afe5b7117da812747a98d053988f1777487db8af
[platform/framework/web/crosswalk.git] / src / v8 / src / gdb-jit.cc
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifdef ENABLE_GDB_JIT_INTERFACE
29 #include "v8.h"
30 #include "gdb-jit.h"
31
32 #include "bootstrapper.h"
33 #include "compiler.h"
34 #include "frames.h"
35 #include "frames-inl.h"
36 #include "global-handles.h"
37 #include "messages.h"
38 #include "natives.h"
39 #include "platform.h"
40 #include "scopes.h"
41
42 namespace v8 {
43 namespace internal {
44
45 #ifdef __APPLE__
46 #define __MACH_O
47 class MachO;
48 class MachOSection;
49 typedef MachO DebugObject;
50 typedef MachOSection DebugSection;
51 #else
52 #define __ELF
53 class ELF;
54 class ELFSection;
55 typedef ELF DebugObject;
56 typedef ELFSection DebugSection;
57 #endif
58
59 class Writer BASE_EMBEDDED {
60  public:
61   explicit Writer(DebugObject* debug_object)
62       : debug_object_(debug_object),
63         position_(0),
64         capacity_(1024),
65         buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
66   }
67
68   ~Writer() {
69     free(buffer_);
70   }
71
72   uintptr_t position() const {
73     return position_;
74   }
75
76   template<typename T>
77   class Slot {
78    public:
79     Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }
80
81     T* operator-> () {
82       return w_->RawSlotAt<T>(offset_);
83     }
84
85     void set(const T& value) {
86       *w_->RawSlotAt<T>(offset_) = value;
87     }
88
89     Slot<T> at(int i) {
90       return Slot<T>(w_, offset_ + sizeof(T) * i);
91     }
92
93    private:
94     Writer* w_;
95     uintptr_t offset_;
96   };
97
98   template<typename T>
99   void Write(const T& val) {
100     Ensure(position_ + sizeof(T));
101     *RawSlotAt<T>(position_) = val;
102     position_ += sizeof(T);
103   }
104
105   template<typename T>
106   Slot<T> SlotAt(uintptr_t offset) {
107     Ensure(offset + sizeof(T));
108     return Slot<T>(this, offset);
109   }
110
111   template<typename T>
112   Slot<T> CreateSlotHere() {
113     return CreateSlotsHere<T>(1);
114   }
115
116   template<typename T>
117   Slot<T> CreateSlotsHere(uint32_t count) {
118     uintptr_t slot_position = position_;
119     position_ += sizeof(T) * count;
120     Ensure(position_);
121     return SlotAt<T>(slot_position);
122   }
123
124   void Ensure(uintptr_t pos) {
125     if (capacity_ < pos) {
126       while (capacity_ < pos) capacity_ *= 2;
127       buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
128     }
129   }
130
131   DebugObject* debug_object() { return debug_object_; }
132
133   byte* buffer() { return buffer_; }
134
135   void Align(uintptr_t align) {
136     uintptr_t delta = position_ % align;
137     if (delta == 0) return;
138     uintptr_t padding = align - delta;
139     Ensure(position_ += padding);
140     ASSERT((position_ % align) == 0);
141   }
142
143   void WriteULEB128(uintptr_t value) {
144     do {
145       uint8_t byte = value & 0x7F;
146       value >>= 7;
147       if (value != 0) byte |= 0x80;
148       Write<uint8_t>(byte);
149     } while (value != 0);
150   }
151
152   void WriteSLEB128(intptr_t value) {
153     bool more = true;
154     while (more) {
155       int8_t byte = value & 0x7F;
156       bool byte_sign = byte & 0x40;
157       value >>= 7;
158
159       if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
160         more = false;
161       } else {
162         byte |= 0x80;
163       }
164
165       Write<int8_t>(byte);
166     }
167   }
168
169   void WriteString(const char* str) {
170     do {
171       Write<char>(*str);
172     } while (*str++);
173   }
174
175  private:
176   template<typename T> friend class Slot;
177
178   template<typename T>
179   T* RawSlotAt(uintptr_t offset) {
180     ASSERT(offset < capacity_ && offset + sizeof(T) <= capacity_);
181     return reinterpret_cast<T*>(&buffer_[offset]);
182   }
183
184   DebugObject* debug_object_;
185   uintptr_t position_;
186   uintptr_t capacity_;
187   byte* buffer_;
188 };
189
190 class ELFStringTable;
191
192 template<typename THeader>
193 class DebugSectionBase : public ZoneObject {
194  public:
195   virtual ~DebugSectionBase() { }
196
197   virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
198     uintptr_t start = writer->position();
199     if (WriteBodyInternal(writer)) {
200       uintptr_t end = writer->position();
201       header->offset = start;
202 #if defined(__MACH_O)
203       header->addr = 0;
204 #endif
205       header->size = end - start;
206     }
207   }
208
209   virtual bool WriteBodyInternal(Writer* writer) {
210     return false;
211   }
212
213   typedef THeader Header;
214 };
215
216
217 struct MachOSectionHeader {
218   char sectname[16];
219   char segname[16];
220 #if V8_TARGET_ARCH_IA32
221   uint32_t addr;
222   uint32_t size;
223 #else
224   uint64_t addr;
225   uint64_t size;
226 #endif
227   uint32_t offset;
228   uint32_t align;
229   uint32_t reloff;
230   uint32_t nreloc;
231   uint32_t flags;
232   uint32_t reserved1;
233   uint32_t reserved2;
234 };
235
236
237 class MachOSection : public DebugSectionBase<MachOSectionHeader> {
238  public:
239   enum Type {
240     S_REGULAR = 0x0u,
241     S_ATTR_COALESCED = 0xbu,
242     S_ATTR_SOME_INSTRUCTIONS = 0x400u,
243     S_ATTR_DEBUG = 0x02000000u,
244     S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
245   };
246
247   MachOSection(const char* name,
248                const char* segment,
249                uintptr_t align,
250                uint32_t flags)
251     : name_(name),
252       segment_(segment),
253       align_(align),
254       flags_(flags) {
255     ASSERT(IsPowerOf2(align));
256     if (align_ != 0) {
257       align_ = WhichPowerOf2(align_);
258     }
259   }
260
261   virtual ~MachOSection() { }
262
263   virtual void PopulateHeader(Writer::Slot<Header> header) {
264     header->addr = 0;
265     header->size = 0;
266     header->offset = 0;
267     header->align = align_;
268     header->reloff = 0;
269     header->nreloc = 0;
270     header->flags = flags_;
271     header->reserved1 = 0;
272     header->reserved2 = 0;
273     memset(header->sectname, 0, sizeof(header->sectname));
274     memset(header->segname, 0, sizeof(header->segname));
275     ASSERT(strlen(name_) < sizeof(header->sectname));
276     ASSERT(strlen(segment_) < sizeof(header->segname));
277     strncpy(header->sectname, name_, sizeof(header->sectname));
278     strncpy(header->segname, segment_, sizeof(header->segname));
279   }
280
281  private:
282   const char* name_;
283   const char* segment_;
284   uintptr_t align_;
285   uint32_t flags_;
286 };
287
288
289 struct ELFSectionHeader {
290   uint32_t name;
291   uint32_t type;
292   uintptr_t flags;
293   uintptr_t address;
294   uintptr_t offset;
295   uintptr_t size;
296   uint32_t link;
297   uint32_t info;
298   uintptr_t alignment;
299   uintptr_t entry_size;
300 };
301
302
303 #if defined(__ELF)
304 class ELFSection : public DebugSectionBase<ELFSectionHeader> {
305  public:
306   enum Type {
307     TYPE_NULL = 0,
308     TYPE_PROGBITS = 1,
309     TYPE_SYMTAB = 2,
310     TYPE_STRTAB = 3,
311     TYPE_RELA = 4,
312     TYPE_HASH = 5,
313     TYPE_DYNAMIC = 6,
314     TYPE_NOTE = 7,
315     TYPE_NOBITS = 8,
316     TYPE_REL = 9,
317     TYPE_SHLIB = 10,
318     TYPE_DYNSYM = 11,
319     TYPE_LOPROC = 0x70000000,
320     TYPE_X86_64_UNWIND = 0x70000001,
321     TYPE_HIPROC = 0x7fffffff,
322     TYPE_LOUSER = 0x80000000,
323     TYPE_HIUSER = 0xffffffff
324   };
325
326   enum Flags {
327     FLAG_WRITE = 1,
328     FLAG_ALLOC = 2,
329     FLAG_EXEC = 4
330   };
331
332   enum SpecialIndexes {
333     INDEX_ABSOLUTE = 0xfff1
334   };
335
336   ELFSection(const char* name, Type type, uintptr_t align)
337       : name_(name), type_(type), align_(align) { }
338
339   virtual ~ELFSection() { }
340
341   void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
342
343   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
344     uintptr_t start = w->position();
345     if (WriteBodyInternal(w)) {
346       uintptr_t end = w->position();
347       header->offset = start;
348       header->size = end - start;
349     }
350   }
351
352   virtual bool WriteBodyInternal(Writer* w) {
353     return false;
354   }
355
356   uint16_t index() const { return index_; }
357   void set_index(uint16_t index) { index_ = index; }
358
359  protected:
360   virtual void PopulateHeader(Writer::Slot<Header> header) {
361     header->flags = 0;
362     header->address = 0;
363     header->offset = 0;
364     header->size = 0;
365     header->link = 0;
366     header->info = 0;
367     header->entry_size = 0;
368   }
369
370  private:
371   const char* name_;
372   Type type_;
373   uintptr_t align_;
374   uint16_t index_;
375 };
376 #endif  // defined(__ELF)
377
378
379 #if defined(__MACH_O)
380 class MachOTextSection : public MachOSection {
381  public:
382   MachOTextSection(uintptr_t align,
383                    uintptr_t addr,
384                    uintptr_t size)
385       : MachOSection("__text",
386                      "__TEXT",
387                      align,
388                      MachOSection::S_REGULAR |
389                          MachOSection::S_ATTR_SOME_INSTRUCTIONS |
390                          MachOSection::S_ATTR_PURE_INSTRUCTIONS),
391         addr_(addr),
392         size_(size) { }
393
394  protected:
395   virtual void PopulateHeader(Writer::Slot<Header> header) {
396     MachOSection::PopulateHeader(header);
397     header->addr = addr_;
398     header->size = size_;
399   }
400
401  private:
402   uintptr_t addr_;
403   uintptr_t size_;
404 };
405 #endif  // defined(__MACH_O)
406
407
408 #if defined(__ELF)
409 class FullHeaderELFSection : public ELFSection {
410  public:
411   FullHeaderELFSection(const char* name,
412                        Type type,
413                        uintptr_t align,
414                        uintptr_t addr,
415                        uintptr_t offset,
416                        uintptr_t size,
417                        uintptr_t flags)
418       : ELFSection(name, type, align),
419         addr_(addr),
420         offset_(offset),
421         size_(size),
422         flags_(flags) { }
423
424  protected:
425   virtual void PopulateHeader(Writer::Slot<Header> header) {
426     ELFSection::PopulateHeader(header);
427     header->address = addr_;
428     header->offset = offset_;
429     header->size = size_;
430     header->flags = flags_;
431   }
432
433  private:
434   uintptr_t addr_;
435   uintptr_t offset_;
436   uintptr_t size_;
437   uintptr_t flags_;
438 };
439
440
441 class ELFStringTable : public ELFSection {
442  public:
443   explicit ELFStringTable(const char* name)
444       : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
445   }
446
447   uintptr_t Add(const char* str) {
448     if (*str == '\0') return 0;
449
450     uintptr_t offset = size_;
451     WriteString(str);
452     return offset;
453   }
454
455   void AttachWriter(Writer* w) {
456     writer_ = w;
457     offset_ = writer_->position();
458
459     // First entry in the string table should be an empty string.
460     WriteString("");
461   }
462
463   void DetachWriter() {
464     writer_ = NULL;
465   }
466
467   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
468     ASSERT(writer_ == NULL);
469     header->offset = offset_;
470     header->size = size_;
471   }
472
473  private:
474   void WriteString(const char* str) {
475     uintptr_t written = 0;
476     do {
477       writer_->Write(*str);
478       written++;
479     } while (*str++);
480     size_ += written;
481   }
482
483   Writer* writer_;
484
485   uintptr_t offset_;
486   uintptr_t size_;
487 };
488
489
490 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
491                                 ELFStringTable* strtab) {
492   header->name = strtab->Add(name_);
493   header->type = type_;
494   header->alignment = align_;
495   PopulateHeader(header);
496 }
497 #endif  // defined(__ELF)
498
499
500 #if defined(__MACH_O)
501 class MachO BASE_EMBEDDED {
502  public:
503   explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { }
504
505   uint32_t AddSection(MachOSection* section) {
506     sections_.Add(section, zone_);
507     return sections_.length() - 1;
508   }
509
510   void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
511     Writer::Slot<MachOHeader> header = WriteHeader(w);
512     uintptr_t load_command_start = w->position();
513     Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
514                                                                 code_start,
515                                                                 code_size);
516     WriteSections(w, cmd, header, load_command_start);
517   }
518
519  private:
520   struct MachOHeader {
521     uint32_t magic;
522     uint32_t cputype;
523     uint32_t cpusubtype;
524     uint32_t filetype;
525     uint32_t ncmds;
526     uint32_t sizeofcmds;
527     uint32_t flags;
528 #if V8_TARGET_ARCH_X64
529     uint32_t reserved;
530 #endif
531   };
532
533   struct MachOSegmentCommand {
534     uint32_t cmd;
535     uint32_t cmdsize;
536     char segname[16];
537 #if V8_TARGET_ARCH_IA32
538     uint32_t vmaddr;
539     uint32_t vmsize;
540     uint32_t fileoff;
541     uint32_t filesize;
542 #else
543     uint64_t vmaddr;
544     uint64_t vmsize;
545     uint64_t fileoff;
546     uint64_t filesize;
547 #endif
548     uint32_t maxprot;
549     uint32_t initprot;
550     uint32_t nsects;
551     uint32_t flags;
552   };
553
554   enum MachOLoadCommandCmd {
555     LC_SEGMENT_32 = 0x00000001u,
556     LC_SEGMENT_64 = 0x00000019u
557   };
558
559
560   Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
561     ASSERT(w->position() == 0);
562     Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
563 #if V8_TARGET_ARCH_IA32
564     header->magic = 0xFEEDFACEu;
565     header->cputype = 7;  // i386
566     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
567 #elif V8_TARGET_ARCH_X64
568     header->magic = 0xFEEDFACFu;
569     header->cputype = 7 | 0x01000000;  // i386 | 64-bit ABI
570     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
571     header->reserved = 0;
572 #else
573 #error Unsupported target architecture.
574 #endif
575     header->filetype = 0x1;  // MH_OBJECT
576     header->ncmds = 1;
577     header->sizeofcmds = 0;
578     header->flags = 0;
579     return header;
580   }
581
582
583   Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
584                                                         uintptr_t code_start,
585                                                         uintptr_t code_size) {
586     Writer::Slot<MachOSegmentCommand> cmd =
587         w->CreateSlotHere<MachOSegmentCommand>();
588 #if V8_TARGET_ARCH_IA32
589     cmd->cmd = LC_SEGMENT_32;
590 #else
591     cmd->cmd = LC_SEGMENT_64;
592 #endif
593     cmd->vmaddr = code_start;
594     cmd->vmsize = code_size;
595     cmd->fileoff = 0;
596     cmd->filesize = 0;
597     cmd->maxprot = 7;
598     cmd->initprot = 7;
599     cmd->flags = 0;
600     cmd->nsects = sections_.length();
601     memset(cmd->segname, 0, 16);
602     cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
603         cmd->nsects;
604     return cmd;
605   }
606
607
608   void WriteSections(Writer* w,
609                      Writer::Slot<MachOSegmentCommand> cmd,
610                      Writer::Slot<MachOHeader> header,
611                      uintptr_t load_command_start) {
612     Writer::Slot<MachOSection::Header> headers =
613         w->CreateSlotsHere<MachOSection::Header>(sections_.length());
614     cmd->fileoff = w->position();
615     header->sizeofcmds = w->position() - load_command_start;
616     for (int section = 0; section < sections_.length(); ++section) {
617       sections_[section]->PopulateHeader(headers.at(section));
618       sections_[section]->WriteBody(headers.at(section), w);
619     }
620     cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
621   }
622
623   Zone* zone_;
624   ZoneList<MachOSection*> sections_;
625 };
626 #endif  // defined(__MACH_O)
627
628
629 #if defined(__ELF)
630 class ELF BASE_EMBEDDED {
631  public:
632   explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) {
633     sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone);
634     sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone);
635   }
636
637   void Write(Writer* w) {
638     WriteHeader(w);
639     WriteSectionTable(w);
640     WriteSections(w);
641   }
642
643   ELFSection* SectionAt(uint32_t index) {
644     return sections_[index];
645   }
646
647   uint32_t AddSection(ELFSection* section) {
648     sections_.Add(section, zone_);
649     section->set_index(sections_.length() - 1);
650     return sections_.length() - 1;
651   }
652
653  private:
654   struct ELFHeader {
655     uint8_t ident[16];
656     uint16_t type;
657     uint16_t machine;
658     uint32_t version;
659     uintptr_t entry;
660     uintptr_t pht_offset;
661     uintptr_t sht_offset;
662     uint32_t flags;
663     uint16_t header_size;
664     uint16_t pht_entry_size;
665     uint16_t pht_entry_num;
666     uint16_t sht_entry_size;
667     uint16_t sht_entry_num;
668     uint16_t sht_strtab_index;
669   };
670
671
672   void WriteHeader(Writer* w) {
673     ASSERT(w->position() == 0);
674     Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
675 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM
676     const uint8_t ident[16] =
677         { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
678 #elif V8_TARGET_ARCH_X64
679     const uint8_t ident[16] =
680         { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
681 #else
682 #error Unsupported target architecture.
683 #endif
684     OS::MemCopy(header->ident, ident, 16);
685     header->type = 1;
686 #if V8_TARGET_ARCH_IA32
687     header->machine = 3;
688 #elif V8_TARGET_ARCH_X64
689     // Processor identification value for x64 is 62 as defined in
690     //    System V ABI, AMD64 Supplement
691     //    http://www.x86-64.org/documentation/abi.pdf
692     header->machine = 62;
693 #elif V8_TARGET_ARCH_ARM
694     // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
695     // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
696     header->machine = 40;
697 #else
698 #error Unsupported target architecture.
699 #endif
700     header->version = 1;
701     header->entry = 0;
702     header->pht_offset = 0;
703     header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
704     header->flags = 0;
705     header->header_size = sizeof(ELFHeader);
706     header->pht_entry_size = 0;
707     header->pht_entry_num = 0;
708     header->sht_entry_size = sizeof(ELFSection::Header);
709     header->sht_entry_num = sections_.length();
710     header->sht_strtab_index = 1;
711   }
712
713   void WriteSectionTable(Writer* w) {
714     // Section headers table immediately follows file header.
715     ASSERT(w->position() == sizeof(ELFHeader));
716
717     Writer::Slot<ELFSection::Header> headers =
718         w->CreateSlotsHere<ELFSection::Header>(sections_.length());
719
720     // String table for section table is the first section.
721     ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
722     strtab->AttachWriter(w);
723     for (int i = 0, length = sections_.length();
724          i < length;
725          i++) {
726       sections_[i]->PopulateHeader(headers.at(i), strtab);
727     }
728     strtab->DetachWriter();
729   }
730
731   int SectionHeaderPosition(uint32_t section_index) {
732     return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
733   }
734
735   void WriteSections(Writer* w) {
736     Writer::Slot<ELFSection::Header> headers =
737         w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
738
739     for (int i = 0, length = sections_.length();
740          i < length;
741          i++) {
742       sections_[i]->WriteBody(headers.at(i), w);
743     }
744   }
745
746   Zone* zone_;
747   ZoneList<ELFSection*> sections_;
748 };
749
750
751 class ELFSymbol BASE_EMBEDDED {
752  public:
753   enum Type {
754     TYPE_NOTYPE = 0,
755     TYPE_OBJECT = 1,
756     TYPE_FUNC = 2,
757     TYPE_SECTION = 3,
758     TYPE_FILE = 4,
759     TYPE_LOPROC = 13,
760     TYPE_HIPROC = 15
761   };
762
763   enum Binding {
764     BIND_LOCAL = 0,
765     BIND_GLOBAL = 1,
766     BIND_WEAK = 2,
767     BIND_LOPROC = 13,
768     BIND_HIPROC = 15
769   };
770
771   ELFSymbol(const char* name,
772             uintptr_t value,
773             uintptr_t size,
774             Binding binding,
775             Type type,
776             uint16_t section)
777       : name(name),
778         value(value),
779         size(size),
780         info((binding << 4) | type),
781         other(0),
782         section(section) {
783   }
784
785   Binding binding() const {
786     return static_cast<Binding>(info >> 4);
787   }
788 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM
789   struct SerializedLayout {
790     SerializedLayout(uint32_t name,
791                      uintptr_t value,
792                      uintptr_t size,
793                      Binding binding,
794                      Type type,
795                      uint16_t section)
796         : name(name),
797           value(value),
798           size(size),
799           info((binding << 4) | type),
800           other(0),
801           section(section) {
802     }
803
804     uint32_t name;
805     uintptr_t value;
806     uintptr_t size;
807     uint8_t info;
808     uint8_t other;
809     uint16_t section;
810   };
811 #elif V8_TARGET_ARCH_X64
812   struct SerializedLayout {
813     SerializedLayout(uint32_t name,
814                      uintptr_t value,
815                      uintptr_t size,
816                      Binding binding,
817                      Type type,
818                      uint16_t section)
819         : name(name),
820           info((binding << 4) | type),
821           other(0),
822           section(section),
823           value(value),
824           size(size) {
825     }
826
827     uint32_t name;
828     uint8_t info;
829     uint8_t other;
830     uint16_t section;
831     uintptr_t value;
832     uintptr_t size;
833   };
834 #endif
835
836   void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) {
837     // Convert symbol names from strings to indexes in the string table.
838     s->name = t->Add(name);
839     s->value = value;
840     s->size = size;
841     s->info = info;
842     s->other = other;
843     s->section = section;
844   }
845
846  private:
847   const char* name;
848   uintptr_t value;
849   uintptr_t size;
850   uint8_t info;
851   uint8_t other;
852   uint16_t section;
853 };
854
855
856 class ELFSymbolTable : public ELFSection {
857  public:
858   ELFSymbolTable(const char* name, Zone* zone)
859       : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
860         locals_(1, zone),
861         globals_(1, zone) {
862   }
863
864   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
865     w->Align(header->alignment);
866     int total_symbols = locals_.length() + globals_.length() + 1;
867     header->offset = w->position();
868
869     Writer::Slot<ELFSymbol::SerializedLayout> symbols =
870         w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);
871
872     header->size = w->position() - header->offset;
873
874     // String table for this symbol table should follow it in the section table.
875     ELFStringTable* strtab =
876         static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
877     strtab->AttachWriter(w);
878     symbols.at(0).set(ELFSymbol::SerializedLayout(0,
879                                                   0,
880                                                   0,
881                                                   ELFSymbol::BIND_LOCAL,
882                                                   ELFSymbol::TYPE_NOTYPE,
883                                                   0));
884     WriteSymbolsList(&locals_, symbols.at(1), strtab);
885     WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
886     strtab->DetachWriter();
887   }
888
889   void Add(const ELFSymbol& symbol, Zone* zone) {
890     if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
891       locals_.Add(symbol, zone);
892     } else {
893       globals_.Add(symbol, zone);
894     }
895   }
896
897  protected:
898   virtual void PopulateHeader(Writer::Slot<Header> header) {
899     ELFSection::PopulateHeader(header);
900     // We are assuming that string table will follow symbol table.
901     header->link = index() + 1;
902     header->info = locals_.length() + 1;
903     header->entry_size = sizeof(ELFSymbol::SerializedLayout);
904   }
905
906  private:
907   void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
908                         Writer::Slot<ELFSymbol::SerializedLayout> dst,
909                         ELFStringTable* strtab) {
910     for (int i = 0, len = src->length();
911          i < len;
912          i++) {
913       src->at(i).Write(dst.at(i), strtab);
914     }
915   }
916
917   ZoneList<ELFSymbol> locals_;
918   ZoneList<ELFSymbol> globals_;
919 };
920 #endif  // defined(__ELF)
921
922
923 class CodeDescription BASE_EMBEDDED {
924  public:
925 #if V8_TARGET_ARCH_X64
926   enum StackState {
927     POST_RBP_PUSH,
928     POST_RBP_SET,
929     POST_RBP_POP,
930     STACK_STATE_MAX
931   };
932 #endif
933
934   CodeDescription(const char* name,
935                   Code* code,
936                   Handle<Script> script,
937                   GDBJITLineInfo* lineinfo,
938                   GDBJITInterface::CodeTag tag,
939                   CompilationInfo* info)
940       : name_(name),
941         code_(code),
942         script_(script),
943         lineinfo_(lineinfo),
944         tag_(tag),
945         info_(info) {
946   }
947
948   const char* name() const {
949     return name_;
950   }
951
952   GDBJITLineInfo* lineinfo() const {
953     return lineinfo_;
954   }
955
956   GDBJITInterface::CodeTag tag() const {
957     return tag_;
958   }
959
960   CompilationInfo* info() const {
961     return info_;
962   }
963
964   bool IsInfoAvailable() const {
965     return info_ != NULL;
966   }
967
968   uintptr_t CodeStart() const {
969     return reinterpret_cast<uintptr_t>(code_->instruction_start());
970   }
971
972   uintptr_t CodeEnd() const {
973     return reinterpret_cast<uintptr_t>(code_->instruction_end());
974   }
975
976   uintptr_t CodeSize() const {
977     return CodeEnd() - CodeStart();
978   }
979
980   bool IsLineInfoAvailable() {
981     return !script_.is_null() &&
982         script_->source()->IsString() &&
983         script_->HasValidSource() &&
984         script_->name()->IsString() &&
985         lineinfo_ != NULL;
986   }
987
988 #if V8_TARGET_ARCH_X64
989   uintptr_t GetStackStateStartAddress(StackState state) const {
990     ASSERT(state < STACK_STATE_MAX);
991     return stack_state_start_addresses_[state];
992   }
993
994   void SetStackStateStartAddress(StackState state, uintptr_t addr) {
995     ASSERT(state < STACK_STATE_MAX);
996     stack_state_start_addresses_[state] = addr;
997   }
998 #endif
999
1000   SmartArrayPointer<char> GetFilename() {
1001     return String::cast(script_->name())->ToCString();
1002   }
1003
1004   int GetScriptLineNumber(int pos) {
1005     return GetScriptLineNumberSafe(script_, pos) + 1;
1006   }
1007
1008
1009  private:
1010   const char* name_;
1011   Code* code_;
1012   Handle<Script> script_;
1013   GDBJITLineInfo* lineinfo_;
1014   GDBJITInterface::CodeTag tag_;
1015   CompilationInfo* info_;
1016 #if V8_TARGET_ARCH_X64
1017   uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
1018 #endif
1019 };
1020
1021 #if defined(__ELF)
1022 static void CreateSymbolsTable(CodeDescription* desc,
1023                                Zone* zone,
1024                                ELF* elf,
1025                                int text_section_index) {
1026   ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
1027   ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
1028
1029   // Symbol table should be followed by the linked string table.
1030   elf->AddSection(symtab);
1031   elf->AddSection(strtab);
1032
1033   symtab->Add(ELFSymbol("V8 Code",
1034                         0,
1035                         0,
1036                         ELFSymbol::BIND_LOCAL,
1037                         ELFSymbol::TYPE_FILE,
1038                         ELFSection::INDEX_ABSOLUTE),
1039               zone);
1040
1041   symtab->Add(ELFSymbol(desc->name(),
1042                         0,
1043                         desc->CodeSize(),
1044                         ELFSymbol::BIND_GLOBAL,
1045                         ELFSymbol::TYPE_FUNC,
1046                         text_section_index),
1047               zone);
1048 }
1049 #endif  // defined(__ELF)
1050
1051
1052 class DebugInfoSection : public DebugSection {
1053  public:
1054   explicit DebugInfoSection(CodeDescription* desc)
1055 #if defined(__ELF)
1056       : ELFSection(".debug_info", TYPE_PROGBITS, 1),
1057 #else
1058       : MachOSection("__debug_info",
1059                      "__DWARF",
1060                      1,
1061                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1062 #endif
1063         desc_(desc) { }
1064
1065   // DWARF2 standard
1066   enum DWARF2LocationOp {
1067     DW_OP_reg0 = 0x50,
1068     DW_OP_reg1 = 0x51,
1069     DW_OP_reg2 = 0x52,
1070     DW_OP_reg3 = 0x53,
1071     DW_OP_reg4 = 0x54,
1072     DW_OP_reg5 = 0x55,
1073     DW_OP_reg6 = 0x56,
1074     DW_OP_reg7 = 0x57,
1075     DW_OP_fbreg = 0x91  // 1 param: SLEB128 offset
1076   };
1077
1078   enum DWARF2Encoding {
1079     DW_ATE_ADDRESS = 0x1,
1080     DW_ATE_SIGNED = 0x5
1081   };
1082
1083   bool WriteBodyInternal(Writer* w) {
1084     uintptr_t cu_start = w->position();
1085     Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
1086     uintptr_t start = w->position();
1087     w->Write<uint16_t>(2);  // DWARF version.
1088     w->Write<uint32_t>(0);  // Abbreviation table offset.
1089     w->Write<uint8_t>(sizeof(intptr_t));
1090
1091     w->WriteULEB128(1);  // Abbreviation code.
1092     w->WriteString(desc_->GetFilename().get());
1093     w->Write<intptr_t>(desc_->CodeStart());
1094     w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
1095     w->Write<uint32_t>(0);
1096
1097     uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
1098     w->WriteULEB128(3);
1099     w->Write<uint8_t>(kPointerSize);
1100     w->WriteString("v8value");
1101
1102     if (desc_->IsInfoAvailable()) {
1103       Scope* scope = desc_->info()->scope();
1104       w->WriteULEB128(2);
1105       w->WriteString(desc_->name());
1106       w->Write<intptr_t>(desc_->CodeStart());
1107       w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
1108       Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
1109       uintptr_t fb_block_start = w->position();
1110 #if V8_TARGET_ARCH_IA32
1111       w->Write<uint8_t>(DW_OP_reg5);  // The frame pointer's here on ia32
1112 #elif V8_TARGET_ARCH_X64
1113       w->Write<uint8_t>(DW_OP_reg6);  // and here on x64.
1114 #elif V8_TARGET_ARCH_ARM
1115       UNIMPLEMENTED();
1116 #elif V8_TARGET_ARCH_MIPS
1117       UNIMPLEMENTED();
1118 #else
1119 #error Unsupported target architecture.
1120 #endif
1121       fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));
1122
1123       int params = scope->num_parameters();
1124       int slots = scope->num_stack_slots();
1125       int context_slots = scope->ContextLocalCount();
1126       // The real slot ID is internal_slots + context_slot_id.
1127       int internal_slots = Context::MIN_CONTEXT_SLOTS;
1128       int locals = scope->StackLocalCount();
1129       int current_abbreviation = 4;
1130
1131       for (int param = 0; param < params; ++param) {
1132         w->WriteULEB128(current_abbreviation++);
1133         w->WriteString(
1134             scope->parameter(param)->name()->ToCString(DISALLOW_NULLS).get());
1135         w->Write<uint32_t>(ty_offset);
1136         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1137         uintptr_t block_start = w->position();
1138         w->Write<uint8_t>(DW_OP_fbreg);
1139         w->WriteSLEB128(
1140           JavaScriptFrameConstants::kLastParameterOffset +
1141               kPointerSize * (params - param - 1));
1142         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1143       }
1144
1145       EmbeddedVector<char, 256> buffer;
1146       StringBuilder builder(buffer.start(), buffer.length());
1147
1148       for (int slot = 0; slot < slots; ++slot) {
1149         w->WriteULEB128(current_abbreviation++);
1150         builder.Reset();
1151         builder.AddFormatted("slot%d", slot);
1152         w->WriteString(builder.Finalize());
1153       }
1154
1155       // See contexts.h for more information.
1156       ASSERT(Context::MIN_CONTEXT_SLOTS == 4);
1157       ASSERT(Context::CLOSURE_INDEX == 0);
1158       ASSERT(Context::PREVIOUS_INDEX == 1);
1159       ASSERT(Context::EXTENSION_INDEX == 2);
1160       ASSERT(Context::GLOBAL_OBJECT_INDEX == 3);
1161       w->WriteULEB128(current_abbreviation++);
1162       w->WriteString(".closure");
1163       w->WriteULEB128(current_abbreviation++);
1164       w->WriteString(".previous");
1165       w->WriteULEB128(current_abbreviation++);
1166       w->WriteString(".extension");
1167       w->WriteULEB128(current_abbreviation++);
1168       w->WriteString(".global");
1169
1170       for (int context_slot = 0;
1171            context_slot < context_slots;
1172            ++context_slot) {
1173         w->WriteULEB128(current_abbreviation++);
1174         builder.Reset();
1175         builder.AddFormatted("context_slot%d", context_slot + internal_slots);
1176         w->WriteString(builder.Finalize());
1177       }
1178
1179       ZoneList<Variable*> stack_locals(locals, scope->zone());
1180       ZoneList<Variable*> context_locals(context_slots, scope->zone());
1181       scope->CollectStackAndContextLocals(&stack_locals, &context_locals);
1182       for (int local = 0; local < locals; ++local) {
1183         w->WriteULEB128(current_abbreviation++);
1184         w->WriteString(
1185             stack_locals[local]->name()->ToCString(DISALLOW_NULLS).get());
1186         w->Write<uint32_t>(ty_offset);
1187         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1188         uintptr_t block_start = w->position();
1189         w->Write<uint8_t>(DW_OP_fbreg);
1190         w->WriteSLEB128(
1191           JavaScriptFrameConstants::kLocal0Offset -
1192               kPointerSize * local);
1193         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1194       }
1195
1196       {
1197         w->WriteULEB128(current_abbreviation++);
1198         w->WriteString("__function");
1199         w->Write<uint32_t>(ty_offset);
1200         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1201         uintptr_t block_start = w->position();
1202         w->Write<uint8_t>(DW_OP_fbreg);
1203         w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
1204         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1205       }
1206
1207       {
1208         w->WriteULEB128(current_abbreviation++);
1209         w->WriteString("__context");
1210         w->Write<uint32_t>(ty_offset);
1211         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
1212         uintptr_t block_start = w->position();
1213         w->Write<uint8_t>(DW_OP_fbreg);
1214         w->WriteSLEB128(StandardFrameConstants::kContextOffset);
1215         block_size.set(static_cast<uint32_t>(w->position() - block_start));
1216       }
1217
1218       w->WriteULEB128(0);  // Terminate the sub program.
1219     }
1220
1221     w->WriteULEB128(0);  // Terminate the compile unit.
1222     size.set(static_cast<uint32_t>(w->position() - start));
1223     return true;
1224   }
1225
1226  private:
1227   CodeDescription* desc_;
1228 };
1229
1230
1231 class DebugAbbrevSection : public DebugSection {
1232  public:
1233   explicit DebugAbbrevSection(CodeDescription* desc)
1234 #ifdef __ELF
1235       : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
1236 #else
1237       : MachOSection("__debug_abbrev",
1238                      "__DWARF",
1239                      1,
1240                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1241 #endif
1242         desc_(desc) { }
1243
1244   // DWARF2 standard, figure 14.
1245   enum DWARF2Tags {
1246     DW_TAG_FORMAL_PARAMETER = 0x05,
1247     DW_TAG_POINTER_TYPE = 0xf,
1248     DW_TAG_COMPILE_UNIT = 0x11,
1249     DW_TAG_STRUCTURE_TYPE = 0x13,
1250     DW_TAG_BASE_TYPE = 0x24,
1251     DW_TAG_SUBPROGRAM = 0x2e,
1252     DW_TAG_VARIABLE = 0x34
1253   };
1254
1255   // DWARF2 standard, figure 16.
1256   enum DWARF2ChildrenDetermination {
1257     DW_CHILDREN_NO = 0,
1258     DW_CHILDREN_YES = 1
1259   };
1260
1261   // DWARF standard, figure 17.
1262   enum DWARF2Attribute {
1263     DW_AT_LOCATION = 0x2,
1264     DW_AT_NAME = 0x3,
1265     DW_AT_BYTE_SIZE = 0xb,
1266     DW_AT_STMT_LIST = 0x10,
1267     DW_AT_LOW_PC = 0x11,
1268     DW_AT_HIGH_PC = 0x12,
1269     DW_AT_ENCODING = 0x3e,
1270     DW_AT_FRAME_BASE = 0x40,
1271     DW_AT_TYPE = 0x49
1272   };
1273
1274   // DWARF2 standard, figure 19.
1275   enum DWARF2AttributeForm {
1276     DW_FORM_ADDR = 0x1,
1277     DW_FORM_BLOCK4 = 0x4,
1278     DW_FORM_STRING = 0x8,
1279     DW_FORM_DATA4 = 0x6,
1280     DW_FORM_BLOCK = 0x9,
1281     DW_FORM_DATA1 = 0xb,
1282     DW_FORM_FLAG = 0xc,
1283     DW_FORM_REF4 = 0x13
1284   };
1285
1286   void WriteVariableAbbreviation(Writer* w,
1287                                  int abbreviation_code,
1288                                  bool has_value,
1289                                  bool is_parameter) {
1290     w->WriteULEB128(abbreviation_code);
1291     w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
1292     w->Write<uint8_t>(DW_CHILDREN_NO);
1293     w->WriteULEB128(DW_AT_NAME);
1294     w->WriteULEB128(DW_FORM_STRING);
1295     if (has_value) {
1296       w->WriteULEB128(DW_AT_TYPE);
1297       w->WriteULEB128(DW_FORM_REF4);
1298       w->WriteULEB128(DW_AT_LOCATION);
1299       w->WriteULEB128(DW_FORM_BLOCK4);
1300     }
1301     w->WriteULEB128(0);
1302     w->WriteULEB128(0);
1303   }
1304
1305   bool WriteBodyInternal(Writer* w) {
1306     int current_abbreviation = 1;
1307     bool extra_info = desc_->IsInfoAvailable();
1308     ASSERT(desc_->IsLineInfoAvailable());
1309     w->WriteULEB128(current_abbreviation++);
1310     w->WriteULEB128(DW_TAG_COMPILE_UNIT);
1311     w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
1312     w->WriteULEB128(DW_AT_NAME);
1313     w->WriteULEB128(DW_FORM_STRING);
1314     w->WriteULEB128(DW_AT_LOW_PC);
1315     w->WriteULEB128(DW_FORM_ADDR);
1316     w->WriteULEB128(DW_AT_HIGH_PC);
1317     w->WriteULEB128(DW_FORM_ADDR);
1318     w->WriteULEB128(DW_AT_STMT_LIST);
1319     w->WriteULEB128(DW_FORM_DATA4);
1320     w->WriteULEB128(0);
1321     w->WriteULEB128(0);
1322
1323     if (extra_info) {
1324       Scope* scope = desc_->info()->scope();
1325       int params = scope->num_parameters();
1326       int slots = scope->num_stack_slots();
1327       int context_slots = scope->ContextLocalCount();
1328       // The real slot ID is internal_slots + context_slot_id.
1329       int internal_slots = Context::MIN_CONTEXT_SLOTS;
1330       int locals = scope->StackLocalCount();
1331       // Total children is params + slots + context_slots + internal_slots +
1332       // locals + 2 (__function and __context).
1333
1334       // The extra duplication below seems to be necessary to keep
1335       // gdb from getting upset on OSX.
1336       w->WriteULEB128(current_abbreviation++);  // Abbreviation code.
1337       w->WriteULEB128(DW_TAG_SUBPROGRAM);
1338       w->Write<uint8_t>(DW_CHILDREN_YES);
1339       w->WriteULEB128(DW_AT_NAME);
1340       w->WriteULEB128(DW_FORM_STRING);
1341       w->WriteULEB128(DW_AT_LOW_PC);
1342       w->WriteULEB128(DW_FORM_ADDR);
1343       w->WriteULEB128(DW_AT_HIGH_PC);
1344       w->WriteULEB128(DW_FORM_ADDR);
1345       w->WriteULEB128(DW_AT_FRAME_BASE);
1346       w->WriteULEB128(DW_FORM_BLOCK4);
1347       w->WriteULEB128(0);
1348       w->WriteULEB128(0);
1349
1350       w->WriteULEB128(current_abbreviation++);
1351       w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
1352       w->Write<uint8_t>(DW_CHILDREN_NO);
1353       w->WriteULEB128(DW_AT_BYTE_SIZE);
1354       w->WriteULEB128(DW_FORM_DATA1);
1355       w->WriteULEB128(DW_AT_NAME);
1356       w->WriteULEB128(DW_FORM_STRING);
1357       w->WriteULEB128(0);
1358       w->WriteULEB128(0);
1359
1360       for (int param = 0; param < params; ++param) {
1361         WriteVariableAbbreviation(w, current_abbreviation++, true, true);
1362       }
1363
1364       for (int slot = 0; slot < slots; ++slot) {
1365         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1366       }
1367
1368       for (int internal_slot = 0;
1369            internal_slot < internal_slots;
1370            ++internal_slot) {
1371         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1372       }
1373
1374       for (int context_slot = 0;
1375            context_slot < context_slots;
1376            ++context_slot) {
1377         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
1378       }
1379
1380       for (int local = 0; local < locals; ++local) {
1381         WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1382       }
1383
1384       // The function.
1385       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1386
1387       // The context.
1388       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
1389
1390       w->WriteULEB128(0);  // Terminate the sibling list.
1391     }
1392
1393     w->WriteULEB128(0);  // Terminate the table.
1394     return true;
1395   }
1396
1397  private:
1398   CodeDescription* desc_;
1399 };
1400
1401
1402 class DebugLineSection : public DebugSection {
1403  public:
1404   explicit DebugLineSection(CodeDescription* desc)
1405 #ifdef __ELF
1406       : ELFSection(".debug_line", TYPE_PROGBITS, 1),
1407 #else
1408       : MachOSection("__debug_line",
1409                      "__DWARF",
1410                      1,
1411                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
1412 #endif
1413         desc_(desc) { }
1414
1415   // DWARF2 standard, figure 34.
1416   enum DWARF2Opcodes {
1417     DW_LNS_COPY = 1,
1418     DW_LNS_ADVANCE_PC = 2,
1419     DW_LNS_ADVANCE_LINE = 3,
1420     DW_LNS_SET_FILE = 4,
1421     DW_LNS_SET_COLUMN = 5,
1422     DW_LNS_NEGATE_STMT = 6
1423   };
1424
1425   // DWARF2 standard, figure 35.
1426   enum DWARF2ExtendedOpcode {
1427     DW_LNE_END_SEQUENCE = 1,
1428     DW_LNE_SET_ADDRESS = 2,
1429     DW_LNE_DEFINE_FILE = 3
1430   };
1431
1432   bool WriteBodyInternal(Writer* w) {
1433     // Write prologue.
1434     Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
1435     uintptr_t start = w->position();
1436
1437     // Used for special opcodes
1438     const int8_t line_base = 1;
1439     const uint8_t line_range = 7;
1440     const int8_t max_line_incr = (line_base + line_range - 1);
1441     const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
1442
1443     w->Write<uint16_t>(2);  // Field version.
1444     Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
1445     uintptr_t prologue_start = w->position();
1446     w->Write<uint8_t>(1);  // Field minimum_instruction_length.
1447     w->Write<uint8_t>(1);  // Field default_is_stmt.
1448     w->Write<int8_t>(line_base);  // Field line_base.
1449     w->Write<uint8_t>(line_range);  // Field line_range.
1450     w->Write<uint8_t>(opcode_base);  // Field opcode_base.
1451     w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
1452     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
1453     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
1454     w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
1455     w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
1456     w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
1457     w->Write<uint8_t>(0);  // Empty include_directories sequence.
1458     w->WriteString(desc_->GetFilename().get());  // File name.
1459     w->WriteULEB128(0);  // Current directory.
1460     w->WriteULEB128(0);  // Unknown modification time.
1461     w->WriteULEB128(0);  // Unknown file size.
1462     w->Write<uint8_t>(0);
1463     prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
1464
1465     WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
1466     w->Write<intptr_t>(desc_->CodeStart());
1467     w->Write<uint8_t>(DW_LNS_COPY);
1468
1469     intptr_t pc = 0;
1470     intptr_t line = 1;
1471     bool is_statement = true;
1472
1473     List<GDBJITLineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
1474     pc_info->Sort(&ComparePCInfo);
1475
1476     int pc_info_length = pc_info->length();
1477     for (int i = 0; i < pc_info_length; i++) {
1478       GDBJITLineInfo::PCInfo* info = &pc_info->at(i);
1479       ASSERT(info->pc_ >= pc);
1480
1481       // Reduce bloating in the debug line table by removing duplicate line
1482       // entries (per DWARF2 standard).
1483       intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
1484       if (new_line == line) {
1485         continue;
1486       }
1487
1488       // Mark statement boundaries.  For a better debugging experience, mark
1489       // the last pc address in the function as a statement (e.g. "}"), so that
1490       // a user can see the result of the last line executed in the function,
1491       // should control reach the end.
1492       if ((i+1) == pc_info_length) {
1493         if (!is_statement) {
1494           w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
1495         }
1496       } else if (is_statement != info->is_statement_) {
1497         w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
1498         is_statement = !is_statement;
1499       }
1500
1501       // Generate special opcodes, if possible.  This results in more compact
1502       // debug line tables.  See the DWARF 2.0 standard to learn more about
1503       // special opcodes.
1504       uintptr_t pc_diff = info->pc_ - pc;
1505       intptr_t line_diff = new_line - line;
1506
1507       // Compute special opcode (see DWARF 2.0 standard)
1508       intptr_t special_opcode = (line_diff - line_base) +
1509                                 (line_range * pc_diff) + opcode_base;
1510
1511       // If special_opcode is less than or equal to 255, it can be used as a
1512       // special opcode.  If line_diff is larger than the max line increment
1513       // allowed for a special opcode, or if line_diff is less than the minimum
1514       // line that can be added to the line register (i.e. line_base), then
1515       // special_opcode can't be used.
1516       if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
1517           (line_diff <= max_line_incr) && (line_diff >= line_base)) {
1518         w->Write<uint8_t>(special_opcode);
1519       } else {
1520         w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
1521         w->WriteSLEB128(pc_diff);
1522         w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
1523         w->WriteSLEB128(line_diff);
1524         w->Write<uint8_t>(DW_LNS_COPY);
1525       }
1526
1527       // Increment the pc and line operands.
1528       pc += pc_diff;
1529       line += line_diff;
1530     }
1531     // Advance the pc to the end of the routine, since the end sequence opcode
1532     // requires this.
1533     w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
1534     w->WriteSLEB128(desc_->CodeSize() - pc);
1535     WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
1536     total_length.set(static_cast<uint32_t>(w->position() - start));
1537     return true;
1538   }
1539
1540  private:
1541   void WriteExtendedOpcode(Writer* w,
1542                            DWARF2ExtendedOpcode op,
1543                            size_t operands_size) {
1544     w->Write<uint8_t>(0);
1545     w->WriteULEB128(operands_size + 1);
1546     w->Write<uint8_t>(op);
1547   }
1548
1549   static int ComparePCInfo(const GDBJITLineInfo::PCInfo* a,
1550                            const GDBJITLineInfo::PCInfo* b) {
1551     if (a->pc_ == b->pc_) {
1552       if (a->is_statement_ != b->is_statement_) {
1553         return b->is_statement_ ? +1 : -1;
1554       }
1555       return 0;
1556     } else if (a->pc_ > b->pc_) {
1557       return +1;
1558     } else {
1559       return -1;
1560     }
1561   }
1562
1563   CodeDescription* desc_;
1564 };
1565
1566
1567 #if V8_TARGET_ARCH_X64
1568
1569 class UnwindInfoSection : public DebugSection {
1570  public:
1571   explicit UnwindInfoSection(CodeDescription* desc);
1572   virtual bool WriteBodyInternal(Writer* w);
1573
1574   int WriteCIE(Writer* w);
1575   void WriteFDE(Writer* w, int);
1576
1577   void WriteFDEStateOnEntry(Writer* w);
1578   void WriteFDEStateAfterRBPPush(Writer* w);
1579   void WriteFDEStateAfterRBPSet(Writer* w);
1580   void WriteFDEStateAfterRBPPop(Writer* w);
1581
1582   void WriteLength(Writer* w,
1583                    Writer::Slot<uint32_t>* length_slot,
1584                    int initial_position);
1585
1586  private:
1587   CodeDescription* desc_;
1588
1589   // DWARF3 Specification, Table 7.23
1590   enum CFIInstructions {
1591     DW_CFA_ADVANCE_LOC = 0x40,
1592     DW_CFA_OFFSET = 0x80,
1593     DW_CFA_RESTORE = 0xC0,
1594     DW_CFA_NOP = 0x00,
1595     DW_CFA_SET_LOC = 0x01,
1596     DW_CFA_ADVANCE_LOC1 = 0x02,
1597     DW_CFA_ADVANCE_LOC2 = 0x03,
1598     DW_CFA_ADVANCE_LOC4 = 0x04,
1599     DW_CFA_OFFSET_EXTENDED = 0x05,
1600     DW_CFA_RESTORE_EXTENDED = 0x06,
1601     DW_CFA_UNDEFINED = 0x07,
1602     DW_CFA_SAME_VALUE = 0x08,
1603     DW_CFA_REGISTER = 0x09,
1604     DW_CFA_REMEMBER_STATE = 0x0A,
1605     DW_CFA_RESTORE_STATE = 0x0B,
1606     DW_CFA_DEF_CFA = 0x0C,
1607     DW_CFA_DEF_CFA_REGISTER = 0x0D,
1608     DW_CFA_DEF_CFA_OFFSET = 0x0E,
1609
1610     DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
1611     DW_CFA_EXPRESSION = 0x10,
1612     DW_CFA_OFFSET_EXTENDED_SF = 0x11,
1613     DW_CFA_DEF_CFA_SF = 0x12,
1614     DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
1615     DW_CFA_VAL_OFFSET = 0x14,
1616     DW_CFA_VAL_OFFSET_SF = 0x15,
1617     DW_CFA_VAL_EXPRESSION = 0x16
1618   };
1619
1620   // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
1621   enum RegisterMapping {
1622     // Only the relevant ones have been added to reduce clutter.
1623     AMD64_RBP = 6,
1624     AMD64_RSP = 7,
1625     AMD64_RA = 16
1626   };
1627
1628   enum CFIConstants {
1629     CIE_ID = 0,
1630     CIE_VERSION = 1,
1631     CODE_ALIGN_FACTOR = 1,
1632     DATA_ALIGN_FACTOR = 1,
1633     RETURN_ADDRESS_REGISTER = AMD64_RA
1634   };
1635 };
1636
1637
1638 void UnwindInfoSection::WriteLength(Writer* w,
1639                                     Writer::Slot<uint32_t>* length_slot,
1640                                     int initial_position) {
1641   uint32_t align = (w->position() - initial_position) % kPointerSize;
1642
1643   if (align != 0) {
1644     for (uint32_t i = 0; i < (kPointerSize - align); i++) {
1645       w->Write<uint8_t>(DW_CFA_NOP);
1646     }
1647   }
1648
1649   ASSERT((w->position() - initial_position) % kPointerSize == 0);
1650   length_slot->set(w->position() - initial_position);
1651 }
1652
1653
1654 UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
1655 #ifdef __ELF
1656     : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
1657 #else
1658     : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
1659                    MachOSection::S_REGULAR),
1660 #endif
1661       desc_(desc) { }
1662
1663 int UnwindInfoSection::WriteCIE(Writer* w) {
1664   Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
1665   uint32_t cie_position = w->position();
1666
1667   // Write out the CIE header. Currently no 'common instructions' are
1668   // emitted onto the CIE; every FDE has its own set of instructions.
1669
1670   w->Write<uint32_t>(CIE_ID);
1671   w->Write<uint8_t>(CIE_VERSION);
1672   w->Write<uint8_t>(0);  // Null augmentation string.
1673   w->WriteSLEB128(CODE_ALIGN_FACTOR);
1674   w->WriteSLEB128(DATA_ALIGN_FACTOR);
1675   w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
1676
1677   WriteLength(w, &cie_length_slot, cie_position);
1678
1679   return cie_position;
1680 }
1681
1682
1683 void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
1684   // The only FDE for this function. The CFA is the current RBP.
1685   Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
1686   int fde_position = w->position();
1687   w->Write<int32_t>(fde_position - cie_position + 4);
1688
1689   w->Write<uintptr_t>(desc_->CodeStart());
1690   w->Write<uintptr_t>(desc_->CodeSize());
1691
1692   WriteFDEStateOnEntry(w);
1693   WriteFDEStateAfterRBPPush(w);
1694   WriteFDEStateAfterRBPSet(w);
1695   WriteFDEStateAfterRBPPop(w);
1696
1697   WriteLength(w, &fde_length_slot, fde_position);
1698 }
1699
1700
1701 void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
1702   // The first state, just after the control has been transferred to the the
1703   // function.
1704
1705   // RBP for this function will be the value of RSP after pushing the RBP
1706   // for the previous function. The previous RBP has not been pushed yet.
1707   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1708   w->WriteULEB128(AMD64_RSP);
1709   w->WriteSLEB128(-kPointerSize);
1710
1711   // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
1712   // and hence omitted from the next states.
1713   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1714   w->WriteULEB128(AMD64_RA);
1715   w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
1716
1717   // The RBP of the previous function is still in RBP.
1718   w->Write<uint8_t>(DW_CFA_SAME_VALUE);
1719   w->WriteULEB128(AMD64_RBP);
1720
1721   // Last location described by this entry.
1722   w->Write<uint8_t>(DW_CFA_SET_LOC);
1723   w->Write<uint64_t>(
1724       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
1725 }
1726
1727
1728 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
1729   // The second state, just after RBP has been pushed.
1730
1731   // RBP / CFA for this function is now the current RSP, so just set the
1732   // offset from the previous rule (from -8) to 0.
1733   w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
1734   w->WriteULEB128(0);
1735
1736   // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
1737   // in this and the next state, and hence omitted in the next state.
1738   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1739   w->WriteULEB128(AMD64_RBP);
1740   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1741
1742   // Last location described by this entry.
1743   w->Write<uint8_t>(DW_CFA_SET_LOC);
1744   w->Write<uint64_t>(
1745       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
1746 }
1747
1748
1749 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
1750   // The third state, after the RBP has been set.
1751
1752   // The CFA can now directly be set to RBP.
1753   w->Write<uint8_t>(DW_CFA_DEF_CFA);
1754   w->WriteULEB128(AMD64_RBP);
1755   w->WriteULEB128(0);
1756
1757   // Last location described by this entry.
1758   w->Write<uint8_t>(DW_CFA_SET_LOC);
1759   w->Write<uint64_t>(
1760       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
1761 }
1762
1763
1764 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
1765   // The fourth (final) state. The RBP has been popped (just before issuing a
1766   // return).
1767
1768   // The CFA can is now calculated in the same way as in the first state.
1769   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
1770   w->WriteULEB128(AMD64_RSP);
1771   w->WriteSLEB128(-kPointerSize);
1772
1773   // The RBP
1774   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
1775   w->WriteULEB128(AMD64_RBP);
1776   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
1777
1778   // Last location described by this entry.
1779   w->Write<uint8_t>(DW_CFA_SET_LOC);
1780   w->Write<uint64_t>(desc_->CodeEnd());
1781 }
1782
1783
1784 bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
1785   uint32_t cie_position = WriteCIE(w);
1786   WriteFDE(w, cie_position);
1787   return true;
1788 }
1789
1790
1791 #endif  // V8_TARGET_ARCH_X64
1792
1793 static void CreateDWARFSections(CodeDescription* desc,
1794                                 Zone* zone,
1795                                 DebugObject* obj) {
1796   if (desc->IsLineInfoAvailable()) {
1797     obj->AddSection(new(zone) DebugInfoSection(desc));
1798     obj->AddSection(new(zone) DebugAbbrevSection(desc));
1799     obj->AddSection(new(zone) DebugLineSection(desc));
1800   }
1801 #if V8_TARGET_ARCH_X64
1802   obj->AddSection(new(zone) UnwindInfoSection(desc));
1803 #endif
1804 }
1805
1806
1807 // -------------------------------------------------------------------
1808 // Binary GDB JIT Interface as described in
1809 //   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
1810 extern "C" {
1811   typedef enum {
1812     JIT_NOACTION = 0,
1813     JIT_REGISTER_FN,
1814     JIT_UNREGISTER_FN
1815   } JITAction;
1816
1817   struct JITCodeEntry {
1818     JITCodeEntry* next_;
1819     JITCodeEntry* prev_;
1820     Address symfile_addr_;
1821     uint64_t symfile_size_;
1822   };
1823
1824   struct JITDescriptor {
1825     uint32_t version_;
1826     uint32_t action_flag_;
1827     JITCodeEntry* relevant_entry_;
1828     JITCodeEntry* first_entry_;
1829   };
1830
1831   // GDB will place breakpoint into this function.
1832   // To prevent GCC from inlining or removing it we place noinline attribute
1833   // and inline assembler statement inside.
1834   void __attribute__((noinline)) __jit_debug_register_code() {
1835     __asm__("");
1836   }
1837
1838   // GDB will inspect contents of this descriptor.
1839   // Static initialization is necessary to prevent GDB from seeing
1840   // uninitialized descriptor.
1841   JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
1842
1843 #ifdef OBJECT_PRINT
1844   void __gdb_print_v8_object(MaybeObject* object) {
1845     object->Print();
1846     PrintF(stdout, "\n");
1847   }
1848 #endif
1849 }
1850
1851
1852 static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
1853                                      uintptr_t symfile_size) {
1854   JITCodeEntry* entry = static_cast<JITCodeEntry*>(
1855       malloc(sizeof(JITCodeEntry) + symfile_size));
1856
1857   entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
1858   entry->symfile_size_ = symfile_size;
1859   OS::MemCopy(entry->symfile_addr_, symfile_addr, symfile_size);
1860
1861   entry->prev_ = entry->next_ = NULL;
1862
1863   return entry;
1864 }
1865
1866
1867 static void DestroyCodeEntry(JITCodeEntry* entry) {
1868   free(entry);
1869 }
1870
1871
1872 static void RegisterCodeEntry(JITCodeEntry* entry,
1873                               bool dump_if_enabled,
1874                               const char* name_hint) {
1875 #if defined(DEBUG) && !V8_OS_WIN
1876   static int file_num = 0;
1877   if (FLAG_gdbjit_dump && dump_if_enabled) {
1878     static const int kMaxFileNameSize = 64;
1879     static const char* kElfFilePrefix = "/tmp/elfdump";
1880     static const char* kObjFileExt = ".o";
1881     char file_name[64];
1882
1883     OS::SNPrintF(Vector<char>(file_name, kMaxFileNameSize),
1884                  "%s%s%d%s",
1885                  kElfFilePrefix,
1886                  (name_hint != NULL) ? name_hint : "",
1887                  file_num++,
1888                  kObjFileExt);
1889     WriteBytes(file_name, entry->symfile_addr_, entry->symfile_size_);
1890   }
1891 #endif
1892
1893   entry->next_ = __jit_debug_descriptor.first_entry_;
1894   if (entry->next_ != NULL) entry->next_->prev_ = entry;
1895   __jit_debug_descriptor.first_entry_ =
1896       __jit_debug_descriptor.relevant_entry_ = entry;
1897
1898   __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
1899   __jit_debug_register_code();
1900 }
1901
1902
1903 static void UnregisterCodeEntry(JITCodeEntry* entry) {
1904   if (entry->prev_ != NULL) {
1905     entry->prev_->next_ = entry->next_;
1906   } else {
1907     __jit_debug_descriptor.first_entry_ = entry->next_;
1908   }
1909
1910   if (entry->next_ != NULL) {
1911     entry->next_->prev_ = entry->prev_;
1912   }
1913
1914   __jit_debug_descriptor.relevant_entry_ = entry;
1915   __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
1916   __jit_debug_register_code();
1917 }
1918
1919
1920 static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
1921 #ifdef __MACH_O
1922   Zone zone(isolate);
1923   MachO mach_o(&zone);
1924   Writer w(&mach_o);
1925
1926   mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
1927                                                 desc->CodeStart(),
1928                                                 desc->CodeSize()));
1929
1930   CreateDWARFSections(desc, &zone, &mach_o);
1931
1932   mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
1933 #else
1934   Zone zone(isolate);
1935   ELF elf(&zone);
1936   Writer w(&elf);
1937
1938   int text_section_index = elf.AddSection(
1939       new(&zone) FullHeaderELFSection(
1940           ".text",
1941           ELFSection::TYPE_NOBITS,
1942           kCodeAlignment,
1943           desc->CodeStart(),
1944           0,
1945           desc->CodeSize(),
1946           ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
1947
1948   CreateSymbolsTable(desc, &zone, &elf, text_section_index);
1949
1950   CreateDWARFSections(desc, &zone, &elf);
1951
1952   elf.Write(&w);
1953 #endif
1954
1955   return CreateCodeEntry(w.buffer(), w.position());
1956 }
1957
1958
1959 static bool SameCodeObjects(void* key1, void* key2) {
1960   return key1 == key2;
1961 }
1962
1963
1964 static HashMap* GetEntries() {
1965   static HashMap* entries = NULL;
1966   if (entries == NULL) {
1967     entries = new HashMap(&SameCodeObjects);
1968   }
1969   return entries;
1970 }
1971
1972
1973 static uint32_t HashForCodeObject(Code* code) {
1974   static const uintptr_t kGoldenRatio = 2654435761u;
1975   uintptr_t hash = reinterpret_cast<uintptr_t>(code->address());
1976   return static_cast<uint32_t>((hash >> kCodeAlignmentBits) * kGoldenRatio);
1977 }
1978
1979
1980 static const intptr_t kLineInfoTag = 0x1;
1981
1982
1983 static bool IsLineInfoTagged(void* ptr) {
1984   return 0 != (reinterpret_cast<intptr_t>(ptr) & kLineInfoTag);
1985 }
1986
1987
1988 static void* TagLineInfo(GDBJITLineInfo* ptr) {
1989   return reinterpret_cast<void*>(
1990       reinterpret_cast<intptr_t>(ptr) | kLineInfoTag);
1991 }
1992
1993
1994 static GDBJITLineInfo* UntagLineInfo(void* ptr) {
1995   return reinterpret_cast<GDBJITLineInfo*>(
1996       reinterpret_cast<intptr_t>(ptr) & ~kLineInfoTag);
1997 }
1998
1999
2000 void GDBJITInterface::AddCode(Handle<Name> name,
2001                               Handle<Script> script,
2002                               Handle<Code> code,
2003                               CompilationInfo* info) {
2004   if (!FLAG_gdbjit) return;
2005
2006   // Force initialization of line_ends array.
2007   GetScriptLineNumber(script, 0);
2008
2009   if (!name.is_null() && name->IsString()) {
2010     SmartArrayPointer<char> name_cstring =
2011         Handle<String>::cast(name)->ToCString(DISALLOW_NULLS);
2012     AddCode(name_cstring.get(), *code, GDBJITInterface::FUNCTION, *script,
2013             info);
2014   } else {
2015     AddCode("", *code, GDBJITInterface::FUNCTION, *script, info);
2016   }
2017 }
2018
2019
2020 static void AddUnwindInfo(CodeDescription* desc) {
2021 #if V8_TARGET_ARCH_X64
2022   if (desc->tag() == GDBJITInterface::FUNCTION) {
2023     // To avoid propagating unwinding information through
2024     // compilation pipeline we use an approximation.
2025     // For most use cases this should not affect usability.
2026     static const int kFramePointerPushOffset = 1;
2027     static const int kFramePointerSetOffset = 4;
2028     static const int kFramePointerPopOffset = -3;
2029
2030     uintptr_t frame_pointer_push_address =
2031         desc->CodeStart() + kFramePointerPushOffset;
2032
2033     uintptr_t frame_pointer_set_address =
2034         desc->CodeStart() + kFramePointerSetOffset;
2035
2036     uintptr_t frame_pointer_pop_address =
2037         desc->CodeEnd() + kFramePointerPopOffset;
2038
2039     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
2040                                     frame_pointer_push_address);
2041     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
2042                                     frame_pointer_set_address);
2043     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
2044                                     frame_pointer_pop_address);
2045   } else {
2046     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
2047                                     desc->CodeStart());
2048     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
2049                                     desc->CodeStart());
2050     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
2051                                     desc->CodeEnd());
2052   }
2053 #endif  // V8_TARGET_ARCH_X64
2054 }
2055
2056
2057 static LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
2058
2059
2060 void GDBJITInterface::AddCode(const char* name,
2061                               Code* code,
2062                               GDBJITInterface::CodeTag tag,
2063                               Script* script,
2064                               CompilationInfo* info) {
2065   if (!FLAG_gdbjit) return;
2066
2067   LockGuard<Mutex> lock_guard(mutex.Pointer());
2068   DisallowHeapAllocation no_gc;
2069
2070   HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
2071   if (e->value != NULL && !IsLineInfoTagged(e->value)) return;
2072
2073   GDBJITLineInfo* lineinfo = UntagLineInfo(e->value);
2074   CodeDescription code_desc(name,
2075                             code,
2076                             script != NULL ? Handle<Script>(script)
2077                                            : Handle<Script>(),
2078                             lineinfo,
2079                             tag,
2080                             info);
2081
2082   if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
2083     delete lineinfo;
2084     GetEntries()->Remove(code, HashForCodeObject(code));
2085     return;
2086   }
2087
2088   AddUnwindInfo(&code_desc);
2089   Isolate* isolate = code->GetIsolate();
2090   JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
2091   ASSERT(!IsLineInfoTagged(entry));
2092
2093   delete lineinfo;
2094   e->value = entry;
2095
2096   const char* name_hint = NULL;
2097   bool should_dump = false;
2098   if (FLAG_gdbjit_dump) {
2099     if (strlen(FLAG_gdbjit_dump_filter) == 0) {
2100       name_hint = name;
2101       should_dump = true;
2102     } else if (name != NULL) {
2103       name_hint = strstr(name, FLAG_gdbjit_dump_filter);
2104       should_dump = (name_hint != NULL);
2105     }
2106   }
2107   RegisterCodeEntry(entry, should_dump, name_hint);
2108 }
2109
2110
2111 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag,
2112                               const char* name,
2113                               Code* code) {
2114   if (!FLAG_gdbjit) return;
2115
2116   EmbeddedVector<char, 256> buffer;
2117   StringBuilder builder(buffer.start(), buffer.length());
2118
2119   builder.AddString(Tag2String(tag));
2120   if ((name != NULL) && (*name != '\0')) {
2121     builder.AddString(": ");
2122     builder.AddString(name);
2123   } else {
2124     builder.AddFormatted(": code object %p", static_cast<void*>(code));
2125   }
2126
2127   AddCode(builder.Finalize(), code, tag, NULL, NULL);
2128 }
2129
2130
2131 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag,
2132                               Name* name,
2133                               Code* code) {
2134   if (!FLAG_gdbjit) return;
2135   if (name != NULL && name->IsString()) {
2136     AddCode(tag, String::cast(name)->ToCString(DISALLOW_NULLS).get(), code);
2137   } else {
2138     AddCode(tag, "", code);
2139   }
2140 }
2141
2142
2143 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag, Code* code) {
2144   if (!FLAG_gdbjit) return;
2145
2146   AddCode(tag, "", code);
2147 }
2148
2149
2150 void GDBJITInterface::RemoveCode(Code* code) {
2151   if (!FLAG_gdbjit) return;
2152
2153   LockGuard<Mutex> lock_guard(mutex.Pointer());
2154   HashMap::Entry* e = GetEntries()->Lookup(code,
2155                                            HashForCodeObject(code),
2156                                            false);
2157   if (e == NULL) return;
2158
2159   if (IsLineInfoTagged(e->value)) {
2160     delete UntagLineInfo(e->value);
2161   } else {
2162     JITCodeEntry* entry = static_cast<JITCodeEntry*>(e->value);
2163     UnregisterCodeEntry(entry);
2164     DestroyCodeEntry(entry);
2165   }
2166   e->value = NULL;
2167   GetEntries()->Remove(code, HashForCodeObject(code));
2168 }
2169
2170
2171 void GDBJITInterface::RemoveCodeRange(Address start, Address end) {
2172   HashMap* entries = GetEntries();
2173   Zone zone(Isolate::Current());
2174   ZoneList<Code*> dead_codes(1, &zone);
2175
2176   for (HashMap::Entry* e = entries->Start(); e != NULL; e = entries->Next(e)) {
2177     Code* code = reinterpret_cast<Code*>(e->key);
2178     if (code->address() >= start && code->address() < end) {
2179       dead_codes.Add(code, &zone);
2180     }
2181   }
2182
2183   for (int i = 0; i < dead_codes.length(); i++) {
2184     RemoveCode(dead_codes.at(i));
2185   }
2186 }
2187
2188
2189 void GDBJITInterface::RegisterDetailedLineInfo(Code* code,
2190                                                GDBJITLineInfo* line_info) {
2191   LockGuard<Mutex> lock_guard(mutex.Pointer());
2192   ASSERT(!IsLineInfoTagged(line_info));
2193   HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
2194   ASSERT(e->value == NULL);
2195   e->value = TagLineInfo(line_info);
2196 }
2197
2198
2199 } }  // namespace v8::internal
2200 #endif