Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / v8 / src / conversions-inl.h
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_CONVERSIONS_INL_H_
6 #define V8_CONVERSIONS_INL_H_
7
8 #include <float.h>         // Required for DBL_MAX and on Win32 for finite()
9 #include <limits.h>        // Required for INT_MAX etc.
10 #include <stdarg.h>
11 #include <cmath>
12 #include "src/globals.h"       // Required for V8_INFINITY
13
14 // ----------------------------------------------------------------------------
15 // Extra POSIX/ANSI functions for Win32/MSVC.
16
17 #include "src/base/bits.h"
18 #include "src/base/platform/platform.h"
19 #include "src/conversions.h"
20 #include "src/double.h"
21 #include "src/scanner.h"
22 #include "src/strtod.h"
23
24 namespace v8 {
25 namespace internal {
26
27 inline double JunkStringValue() {
28   return bit_cast<double, uint64_t>(kQuietNaNMask);
29 }
30
31
32 inline double SignedZero(bool negative) {
33   return negative ? uint64_to_double(Double::kSignMask) : 0.0;
34 }
35
36
37 // The fast double-to-unsigned-int conversion routine does not guarantee
38 // rounding towards zero, or any reasonable value if the argument is larger
39 // than what fits in an unsigned 32-bit integer.
40 inline unsigned int FastD2UI(double x) {
41   // There is no unsigned version of lrint, so there is no fast path
42   // in this function as there is in FastD2I. Using lrint doesn't work
43   // for values of 2^31 and above.
44
45   // Convert "small enough" doubles to uint32_t by fixing the 32
46   // least significant non-fractional bits in the low 32 bits of the
47   // double, and reading them from there.
48   const double k2Pow52 = 4503599627370496.0;
49   bool negative = x < 0;
50   if (negative) {
51     x = -x;
52   }
53   if (x < k2Pow52) {
54     x += k2Pow52;
55     uint32_t result;
56 #ifndef V8_TARGET_BIG_ENDIAN
57     Address mantissa_ptr = reinterpret_cast<Address>(&x);
58 #else
59     Address mantissa_ptr = reinterpret_cast<Address>(&x) + kIntSize;
60 #endif
61     // Copy least significant 32 bits of mantissa.
62     memcpy(&result, mantissa_ptr, sizeof(result));
63     return negative ? ~result + 1 : result;
64   }
65   // Large number (outside uint32 range), Infinity or NaN.
66   return 0x80000000u;  // Return integer indefinite.
67 }
68
69
70 inline float DoubleToFloat32(double x) {
71   // TODO(yanggou): This static_cast is implementation-defined behaviour in C++,
72   // so we may need to do the conversion manually instead to match the spec.
73   volatile float f = static_cast<float>(x);
74   return f;
75 }
76
77
78 inline double DoubleToInteger(double x) {
79   if (std::isnan(x)) return 0;
80   if (!std::isfinite(x) || x == 0) return x;
81   return (x >= 0) ? std::floor(x) : std::ceil(x);
82 }
83
84
85 int32_t DoubleToInt32(double x) {
86   int32_t i = FastD2I(x);
87   if (FastI2D(i) == x) return i;
88   Double d(x);
89   int exponent = d.Exponent();
90   if (exponent < 0) {
91     if (exponent <= -Double::kSignificandSize) return 0;
92     return d.Sign() * static_cast<int32_t>(d.Significand() >> -exponent);
93   } else {
94     if (exponent > 31) return 0;
95     return d.Sign() * static_cast<int32_t>(d.Significand() << exponent);
96   }
97 }
98
99
100 template <class Iterator, class EndMark>
101 bool SubStringEquals(Iterator* current,
102                      EndMark end,
103                      const char* substring) {
104   DCHECK(**current == *substring);
105   for (substring++; *substring != '\0'; substring++) {
106     ++*current;
107     if (*current == end || **current != *substring) return false;
108   }
109   ++*current;
110   return true;
111 }
112
113
114 // Returns true if a nonspace character has been found and false if the
115 // end was been reached before finding a nonspace character.
116 template <class Iterator, class EndMark>
117 inline bool AdvanceToNonspace(UnicodeCache* unicode_cache,
118                               Iterator* current,
119                               EndMark end) {
120   while (*current != end) {
121     if (!unicode_cache->IsWhiteSpaceOrLineTerminator(**current)) return true;
122     ++*current;
123   }
124   return false;
125 }
126
127
128 // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
129 template <int radix_log_2, class Iterator, class EndMark>
130 double InternalStringToIntDouble(UnicodeCache* unicode_cache,
131                                  Iterator current,
132                                  EndMark end,
133                                  bool negative,
134                                  bool allow_trailing_junk) {
135   DCHECK(current != end);
136
137   // Skip leading 0s.
138   while (*current == '0') {
139     ++current;
140     if (current == end) return SignedZero(negative);
141   }
142
143   int64_t number = 0;
144   int exponent = 0;
145   const int radix = (1 << radix_log_2);
146
147   do {
148     int digit;
149     if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
150       digit = static_cast<char>(*current) - '0';
151     } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
152       digit = static_cast<char>(*current) - 'a' + 10;
153     } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
154       digit = static_cast<char>(*current) - 'A' + 10;
155     } else {
156       if (allow_trailing_junk ||
157           !AdvanceToNonspace(unicode_cache, &current, end)) {
158         break;
159       } else {
160         return JunkStringValue();
161       }
162     }
163
164     number = number * radix + digit;
165     int overflow = static_cast<int>(number >> 53);
166     if (overflow != 0) {
167       // Overflow occurred. Need to determine which direction to round the
168       // result.
169       int overflow_bits_count = 1;
170       while (overflow > 1) {
171         overflow_bits_count++;
172         overflow >>= 1;
173       }
174
175       int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
176       int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
177       number >>= overflow_bits_count;
178       exponent = overflow_bits_count;
179
180       bool zero_tail = true;
181       while (true) {
182         ++current;
183         if (current == end || !isDigit(*current, radix)) break;
184         zero_tail = zero_tail && *current == '0';
185         exponent += radix_log_2;
186       }
187
188       if (!allow_trailing_junk &&
189           AdvanceToNonspace(unicode_cache, &current, end)) {
190         return JunkStringValue();
191       }
192
193       int middle_value = (1 << (overflow_bits_count - 1));
194       if (dropped_bits > middle_value) {
195         number++;  // Rounding up.
196       } else if (dropped_bits == middle_value) {
197         // Rounding to even to consistency with decimals: half-way case rounds
198         // up if significant part is odd and down otherwise.
199         if ((number & 1) != 0 || !zero_tail) {
200           number++;  // Rounding up.
201         }
202       }
203
204       // Rounding up may cause overflow.
205       if ((number & (static_cast<int64_t>(1) << 53)) != 0) {
206         exponent++;
207         number >>= 1;
208       }
209       break;
210     }
211     ++current;
212   } while (current != end);
213
214   DCHECK(number < ((int64_t)1 << 53));
215   DCHECK(static_cast<int64_t>(static_cast<double>(number)) == number);
216
217   if (exponent == 0) {
218     if (negative) {
219       if (number == 0) return -0.0;
220       number = -number;
221     }
222     return static_cast<double>(number);
223   }
224
225   DCHECK(number != 0);
226   return std::ldexp(static_cast<double>(negative ? -number : number), exponent);
227 }
228
229
230 template <class Iterator, class EndMark>
231 double InternalStringToInt(UnicodeCache* unicode_cache,
232                            Iterator current,
233                            EndMark end,
234                            int radix) {
235   const bool allow_trailing_junk = true;
236   const double empty_string_val = JunkStringValue();
237
238   if (!AdvanceToNonspace(unicode_cache, &current, end)) {
239     return empty_string_val;
240   }
241
242   bool negative = false;
243   bool leading_zero = false;
244
245   if (*current == '+') {
246     // Ignore leading sign; skip following spaces.
247     ++current;
248     if (current == end) {
249       return JunkStringValue();
250     }
251   } else if (*current == '-') {
252     ++current;
253     if (current == end) {
254       return JunkStringValue();
255     }
256     negative = true;
257   }
258
259   if (radix == 0) {
260     // Radix detection.
261     radix = 10;
262     if (*current == '0') {
263       ++current;
264       if (current == end) return SignedZero(negative);
265       if (*current == 'x' || *current == 'X') {
266         radix = 16;
267         ++current;
268         if (current == end) return JunkStringValue();
269       } else {
270         leading_zero = true;
271       }
272     }
273   } else if (radix == 16) {
274     if (*current == '0') {
275       // Allow "0x" prefix.
276       ++current;
277       if (current == end) return SignedZero(negative);
278       if (*current == 'x' || *current == 'X') {
279         ++current;
280         if (current == end) return JunkStringValue();
281       } else {
282         leading_zero = true;
283       }
284     }
285   }
286
287   if (radix < 2 || radix > 36) return JunkStringValue();
288
289   // Skip leading zeros.
290   while (*current == '0') {
291     leading_zero = true;
292     ++current;
293     if (current == end) return SignedZero(negative);
294   }
295
296   if (!leading_zero && !isDigit(*current, radix)) {
297     return JunkStringValue();
298   }
299
300   if (base::bits::IsPowerOfTwo32(radix)) {
301     switch (radix) {
302       case 2:
303         return InternalStringToIntDouble<1>(
304             unicode_cache, current, end, negative, allow_trailing_junk);
305       case 4:
306         return InternalStringToIntDouble<2>(
307             unicode_cache, current, end, negative, allow_trailing_junk);
308       case 8:
309         return InternalStringToIntDouble<3>(
310             unicode_cache, current, end, negative, allow_trailing_junk);
311
312       case 16:
313         return InternalStringToIntDouble<4>(
314             unicode_cache, current, end, negative, allow_trailing_junk);
315
316       case 32:
317         return InternalStringToIntDouble<5>(
318             unicode_cache, current, end, negative, allow_trailing_junk);
319       default:
320         UNREACHABLE();
321     }
322   }
323
324   if (radix == 10) {
325     // Parsing with strtod.
326     const int kMaxSignificantDigits = 309;  // Doubles are less than 1.8e308.
327     // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
328     // end.
329     const int kBufferSize = kMaxSignificantDigits + 2;
330     char buffer[kBufferSize];
331     int buffer_pos = 0;
332     while (*current >= '0' && *current <= '9') {
333       if (buffer_pos <= kMaxSignificantDigits) {
334         // If the number has more than kMaxSignificantDigits it will be parsed
335         // as infinity.
336         DCHECK(buffer_pos < kBufferSize);
337         buffer[buffer_pos++] = static_cast<char>(*current);
338       }
339       ++current;
340       if (current == end) break;
341     }
342
343     if (!allow_trailing_junk &&
344         AdvanceToNonspace(unicode_cache, &current, end)) {
345       return JunkStringValue();
346     }
347
348     SLOW_DCHECK(buffer_pos < kBufferSize);
349     buffer[buffer_pos] = '\0';
350     Vector<const char> buffer_vector(buffer, buffer_pos);
351     return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0);
352   }
353
354   // The following code causes accumulating rounding error for numbers greater
355   // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
356   // 16, or 32, then mathInt may be an implementation-dependent approximation to
357   // the mathematical integer value" (15.1.2.2).
358
359   int lim_0 = '0' + (radix < 10 ? radix : 10);
360   int lim_a = 'a' + (radix - 10);
361   int lim_A = 'A' + (radix - 10);
362
363   // NOTE: The code for computing the value may seem a bit complex at
364   // first glance. It is structured to use 32-bit multiply-and-add
365   // loops as long as possible to avoid loosing precision.
366
367   double v = 0.0;
368   bool done = false;
369   do {
370     // Parse the longest part of the string starting at index j
371     // possible while keeping the multiplier, and thus the part
372     // itself, within 32 bits.
373     unsigned int part = 0, multiplier = 1;
374     while (true) {
375       int d;
376       if (*current >= '0' && *current < lim_0) {
377         d = *current - '0';
378       } else if (*current >= 'a' && *current < lim_a) {
379         d = *current - 'a' + 10;
380       } else if (*current >= 'A' && *current < lim_A) {
381         d = *current - 'A' + 10;
382       } else {
383         done = true;
384         break;
385       }
386
387       // Update the value of the part as long as the multiplier fits
388       // in 32 bits. When we can't guarantee that the next iteration
389       // will not overflow the multiplier, we stop parsing the part
390       // by leaving the loop.
391       const unsigned int kMaximumMultiplier = 0xffffffffU / 36;
392       uint32_t m = multiplier * radix;
393       if (m > kMaximumMultiplier) break;
394       part = part * radix + d;
395       multiplier = m;
396       DCHECK(multiplier > part);
397
398       ++current;
399       if (current == end) {
400         done = true;
401         break;
402       }
403     }
404
405     // Update the value and skip the part in the string.
406     v = v * multiplier + part;
407   } while (!done);
408
409   if (!allow_trailing_junk &&
410       AdvanceToNonspace(unicode_cache, &current, end)) {
411     return JunkStringValue();
412   }
413
414   return negative ? -v : v;
415 }
416
417
418 // Converts a string to a double value. Assumes the Iterator supports
419 // the following operations:
420 // 1. current == end (other ops are not allowed), current != end.
421 // 2. *current - gets the current character in the sequence.
422 // 3. ++current (advances the position).
423 template <class Iterator, class EndMark>
424 double InternalStringToDouble(UnicodeCache* unicode_cache,
425                               Iterator current,
426                               EndMark end,
427                               int flags,
428                               double empty_string_val) {
429   // To make sure that iterator dereferencing is valid the following
430   // convention is used:
431   // 1. Each '++current' statement is followed by check for equality to 'end'.
432   // 2. If AdvanceToNonspace returned false then current == end.
433   // 3. If 'current' becomes be equal to 'end' the function returns or goes to
434   // 'parsing_done'.
435   // 4. 'current' is not dereferenced after the 'parsing_done' label.
436   // 5. Code before 'parsing_done' may rely on 'current != end'.
437   if (!AdvanceToNonspace(unicode_cache, &current, end)) {
438     return empty_string_val;
439   }
440
441   const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;
442
443   // The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
444   const int kBufferSize = kMaxSignificantDigits + 10;
445   char buffer[kBufferSize];  // NOLINT: size is known at compile time.
446   int buffer_pos = 0;
447
448   // Exponent will be adjusted if insignificant digits of the integer part
449   // or insignificant leading zeros of the fractional part are dropped.
450   int exponent = 0;
451   int significant_digits = 0;
452   int insignificant_digits = 0;
453   bool nonzero_digit_dropped = false;
454
455   enum Sign {
456     NONE,
457     NEGATIVE,
458     POSITIVE
459   };
460
461   Sign sign = NONE;
462
463   if (*current == '+') {
464     // Ignore leading sign.
465     ++current;
466     if (current == end) return JunkStringValue();
467     sign = POSITIVE;
468   } else if (*current == '-') {
469     ++current;
470     if (current == end) return JunkStringValue();
471     sign = NEGATIVE;
472   }
473
474   static const char kInfinityString[] = "Infinity";
475   if (*current == kInfinityString[0]) {
476     if (!SubStringEquals(&current, end, kInfinityString)) {
477       return JunkStringValue();
478     }
479
480     if (!allow_trailing_junk &&
481         AdvanceToNonspace(unicode_cache, &current, end)) {
482       return JunkStringValue();
483     }
484
485     DCHECK(buffer_pos == 0);
486     return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY;
487   }
488
489   bool leading_zero = false;
490   if (*current == '0') {
491     ++current;
492     if (current == end) return SignedZero(sign == NEGATIVE);
493
494     leading_zero = true;
495
496     // It could be hexadecimal value.
497     if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
498       ++current;
499       if (current == end || !isDigit(*current, 16) || sign != NONE) {
500         return JunkStringValue();  // "0x".
501       }
502
503       return InternalStringToIntDouble<4>(unicode_cache,
504                                           current,
505                                           end,
506                                           false,
507                                           allow_trailing_junk);
508
509     // It could be an explicit octal value.
510     } else if ((flags & ALLOW_OCTAL) && (*current == 'o' || *current == 'O')) {
511       ++current;
512       if (current == end || !isDigit(*current, 8) || sign != NONE) {
513         return JunkStringValue();  // "0o".
514       }
515
516       return InternalStringToIntDouble<3>(unicode_cache,
517                                           current,
518                                           end,
519                                           false,
520                                           allow_trailing_junk);
521
522     // It could be a binary value.
523     } else if ((flags & ALLOW_BINARY) && (*current == 'b' || *current == 'B')) {
524       ++current;
525       if (current == end || !isBinaryDigit(*current) || sign != NONE) {
526         return JunkStringValue();  // "0b".
527       }
528
529       return InternalStringToIntDouble<1>(unicode_cache,
530                                           current,
531                                           end,
532                                           false,
533                                           allow_trailing_junk);
534     }
535
536     // Ignore leading zeros in the integer part.
537     while (*current == '0') {
538       ++current;
539       if (current == end) return SignedZero(sign == NEGATIVE);
540     }
541   }
542
543   bool octal = leading_zero && (flags & ALLOW_IMPLICIT_OCTAL) != 0;
544
545   // Copy significant digits of the integer part (if any) to the buffer.
546   while (*current >= '0' && *current <= '9') {
547     if (significant_digits < kMaxSignificantDigits) {
548       DCHECK(buffer_pos < kBufferSize);
549       buffer[buffer_pos++] = static_cast<char>(*current);
550       significant_digits++;
551       // Will later check if it's an octal in the buffer.
552     } else {
553       insignificant_digits++;  // Move the digit into the exponential part.
554       nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
555     }
556     octal = octal && *current < '8';
557     ++current;
558     if (current == end) goto parsing_done;
559   }
560
561   if (significant_digits == 0) {
562     octal = false;
563   }
564
565   if (*current == '.') {
566     if (octal && !allow_trailing_junk) return JunkStringValue();
567     if (octal) goto parsing_done;
568
569     ++current;
570     if (current == end) {
571       if (significant_digits == 0 && !leading_zero) {
572         return JunkStringValue();
573       } else {
574         goto parsing_done;
575       }
576     }
577
578     if (significant_digits == 0) {
579       // octal = false;
580       // Integer part consists of 0 or is absent. Significant digits start after
581       // leading zeros (if any).
582       while (*current == '0') {
583         ++current;
584         if (current == end) return SignedZero(sign == NEGATIVE);
585         exponent--;  // Move this 0 into the exponent.
586       }
587     }
588
589     // There is a fractional part.  We don't emit a '.', but adjust the exponent
590     // instead.
591     while (*current >= '0' && *current <= '9') {
592       if (significant_digits < kMaxSignificantDigits) {
593         DCHECK(buffer_pos < kBufferSize);
594         buffer[buffer_pos++] = static_cast<char>(*current);
595         significant_digits++;
596         exponent--;
597       } else {
598         // Ignore insignificant digits in the fractional part.
599         nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
600       }
601       ++current;
602       if (current == end) goto parsing_done;
603     }
604   }
605
606   if (!leading_zero && exponent == 0 && significant_digits == 0) {
607     // If leading_zeros is true then the string contains zeros.
608     // If exponent < 0 then string was [+-]\.0*...
609     // If significant_digits != 0 the string is not equal to 0.
610     // Otherwise there are no digits in the string.
611     return JunkStringValue();
612   }
613
614   // Parse exponential part.
615   if (*current == 'e' || *current == 'E') {
616     if (octal) return JunkStringValue();
617     ++current;
618     if (current == end) {
619       if (allow_trailing_junk) {
620         goto parsing_done;
621       } else {
622         return JunkStringValue();
623       }
624     }
625     char sign = '+';
626     if (*current == '+' || *current == '-') {
627       sign = static_cast<char>(*current);
628       ++current;
629       if (current == end) {
630         if (allow_trailing_junk) {
631           goto parsing_done;
632         } else {
633           return JunkStringValue();
634         }
635       }
636     }
637
638     if (current == end || *current < '0' || *current > '9') {
639       if (allow_trailing_junk) {
640         goto parsing_done;
641       } else {
642         return JunkStringValue();
643       }
644     }
645
646     const int max_exponent = INT_MAX / 2;
647     DCHECK(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
648     int num = 0;
649     do {
650       // Check overflow.
651       int digit = *current - '0';
652       if (num >= max_exponent / 10
653           && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
654         num = max_exponent;
655       } else {
656         num = num * 10 + digit;
657       }
658       ++current;
659     } while (current != end && *current >= '0' && *current <= '9');
660
661     exponent += (sign == '-' ? -num : num);
662   }
663
664   if (!allow_trailing_junk &&
665       AdvanceToNonspace(unicode_cache, &current, end)) {
666     return JunkStringValue();
667   }
668
669   parsing_done:
670   exponent += insignificant_digits;
671
672   if (octal) {
673     return InternalStringToIntDouble<3>(unicode_cache,
674                                         buffer,
675                                         buffer + buffer_pos,
676                                         sign == NEGATIVE,
677                                         allow_trailing_junk);
678   }
679
680   if (nonzero_digit_dropped) {
681     buffer[buffer_pos++] = '1';
682     exponent--;
683   }
684
685   SLOW_DCHECK(buffer_pos < kBufferSize);
686   buffer[buffer_pos] = '\0';
687
688   double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
689   return (sign == NEGATIVE) ? -converted : converted;
690 }
691
692 } }  // namespace v8::internal
693
694 #endif  // V8_CONVERSIONS_INL_H_