
67
68
69 void IncrementalMarking::RecordCodeTargetPatch(Code* host, Address pc,
70                                                HeapObject* value) {
71   if (IsMarking()) {
72     RelocInfo rinfo(pc, RelocInfo::CODE_TARGET, 0, host);
73     RecordWriteIntoCode(host, &rinfo, value);
74   }
75 }
76
77
78 void IncrementalMarking::RecordCodeTargetPatch(Address pc, HeapObject* value) {
79   if (IsMarking()) {
80     Code* host = heap_->isolate()
81                      ->inner_pointer_to_code_cache()
82                      ->GcSafeFindCodeForInnerPointer(pc);
83     RelocInfo rinfo(pc, RelocInfo::CODE_TARGET, 0, host);
84     RecordWriteIntoCode(host, &rinfo, value);
85   }
86 }
87
88
89 void IncrementalMarking::RecordWriteOfCodeEntrySlow(JSFunction* host,
90                                                     Object** slot,
91                                                     Code* value) {
92   if (BaseRecordWrite(host, slot, value)) {
93     DCHECK(slot != NULL);
94     heap_->mark_compact_collector()->RecordCodeEntrySlot(
95         reinterpret_cast<Address>(slot), value);
96   }
97 }
98
99
100 void IncrementalMarking::RecordWriteIntoCodeSlow(HeapObject* obj,
101                                                  RelocInfo* rinfo,
102                                                  Object* value) {
103   MarkBit value_bit = Marking::MarkBitFrom(HeapObject::cast(value));
104   if (Marking::IsWhite(value_bit)) {
105     MarkBit obj_bit = Marking::MarkBitFrom(obj);
106     if (Marking::IsBlack(obj_bit)) {
107       BlackToGreyAndUnshift(obj, obj_bit);
108       RestartIfNotMarking();
109     }
110     // Object is either grey or white.  It will be scanned if survives.
111     return;
112   }
113
114   if (is_compacting_) {
115     MarkBit obj_bit = Marking::MarkBitFrom(obj);
116     if (Marking::IsBlack(obj_bit)) {
117       // Object is not going to be rescanned.  We need to record the slot.
118       heap_->mark_compact_collector()->RecordRelocSlot(rinfo,
119                                                        Code::cast(value));
120     }
121   }
122 }
123
124
125 static void MarkObjectGreyDoNotEnqueue(Object* obj) {
126   if (obj->IsHeapObject()) {
127     HeapObject* heap_obj = HeapObject::cast(obj);
128     MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::cast(obj));
129     if (Marking::IsBlack(mark_bit)) {
130       MemoryChunk::IncrementLiveBytesFromGC(heap_obj->address(),
131                                             -heap_obj->Size());
132     }
133     Marking::AnyToGrey(mark_bit);
134   }
135 }
136
137
138 static inline void MarkBlackOrKeepGrey(HeapObject* heap_object,
139                                        MarkBit mark_bit, int size) {
140   DCHECK(!Marking::IsImpossible(mark_bit));
141   if (mark_bit.Get()) return;
142   mark_bit.Set();
143   MemoryChunk::IncrementLiveBytesFromGC(heap_object->address(), size);
144   DCHECK(Marking::IsBlack(mark_bit));
145 }
146
147
148 static inline void MarkBlackOrKeepBlack(HeapObject* heap_object,
149                                         MarkBit mark_bit, int size) {
150   DCHECK(!Marking::IsImpossible(mark_bit));
151   if (Marking::IsBlack(mark_bit)) return;
152   Marking::MarkBlack(mark_bit);
153   MemoryChunk::IncrementLiveBytesFromGC(heap_object->address(), size);
154   DCHECK(Marking::IsBlack(mark_bit));
155 }
156
157
158 class IncrementalMarkingMarkingVisitor
159     : public StaticMarkingVisitor<IncrementalMarkingMarkingVisitor> {
160  public:
161   static void Initialize() {
162     StaticMarkingVisitor<IncrementalMarkingMarkingVisitor>::Initialize();
163     table_.Register(kVisitFixedArray, &VisitFixedArrayIncremental);
164     table_.Register(kVisitNativeContext, &VisitNativeContextIncremental);
165     table_.Register(kVisitJSRegExp, &VisitJSRegExp);
166   }
167
168   static const int kProgressBarScanningChunk = 32 * 1024;
169
170   static void VisitFixedArrayIncremental(Map* map, HeapObject* object) {
171     MemoryChunk* chunk = MemoryChunk::FromAddress(object->address());
172     // TODO(mstarzinger): Move setting of the flag to the allocation site of
173     // the array. The visitor should just check the flag.
174     if (FLAG_use_marking_progress_bar &&
175         chunk->owner()->identity() == LO_SPACE) {
176       chunk->SetFlag(MemoryChunk::HAS_PROGRESS_BAR);
177     }
178     if (chunk->IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) {
179       Heap* heap = map->GetHeap();
180       // When using a progress bar for large fixed arrays, scan only a chunk of
181       // the array and try to push it onto the marking deque again until it is
182       // fully scanned. Fall back to scanning it through to the end in case this
183       // fails because of a full deque.
184       int object_size = FixedArray::BodyDescriptor::SizeOf(map, object);
185       int start_offset =
186           Max(FixedArray::BodyDescriptor::kStartOffset, chunk->progress_bar());
187       int end_offset =
188           Min(object_size, start_offset + kProgressBarScanningChunk);
189       int already_scanned_offset = start_offset;
190       bool scan_until_end = false;
191       do {
192         VisitPointersWithAnchor(heap, HeapObject::RawField(object, 0),
193                                 HeapObject::RawField(object, start_offset),
194                                 HeapObject::RawField(object, end_offset));
195         start_offset = end_offset;
196         end_offset = Min(object_size, end_offset + kProgressBarScanningChunk);
197         scan_until_end = heap->incremental_marking()->marking_deque()->IsFull();
198       } while (scan_until_end && start_offset < object_size);
199       chunk->set_progress_bar(start_offset);
200       if (start_offset < object_size) {
201         heap->incremental_marking()->marking_deque()->UnshiftGrey(object);
202         heap->incremental_marking()->NotifyIncompleteScanOfObject(
203             object_size - (start_offset - already_scanned_offset));
204       }
205     } else {
206       FixedArrayVisitor::Visit(map, object);
207     }
208   }
209
210   static void VisitNativeContextIncremental(Map* map, HeapObject* object) {
211     Context* context = Context::cast(object);
212
213     // We will mark cache black with a separate pass when we finish marking.
214     // Note that GC can happen when the context is not fully initialized,
215     // so the cache can be undefined.
216     Object* cache = context->get(Context::NORMALIZED_MAP_CACHE_INDEX);
217     if (!cache->IsUndefined()) {
218       MarkObjectGreyDoNotEnqueue(cache);
219     }
220     VisitNativeContext(map, context);
221   }
222
223   INLINE(static void VisitPointer(Heap* heap, Object** p)) {
224     Object* obj = *p;
225     if (obj->IsHeapObject()) {
226       heap->mark_compact_collector()->RecordSlot(p, p, obj);
227       MarkObject(heap, obj);
228     }
229   }
230
231   INLINE(static void VisitPointers(Heap* heap, Object** start, Object** end)) {
232     for (Object** p = start; p < end; p++) {
233       Object* obj = *p;
234       if (obj->IsHeapObject()) {
235         heap->mark_compact_collector()->RecordSlot(start, p, obj);
236         MarkObject(heap, obj);
237       }
238     }
239   }
240
241   INLINE(static void VisitPointersWithAnchor(Heap* heap, Object** anchor,
242                                              Object** start, Object** end)) {
243     for (Object** p = start; p < end; p++) {
244       Object* obj = *p;
245       if (obj->IsHeapObject()) {
246         heap->mark_compact_collector()->RecordSlot(anchor, p, obj);
247         MarkObject(heap, obj);
248       }
249     }
250   }
251
252   // Marks the object grey and pushes it on the marking stack.
253   INLINE(static void MarkObject(Heap* heap, Object* obj)) {
254     HeapObject* heap_object = HeapObject::cast(obj);
255     MarkBit mark_bit = Marking::MarkBitFrom(heap_object);
256     if (mark_bit.data_only()) {
257       MarkBlackOrKeepGrey(heap_object, mark_bit, heap_object->Size());
258     } else if (Marking::IsWhite(mark_bit)) {
259       heap->incremental_marking()->WhiteToGreyAndPush(heap_object, mark_bit);
260     }
261   }
262
263   // Marks the object black without pushing it on the marking stack.
264   // Returns true if object needed marking and false otherwise.
265   INLINE(static bool MarkObjectWithoutPush(Heap* heap, Object* obj)) {
266     HeapObject* heap_object = HeapObject::cast(obj);
267     MarkBit mark_bit = Marking::MarkBitFrom(heap_object);
268     if (Marking::IsWhite(mark_bit)) {
269       mark_bit.Set();
270       MemoryChunk::IncrementLiveBytesFromGC(heap_object->address(),
271                                             heap_object->Size());
272       return true;
273     }
274     return false;
275   }
276 };
277
278
279 class IncrementalMarkingRootMarkingVisitor : public ObjectVisitor {
280  public:
281   explicit IncrementalMarkingRootMarkingVisitor(
282       IncrementalMarking* incremental_marking)
283       : incremental_marking_(incremental_marking) {}
284
285   void VisitPointer(Object** p) { MarkObjectByPointer(p); }
286
287   void VisitPointers(Object** start, Object** end) {
288     for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
289   }
290
291  private:
292   void MarkObjectByPointer(Object** p) {
293     Object* obj = *p;
294     if (!obj->IsHeapObject()) return;
295
296     HeapObject* heap_object = HeapObject::cast(obj);
297     MarkBit mark_bit = Marking::MarkBitFrom(heap_object);
298     if (mark_bit.data_only()) {
299       MarkBlackOrKeepGrey(heap_object, mark_bit, heap_object->Size());
300     } else {
301       if (Marking::IsWhite(mark_bit)) {
302         incremental_marking_->WhiteToGreyAndPush(heap_object, mark_bit);
303       }
304     }
305   }
306
307   IncrementalMarking* incremental_marking_;
308 };
309
310
311 void IncrementalMarking::Initialize() {
312   IncrementalMarkingMarkingVisitor::Initialize();
313 }
314
315
316 void IncrementalMarking::SetOldSpacePageFlags(MemoryChunk* chunk,
317                                               bool is_marking,
318                                               bool is_compacting) {
319   if (is_marking) {
320     chunk->SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
321     chunk->SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
322
323     // It's difficult to filter out slots recorded for large objects.
324     if (chunk->owner()->identity() == LO_SPACE &&
325         chunk->size() > static_cast<size_t>(Page::kPageSize) && is_compacting) {
326       chunk->SetFlag(MemoryChunk::RESCAN_ON_EVACUATION);
327     }
328   } else if (chunk->owner()->identity() == CELL_SPACE ||
329              chunk->owner()->identity() == PROPERTY_CELL_SPACE ||
330              chunk->scan_on_scavenge()) {
331     chunk->ClearFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
332     chunk->ClearFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
333   } else {
334     chunk->ClearFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
335     chunk->SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
336   }
337 }
338
339
340 void IncrementalMarking::SetNewSpacePageFlags(NewSpacePage* chunk,
341                                               bool is_marking) {
342   chunk->SetFlag(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING);
343   if (is_marking) {
344     chunk->SetFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
345   } else {
346     chunk->ClearFlag(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING);
347   }
348   chunk->SetFlag(MemoryChunk::SCAN_ON_SCAVENGE);
349 }
350
351
352 void IncrementalMarking::DeactivateIncrementalWriteBarrierForSpace(
353     PagedSpace* space) {
354   PageIterator it(space);
355   while (it.has_next()) {
356     Page* p = it.next();
357     SetOldSpacePageFlags(p, false, false);
358   }
359 }
360
361
362 void IncrementalMarking::DeactivateIncrementalWriteBarrierForSpace(
363     NewSpace* space) {
364   NewSpacePageIterator it(space);
365   while (it.has_next()) {
366     NewSpacePage* p = it.next();
367     SetNewSpacePageFlags(p, false);
368   }
369 }
370
371
372 void IncrementalMarking::DeactivateIncrementalWriteBarrier() {
373   DeactivateIncrementalWriteBarrierForSpace(heap_->old_pointer_space());
374   DeactivateIncrementalWriteBarrierForSpace(heap_->old_data_space());
375   DeactivateIncrementalWriteBarrierForSpace(heap_->cell_space());
376   DeactivateIncrementalWriteBarrierForSpace(heap_->property_cell_space());
377   DeactivateIncrementalWriteBarrierForSpace(heap_->map_space());
378   DeactivateIncrementalWriteBarrierForSpace(heap_->code_space());
379   DeactivateIncrementalWriteBarrierForSpace(heap_->new_space());
380
381   LargePage* lop = heap_->lo_space()->first_page();
382   while (lop->is_valid()) {
383     SetOldSpacePageFlags(lop, false, false);
384     lop = lop->next_page();
385   }
386 }
387
388
389 void IncrementalMarking::ActivateIncrementalWriteBarrier(PagedSpace* space) {
390   PageIterator it(space);
391   while (it.has_next()) {
392     Page* p = it.next();
393     SetOldSpacePageFlags(p, true, is_compacting_);
394   }
395 }
396
397
398 void IncrementalMarking::ActivateIncrementalWriteBarrier(NewSpace* space) {
399   NewSpacePageIterator it(space->ToSpaceStart(), space->ToSpaceEnd());
400   while (it.has_next()) {
401     NewSpacePage* p = it.next();
402     SetNewSpacePageFlags(p, true);
403   }
404 }
405
406
407 void IncrementalMarking::ActivateIncrementalWriteBarrier() {
408   ActivateIncrementalWriteBarrier(heap_->old_pointer_space());
409   ActivateIncrementalWriteBarrier(heap_->old_data_space());
410   ActivateIncrementalWriteBarrier(heap_->cell_space());
411   ActivateIncrementalWriteBarrier(heap_->property_cell_space());
412   ActivateIncrementalWriteBarrier(heap_->map_space());
413   ActivateIncrementalWriteBarrier(heap_->code_space());
414   ActivateIncrementalWriteBarrier(heap_->new_space());
415
416   LargePage* lop = heap_->lo_space()->first_page();
417   while (lop->is_valid()) {
418     SetOldSpacePageFlags(lop, true, is_compacting_);
419     lop = lop->next_page();
420   }
421 }
422
423
424 bool IncrementalMarking::ShouldActivate() {
425   return WorthActivating() && heap_->NextGCIsLikelyToBeFull();
426 }
427
428
429 bool IncrementalMarking::WorthActivating() {
430 #ifndef DEBUG
431   static const intptr_t kActivationThreshold = 8 * MB;
432 #else
433   // TODO(gc) consider setting this to some low level so that some
434   // debug tests run with incremental marking and some without.
435   static const intptr_t kActivationThreshold = 0;
436 #endif
437   // Only start incremental marking in a safe state: 1) when incremental
438   // marking is turned on, 2) when we are currently not in a GC, and
439   // 3) when we are currently not serializing or deserializing the heap.
440   return FLAG_incremental_marking && FLAG_incremental_marking_steps &&
441          heap_->gc_state() == Heap::NOT_IN_GC &&
442          !heap_->isolate()->serializer_enabled() &&
443          heap_->isolate()->IsInitialized() &&
444          heap_->PromotedSpaceSizeOfObjects() > kActivationThreshold;
445 }
446
447
448 void IncrementalMarking::ActivateGeneratedStub(Code* stub) {
449   DCHECK(RecordWriteStub::GetMode(stub) == RecordWriteStub::STORE_BUFFER_ONLY);
450
451   if (!IsMarking()) {
452     // Initially stub is generated in STORE_BUFFER_ONLY mode thus
453     // we don't need to do anything if incremental marking is
454     // not active.
455   } else if (IsCompacting()) {
456     RecordWriteStub::Patch(stub, RecordWriteStub::INCREMENTAL_COMPACTION);
457   } else {
458     RecordWriteStub::Patch(stub, RecordWriteStub::INCREMENTAL);
459   }
460 }
461
462
463 static void PatchIncrementalMarkingRecordWriteStubs(
464     Heap* heap, RecordWriteStub::Mode mode) {
465   UnseededNumberDictionary* stubs = heap->code_stubs();
466
467   int capacity = stubs->Capacity();
468   for (int i = 0; i < capacity; i++) {
469     Object* k = stubs->KeyAt(i);
470     if (stubs->IsKey(k)) {
471       uint32_t key = NumberToUint32(k);
472
473       if (CodeStub::MajorKeyFromKey(key) == CodeStub::RecordWrite) {
474         Object* e = stubs->ValueAt(i);
475         if (e->IsCode()) {
476           RecordWriteStub::Patch(Code::cast(e), mode);
477         }
478       }
479     }
480   }
481 }
482
483
484 void IncrementalMarking::EnsureMarkingDequeIsCommitted() {
485   if (marking_deque_memory_ == NULL) {
486     marking_deque_memory_ = new base::VirtualMemory(4 * MB);
487   }
488   if (!marking_deque_memory_committed_) {
489     bool success = marking_deque_memory_->Commit(
490         reinterpret_cast<Address>(marking_deque_memory_->address()),
491         marking_deque_memory_->size(),
492         false);  // Not executable.
493     CHECK(success);
494     marking_deque_memory_committed_ = true;
495   }
496 }
497
498
499 void IncrementalMarking::UncommitMarkingDeque() {
500   if (state_ == STOPPED && marking_deque_memory_committed_) {
501     bool success = marking_deque_memory_->Uncommit(
502         reinterpret_cast<Address>(marking_deque_memory_->address()),
503         marking_deque_memory_->size());
504     CHECK(success);
505     marking_deque_memory_committed_ = false;
506   }
507 }
508
509
510 void IncrementalMarking::Start(CompactionFlag flag) {
511   if (FLAG_trace_incremental_marking) {
512     PrintF("[IncrementalMarking] Start\n");
513   }
514   DCHECK(FLAG_incremental_marking);
515   DCHECK(FLAG_incremental_marking_steps);
516   DCHECK(state_ == STOPPED);
517   DCHECK(heap_->gc_state() == Heap::NOT_IN_GC);
518   DCHECK(!heap_->isolate()->serializer_enabled());
519   DCHECK(heap_->isolate()->IsInitialized());
520
521   ResetStepCounters();
522
523   if (!heap_->mark_compact_collector()->sweeping_in_progress()) {
524     StartMarking(flag);
525   } else {
526     if (FLAG_trace_incremental_marking) {
527       PrintF("[IncrementalMarking] Start sweeping.\n");
528     }
529     state_ = SWEEPING;
530   }
531
532   heap_->new_space()->LowerInlineAllocationLimit(kAllocatedThreshold);
533 }
534
535
536 void IncrementalMarking::StartMarking(CompactionFlag flag) {
537   if (FLAG_trace_incremental_marking) {
538     PrintF("[IncrementalMarking] Start marking\n");
539   }
540
541   is_compacting_ = !FLAG_never_compact && (flag == ALLOW_COMPACTION) &&
542                    heap_->mark_compact_collector()->StartCompaction(
543                        MarkCompactCollector::INCREMENTAL_COMPACTION);
544
545   state_ = MARKING;
546
547   RecordWriteStub::Mode mode = is_compacting_
548                                    ? RecordWriteStub::INCREMENTAL_COMPACTION
549                                    : RecordWriteStub::INCREMENTAL;
550
551   PatchIncrementalMarkingRecordWriteStubs(heap_, mode);
552
553   EnsureMarkingDequeIsCommitted();
554
555   // Initialize marking stack.
556   Address addr = static_cast<Address>(marking_deque_memory_->address());
557   size_t size = marking_deque_memory_->size();
558   if (FLAG_force_marking_deque_overflows) size = 64 * kPointerSize;
559   marking_deque_.Initialize(addr, addr + size);
560
561   ActivateIncrementalWriteBarrier();
562
563 // Marking bits are cleared by the sweeper.
564 #ifdef VERIFY_HEAP
565   if (FLAG_verify_heap) {
566     heap_->mark_compact_collector()->VerifyMarkbitsAreClean();
567   }
568 #endif
569
570   heap_->CompletelyClearInstanceofCache();
571   heap_->isolate()->compilation_cache()->MarkCompactPrologue();
572
573   if (FLAG_cleanup_code_caches_at_gc) {
574     // We will mark cache black with a separate pass
575     // when we finish marking.
576     MarkObjectGreyDoNotEnqueue(heap_->polymorphic_code_cache());
577   }
578
579   // Mark strong roots grey.
580   IncrementalMarkingRootMarkingVisitor visitor(this);
581   heap_->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG);
582
583   heap_->mark_compact_collector()->MarkWeakObjectToCodeTable();
584
585   // Ready to start incremental marking.
586   if (FLAG_trace_incremental_marking) {
587     PrintF("[IncrementalMarking] Running\n");
588   }
589 }
590
591
592 void IncrementalMarking::PrepareForScavenge() {
593   if (!IsMarking()) return;
594   NewSpacePageIterator it(heap_->new_space()->FromSpaceStart(),
595                           heap_->new_space()->FromSpaceEnd());
596   while (it.has_next()) {
597     Bitmap::Clear(it.next());
598   }
599 }
600
601
602 void IncrementalMarking::UpdateMarkingDequeAfterScavenge() {
603   if (!IsMarking()) return;
604
605   int current = marking_deque_.bottom();
606   int mask = marking_deque_.mask();
607   int limit = marking_deque_.top();
608   HeapObject** array = marking_deque_.array();
609   int new_top = current;
610
611   Map* filler_map = heap_->one_pointer_filler_map();
612
613   while (current != limit) {
614     HeapObject* obj = array[current];
615     DCHECK(obj->IsHeapObject());
616     current = ((current + 1) & mask);
617     if (heap_->InNewSpace(obj)) {
618       MapWord map_word = obj->map_word();
619       if (map_word.IsForwardingAddress()) {
620         HeapObject* dest = map_word.ToForwardingAddress();
621         array[new_top] = dest;
622         new_top = ((new_top + 1) & mask);
623         DCHECK(new_top != marking_deque_.bottom());
624 #ifdef DEBUG
625         MarkBit mark_bit = Marking::MarkBitFrom(obj);
626         DCHECK(Marking::IsGrey(mark_bit) ||
627                (obj->IsFiller() && Marking::IsWhite(mark_bit)));
628 #endif
629       }
630     } else if (obj->map() != filler_map) {
631       // Skip one word filler objects that appear on the
632       // stack when we perform in place array shift.
633       array[new_top] = obj;
634       new_top = ((new_top + 1) & mask);
635       DCHECK(new_top != marking_deque_.bottom());
636 #ifdef DEBUG
637       MarkBit mark_bit = Marking::MarkBitFrom(obj);
638       MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
639       DCHECK(Marking::IsGrey(mark_bit) ||
640              (obj->IsFiller() && Marking::IsWhite(mark_bit)) ||
641              (chunk->IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR) &&
642               Marking::IsBlack(mark_bit)));
643 #endif
644     }
645   }
646   marking_deque_.set_top(new_top);
647 }
648
649
650 void IncrementalMarking::VisitObject(Map* map, HeapObject* obj, int size) {
651   MarkBit map_mark_bit = Marking::MarkBitFrom(map);
652   if (Marking::IsWhite(map_mark_bit)) {
653     WhiteToGreyAndPush(map, map_mark_bit);
654   }
655
656   IncrementalMarkingMarkingVisitor::IterateBody(map, obj);
657
658   MarkBit mark_bit = Marking::MarkBitFrom(obj);
659 #if ENABLE_SLOW_DCHECKS
660   MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
661   SLOW_DCHECK(Marking::IsGrey(mark_bit) ||
662               (obj->IsFiller() && Marking::IsWhite(mark_bit)) ||
663               (chunk->IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR) &&
664                Marking::IsBlack(mark_bit)));
665 #endif
666   MarkBlackOrKeepBlack(obj, mark_bit, size);
667 }
668
669
670 intptr_t IncrementalMarking::ProcessMarkingDeque(intptr_t bytes_to_process) {
671   intptr_t bytes_processed = 0;
672   Map* filler_map = heap_->one_pointer_filler_map();
673   while (!marking_deque_.IsEmpty() && bytes_processed < bytes_to_process) {
674     HeapObject* obj = marking_deque_.Pop();
675
676     // Explicitly skip one word fillers. Incremental markbit patterns are
677     // correct only for objects that occupy at least two words.
678     Map* map = obj->map();
679     if (map == filler_map) continue;
680
681     int size = obj->SizeFromMap(map);
682     unscanned_bytes_of_large_object_ = 0;
683     VisitObject(map, obj, size);
684     int delta = (size - unscanned_bytes_of_large_object_);
685     // TODO(jochen): remove after http://crbug.com/381820 is resolved.
686     CHECK_LT(0, delta);
687     bytes_processed += delta;
688   }
689   return bytes_processed;
690 }
691
692
693 void IncrementalMarking::ProcessMarkingDeque() {
694   Map* filler_map = heap_->one_pointer_filler_map();
695   while (!marking_deque_.IsEmpty()) {
696     HeapObject* obj = marking_deque_.Pop();
697
698     // Explicitly skip one word fillers. Incremental markbit patterns are
699     // correct only for objects that occupy at least two words.
700     Map* map = obj->map();
701     if (map == filler_map) continue;
702
703     VisitObject(map, obj, obj->SizeFromMap(map));
704   }
705 }
706
707
708 void IncrementalMarking::Hurry() {
709   if (state() == MARKING) {
710     double start = 0.0;
711     if (FLAG_trace_incremental_marking || FLAG_print_cumulative_gc_stat) {
712       start = base::OS::TimeCurrentMillis();
713       if (FLAG_trace_incremental_marking) {
714         PrintF("[IncrementalMarking] Hurry\n");
715       }
716     }
717     // TODO(gc) hurry can mark objects it encounters black as mutator
718     // was stopped.
719     ProcessMarkingDeque();
720     state_ = COMPLETE;
721     if (FLAG_trace_incremental_marking || FLAG_print_cumulative_gc_stat) {
722       double end = base::OS::TimeCurrentMillis();
723       double delta = end - start;
724       heap_->tracer()->AddMarkingTime(delta);
725       if (FLAG_trace_incremental_marking) {
726         PrintF("[IncrementalMarking] Complete (hurry), spent %d ms.\n",
727                static_cast<int>(delta));
728       }
729     }
730   }
731
732   if (FLAG_cleanup_code_caches_at_gc) {
733     PolymorphicCodeCache* poly_cache = heap_->polymorphic_code_cache();
734     Marking::GreyToBlack(Marking::MarkBitFrom(poly_cache));
735     MemoryChunk::IncrementLiveBytesFromGC(poly_cache->address(),
736                                           PolymorphicCodeCache::kSize);
737   }
738
739   Object* context = heap_->native_contexts_list();
740   while (!context->IsUndefined()) {
741     // GC can happen when the context is not fully initialized,
742     // so the cache can be undefined.
743     HeapObject* cache = HeapObject::cast(
744         Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX));
745     if (!cache->IsUndefined()) {
746       MarkBit mark_bit = Marking::MarkBitFrom(cache);
747       if (Marking::IsGrey(mark_bit)) {
748         Marking::GreyToBlack(mark_bit);
749         MemoryChunk::IncrementLiveBytesFromGC(cache->address(), cache->Size());
750       }
751     }
752     context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
753   }
754 }
755
756
757 void IncrementalMarking::Abort() {
758   if (IsStopped()) return;
759   if (FLAG_trace_incremental_marking) {
760     PrintF("[IncrementalMarking] Aborting.\n");
761   }
762   heap_->new_space()->LowerInlineAllocationLimit(0);
763   IncrementalMarking::set_should_hurry(false);
764   ResetStepCounters();
765   if (IsMarking()) {
766     PatchIncrementalMarkingRecordWriteStubs(heap_,
767                                             RecordWriteStub::STORE_BUFFER_ONLY);
768     DeactivateIncrementalWriteBarrier();
769
770     if (is_compacting_) {
771       LargeObjectIterator it(heap_->lo_space());
772       for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
773         Page* p = Page::FromAddress(obj->address());
774         if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
775           p->ClearFlag(Page::RESCAN_ON_EVACUATION);
776         }
777       }
778     }
779   }
780   heap_->isolate()->stack_guard()->ClearGC();
781   state_ = STOPPED;
782   is_compacting_ = false;
783 }
784
785
786 void IncrementalMarking::Finalize() {
787   Hurry();
788   state_ = STOPPED;
789   is_compacting_ = false;
790   heap_->new_space()->LowerInlineAllocationLimit(0);
791   IncrementalMarking::set_should_hurry(false);
792   ResetStepCounters();
793   PatchIncrementalMarkingRecordWriteStubs(heap_,
794                                           RecordWriteStub::STORE_BUFFER_ONLY);
795   DeactivateIncrementalWriteBarrier();
796   DCHECK(marking_deque_.IsEmpty());
797   heap_->isolate()->stack_guard()->ClearGC();
798 }
799
800
801 void IncrementalMarking::MarkingComplete(CompletionAction action) {
802   state_ = COMPLETE;
803   // We will set the stack guard to request a GC now.  This will mean the rest
804   // of the GC gets performed as soon as possible (we can't do a GC here in a
805   // record-write context).  If a few things get allocated between now and then
806   // that shouldn't make us do a scavenge and keep being incremental, so we set
807   // the should-hurry flag to indicate that there can't be much work left to do.
808   set_should_hurry(true);
809   if (FLAG_trace_incremental_marking) {
810     PrintF("[IncrementalMarking] Complete (normal).\n");
811   }
812   if (action == GC_VIA_STACK_GUARD) {
813     heap_->isolate()->stack_guard()->RequestGC();
814   }
815 }
816
817
818 void IncrementalMarking::OldSpaceStep(intptr_t allocated) {
819   if (IsStopped() && ShouldActivate()) {
820     // TODO(hpayer): Let's play safe for now, but compaction should be
821     // in principle possible.
822     Start(PREVENT_COMPACTION);
823   } else {
824     Step(allocated * kFastMarking / kInitialMarkingSpeed, GC_VIA_STACK_GUARD);
825   }
826 }
827
828
829 void IncrementalMarking::SpeedUp() {
830   bool speed_up = false;
831
832   if ((steps_count_ % kMarkingSpeedAccellerationInterval) == 0) {
833     if (FLAG_trace_gc) {
834       PrintPID("Speed up marking after %d steps\n",
835                static_cast<int>(kMarkingSpeedAccellerationInterval));
836     }
837     speed_up = true;
838   }
839
840   bool space_left_is_very_small =
841       (old_generation_space_available_at_start_of_incremental_ < 10 * MB);
842
843   bool only_1_nth_of_space_that_was_available_still_left =
844       (SpaceLeftInOldSpace() * (marking_speed_ + 1) <
845        old_generation_space_available_at_start_of_incremental_);
846
847   if (space_left_is_very_small ||
848       only_1_nth_of_space_that_was_available_still_left) {
849     if (FLAG_trace_gc) PrintPID("Speed up marking because of low space left\n");
850     speed_up = true;
851   }
852
853   bool size_of_old_space_multiplied_by_n_during_marking =
854       (heap_->PromotedTotalSize() >
855        (marking_speed_ + 1) *
856            old_generation_space_used_at_start_of_incremental_);
857   if (size_of_old_space_multiplied_by_n_during_marking) {
858     speed_up = true;
859     if (FLAG_trace_gc) {
860       PrintPID("Speed up marking because of heap size increase\n");
861     }
862   }
863
864   int64_t promoted_during_marking =
865       heap_->PromotedTotalSize() -
866       old_generation_space_used_at_start_of_incremental_;
867   intptr_t delay = marking_speed_ * MB;
868   intptr_t scavenge_slack = heap_->MaxSemiSpaceSize();
869
870   // We try to scan at at least twice the speed that we are allocating.
871   if (promoted_during_marking > bytes_scanned_ / 2 + scavenge_slack + delay) {
872     if (FLAG_trace_gc) {
873       PrintPID("Speed up marking because marker was not keeping up\n");
874     }
875     speed_up = true;
876   }
877
878   if (speed_up) {
879     if (state_ != MARKING) {
880       if (FLAG_trace_gc) {
881         PrintPID("Postponing speeding up marking until marking starts\n");
882       }
883     } else {
884       marking_speed_ += kMarkingSpeedAccelleration;
885       marking_speed_ = static_cast<int>(
886           Min(kMaxMarkingSpeed, static_cast<intptr_t>(marking_speed_ * 1.3)));
887       if (FLAG_trace_gc) {
888         PrintPID("Marking speed increased to %d\n", marking_speed_);
889       }
890     }
891   }
892 }
893
894
895 void IncrementalMarking::Step(intptr_t allocated_bytes, CompletionAction action,
896                               bool force_marking) {
897   if (heap_->gc_state() != Heap::NOT_IN_GC || !FLAG_incremental_marking ||
898       !FLAG_incremental_marking_steps ||
899       (state_ != SWEEPING && state_ != MARKING)) {
900     return;
901   }
902
903   allocated_ += allocated_bytes;
904
905   if (!force_marking && allocated_ < kAllocatedThreshold &&
906       write_barriers_invoked_since_last_step_ <
907           kWriteBarriersInvokedThreshold) {
908     return;
909   }
910
911   if (state_ == MARKING && no_marking_scope_depth_ > 0) return;
912
913   {
914     HistogramTimerScope incremental_marking_scope(
915         heap_->isolate()->counters()->gc_incremental_marking());
916     double start = base::OS::TimeCurrentMillis();
917
918     // The marking speed is driven either by the allocation rate or by the rate
919     // at which we are having to check the color of objects in the write
920     // barrier.
921     // It is possible for a tight non-allocating loop to run a lot of write
922     // barriers before we get here and check them (marking can only take place
923     // on
924     // allocation), so to reduce the lumpiness we don't use the write barriers
925     // invoked since last step directly to determine the amount of work to do.
926     intptr_t bytes_to_process =
927         marking_speed_ *
928         Max(allocated_, write_barriers_invoked_since_last_step_);
929     allocated_ = 0;
930     write_barriers_invoked_since_last_step_ = 0;
931
932     bytes_scanned_ += bytes_to_process;
933     intptr_t bytes_processed = 0;
934
935     if (state_ == SWEEPING) {
936       if (heap_->mark_compact_collector()->sweeping_in_progress() &&
937           heap_->mark_compact_collector()->IsSweepingCompleted()) {
938         heap_->mark_compact_collector()->EnsureSweepingCompleted();
939       }
940       if (!heap_->mark_compact_collector()->sweeping_in_progress()) {
941         bytes_scanned_ = 0;
942         StartMarking(PREVENT_COMPACTION);
943       }
944     } else if (state_ == MARKING) {
945       bytes_processed = ProcessMarkingDeque(bytes_to_process);
946       if (marking_deque_.IsEmpty()) MarkingComplete(action);
947     }
948
949     steps_count_++;
950
951     // Speed up marking if we are marking too slow or if we are almost done
952     // with marking.
953     SpeedUp();
954
955     double end = base::OS::TimeCurrentMillis();
956     double duration = (end - start);
957     // Note that we report zero bytes here when sweeping was in progress or
958     // when we just started incremental marking. In these cases we did not
959     // process the marking deque.
960     heap_->tracer()->AddIncrementalMarkingStep(duration, bytes_processed);
961   }
962 }
963
964
965 void IncrementalMarking::ResetStepCounters() {
966   steps_count_ = 0;
967   old_generation_space_available_at_start_of_incremental_ =
968       SpaceLeftInOldSpace();
969   old_generation_space_used_at_start_of_incremental_ =
970       heap_->PromotedTotalSize();
971   bytes_rescanned_ = 0;
972   marking_speed_ = kInitialMarkingSpeed;
973   bytes_scanned_ = 0;
974   write_barriers_invoked_since_last_step_ = 0;
975 }
976
977
978 int64_t IncrementalMarking::SpaceLeftInOldSpace() {
979   return heap_->MaxOldGenerationSize() - heap_->PromotedSpaceSizeOfObjects();
980 }
981 }
982 }  // namespace v8::internal