f2e49b4639cd175e8398a4798a83b327d06ffc4f
[platform/framework/web/crosswalk.git] / src / v8 / src / arm64 / macro-assembler-arm64.cc
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #if V8_TARGET_ARCH_ARM64
8
9 #include "src/bootstrapper.h"
10 #include "src/codegen.h"
11 #include "src/cpu-profiler.h"
12 #include "src/debug.h"
13 #include "src/isolate-inl.h"
14 #include "src/runtime.h"
15
16 namespace v8 {
17 namespace internal {
18
19 // Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros.
20 #define __
21
22
23 MacroAssembler::MacroAssembler(Isolate* arg_isolate,
24                                byte * buffer,
25                                unsigned buffer_size)
26     : Assembler(arg_isolate, buffer, buffer_size),
27       generating_stub_(false),
28 #if DEBUG
29       allow_macro_instructions_(true),
30 #endif
31       has_frame_(false),
32       use_real_aborts_(true),
33       sp_(jssp),
34       tmp_list_(DefaultTmpList()),
35       fptmp_list_(DefaultFPTmpList()) {
36   if (isolate() != NULL) {
37     code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
38                                   isolate());
39   }
40 }
41
42
43 CPURegList MacroAssembler::DefaultTmpList() {
44   return CPURegList(ip0, ip1);
45 }
46
47
48 CPURegList MacroAssembler::DefaultFPTmpList() {
49   return CPURegList(fp_scratch1, fp_scratch2);
50 }
51
52
53 void MacroAssembler::LogicalMacro(const Register& rd,
54                                   const Register& rn,
55                                   const Operand& operand,
56                                   LogicalOp op) {
57   UseScratchRegisterScope temps(this);
58
59   if (operand.NeedsRelocation(this)) {
60     Register temp = temps.AcquireX();
61     Ldr(temp, operand.immediate());
62     Logical(rd, rn, temp, op);
63
64   } else if (operand.IsImmediate()) {
65     int64_t immediate = operand.ImmediateValue();
66     unsigned reg_size = rd.SizeInBits();
67     ASSERT(rd.Is64Bits() || is_uint32(immediate));
68
69     // If the operation is NOT, invert the operation and immediate.
70     if ((op & NOT) == NOT) {
71       op = static_cast<LogicalOp>(op & ~NOT);
72       immediate = ~immediate;
73       if (rd.Is32Bits()) {
74         immediate &= kWRegMask;
75       }
76     }
77
78     // Special cases for all set or all clear immediates.
79     if (immediate == 0) {
80       switch (op) {
81         case AND:
82           Mov(rd, 0);
83           return;
84         case ORR:  // Fall through.
85         case EOR:
86           Mov(rd, rn);
87           return;
88         case ANDS:  // Fall through.
89         case BICS:
90           break;
91         default:
92           UNREACHABLE();
93       }
94     } else if ((rd.Is64Bits() && (immediate == -1L)) ||
95                (rd.Is32Bits() && (immediate == 0xffffffffL))) {
96       switch (op) {
97         case AND:
98           Mov(rd, rn);
99           return;
100         case ORR:
101           Mov(rd, immediate);
102           return;
103         case EOR:
104           Mvn(rd, rn);
105           return;
106         case ANDS:  // Fall through.
107         case BICS:
108           break;
109         default:
110           UNREACHABLE();
111       }
112     }
113
114     unsigned n, imm_s, imm_r;
115     if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
116       // Immediate can be encoded in the instruction.
117       LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
118     } else {
119       // Immediate can't be encoded: synthesize using move immediate.
120       Register temp = temps.AcquireSameSizeAs(rn);
121       Mov(temp, immediate);
122       if (rd.Is(csp)) {
123         // If rd is the stack pointer we cannot use it as the destination
124         // register so we use the temp register as an intermediate again.
125         Logical(temp, rn, temp, op);
126         Mov(csp, temp);
127         AssertStackConsistency();
128       } else {
129         Logical(rd, rn, temp, op);
130       }
131     }
132
133   } else if (operand.IsExtendedRegister()) {
134     ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits());
135     // Add/sub extended supports shift <= 4. We want to support exactly the
136     // same modes here.
137     ASSERT(operand.shift_amount() <= 4);
138     ASSERT(operand.reg().Is64Bits() ||
139            ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
140     Register temp = temps.AcquireSameSizeAs(rn);
141     EmitExtendShift(temp, operand.reg(), operand.extend(),
142                     operand.shift_amount());
143     Logical(rd, rn, temp, op);
144
145   } else {
146     // The operand can be encoded in the instruction.
147     ASSERT(operand.IsShiftedRegister());
148     Logical(rd, rn, operand, op);
149   }
150 }
151
152
153 void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
154   ASSERT(allow_macro_instructions_);
155   ASSERT(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
156   ASSERT(!rd.IsZero());
157
158   // TODO(all) extend to support more immediates.
159   //
160   // Immediates on Aarch64 can be produced using an initial value, and zero to
161   // three move keep operations.
162   //
163   // Initial values can be generated with:
164   //  1. 64-bit move zero (movz).
165   //  2. 32-bit move inverted (movn).
166   //  3. 64-bit move inverted.
167   //  4. 32-bit orr immediate.
168   //  5. 64-bit orr immediate.
169   // Move-keep may then be used to modify each of the 16-bit half-words.
170   //
171   // The code below supports all five initial value generators, and
172   // applying move-keep operations to move-zero and move-inverted initial
173   // values.
174
175   unsigned reg_size = rd.SizeInBits();
176   unsigned n, imm_s, imm_r;
177   if (IsImmMovz(imm, reg_size) && !rd.IsSP()) {
178     // Immediate can be represented in a move zero instruction. Movz can't
179     // write to the stack pointer.
180     movz(rd, imm);
181   } else if (IsImmMovn(imm, reg_size) && !rd.IsSP()) {
182     // Immediate can be represented in a move inverted instruction. Movn can't
183     // write to the stack pointer.
184     movn(rd, rd.Is64Bits() ? ~imm : (~imm & kWRegMask));
185   } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
186     // Immediate can be represented in a logical orr instruction.
187     LogicalImmediate(rd, AppropriateZeroRegFor(rd), n, imm_s, imm_r, ORR);
188   } else {
189     // Generic immediate case. Imm will be represented by
190     //   [imm3, imm2, imm1, imm0], where each imm is 16 bits.
191     // A move-zero or move-inverted is generated for the first non-zero or
192     // non-0xffff immX, and a move-keep for subsequent non-zero immX.
193
194     uint64_t ignored_halfword = 0;
195     bool invert_move = false;
196     // If the number of 0xffff halfwords is greater than the number of 0x0000
197     // halfwords, it's more efficient to use move-inverted.
198     if (CountClearHalfWords(~imm, reg_size) >
199         CountClearHalfWords(imm, reg_size)) {
200       ignored_halfword = 0xffffL;
201       invert_move = true;
202     }
203
204     // Mov instructions can't move immediate values into the stack pointer, so
205     // set up a temporary register, if needed.
206     UseScratchRegisterScope temps(this);
207     Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
208
209     // Iterate through the halfwords. Use movn/movz for the first non-ignored
210     // halfword, and movk for subsequent halfwords.
211     ASSERT((reg_size % 16) == 0);
212     bool first_mov_done = false;
213     for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) {
214       uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
215       if (imm16 != ignored_halfword) {
216         if (!first_mov_done) {
217           if (invert_move) {
218             movn(temp, (~imm16) & 0xffffL, 16 * i);
219           } else {
220             movz(temp, imm16, 16 * i);
221           }
222           first_mov_done = true;
223         } else {
224           // Construct a wider constant.
225           movk(temp, imm16, 16 * i);
226         }
227       }
228     }
229     ASSERT(first_mov_done);
230
231     // Move the temporary if the original destination register was the stack
232     // pointer.
233     if (rd.IsSP()) {
234       mov(rd, temp);
235       AssertStackConsistency();
236     }
237   }
238 }
239
240
241 void MacroAssembler::Mov(const Register& rd,
242                          const Operand& operand,
243                          DiscardMoveMode discard_mode) {
244   ASSERT(allow_macro_instructions_);
245   ASSERT(!rd.IsZero());
246
247   // Provide a swap register for instructions that need to write into the
248   // system stack pointer (and can't do this inherently).
249   UseScratchRegisterScope temps(this);
250   Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd;
251
252   if (operand.NeedsRelocation(this)) {
253     Ldr(dst, operand.immediate());
254
255   } else if (operand.IsImmediate()) {
256     // Call the macro assembler for generic immediates.
257     Mov(dst, operand.ImmediateValue());
258
259   } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
260     // Emit a shift instruction if moving a shifted register. This operation
261     // could also be achieved using an orr instruction (like orn used by Mvn),
262     // but using a shift instruction makes the disassembly clearer.
263     EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
264
265   } else if (operand.IsExtendedRegister()) {
266     // Emit an extend instruction if moving an extended register. This handles
267     // extend with post-shift operations, too.
268     EmitExtendShift(dst, operand.reg(), operand.extend(),
269                     operand.shift_amount());
270
271   } else {
272     // Otherwise, emit a register move only if the registers are distinct, or
273     // if they are not X registers.
274     //
275     // Note that mov(w0, w0) is not a no-op because it clears the top word of
276     // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
277     // registers is not required to clear the top word of the X register. In
278     // this case, the instruction is discarded.
279     //
280     // If csp is an operand, add #0 is emitted, otherwise, orr #0.
281     if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
282                                   (discard_mode == kDontDiscardForSameWReg))) {
283       Assembler::mov(rd, operand.reg());
284     }
285     // This case can handle writes into the system stack pointer directly.
286     dst = rd;
287   }
288
289   // Copy the result to the system stack pointer.
290   if (!dst.Is(rd)) {
291     ASSERT(rd.IsSP());
292     Assembler::mov(rd, dst);
293   }
294 }
295
296
297 void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
298   ASSERT(allow_macro_instructions_);
299
300   if (operand.NeedsRelocation(this)) {
301     Ldr(rd, operand.immediate());
302     mvn(rd, rd);
303
304   } else if (operand.IsImmediate()) {
305     // Call the macro assembler for generic immediates.
306     Mov(rd, ~operand.ImmediateValue());
307
308   } else if (operand.IsExtendedRegister()) {
309     // Emit two instructions for the extend case. This differs from Mov, as
310     // the extend and invert can't be achieved in one instruction.
311     EmitExtendShift(rd, operand.reg(), operand.extend(),
312                     operand.shift_amount());
313     mvn(rd, rd);
314
315   } else {
316     mvn(rd, operand);
317   }
318 }
319
320
321 unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
322   ASSERT((reg_size % 8) == 0);
323   int count = 0;
324   for (unsigned i = 0; i < (reg_size / 16); i++) {
325     if ((imm & 0xffff) == 0) {
326       count++;
327     }
328     imm >>= 16;
329   }
330   return count;
331 }
332
333
334 // The movz instruction can generate immediates containing an arbitrary 16-bit
335 // half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
336 bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
337   ASSERT((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
338   return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
339 }
340
341
342 // The movn instruction can generate immediates containing an arbitrary 16-bit
343 // half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
344 bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
345   return IsImmMovz(~imm, reg_size);
346 }
347
348
349 void MacroAssembler::ConditionalCompareMacro(const Register& rn,
350                                              const Operand& operand,
351                                              StatusFlags nzcv,
352                                              Condition cond,
353                                              ConditionalCompareOp op) {
354   ASSERT((cond != al) && (cond != nv));
355   if (operand.NeedsRelocation(this)) {
356     UseScratchRegisterScope temps(this);
357     Register temp = temps.AcquireX();
358     Ldr(temp, operand.immediate());
359     ConditionalCompareMacro(rn, temp, nzcv, cond, op);
360
361   } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
362              (operand.IsImmediate() &&
363               IsImmConditionalCompare(operand.ImmediateValue()))) {
364     // The immediate can be encoded in the instruction, or the operand is an
365     // unshifted register: call the assembler.
366     ConditionalCompare(rn, operand, nzcv, cond, op);
367
368   } else {
369     // The operand isn't directly supported by the instruction: perform the
370     // operation on a temporary register.
371     UseScratchRegisterScope temps(this);
372     Register temp = temps.AcquireSameSizeAs(rn);
373     Mov(temp, operand);
374     ConditionalCompare(rn, temp, nzcv, cond, op);
375   }
376 }
377
378
379 void MacroAssembler::Csel(const Register& rd,
380                           const Register& rn,
381                           const Operand& operand,
382                           Condition cond) {
383   ASSERT(allow_macro_instructions_);
384   ASSERT(!rd.IsZero());
385   ASSERT((cond != al) && (cond != nv));
386   if (operand.IsImmediate()) {
387     // Immediate argument. Handle special cases of 0, 1 and -1 using zero
388     // register.
389     int64_t imm = operand.ImmediateValue();
390     Register zr = AppropriateZeroRegFor(rn);
391     if (imm == 0) {
392       csel(rd, rn, zr, cond);
393     } else if (imm == 1) {
394       csinc(rd, rn, zr, cond);
395     } else if (imm == -1) {
396       csinv(rd, rn, zr, cond);
397     } else {
398       UseScratchRegisterScope temps(this);
399       Register temp = temps.AcquireSameSizeAs(rn);
400       Mov(temp, imm);
401       csel(rd, rn, temp, cond);
402     }
403   } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
404     // Unshifted register argument.
405     csel(rd, rn, operand.reg(), cond);
406   } else {
407     // All other arguments.
408     UseScratchRegisterScope temps(this);
409     Register temp = temps.AcquireSameSizeAs(rn);
410     Mov(temp, operand);
411     csel(rd, rn, temp, cond);
412   }
413 }
414
415
416 void MacroAssembler::AddSubMacro(const Register& rd,
417                                  const Register& rn,
418                                  const Operand& operand,
419                                  FlagsUpdate S,
420                                  AddSubOp op) {
421   if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
422       !operand.NeedsRelocation(this) && (S == LeaveFlags)) {
423     // The instruction would be a nop. Avoid generating useless code.
424     return;
425   }
426
427   if (operand.NeedsRelocation(this)) {
428     UseScratchRegisterScope temps(this);
429     Register temp = temps.AcquireX();
430     Ldr(temp, operand.immediate());
431     AddSubMacro(rd, rn, temp, S, op);
432   } else if ((operand.IsImmediate() &&
433               !IsImmAddSub(operand.ImmediateValue()))      ||
434              (rn.IsZero() && !operand.IsShiftedRegister()) ||
435              (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
436     UseScratchRegisterScope temps(this);
437     Register temp = temps.AcquireSameSizeAs(rn);
438     Mov(temp, operand);
439     AddSub(rd, rn, temp, S, op);
440   } else {
441     AddSub(rd, rn, operand, S, op);
442   }
443 }
444
445
446 void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
447                                           const Register& rn,
448                                           const Operand& operand,
449                                           FlagsUpdate S,
450                                           AddSubWithCarryOp op) {
451   ASSERT(rd.SizeInBits() == rn.SizeInBits());
452   UseScratchRegisterScope temps(this);
453
454   if (operand.NeedsRelocation(this)) {
455     Register temp = temps.AcquireX();
456     Ldr(temp, operand.immediate());
457     AddSubWithCarryMacro(rd, rn, temp, S, op);
458
459   } else if (operand.IsImmediate() ||
460              (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
461     // Add/sub with carry (immediate or ROR shifted register.)
462     Register temp = temps.AcquireSameSizeAs(rn);
463     Mov(temp, operand);
464     AddSubWithCarry(rd, rn, temp, S, op);
465
466   } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
467     // Add/sub with carry (shifted register).
468     ASSERT(operand.reg().SizeInBits() == rd.SizeInBits());
469     ASSERT(operand.shift() != ROR);
470     ASSERT(is_uintn(operand.shift_amount(),
471           rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2
472                                              : kWRegSizeInBitsLog2));
473     Register temp = temps.AcquireSameSizeAs(rn);
474     EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
475     AddSubWithCarry(rd, rn, temp, S, op);
476
477   } else if (operand.IsExtendedRegister()) {
478     // Add/sub with carry (extended register).
479     ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits());
480     // Add/sub extended supports a shift <= 4. We want to support exactly the
481     // same modes.
482     ASSERT(operand.shift_amount() <= 4);
483     ASSERT(operand.reg().Is64Bits() ||
484            ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
485     Register temp = temps.AcquireSameSizeAs(rn);
486     EmitExtendShift(temp, operand.reg(), operand.extend(),
487                     operand.shift_amount());
488     AddSubWithCarry(rd, rn, temp, S, op);
489
490   } else {
491     // The addressing mode is directly supported by the instruction.
492     AddSubWithCarry(rd, rn, operand, S, op);
493   }
494 }
495
496
497 void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
498                                     const MemOperand& addr,
499                                     LoadStoreOp op) {
500   int64_t offset = addr.offset();
501   LSDataSize size = CalcLSDataSize(op);
502
503   // Check if an immediate offset fits in the immediate field of the
504   // appropriate instruction. If not, emit two instructions to perform
505   // the operation.
506   if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
507       !IsImmLSUnscaled(offset)) {
508     // Immediate offset that can't be encoded using unsigned or unscaled
509     // addressing modes.
510     UseScratchRegisterScope temps(this);
511     Register temp = temps.AcquireSameSizeAs(addr.base());
512     Mov(temp, addr.offset());
513     LoadStore(rt, MemOperand(addr.base(), temp), op);
514   } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
515     // Post-index beyond unscaled addressing range.
516     LoadStore(rt, MemOperand(addr.base()), op);
517     add(addr.base(), addr.base(), offset);
518   } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
519     // Pre-index beyond unscaled addressing range.
520     add(addr.base(), addr.base(), offset);
521     LoadStore(rt, MemOperand(addr.base()), op);
522   } else {
523     // Encodable in one load/store instruction.
524     LoadStore(rt, addr, op);
525   }
526 }
527
528
529 void MacroAssembler::Load(const Register& rt,
530                           const MemOperand& addr,
531                           Representation r) {
532   ASSERT(!r.IsDouble());
533
534   if (r.IsInteger8()) {
535     Ldrsb(rt, addr);
536   } else if (r.IsUInteger8()) {
537     Ldrb(rt, addr);
538   } else if (r.IsInteger16()) {
539     Ldrsh(rt, addr);
540   } else if (r.IsUInteger16()) {
541     Ldrh(rt, addr);
542   } else if (r.IsInteger32()) {
543     Ldr(rt.W(), addr);
544   } else {
545     ASSERT(rt.Is64Bits());
546     Ldr(rt, addr);
547   }
548 }
549
550
551 void MacroAssembler::Store(const Register& rt,
552                            const MemOperand& addr,
553                            Representation r) {
554   ASSERT(!r.IsDouble());
555
556   if (r.IsInteger8() || r.IsUInteger8()) {
557     Strb(rt, addr);
558   } else if (r.IsInteger16() || r.IsUInteger16()) {
559     Strh(rt, addr);
560   } else if (r.IsInteger32()) {
561     Str(rt.W(), addr);
562   } else {
563     ASSERT(rt.Is64Bits());
564     if (r.IsHeapObject()) {
565       AssertNotSmi(rt);
566     } else if (r.IsSmi()) {
567       AssertSmi(rt);
568     }
569     Str(rt, addr);
570   }
571 }
572
573
574 bool MacroAssembler::NeedExtraInstructionsOrRegisterBranch(
575     Label *label, ImmBranchType b_type) {
576   bool need_longer_range = false;
577   // There are two situations in which we care about the offset being out of
578   // range:
579   //  - The label is bound but too far away.
580   //  - The label is not bound but linked, and the previous branch
581   //    instruction in the chain is too far away.
582   if (label->is_bound() || label->is_linked()) {
583     need_longer_range =
584       !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset());
585   }
586   if (!need_longer_range && !label->is_bound()) {
587     int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type);
588     unresolved_branches_.insert(
589         std::pair<int, FarBranchInfo>(max_reachable_pc,
590                                       FarBranchInfo(pc_offset(), label)));
591     // Also maintain the next pool check.
592     next_veneer_pool_check_ =
593       Min(next_veneer_pool_check_,
594           max_reachable_pc - kVeneerDistanceCheckMargin);
595   }
596   return need_longer_range;
597 }
598
599
600 void MacroAssembler::Adr(const Register& rd, Label* label, AdrHint hint) {
601   ASSERT(allow_macro_instructions_);
602   ASSERT(!rd.IsZero());
603
604   if (hint == kAdrNear) {
605     adr(rd, label);
606     return;
607   }
608
609   ASSERT(hint == kAdrFar);
610   UseScratchRegisterScope temps(this);
611   Register scratch = temps.AcquireX();
612   ASSERT(!AreAliased(rd, scratch));
613
614   if (label->is_bound()) {
615     int label_offset = label->pos() - pc_offset();
616     if (Instruction::IsValidPCRelOffset(label_offset)) {
617       adr(rd, label);
618     } else {
619       ASSERT(label_offset <= 0);
620       int min_adr_offset = -(1 << (Instruction::ImmPCRelRangeBitwidth - 1));
621       adr(rd, min_adr_offset);
622       Add(rd, rd, label_offset - min_adr_offset);
623     }
624   } else {
625     InstructionAccurateScope scope(
626         this, PatchingAssembler::kAdrFarPatchableNInstrs);
627     adr(rd, label);
628     for (int i = 0; i < PatchingAssembler::kAdrFarPatchableNNops; ++i) {
629       nop(ADR_FAR_NOP);
630     }
631     movz(scratch, 0);
632     add(rd, rd, scratch);
633   }
634 }
635
636
637 void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
638   ASSERT((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) &&
639          (bit == -1 || type >= kBranchTypeFirstUsingBit));
640   if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
641     B(static_cast<Condition>(type), label);
642   } else {
643     switch (type) {
644       case always:        B(label);              break;
645       case never:         break;
646       case reg_zero:      Cbz(reg, label);       break;
647       case reg_not_zero:  Cbnz(reg, label);      break;
648       case reg_bit_clear: Tbz(reg, bit, label);  break;
649       case reg_bit_set:   Tbnz(reg, bit, label); break;
650       default:
651         UNREACHABLE();
652     }
653   }
654 }
655
656
657 void MacroAssembler::B(Label* label, Condition cond) {
658   ASSERT(allow_macro_instructions_);
659   ASSERT((cond != al) && (cond != nv));
660
661   Label done;
662   bool need_extra_instructions =
663     NeedExtraInstructionsOrRegisterBranch(label, CondBranchType);
664
665   if (need_extra_instructions) {
666     b(&done, NegateCondition(cond));
667     B(label);
668   } else {
669     b(label, cond);
670   }
671   bind(&done);
672 }
673
674
675 void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
676   ASSERT(allow_macro_instructions_);
677
678   Label done;
679   bool need_extra_instructions =
680     NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
681
682   if (need_extra_instructions) {
683     tbz(rt, bit_pos, &done);
684     B(label);
685   } else {
686     tbnz(rt, bit_pos, label);
687   }
688   bind(&done);
689 }
690
691
692 void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
693   ASSERT(allow_macro_instructions_);
694
695   Label done;
696   bool need_extra_instructions =
697     NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
698
699   if (need_extra_instructions) {
700     tbnz(rt, bit_pos, &done);
701     B(label);
702   } else {
703     tbz(rt, bit_pos, label);
704   }
705   bind(&done);
706 }
707
708
709 void MacroAssembler::Cbnz(const Register& rt, Label* label) {
710   ASSERT(allow_macro_instructions_);
711
712   Label done;
713   bool need_extra_instructions =
714     NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
715
716   if (need_extra_instructions) {
717     cbz(rt, &done);
718     B(label);
719   } else {
720     cbnz(rt, label);
721   }
722   bind(&done);
723 }
724
725
726 void MacroAssembler::Cbz(const Register& rt, Label* label) {
727   ASSERT(allow_macro_instructions_);
728
729   Label done;
730   bool need_extra_instructions =
731     NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
732
733   if (need_extra_instructions) {
734     cbnz(rt, &done);
735     B(label);
736   } else {
737     cbz(rt, label);
738   }
739   bind(&done);
740 }
741
742
743 // Pseudo-instructions.
744
745
746 void MacroAssembler::Abs(const Register& rd, const Register& rm,
747                          Label* is_not_representable,
748                          Label* is_representable) {
749   ASSERT(allow_macro_instructions_);
750   ASSERT(AreSameSizeAndType(rd, rm));
751
752   Cmp(rm, 1);
753   Cneg(rd, rm, lt);
754
755   // If the comparison sets the v flag, the input was the smallest value
756   // representable by rm, and the mathematical result of abs(rm) is not
757   // representable using two's complement.
758   if ((is_not_representable != NULL) && (is_representable != NULL)) {
759     B(is_not_representable, vs);
760     B(is_representable);
761   } else if (is_not_representable != NULL) {
762     B(is_not_representable, vs);
763   } else if (is_representable != NULL) {
764     B(is_representable, vc);
765   }
766 }
767
768
769 // Abstracted stack operations.
770
771
772 void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
773                           const CPURegister& src2, const CPURegister& src3) {
774   ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
775
776   int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
777   int size = src0.SizeInBytes();
778
779   PushPreamble(count, size);
780   PushHelper(count, size, src0, src1, src2, src3);
781 }
782
783
784 void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
785                           const CPURegister& src2, const CPURegister& src3,
786                           const CPURegister& src4, const CPURegister& src5,
787                           const CPURegister& src6, const CPURegister& src7) {
788   ASSERT(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7));
789
790   int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid();
791   int size = src0.SizeInBytes();
792
793   PushPreamble(count, size);
794   PushHelper(4, size, src0, src1, src2, src3);
795   PushHelper(count - 4, size, src4, src5, src6, src7);
796 }
797
798
799 void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
800                          const CPURegister& dst2, const CPURegister& dst3) {
801   // It is not valid to pop into the same register more than once in one
802   // instruction, not even into the zero register.
803   ASSERT(!AreAliased(dst0, dst1, dst2, dst3));
804   ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
805   ASSERT(dst0.IsValid());
806
807   int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
808   int size = dst0.SizeInBytes();
809
810   PopHelper(count, size, dst0, dst1, dst2, dst3);
811   PopPostamble(count, size);
812 }
813
814
815 void MacroAssembler::PushPopQueue::PushQueued(
816     PreambleDirective preamble_directive) {
817   if (queued_.empty()) return;
818
819   if (preamble_directive == WITH_PREAMBLE) {
820     masm_->PushPreamble(size_);
821   }
822
823   int count = queued_.size();
824   int index = 0;
825   while (index < count) {
826     // PushHelper can only handle registers with the same size and type, and it
827     // can handle only four at a time. Batch them up accordingly.
828     CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
829     int batch_index = 0;
830     do {
831       batch[batch_index++] = queued_[index++];
832     } while ((batch_index < 4) && (index < count) &&
833              batch[0].IsSameSizeAndType(queued_[index]));
834
835     masm_->PushHelper(batch_index, batch[0].SizeInBytes(),
836                       batch[0], batch[1], batch[2], batch[3]);
837   }
838
839   queued_.clear();
840 }
841
842
843 void MacroAssembler::PushPopQueue::PopQueued() {
844   if (queued_.empty()) return;
845
846   int count = queued_.size();
847   int index = 0;
848   while (index < count) {
849     // PopHelper can only handle registers with the same size and type, and it
850     // can handle only four at a time. Batch them up accordingly.
851     CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
852     int batch_index = 0;
853     do {
854       batch[batch_index++] = queued_[index++];
855     } while ((batch_index < 4) && (index < count) &&
856              batch[0].IsSameSizeAndType(queued_[index]));
857
858     masm_->PopHelper(batch_index, batch[0].SizeInBytes(),
859                      batch[0], batch[1], batch[2], batch[3]);
860   }
861
862   masm_->PopPostamble(size_);
863   queued_.clear();
864 }
865
866
867 void MacroAssembler::PushCPURegList(CPURegList registers) {
868   int size = registers.RegisterSizeInBytes();
869
870   PushPreamble(registers.Count(), size);
871   // Push up to four registers at a time because if the current stack pointer is
872   // csp and reg_size is 32, registers must be pushed in blocks of four in order
873   // to maintain the 16-byte alignment for csp.
874   while (!registers.IsEmpty()) {
875     int count_before = registers.Count();
876     const CPURegister& src0 = registers.PopHighestIndex();
877     const CPURegister& src1 = registers.PopHighestIndex();
878     const CPURegister& src2 = registers.PopHighestIndex();
879     const CPURegister& src3 = registers.PopHighestIndex();
880     int count = count_before - registers.Count();
881     PushHelper(count, size, src0, src1, src2, src3);
882   }
883 }
884
885
886 void MacroAssembler::PopCPURegList(CPURegList registers) {
887   int size = registers.RegisterSizeInBytes();
888
889   // Pop up to four registers at a time because if the current stack pointer is
890   // csp and reg_size is 32, registers must be pushed in blocks of four in
891   // order to maintain the 16-byte alignment for csp.
892   while (!registers.IsEmpty()) {
893     int count_before = registers.Count();
894     const CPURegister& dst0 = registers.PopLowestIndex();
895     const CPURegister& dst1 = registers.PopLowestIndex();
896     const CPURegister& dst2 = registers.PopLowestIndex();
897     const CPURegister& dst3 = registers.PopLowestIndex();
898     int count = count_before - registers.Count();
899     PopHelper(count, size, dst0, dst1, dst2, dst3);
900   }
901   PopPostamble(registers.Count(), size);
902 }
903
904
905 void MacroAssembler::PushMultipleTimes(CPURegister src, int count) {
906   int size = src.SizeInBytes();
907
908   PushPreamble(count, size);
909
910   if (FLAG_optimize_for_size && count > 8) {
911     UseScratchRegisterScope temps(this);
912     Register temp = temps.AcquireX();
913
914     Label loop;
915     __ Mov(temp, count / 2);
916     __ Bind(&loop);
917     PushHelper(2, size, src, src, NoReg, NoReg);
918     __ Subs(temp, temp, 1);
919     __ B(ne, &loop);
920
921     count %= 2;
922   }
923
924   // Push up to four registers at a time if possible because if the current
925   // stack pointer is csp and the register size is 32, registers must be pushed
926   // in blocks of four in order to maintain the 16-byte alignment for csp.
927   while (count >= 4) {
928     PushHelper(4, size, src, src, src, src);
929     count -= 4;
930   }
931   if (count >= 2) {
932     PushHelper(2, size, src, src, NoReg, NoReg);
933     count -= 2;
934   }
935   if (count == 1) {
936     PushHelper(1, size, src, NoReg, NoReg, NoReg);
937     count -= 1;
938   }
939   ASSERT(count == 0);
940 }
941
942
943 void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) {
944   PushPreamble(Operand(count, UXTW, WhichPowerOf2(src.SizeInBytes())));
945
946   UseScratchRegisterScope temps(this);
947   Register temp = temps.AcquireSameSizeAs(count);
948
949   if (FLAG_optimize_for_size) {
950     Label loop, done;
951
952     Subs(temp, count, 1);
953     B(mi, &done);
954
955     // Push all registers individually, to save code size.
956     Bind(&loop);
957     Subs(temp, temp, 1);
958     PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
959     B(pl, &loop);
960
961     Bind(&done);
962   } else {
963     Label loop, leftover2, leftover1, done;
964
965     Subs(temp, count, 4);
966     B(mi, &leftover2);
967
968     // Push groups of four first.
969     Bind(&loop);
970     Subs(temp, temp, 4);
971     PushHelper(4, src.SizeInBytes(), src, src, src, src);
972     B(pl, &loop);
973
974     // Push groups of two.
975     Bind(&leftover2);
976     Tbz(count, 1, &leftover1);
977     PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg);
978
979     // Push the last one (if required).
980     Bind(&leftover1);
981     Tbz(count, 0, &done);
982     PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
983
984     Bind(&done);
985   }
986 }
987
988
989 void MacroAssembler::PushHelper(int count, int size,
990                                 const CPURegister& src0,
991                                 const CPURegister& src1,
992                                 const CPURegister& src2,
993                                 const CPURegister& src3) {
994   // Ensure that we don't unintentially modify scratch or debug registers.
995   InstructionAccurateScope scope(this);
996
997   ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
998   ASSERT(size == src0.SizeInBytes());
999
1000   // When pushing multiple registers, the store order is chosen such that
1001   // Push(a, b) is equivalent to Push(a) followed by Push(b).
1002   switch (count) {
1003     case 1:
1004       ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone());
1005       str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
1006       break;
1007     case 2:
1008       ASSERT(src2.IsNone() && src3.IsNone());
1009       stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
1010       break;
1011     case 3:
1012       ASSERT(src3.IsNone());
1013       stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
1014       str(src0, MemOperand(StackPointer(), 2 * size));
1015       break;
1016     case 4:
1017       // Skip over 4 * size, then fill in the gap. This allows four W registers
1018       // to be pushed using csp, whilst maintaining 16-byte alignment for csp
1019       // at all times.
1020       stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
1021       stp(src1, src0, MemOperand(StackPointer(), 2 * size));
1022       break;
1023     default:
1024       UNREACHABLE();
1025   }
1026 }
1027
1028
1029 void MacroAssembler::PopHelper(int count, int size,
1030                                const CPURegister& dst0,
1031                                const CPURegister& dst1,
1032                                const CPURegister& dst2,
1033                                const CPURegister& dst3) {
1034   // Ensure that we don't unintentially modify scratch or debug registers.
1035   InstructionAccurateScope scope(this);
1036
1037   ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
1038   ASSERT(size == dst0.SizeInBytes());
1039
1040   // When popping multiple registers, the load order is chosen such that
1041   // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
1042   switch (count) {
1043     case 1:
1044       ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
1045       ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
1046       break;
1047     case 2:
1048       ASSERT(dst2.IsNone() && dst3.IsNone());
1049       ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
1050       break;
1051     case 3:
1052       ASSERT(dst3.IsNone());
1053       ldr(dst2, MemOperand(StackPointer(), 2 * size));
1054       ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
1055       break;
1056     case 4:
1057       // Load the higher addresses first, then load the lower addresses and
1058       // skip the whole block in the second instruction. This allows four W
1059       // registers to be popped using csp, whilst maintaining 16-byte alignment
1060       // for csp at all times.
1061       ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
1062       ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
1063       break;
1064     default:
1065       UNREACHABLE();
1066   }
1067 }
1068
1069
1070 void MacroAssembler::PushPreamble(Operand total_size) {
1071   if (csp.Is(StackPointer())) {
1072     // If the current stack pointer is csp, then it must be aligned to 16 bytes
1073     // on entry and the total size of the specified registers must also be a
1074     // multiple of 16 bytes.
1075     if (total_size.IsImmediate()) {
1076       ASSERT((total_size.ImmediateValue() % 16) == 0);
1077     }
1078
1079     // Don't check access size for non-immediate sizes. It's difficult to do
1080     // well, and it will be caught by hardware (or the simulator) anyway.
1081   } else {
1082     // Even if the current stack pointer is not the system stack pointer (csp),
1083     // the system stack pointer will still be modified in order to comply with
1084     // ABI rules about accessing memory below the system stack pointer.
1085     BumpSystemStackPointer(total_size);
1086   }
1087 }
1088
1089
1090 void MacroAssembler::PopPostamble(Operand total_size) {
1091   if (csp.Is(StackPointer())) {
1092     // If the current stack pointer is csp, then it must be aligned to 16 bytes
1093     // on entry and the total size of the specified registers must also be a
1094     // multiple of 16 bytes.
1095     if (total_size.IsImmediate()) {
1096       ASSERT((total_size.ImmediateValue() % 16) == 0);
1097     }
1098
1099     // Don't check access size for non-immediate sizes. It's difficult to do
1100     // well, and it will be caught by hardware (or the simulator) anyway.
1101   } else if (emit_debug_code()) {
1102     // It is safe to leave csp where it is when unwinding the JavaScript stack,
1103     // but if we keep it matching StackPointer, the simulator can detect memory
1104     // accesses in the now-free part of the stack.
1105     SyncSystemStackPointer();
1106   }
1107 }
1108
1109
1110 void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) {
1111   if (offset.IsImmediate()) {
1112     ASSERT(offset.ImmediateValue() >= 0);
1113   } else if (emit_debug_code()) {
1114     Cmp(xzr, offset);
1115     Check(le, kStackAccessBelowStackPointer);
1116   }
1117
1118   Str(src, MemOperand(StackPointer(), offset));
1119 }
1120
1121
1122 void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) {
1123   if (offset.IsImmediate()) {
1124     ASSERT(offset.ImmediateValue() >= 0);
1125   } else if (emit_debug_code()) {
1126     Cmp(xzr, offset);
1127     Check(le, kStackAccessBelowStackPointer);
1128   }
1129
1130   Ldr(dst, MemOperand(StackPointer(), offset));
1131 }
1132
1133
1134 void MacroAssembler::PokePair(const CPURegister& src1,
1135                               const CPURegister& src2,
1136                               int offset) {
1137   ASSERT(AreSameSizeAndType(src1, src2));
1138   ASSERT((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
1139   Stp(src1, src2, MemOperand(StackPointer(), offset));
1140 }
1141
1142
1143 void MacroAssembler::PeekPair(const CPURegister& dst1,
1144                               const CPURegister& dst2,
1145                               int offset) {
1146   ASSERT(AreSameSizeAndType(dst1, dst2));
1147   ASSERT((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
1148   Ldp(dst1, dst2, MemOperand(StackPointer(), offset));
1149 }
1150
1151
1152 void MacroAssembler::PushCalleeSavedRegisters() {
1153   // Ensure that the macro-assembler doesn't use any scratch registers.
1154   InstructionAccurateScope scope(this);
1155
1156   // This method must not be called unless the current stack pointer is the
1157   // system stack pointer (csp).
1158   ASSERT(csp.Is(StackPointer()));
1159
1160   MemOperand tos(csp, -2 * kXRegSize, PreIndex);
1161
1162   stp(d14, d15, tos);
1163   stp(d12, d13, tos);
1164   stp(d10, d11, tos);
1165   stp(d8, d9, tos);
1166
1167   stp(x29, x30, tos);
1168   stp(x27, x28, tos);    // x28 = jssp
1169   stp(x25, x26, tos);
1170   stp(x23, x24, tos);
1171   stp(x21, x22, tos);
1172   stp(x19, x20, tos);
1173 }
1174
1175
1176 void MacroAssembler::PopCalleeSavedRegisters() {
1177   // Ensure that the macro-assembler doesn't use any scratch registers.
1178   InstructionAccurateScope scope(this);
1179
1180   // This method must not be called unless the current stack pointer is the
1181   // system stack pointer (csp).
1182   ASSERT(csp.Is(StackPointer()));
1183
1184   MemOperand tos(csp, 2 * kXRegSize, PostIndex);
1185
1186   ldp(x19, x20, tos);
1187   ldp(x21, x22, tos);
1188   ldp(x23, x24, tos);
1189   ldp(x25, x26, tos);
1190   ldp(x27, x28, tos);    // x28 = jssp
1191   ldp(x29, x30, tos);
1192
1193   ldp(d8, d9, tos);
1194   ldp(d10, d11, tos);
1195   ldp(d12, d13, tos);
1196   ldp(d14, d15, tos);
1197 }
1198
1199
1200 void MacroAssembler::AssertStackConsistency() {
1201   // Avoid emitting code when !use_real_abort() since non-real aborts cause too
1202   // much code to be generated.
1203   if (emit_debug_code() && use_real_aborts()) {
1204     if (csp.Is(StackPointer()) || CpuFeatures::IsSupported(ALWAYS_ALIGN_CSP)) {
1205       // Always check the alignment of csp if ALWAYS_ALIGN_CSP is true.  We
1206       // can't check the alignment of csp without using a scratch register (or
1207       // clobbering the flags), but the processor (or simulator) will abort if
1208       // it is not properly aligned during a load.
1209       ldr(xzr, MemOperand(csp, 0));
1210     }
1211     if (FLAG_enable_slow_asserts && !csp.Is(StackPointer())) {
1212       Label ok;
1213       // Check that csp <= StackPointer(), preserving all registers and NZCV.
1214       sub(StackPointer(), csp, StackPointer());
1215       cbz(StackPointer(), &ok);                 // Ok if csp == StackPointer().
1216       tbnz(StackPointer(), kXSignBit, &ok);     // Ok if csp < StackPointer().
1217
1218       // Avoid generating AssertStackConsistency checks for the Push in Abort.
1219       { DontEmitDebugCodeScope dont_emit_debug_code_scope(this);
1220         Abort(kTheCurrentStackPointerIsBelowCsp);
1221       }
1222
1223       bind(&ok);
1224       // Restore StackPointer().
1225       sub(StackPointer(), csp, StackPointer());
1226     }
1227   }
1228 }
1229
1230
1231 void MacroAssembler::AssertFPCRState(Register fpcr) {
1232   if (emit_debug_code()) {
1233     Label unexpected_mode, done;
1234     UseScratchRegisterScope temps(this);
1235     if (fpcr.IsNone()) {
1236       fpcr = temps.AcquireX();
1237       Mrs(fpcr, FPCR);
1238     }
1239
1240     // Settings overridden by ConfiugreFPCR():
1241     //   - Assert that default-NaN mode is set.
1242     Tbz(fpcr, DN_offset, &unexpected_mode);
1243
1244     // Settings left to their default values:
1245     //   - Assert that flush-to-zero is not set.
1246     Tbnz(fpcr, FZ_offset, &unexpected_mode);
1247     //   - Assert that the rounding mode is nearest-with-ties-to-even.
1248     STATIC_ASSERT(FPTieEven == 0);
1249     Tst(fpcr, RMode_mask);
1250     B(eq, &done);
1251
1252     Bind(&unexpected_mode);
1253     Abort(kUnexpectedFPCRMode);
1254
1255     Bind(&done);
1256   }
1257 }
1258
1259
1260 void MacroAssembler::ConfigureFPCR() {
1261   UseScratchRegisterScope temps(this);
1262   Register fpcr = temps.AcquireX();
1263   Mrs(fpcr, FPCR);
1264
1265   // If necessary, enable default-NaN mode. The default values of the other FPCR
1266   // options should be suitable, and AssertFPCRState will verify that.
1267   Label no_write_required;
1268   Tbnz(fpcr, DN_offset, &no_write_required);
1269
1270   Orr(fpcr, fpcr, DN_mask);
1271   Msr(FPCR, fpcr);
1272
1273   Bind(&no_write_required);
1274   AssertFPCRState(fpcr);
1275 }
1276
1277
1278 void MacroAssembler::CanonicalizeNaN(const FPRegister& dst,
1279                                      const FPRegister& src) {
1280   AssertFPCRState();
1281
1282   // With DN=1 and RMode=FPTieEven, subtracting 0.0 preserves all inputs except
1283   // for NaNs, which become the default NaN. We use fsub rather than fadd
1284   // because sub preserves -0.0 inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0.
1285   Fsub(dst, src, fp_zero);
1286 }
1287
1288
1289 void MacroAssembler::LoadRoot(CPURegister destination,
1290                               Heap::RootListIndex index) {
1291   // TODO(jbramley): Most root values are constants, and can be synthesized
1292   // without a load. Refer to the ARM back end for details.
1293   Ldr(destination, MemOperand(root, index << kPointerSizeLog2));
1294 }
1295
1296
1297 void MacroAssembler::StoreRoot(Register source,
1298                                Heap::RootListIndex index) {
1299   Str(source, MemOperand(root, index << kPointerSizeLog2));
1300 }
1301
1302
1303 void MacroAssembler::LoadTrueFalseRoots(Register true_root,
1304                                         Register false_root) {
1305   STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex);
1306   Ldp(true_root, false_root,
1307       MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2));
1308 }
1309
1310
1311 void MacroAssembler::LoadHeapObject(Register result,
1312                                     Handle<HeapObject> object) {
1313   AllowDeferredHandleDereference using_raw_address;
1314   if (isolate()->heap()->InNewSpace(*object)) {
1315     Handle<Cell> cell = isolate()->factory()->NewCell(object);
1316     Mov(result, Operand(cell));
1317     Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
1318   } else {
1319     Mov(result, Operand(object));
1320   }
1321 }
1322
1323
1324 void MacroAssembler::LoadInstanceDescriptors(Register map,
1325                                              Register descriptors) {
1326   Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
1327 }
1328
1329
1330 void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
1331   Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
1332   DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
1333 }
1334
1335
1336 void MacroAssembler::EnumLengthUntagged(Register dst, Register map) {
1337   STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
1338   Ldrsw(dst, FieldMemOperand(map, Map::kBitField3Offset));
1339   And(dst, dst, Map::EnumLengthBits::kMask);
1340 }
1341
1342
1343 void MacroAssembler::EnumLengthSmi(Register dst, Register map) {
1344   EnumLengthUntagged(dst, map);
1345   SmiTag(dst, dst);
1346 }
1347
1348
1349 void MacroAssembler::CheckEnumCache(Register object,
1350                                     Register null_value,
1351                                     Register scratch0,
1352                                     Register scratch1,
1353                                     Register scratch2,
1354                                     Register scratch3,
1355                                     Label* call_runtime) {
1356   ASSERT(!AreAliased(object, null_value, scratch0, scratch1, scratch2,
1357                      scratch3));
1358
1359   Register empty_fixed_array_value = scratch0;
1360   Register current_object = scratch1;
1361
1362   LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
1363   Label next, start;
1364
1365   Mov(current_object, object);
1366
1367   // Check if the enum length field is properly initialized, indicating that
1368   // there is an enum cache.
1369   Register map = scratch2;
1370   Register enum_length = scratch3;
1371   Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1372
1373   EnumLengthUntagged(enum_length, map);
1374   Cmp(enum_length, kInvalidEnumCacheSentinel);
1375   B(eq, call_runtime);
1376
1377   B(&start);
1378
1379   Bind(&next);
1380   Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1381
1382   // For all objects but the receiver, check that the cache is empty.
1383   EnumLengthUntagged(enum_length, map);
1384   Cbnz(enum_length, call_runtime);
1385
1386   Bind(&start);
1387
1388   // Check that there are no elements. Register current_object contains the
1389   // current JS object we've reached through the prototype chain.
1390   Label no_elements;
1391   Ldr(current_object, FieldMemOperand(current_object,
1392                                       JSObject::kElementsOffset));
1393   Cmp(current_object, empty_fixed_array_value);
1394   B(eq, &no_elements);
1395
1396   // Second chance, the object may be using the empty slow element dictionary.
1397   CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex);
1398   B(ne, call_runtime);
1399
1400   Bind(&no_elements);
1401   Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset));
1402   Cmp(current_object, null_value);
1403   B(ne, &next);
1404 }
1405
1406
1407 void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver,
1408                                                      Register scratch1,
1409                                                      Register scratch2,
1410                                                      Label* no_memento_found) {
1411   ExternalReference new_space_start =
1412       ExternalReference::new_space_start(isolate());
1413   ExternalReference new_space_allocation_top =
1414       ExternalReference::new_space_allocation_top_address(isolate());
1415
1416   Add(scratch1, receiver,
1417       JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag);
1418   Cmp(scratch1, new_space_start);
1419   B(lt, no_memento_found);
1420
1421   Mov(scratch2, new_space_allocation_top);
1422   Ldr(scratch2, MemOperand(scratch2));
1423   Cmp(scratch1, scratch2);
1424   B(gt, no_memento_found);
1425
1426   Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize));
1427   Cmp(scratch1,
1428       Operand(isolate()->factory()->allocation_memento_map()));
1429 }
1430
1431
1432 void MacroAssembler::JumpToHandlerEntry(Register exception,
1433                                         Register object,
1434                                         Register state,
1435                                         Register scratch1,
1436                                         Register scratch2) {
1437   // Handler expects argument in x0.
1438   ASSERT(exception.Is(x0));
1439
1440   // Compute the handler entry address and jump to it. The handler table is
1441   // a fixed array of (smi-tagged) code offsets.
1442   Ldr(scratch1, FieldMemOperand(object, Code::kHandlerTableOffset));
1443   Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
1444   STATIC_ASSERT(StackHandler::kKindWidth < kPointerSizeLog2);
1445   Lsr(scratch2, state, StackHandler::kKindWidth);
1446   Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2));
1447   Add(scratch1, object, Code::kHeaderSize - kHeapObjectTag);
1448   Add(scratch1, scratch1, Operand::UntagSmi(scratch2));
1449   Br(scratch1);
1450 }
1451
1452
1453 void MacroAssembler::InNewSpace(Register object,
1454                                 Condition cond,
1455                                 Label* branch) {
1456   ASSERT(cond == eq || cond == ne);
1457   UseScratchRegisterScope temps(this);
1458   Register temp = temps.AcquireX();
1459   And(temp, object, ExternalReference::new_space_mask(isolate()));
1460   Cmp(temp, ExternalReference::new_space_start(isolate()));
1461   B(cond, branch);
1462 }
1463
1464
1465 void MacroAssembler::Throw(Register value,
1466                            Register scratch1,
1467                            Register scratch2,
1468                            Register scratch3,
1469                            Register scratch4) {
1470   // Adjust this code if not the case.
1471   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1472   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1473   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1474   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1475   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1476   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1477
1478   // The handler expects the exception in x0.
1479   ASSERT(value.Is(x0));
1480
1481   // Drop the stack pointer to the top of the top handler.
1482   ASSERT(jssp.Is(StackPointer()));
1483   Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
1484                                           isolate())));
1485   Ldr(jssp, MemOperand(scratch1));
1486   // Restore the next handler.
1487   Pop(scratch2);
1488   Str(scratch2, MemOperand(scratch1));
1489
1490   // Get the code object and state.  Restore the context and frame pointer.
1491   Register object = scratch1;
1492   Register state = scratch2;
1493   Pop(object, state, cp, fp);
1494
1495   // If the handler is a JS frame, restore the context to the frame.
1496   // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
1497   // or cp.
1498   Label not_js_frame;
1499   Cbz(cp, &not_js_frame);
1500   Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1501   Bind(&not_js_frame);
1502
1503   JumpToHandlerEntry(value, object, state, scratch3, scratch4);
1504 }
1505
1506
1507 void MacroAssembler::ThrowUncatchable(Register value,
1508                                       Register scratch1,
1509                                       Register scratch2,
1510                                       Register scratch3,
1511                                       Register scratch4) {
1512   // Adjust this code if not the case.
1513   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1514   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
1515   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1516   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1517   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1518   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1519
1520   // The handler expects the exception in x0.
1521   ASSERT(value.Is(x0));
1522
1523   // Drop the stack pointer to the top of the top stack handler.
1524   ASSERT(jssp.Is(StackPointer()));
1525   Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
1526                                           isolate())));
1527   Ldr(jssp, MemOperand(scratch1));
1528
1529   // Unwind the handlers until the ENTRY handler is found.
1530   Label fetch_next, check_kind;
1531   B(&check_kind);
1532   Bind(&fetch_next);
1533   Peek(jssp, StackHandlerConstants::kNextOffset);
1534
1535   Bind(&check_kind);
1536   STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
1537   Peek(scratch2, StackHandlerConstants::kStateOffset);
1538   TestAndBranchIfAnySet(scratch2, StackHandler::KindField::kMask, &fetch_next);
1539
1540   // Set the top handler address to next handler past the top ENTRY handler.
1541   Pop(scratch2);
1542   Str(scratch2, MemOperand(scratch1));
1543
1544   // Get the code object and state.  Clear the context and frame pointer (0 was
1545   // saved in the handler).
1546   Register object = scratch1;
1547   Register state = scratch2;
1548   Pop(object, state, cp, fp);
1549
1550   JumpToHandlerEntry(value, object, state, scratch3, scratch4);
1551 }
1552
1553
1554 void MacroAssembler::SmiAbs(const Register& smi, Label* slow) {
1555   ASSERT(smi.Is64Bits());
1556   Abs(smi, smi, slow);
1557 }
1558
1559
1560 void MacroAssembler::AssertSmi(Register object, BailoutReason reason) {
1561   if (emit_debug_code()) {
1562     STATIC_ASSERT(kSmiTag == 0);
1563     Tst(object, kSmiTagMask);
1564     Check(eq, reason);
1565   }
1566 }
1567
1568
1569 void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) {
1570   if (emit_debug_code()) {
1571     STATIC_ASSERT(kSmiTag == 0);
1572     Tst(object, kSmiTagMask);
1573     Check(ne, reason);
1574   }
1575 }
1576
1577
1578 void MacroAssembler::AssertName(Register object) {
1579   if (emit_debug_code()) {
1580     AssertNotSmi(object, kOperandIsASmiAndNotAName);
1581
1582     UseScratchRegisterScope temps(this);
1583     Register temp = temps.AcquireX();
1584
1585     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1586     CompareInstanceType(temp, temp, LAST_NAME_TYPE);
1587     Check(ls, kOperandIsNotAName);
1588   }
1589 }
1590
1591
1592 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
1593                                                      Register scratch) {
1594   if (emit_debug_code()) {
1595     Label done_checking;
1596     AssertNotSmi(object);
1597     JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking);
1598     Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1599     CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
1600     Assert(eq, kExpectedUndefinedOrCell);
1601     Bind(&done_checking);
1602   }
1603 }
1604
1605
1606 void MacroAssembler::AssertString(Register object) {
1607   if (emit_debug_code()) {
1608     UseScratchRegisterScope temps(this);
1609     Register temp = temps.AcquireX();
1610     STATIC_ASSERT(kSmiTag == 0);
1611     Tst(object, kSmiTagMask);
1612     Check(ne, kOperandIsASmiAndNotAString);
1613     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1614     CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
1615     Check(lo, kOperandIsNotAString);
1616   }
1617 }
1618
1619
1620 void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
1621   ASSERT(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
1622   Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
1623 }
1624
1625
1626 void MacroAssembler::TailCallStub(CodeStub* stub) {
1627   Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
1628 }
1629
1630
1631 void MacroAssembler::CallRuntime(const Runtime::Function* f,
1632                                  int num_arguments,
1633                                  SaveFPRegsMode save_doubles) {
1634   // All arguments must be on the stack before this function is called.
1635   // x0 holds the return value after the call.
1636
1637   // Check that the number of arguments matches what the function expects.
1638   // If f->nargs is -1, the function can accept a variable number of arguments.
1639   CHECK(f->nargs < 0 || f->nargs == num_arguments);
1640
1641   // Place the necessary arguments.
1642   Mov(x0, num_arguments);
1643   Mov(x1, ExternalReference(f, isolate()));
1644
1645   CEntryStub stub(isolate(), 1, save_doubles);
1646   CallStub(&stub);
1647 }
1648
1649
1650 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
1651   return ref0.address() - ref1.address();
1652 }
1653
1654
1655 void MacroAssembler::CallApiFunctionAndReturn(
1656     Register function_address,
1657     ExternalReference thunk_ref,
1658     int stack_space,
1659     int spill_offset,
1660     MemOperand return_value_operand,
1661     MemOperand* context_restore_operand) {
1662   ASM_LOCATION("CallApiFunctionAndReturn");
1663   ExternalReference next_address =
1664       ExternalReference::handle_scope_next_address(isolate());
1665   const int kNextOffset = 0;
1666   const int kLimitOffset = AddressOffset(
1667       ExternalReference::handle_scope_limit_address(isolate()),
1668       next_address);
1669   const int kLevelOffset = AddressOffset(
1670       ExternalReference::handle_scope_level_address(isolate()),
1671       next_address);
1672
1673   ASSERT(function_address.is(x1) || function_address.is(x2));
1674
1675   Label profiler_disabled;
1676   Label end_profiler_check;
1677   Mov(x10, ExternalReference::is_profiling_address(isolate()));
1678   Ldrb(w10, MemOperand(x10));
1679   Cbz(w10, &profiler_disabled);
1680   Mov(x3, thunk_ref);
1681   B(&end_profiler_check);
1682
1683   Bind(&profiler_disabled);
1684   Mov(x3, function_address);
1685   Bind(&end_profiler_check);
1686
1687   // Save the callee-save registers we are going to use.
1688   // TODO(all): Is this necessary? ARM doesn't do it.
1689   STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
1690   Poke(x19, (spill_offset + 0) * kXRegSize);
1691   Poke(x20, (spill_offset + 1) * kXRegSize);
1692   Poke(x21, (spill_offset + 2) * kXRegSize);
1693   Poke(x22, (spill_offset + 3) * kXRegSize);
1694
1695   // Allocate HandleScope in callee-save registers.
1696   // We will need to restore the HandleScope after the call to the API function,
1697   // by allocating it in callee-save registers they will be preserved by C code.
1698   Register handle_scope_base = x22;
1699   Register next_address_reg = x19;
1700   Register limit_reg = x20;
1701   Register level_reg = w21;
1702
1703   Mov(handle_scope_base, next_address);
1704   Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
1705   Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
1706   Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1707   Add(level_reg, level_reg, 1);
1708   Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1709
1710   if (FLAG_log_timer_events) {
1711     FrameScope frame(this, StackFrame::MANUAL);
1712     PushSafepointRegisters();
1713     Mov(x0, ExternalReference::isolate_address(isolate()));
1714     CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
1715     PopSafepointRegisters();
1716   }
1717
1718   // Native call returns to the DirectCEntry stub which redirects to the
1719   // return address pushed on stack (could have moved after GC).
1720   // DirectCEntry stub itself is generated early and never moves.
1721   DirectCEntryStub stub(isolate());
1722   stub.GenerateCall(this, x3);
1723
1724   if (FLAG_log_timer_events) {
1725     FrameScope frame(this, StackFrame::MANUAL);
1726     PushSafepointRegisters();
1727     Mov(x0, ExternalReference::isolate_address(isolate()));
1728     CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
1729     PopSafepointRegisters();
1730   }
1731
1732   Label promote_scheduled_exception;
1733   Label exception_handled;
1734   Label delete_allocated_handles;
1735   Label leave_exit_frame;
1736   Label return_value_loaded;
1737
1738   // Load value from ReturnValue.
1739   Ldr(x0, return_value_operand);
1740   Bind(&return_value_loaded);
1741   // No more valid handles (the result handle was the last one). Restore
1742   // previous handle scope.
1743   Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
1744   if (emit_debug_code()) {
1745     Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
1746     Cmp(w1, level_reg);
1747     Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
1748   }
1749   Sub(level_reg, level_reg, 1);
1750   Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1751   Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
1752   Cmp(limit_reg, x1);
1753   B(ne, &delete_allocated_handles);
1754
1755   Bind(&leave_exit_frame);
1756   // Restore callee-saved registers.
1757   Peek(x19, (spill_offset + 0) * kXRegSize);
1758   Peek(x20, (spill_offset + 1) * kXRegSize);
1759   Peek(x21, (spill_offset + 2) * kXRegSize);
1760   Peek(x22, (spill_offset + 3) * kXRegSize);
1761
1762   // Check if the function scheduled an exception.
1763   Mov(x5, ExternalReference::scheduled_exception_address(isolate()));
1764   Ldr(x5, MemOperand(x5));
1765   JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, &promote_scheduled_exception);
1766   Bind(&exception_handled);
1767
1768   bool restore_context = context_restore_operand != NULL;
1769   if (restore_context) {
1770     Ldr(cp, *context_restore_operand);
1771   }
1772
1773   LeaveExitFrame(false, x1, !restore_context);
1774   Drop(stack_space);
1775   Ret();
1776
1777   Bind(&promote_scheduled_exception);
1778   {
1779     FrameScope frame(this, StackFrame::INTERNAL);
1780     CallExternalReference(
1781         ExternalReference(
1782             Runtime::kHiddenPromoteScheduledException, isolate()), 0);
1783   }
1784   B(&exception_handled);
1785
1786   // HandleScope limit has changed. Delete allocated extensions.
1787   Bind(&delete_allocated_handles);
1788   Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
1789   // Save the return value in a callee-save register.
1790   Register saved_result = x19;
1791   Mov(saved_result, x0);
1792   Mov(x0, ExternalReference::isolate_address(isolate()));
1793   CallCFunction(
1794       ExternalReference::delete_handle_scope_extensions(isolate()), 1);
1795   Mov(x0, saved_result);
1796   B(&leave_exit_frame);
1797 }
1798
1799
1800 void MacroAssembler::CallExternalReference(const ExternalReference& ext,
1801                                            int num_arguments) {
1802   Mov(x0, num_arguments);
1803   Mov(x1, ext);
1804
1805   CEntryStub stub(isolate(), 1);
1806   CallStub(&stub);
1807 }
1808
1809
1810 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
1811   Mov(x1, builtin);
1812   CEntryStub stub(isolate(), 1);
1813   Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
1814 }
1815
1816
1817 void MacroAssembler::GetBuiltinFunction(Register target,
1818                                         Builtins::JavaScript id) {
1819   // Load the builtins object into target register.
1820   Ldr(target, GlobalObjectMemOperand());
1821   Ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
1822   // Load the JavaScript builtin function from the builtins object.
1823   Ldr(target, FieldMemOperand(target,
1824                           JSBuiltinsObject::OffsetOfFunctionWithId(id)));
1825 }
1826
1827
1828 void MacroAssembler::GetBuiltinEntry(Register target,
1829                                      Register function,
1830                                      Builtins::JavaScript id) {
1831   ASSERT(!AreAliased(target, function));
1832   GetBuiltinFunction(function, id);
1833   // Load the code entry point from the builtins object.
1834   Ldr(target, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
1835 }
1836
1837
1838 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
1839                                    InvokeFlag flag,
1840                                    const CallWrapper& call_wrapper) {
1841   ASM_LOCATION("MacroAssembler::InvokeBuiltin");
1842   // You can't call a builtin without a valid frame.
1843   ASSERT(flag == JUMP_FUNCTION || has_frame());
1844
1845   // Get the builtin entry in x2 and setup the function object in x1.
1846   GetBuiltinEntry(x2, x1, id);
1847   if (flag == CALL_FUNCTION) {
1848     call_wrapper.BeforeCall(CallSize(x2));
1849     Call(x2);
1850     call_wrapper.AfterCall();
1851   } else {
1852     ASSERT(flag == JUMP_FUNCTION);
1853     Jump(x2);
1854   }
1855 }
1856
1857
1858 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
1859                                                int num_arguments,
1860                                                int result_size) {
1861   // TODO(1236192): Most runtime routines don't need the number of
1862   // arguments passed in because it is constant. At some point we
1863   // should remove this need and make the runtime routine entry code
1864   // smarter.
1865   Mov(x0, num_arguments);
1866   JumpToExternalReference(ext);
1867 }
1868
1869
1870 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
1871                                      int num_arguments,
1872                                      int result_size) {
1873   TailCallExternalReference(ExternalReference(fid, isolate()),
1874                             num_arguments,
1875                             result_size);
1876 }
1877
1878
1879 void MacroAssembler::InitializeNewString(Register string,
1880                                          Register length,
1881                                          Heap::RootListIndex map_index,
1882                                          Register scratch1,
1883                                          Register scratch2) {
1884   ASSERT(!AreAliased(string, length, scratch1, scratch2));
1885   LoadRoot(scratch2, map_index);
1886   SmiTag(scratch1, length);
1887   Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
1888
1889   Mov(scratch2, String::kEmptyHashField);
1890   Str(scratch1, FieldMemOperand(string, String::kLengthOffset));
1891   Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset));
1892 }
1893
1894
1895 int MacroAssembler::ActivationFrameAlignment() {
1896 #if V8_HOST_ARCH_ARM64
1897   // Running on the real platform. Use the alignment as mandated by the local
1898   // environment.
1899   // Note: This will break if we ever start generating snapshots on one ARM
1900   // platform for another ARM platform with a different alignment.
1901   return OS::ActivationFrameAlignment();
1902 #else  // V8_HOST_ARCH_ARM64
1903   // If we are using the simulator then we should always align to the expected
1904   // alignment. As the simulator is used to generate snapshots we do not know
1905   // if the target platform will need alignment, so this is controlled from a
1906   // flag.
1907   return FLAG_sim_stack_alignment;
1908 #endif  // V8_HOST_ARCH_ARM64
1909 }
1910
1911
1912 void MacroAssembler::CallCFunction(ExternalReference function,
1913                                    int num_of_reg_args) {
1914   CallCFunction(function, num_of_reg_args, 0);
1915 }
1916
1917
1918 void MacroAssembler::CallCFunction(ExternalReference function,
1919                                    int num_of_reg_args,
1920                                    int num_of_double_args) {
1921   UseScratchRegisterScope temps(this);
1922   Register temp = temps.AcquireX();
1923   Mov(temp, function);
1924   CallCFunction(temp, num_of_reg_args, num_of_double_args);
1925 }
1926
1927
1928 void MacroAssembler::CallCFunction(Register function,
1929                                    int num_of_reg_args,
1930                                    int num_of_double_args) {
1931   ASSERT(has_frame());
1932   // We can pass 8 integer arguments in registers. If we need to pass more than
1933   // that, we'll need to implement support for passing them on the stack.
1934   ASSERT(num_of_reg_args <= 8);
1935
1936   // If we're passing doubles, we're limited to the following prototypes
1937   // (defined by ExternalReference::Type):
1938   //  BUILTIN_COMPARE_CALL:  int f(double, double)
1939   //  BUILTIN_FP_FP_CALL:    double f(double, double)
1940   //  BUILTIN_FP_CALL:       double f(double)
1941   //  BUILTIN_FP_INT_CALL:   double f(double, int)
1942   if (num_of_double_args > 0) {
1943     ASSERT(num_of_reg_args <= 1);
1944     ASSERT((num_of_double_args + num_of_reg_args) <= 2);
1945   }
1946
1947
1948   // If the stack pointer is not csp, we need to derive an aligned csp from the
1949   // current stack pointer.
1950   const Register old_stack_pointer = StackPointer();
1951   if (!csp.Is(old_stack_pointer)) {
1952     AssertStackConsistency();
1953
1954     int sp_alignment = ActivationFrameAlignment();
1955     // The ABI mandates at least 16-byte alignment.
1956     ASSERT(sp_alignment >= 16);
1957     ASSERT(IsPowerOf2(sp_alignment));
1958
1959     // The current stack pointer is a callee saved register, and is preserved
1960     // across the call.
1961     ASSERT(kCalleeSaved.IncludesAliasOf(old_stack_pointer));
1962
1963     // Align and synchronize the system stack pointer with jssp.
1964     Bic(csp, old_stack_pointer, sp_alignment - 1);
1965     SetStackPointer(csp);
1966   }
1967
1968   // Call directly. The function called cannot cause a GC, or allow preemption,
1969   // so the return address in the link register stays correct.
1970   Call(function);
1971
1972   if (!csp.Is(old_stack_pointer)) {
1973     if (emit_debug_code()) {
1974       // Because the stack pointer must be aligned on a 16-byte boundary, the
1975       // aligned csp can be up to 12 bytes below the jssp. This is the case
1976       // where we only pushed one W register on top of an aligned jssp.
1977       UseScratchRegisterScope temps(this);
1978       Register temp = temps.AcquireX();
1979       ASSERT(ActivationFrameAlignment() == 16);
1980       Sub(temp, csp, old_stack_pointer);
1981       // We want temp <= 0 && temp >= -12.
1982       Cmp(temp, 0);
1983       Ccmp(temp, -12, NFlag, le);
1984       Check(ge, kTheStackWasCorruptedByMacroAssemblerCall);
1985     }
1986     SetStackPointer(old_stack_pointer);
1987   }
1988 }
1989
1990
1991 void MacroAssembler::Jump(Register target) {
1992   Br(target);
1993 }
1994
1995
1996 void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode) {
1997   UseScratchRegisterScope temps(this);
1998   Register temp = temps.AcquireX();
1999   Mov(temp, Operand(target, rmode));
2000   Br(temp);
2001 }
2002
2003
2004 void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode) {
2005   ASSERT(!RelocInfo::IsCodeTarget(rmode));
2006   Jump(reinterpret_cast<intptr_t>(target), rmode);
2007 }
2008
2009
2010 void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode) {
2011   ASSERT(RelocInfo::IsCodeTarget(rmode));
2012   AllowDeferredHandleDereference embedding_raw_address;
2013   Jump(reinterpret_cast<intptr_t>(code.location()), rmode);
2014 }
2015
2016
2017 void MacroAssembler::Call(Register target) {
2018   BlockPoolsScope scope(this);
2019 #ifdef DEBUG
2020   Label start_call;
2021   Bind(&start_call);
2022 #endif
2023
2024   Blr(target);
2025
2026 #ifdef DEBUG
2027   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
2028 #endif
2029 }
2030
2031
2032 void MacroAssembler::Call(Label* target) {
2033   BlockPoolsScope scope(this);
2034 #ifdef DEBUG
2035   Label start_call;
2036   Bind(&start_call);
2037 #endif
2038
2039   Bl(target);
2040
2041 #ifdef DEBUG
2042   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
2043 #endif
2044 }
2045
2046
2047 // MacroAssembler::CallSize is sensitive to changes in this function, as it
2048 // requires to know how many instructions are used to branch to the target.
2049 void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) {
2050   BlockPoolsScope scope(this);
2051 #ifdef DEBUG
2052   Label start_call;
2053   Bind(&start_call);
2054 #endif
2055   // Statement positions are expected to be recorded when the target
2056   // address is loaded.
2057   positions_recorder()->WriteRecordedPositions();
2058
2059   // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2060   ASSERT(rmode != RelocInfo::NONE32);
2061
2062   UseScratchRegisterScope temps(this);
2063   Register temp = temps.AcquireX();
2064
2065   if (rmode == RelocInfo::NONE64) {
2066     // Addresses are 48 bits so we never need to load the upper 16 bits.
2067     uint64_t imm = reinterpret_cast<uint64_t>(target);
2068     // If we don't use ARM tagged addresses, the 16 higher bits must be 0.
2069     ASSERT(((imm >> 48) & 0xffff) == 0);
2070     movz(temp, (imm >> 0) & 0xffff, 0);
2071     movk(temp, (imm >> 16) & 0xffff, 16);
2072     movk(temp, (imm >> 32) & 0xffff, 32);
2073   } else {
2074     Ldr(temp, Immediate(reinterpret_cast<intptr_t>(target), rmode));
2075   }
2076   Blr(temp);
2077 #ifdef DEBUG
2078   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode));
2079 #endif
2080 }
2081
2082
2083 void MacroAssembler::Call(Handle<Code> code,
2084                           RelocInfo::Mode rmode,
2085                           TypeFeedbackId ast_id) {
2086 #ifdef DEBUG
2087   Label start_call;
2088   Bind(&start_call);
2089 #endif
2090
2091   if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) {
2092     SetRecordedAstId(ast_id);
2093     rmode = RelocInfo::CODE_TARGET_WITH_ID;
2094   }
2095
2096   AllowDeferredHandleDereference embedding_raw_address;
2097   Call(reinterpret_cast<Address>(code.location()), rmode);
2098
2099 #ifdef DEBUG
2100   // Check the size of the code generated.
2101   AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id));
2102 #endif
2103 }
2104
2105
2106 int MacroAssembler::CallSize(Register target) {
2107   USE(target);
2108   return kInstructionSize;
2109 }
2110
2111
2112 int MacroAssembler::CallSize(Label* target) {
2113   USE(target);
2114   return kInstructionSize;
2115 }
2116
2117
2118 int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) {
2119   USE(target);
2120
2121   // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2122   ASSERT(rmode != RelocInfo::NONE32);
2123
2124   if (rmode == RelocInfo::NONE64) {
2125     return kCallSizeWithoutRelocation;
2126   } else {
2127     return kCallSizeWithRelocation;
2128   }
2129 }
2130
2131
2132 int MacroAssembler::CallSize(Handle<Code> code,
2133                              RelocInfo::Mode rmode,
2134                              TypeFeedbackId ast_id) {
2135   USE(code);
2136   USE(ast_id);
2137
2138   // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2139   ASSERT(rmode != RelocInfo::NONE32);
2140
2141   if (rmode == RelocInfo::NONE64) {
2142     return kCallSizeWithoutRelocation;
2143   } else {
2144     return kCallSizeWithRelocation;
2145   }
2146 }
2147
2148
2149
2150
2151
2152 void MacroAssembler::JumpForHeapNumber(Register object,
2153                                        Register heap_number_map,
2154                                        Label* on_heap_number,
2155                                        Label* on_not_heap_number) {
2156   ASSERT(on_heap_number || on_not_heap_number);
2157   AssertNotSmi(object);
2158
2159   UseScratchRegisterScope temps(this);
2160   Register temp = temps.AcquireX();
2161
2162   // Load the HeapNumber map if it is not passed.
2163   if (heap_number_map.Is(NoReg)) {
2164     heap_number_map = temps.AcquireX();
2165     LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2166   } else {
2167     AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2168   }
2169
2170   ASSERT(!AreAliased(temp, heap_number_map));
2171
2172   Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2173   Cmp(temp, heap_number_map);
2174
2175   if (on_heap_number) {
2176     B(eq, on_heap_number);
2177   }
2178   if (on_not_heap_number) {
2179     B(ne, on_not_heap_number);
2180   }
2181 }
2182
2183
2184 void MacroAssembler::JumpIfHeapNumber(Register object,
2185                                       Label* on_heap_number,
2186                                       Register heap_number_map) {
2187   JumpForHeapNumber(object,
2188                     heap_number_map,
2189                     on_heap_number,
2190                     NULL);
2191 }
2192
2193
2194 void MacroAssembler::JumpIfNotHeapNumber(Register object,
2195                                          Label* on_not_heap_number,
2196                                          Register heap_number_map) {
2197   JumpForHeapNumber(object,
2198                     heap_number_map,
2199                     NULL,
2200                     on_not_heap_number);
2201 }
2202
2203
2204 void MacroAssembler::LookupNumberStringCache(Register object,
2205                                              Register result,
2206                                              Register scratch1,
2207                                              Register scratch2,
2208                                              Register scratch3,
2209                                              Label* not_found) {
2210   ASSERT(!AreAliased(object, result, scratch1, scratch2, scratch3));
2211
2212   // Use of registers. Register result is used as a temporary.
2213   Register number_string_cache = result;
2214   Register mask = scratch3;
2215
2216   // Load the number string cache.
2217   LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
2218
2219   // Make the hash mask from the length of the number string cache. It
2220   // contains two elements (number and string) for each cache entry.
2221   Ldrsw(mask, UntagSmiFieldMemOperand(number_string_cache,
2222                                       FixedArray::kLengthOffset));
2223   Asr(mask, mask, 1);  // Divide length by two.
2224   Sub(mask, mask, 1);  // Make mask.
2225
2226   // Calculate the entry in the number string cache. The hash value in the
2227   // number string cache for smis is just the smi value, and the hash for
2228   // doubles is the xor of the upper and lower words. See
2229   // Heap::GetNumberStringCache.
2230   Label is_smi;
2231   Label load_result_from_cache;
2232
2233   JumpIfSmi(object, &is_smi);
2234   CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found,
2235            DONT_DO_SMI_CHECK);
2236
2237   STATIC_ASSERT(kDoubleSize == (kWRegSize * 2));
2238   Add(scratch1, object, HeapNumber::kValueOffset - kHeapObjectTag);
2239   Ldp(scratch1.W(), scratch2.W(), MemOperand(scratch1));
2240   Eor(scratch1, scratch1, scratch2);
2241   And(scratch1, scratch1, mask);
2242
2243   // Calculate address of entry in string cache: each entry consists of two
2244   // pointer sized fields.
2245   Add(scratch1, number_string_cache,
2246       Operand(scratch1, LSL, kPointerSizeLog2 + 1));
2247
2248   Register probe = mask;
2249   Ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
2250   JumpIfSmi(probe, not_found);
2251   Ldr(d0, FieldMemOperand(object, HeapNumber::kValueOffset));
2252   Ldr(d1, FieldMemOperand(probe, HeapNumber::kValueOffset));
2253   Fcmp(d0, d1);
2254   B(ne, not_found);
2255   B(&load_result_from_cache);
2256
2257   Bind(&is_smi);
2258   Register scratch = scratch1;
2259   And(scratch, mask, Operand::UntagSmi(object));
2260   // Calculate address of entry in string cache: each entry consists
2261   // of two pointer sized fields.
2262   Add(scratch, number_string_cache,
2263       Operand(scratch, LSL, kPointerSizeLog2 + 1));
2264
2265   // Check if the entry is the smi we are looking for.
2266   Ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
2267   Cmp(object, probe);
2268   B(ne, not_found);
2269
2270   // Get the result from the cache.
2271   Bind(&load_result_from_cache);
2272   Ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
2273   IncrementCounter(isolate()->counters()->number_to_string_native(), 1,
2274                    scratch1, scratch2);
2275 }
2276
2277
2278 void MacroAssembler::TryRepresentDoubleAsInt(Register as_int,
2279                                              FPRegister value,
2280                                              FPRegister scratch_d,
2281                                              Label* on_successful_conversion,
2282                                              Label* on_failed_conversion) {
2283   // Convert to an int and back again, then compare with the original value.
2284   Fcvtzs(as_int, value);
2285   Scvtf(scratch_d, as_int);
2286   Fcmp(value, scratch_d);
2287
2288   if (on_successful_conversion) {
2289     B(on_successful_conversion, eq);
2290   }
2291   if (on_failed_conversion) {
2292     B(on_failed_conversion, ne);
2293   }
2294 }
2295
2296
2297 void MacroAssembler::TestForMinusZero(DoubleRegister input) {
2298   UseScratchRegisterScope temps(this);
2299   Register temp = temps.AcquireX();
2300   // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will
2301   // cause overflow.
2302   Fmov(temp, input);
2303   Cmp(temp, 1);
2304 }
2305
2306
2307 void MacroAssembler::JumpIfMinusZero(DoubleRegister input,
2308                                      Label* on_negative_zero) {
2309   TestForMinusZero(input);
2310   B(vs, on_negative_zero);
2311 }
2312
2313
2314 void MacroAssembler::JumpIfMinusZero(Register input,
2315                                      Label* on_negative_zero) {
2316   ASSERT(input.Is64Bits());
2317   // Floating point value is in an integer register. Detect -0.0 by subtracting
2318   // 1 (cmp), which will cause overflow.
2319   Cmp(input, 1);
2320   B(vs, on_negative_zero);
2321 }
2322
2323
2324 void MacroAssembler::ClampInt32ToUint8(Register output, Register input) {
2325   // Clamp the value to [0..255].
2326   Cmp(input.W(), Operand(input.W(), UXTB));
2327   // If input < input & 0xff, it must be < 0, so saturate to 0.
2328   Csel(output.W(), wzr, input.W(), lt);
2329   // If input <= input & 0xff, it must be <= 255. Otherwise, saturate to 255.
2330   Csel(output.W(), output.W(), 255, le);
2331 }
2332
2333
2334 void MacroAssembler::ClampInt32ToUint8(Register in_out) {
2335   ClampInt32ToUint8(in_out, in_out);
2336 }
2337
2338
2339 void MacroAssembler::ClampDoubleToUint8(Register output,
2340                                         DoubleRegister input,
2341                                         DoubleRegister dbl_scratch) {
2342   // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types:
2343   //   - Inputs lower than 0 (including -infinity) produce 0.
2344   //   - Inputs higher than 255 (including +infinity) produce 255.
2345   // Also, it seems that PIXEL types use round-to-nearest rather than
2346   // round-towards-zero.
2347
2348   // Squash +infinity before the conversion, since Fcvtnu will normally
2349   // convert it to 0.
2350   Fmov(dbl_scratch, 255);
2351   Fmin(dbl_scratch, dbl_scratch, input);
2352
2353   // Convert double to unsigned integer. Values less than zero become zero.
2354   // Values greater than 255 have already been clamped to 255.
2355   Fcvtnu(output, dbl_scratch);
2356 }
2357
2358
2359 void MacroAssembler::CopyFieldsLoopPairsHelper(Register dst,
2360                                                Register src,
2361                                                unsigned count,
2362                                                Register scratch1,
2363                                                Register scratch2,
2364                                                Register scratch3,
2365                                                Register scratch4,
2366                                                Register scratch5) {
2367   // Untag src and dst into scratch registers.
2368   // Copy src->dst in a tight loop.
2369   ASSERT(!AreAliased(dst, src,
2370                      scratch1, scratch2, scratch3, scratch4, scratch5));
2371   ASSERT(count >= 2);
2372
2373   const Register& remaining = scratch3;
2374   Mov(remaining, count / 2);
2375
2376   const Register& dst_untagged = scratch1;
2377   const Register& src_untagged = scratch2;
2378   Sub(dst_untagged, dst, kHeapObjectTag);
2379   Sub(src_untagged, src, kHeapObjectTag);
2380
2381   // Copy fields in pairs.
2382   Label loop;
2383   Bind(&loop);
2384   Ldp(scratch4, scratch5,
2385       MemOperand(src_untagged, kXRegSize* 2, PostIndex));
2386   Stp(scratch4, scratch5,
2387       MemOperand(dst_untagged, kXRegSize* 2, PostIndex));
2388   Sub(remaining, remaining, 1);
2389   Cbnz(remaining, &loop);
2390
2391   // Handle the leftovers.
2392   if (count & 1) {
2393     Ldr(scratch4, MemOperand(src_untagged));
2394     Str(scratch4, MemOperand(dst_untagged));
2395   }
2396 }
2397
2398
2399 void MacroAssembler::CopyFieldsUnrolledPairsHelper(Register dst,
2400                                                    Register src,
2401                                                    unsigned count,
2402                                                    Register scratch1,
2403                                                    Register scratch2,
2404                                                    Register scratch3,
2405                                                    Register scratch4) {
2406   // Untag src and dst into scratch registers.
2407   // Copy src->dst in an unrolled loop.
2408   ASSERT(!AreAliased(dst, src, scratch1, scratch2, scratch3, scratch4));
2409
2410   const Register& dst_untagged = scratch1;
2411   const Register& src_untagged = scratch2;
2412   sub(dst_untagged, dst, kHeapObjectTag);
2413   sub(src_untagged, src, kHeapObjectTag);
2414
2415   // Copy fields in pairs.
2416   for (unsigned i = 0; i < count / 2; i++) {
2417     Ldp(scratch3, scratch4, MemOperand(src_untagged, kXRegSize * 2, PostIndex));
2418     Stp(scratch3, scratch4, MemOperand(dst_untagged, kXRegSize * 2, PostIndex));
2419   }
2420
2421   // Handle the leftovers.
2422   if (count & 1) {
2423     Ldr(scratch3, MemOperand(src_untagged));
2424     Str(scratch3, MemOperand(dst_untagged));
2425   }
2426 }
2427
2428
2429 void MacroAssembler::CopyFieldsUnrolledHelper(Register dst,
2430                                               Register src,
2431                                               unsigned count,
2432                                               Register scratch1,
2433                                               Register scratch2,
2434                                               Register scratch3) {
2435   // Untag src and dst into scratch registers.
2436   // Copy src->dst in an unrolled loop.
2437   ASSERT(!AreAliased(dst, src, scratch1, scratch2, scratch3));
2438
2439   const Register& dst_untagged = scratch1;
2440   const Register& src_untagged = scratch2;
2441   Sub(dst_untagged, dst, kHeapObjectTag);
2442   Sub(src_untagged, src, kHeapObjectTag);
2443
2444   // Copy fields one by one.
2445   for (unsigned i = 0; i < count; i++) {
2446     Ldr(scratch3, MemOperand(src_untagged, kXRegSize, PostIndex));
2447     Str(scratch3, MemOperand(dst_untagged, kXRegSize, PostIndex));
2448   }
2449 }
2450
2451
2452 void MacroAssembler::CopyFields(Register dst, Register src, CPURegList temps,
2453                                 unsigned count) {
2454   // One of two methods is used:
2455   //
2456   // For high 'count' values where many scratch registers are available:
2457   //    Untag src and dst into scratch registers.
2458   //    Copy src->dst in a tight loop.
2459   //
2460   // For low 'count' values or where few scratch registers are available:
2461   //    Untag src and dst into scratch registers.
2462   //    Copy src->dst in an unrolled loop.
2463   //
2464   // In both cases, fields are copied in pairs if possible, and left-overs are
2465   // handled separately.
2466   ASSERT(!AreAliased(dst, src));
2467   ASSERT(!temps.IncludesAliasOf(dst));
2468   ASSERT(!temps.IncludesAliasOf(src));
2469   ASSERT(!temps.IncludesAliasOf(xzr));
2470
2471   if (emit_debug_code()) {
2472     Cmp(dst, src);
2473     Check(ne, kTheSourceAndDestinationAreTheSame);
2474   }
2475
2476   // The value of 'count' at which a loop will be generated (if there are
2477   // enough scratch registers).
2478   static const unsigned kLoopThreshold = 8;
2479
2480   UseScratchRegisterScope masm_temps(this);
2481   if ((temps.Count() >= 3) && (count >= kLoopThreshold)) {
2482     CopyFieldsLoopPairsHelper(dst, src, count,
2483                               Register(temps.PopLowestIndex()),
2484                               Register(temps.PopLowestIndex()),
2485                               Register(temps.PopLowestIndex()),
2486                               masm_temps.AcquireX(),
2487                               masm_temps.AcquireX());
2488   } else if (temps.Count() >= 2) {
2489     CopyFieldsUnrolledPairsHelper(dst, src, count,
2490                                   Register(temps.PopLowestIndex()),
2491                                   Register(temps.PopLowestIndex()),
2492                                   masm_temps.AcquireX(),
2493                                   masm_temps.AcquireX());
2494   } else if (temps.Count() == 1) {
2495     CopyFieldsUnrolledHelper(dst, src, count,
2496                              Register(temps.PopLowestIndex()),
2497                              masm_temps.AcquireX(),
2498                              masm_temps.AcquireX());
2499   } else {
2500     UNREACHABLE();
2501   }
2502 }
2503
2504
2505 void MacroAssembler::CopyBytes(Register dst,
2506                                Register src,
2507                                Register length,
2508                                Register scratch,
2509                                CopyHint hint) {
2510   UseScratchRegisterScope temps(this);
2511   Register tmp1 = temps.AcquireX();
2512   Register tmp2 = temps.AcquireX();
2513   ASSERT(!AreAliased(src, dst, length, scratch, tmp1, tmp2));
2514   ASSERT(!AreAliased(src, dst, csp));
2515
2516   if (emit_debug_code()) {
2517     // Check copy length.
2518     Cmp(length, 0);
2519     Assert(ge, kUnexpectedNegativeValue);
2520
2521     // Check src and dst buffers don't overlap.
2522     Add(scratch, src, length);  // Calculate end of src buffer.
2523     Cmp(scratch, dst);
2524     Add(scratch, dst, length);  // Calculate end of dst buffer.
2525     Ccmp(scratch, src, ZFlag, gt);
2526     Assert(le, kCopyBuffersOverlap);
2527   }
2528
2529   Label short_copy, short_loop, bulk_loop, done;
2530
2531   if ((hint == kCopyLong || hint == kCopyUnknown) && !FLAG_optimize_for_size) {
2532     Register bulk_length = scratch;
2533     int pair_size = 2 * kXRegSize;
2534     int pair_mask = pair_size - 1;
2535
2536     Bic(bulk_length, length, pair_mask);
2537     Cbz(bulk_length, &short_copy);
2538     Bind(&bulk_loop);
2539     Sub(bulk_length, bulk_length, pair_size);
2540     Ldp(tmp1, tmp2, MemOperand(src, pair_size, PostIndex));
2541     Stp(tmp1, tmp2, MemOperand(dst, pair_size, PostIndex));
2542     Cbnz(bulk_length, &bulk_loop);
2543
2544     And(length, length, pair_mask);
2545   }
2546
2547   Bind(&short_copy);
2548   Cbz(length, &done);
2549   Bind(&short_loop);
2550   Sub(length, length, 1);
2551   Ldrb(tmp1, MemOperand(src, 1, PostIndex));
2552   Strb(tmp1, MemOperand(dst, 1, PostIndex));
2553   Cbnz(length, &short_loop);
2554
2555
2556   Bind(&done);
2557 }
2558
2559
2560 void MacroAssembler::FillFields(Register dst,
2561                                 Register field_count,
2562                                 Register filler) {
2563   ASSERT(!dst.Is(csp));
2564   UseScratchRegisterScope temps(this);
2565   Register field_ptr = temps.AcquireX();
2566   Register counter = temps.AcquireX();
2567   Label done;
2568
2569   // Decrement count. If the result < zero, count was zero, and there's nothing
2570   // to do. If count was one, flags are set to fail the gt condition at the end
2571   // of the pairs loop.
2572   Subs(counter, field_count, 1);
2573   B(lt, &done);
2574
2575   // There's at least one field to fill, so do this unconditionally.
2576   Str(filler, MemOperand(dst, kPointerSize, PostIndex));
2577
2578   // If the bottom bit of counter is set, there are an even number of fields to
2579   // fill, so pull the start pointer back by one field, allowing the pairs loop
2580   // to overwrite the field that was stored above.
2581   And(field_ptr, counter, 1);
2582   Sub(field_ptr, dst, Operand(field_ptr, LSL, kPointerSizeLog2));
2583
2584   // Store filler to memory in pairs.
2585   Label entry, loop;
2586   B(&entry);
2587   Bind(&loop);
2588   Stp(filler, filler, MemOperand(field_ptr, 2 * kPointerSize, PostIndex));
2589   Subs(counter, counter, 2);
2590   Bind(&entry);
2591   B(gt, &loop);
2592
2593   Bind(&done);
2594 }
2595
2596
2597 void MacroAssembler::JumpIfEitherIsNotSequentialAsciiStrings(
2598     Register first,
2599     Register second,
2600     Register scratch1,
2601     Register scratch2,
2602     Label* failure,
2603     SmiCheckType smi_check) {
2604
2605   if (smi_check == DO_SMI_CHECK) {
2606     JumpIfEitherSmi(first, second, failure);
2607   } else if (emit_debug_code()) {
2608     ASSERT(smi_check == DONT_DO_SMI_CHECK);
2609     Label not_smi;
2610     JumpIfEitherSmi(first, second, NULL, &not_smi);
2611
2612     // At least one input is a smi, but the flags indicated a smi check wasn't
2613     // needed.
2614     Abort(kUnexpectedSmi);
2615
2616     Bind(&not_smi);
2617   }
2618
2619   // Test that both first and second are sequential ASCII strings.
2620   Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
2621   Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
2622   Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
2623   Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
2624
2625   JumpIfEitherInstanceTypeIsNotSequentialAscii(scratch1,
2626                                                scratch2,
2627                                                scratch1,
2628                                                scratch2,
2629                                                failure);
2630 }
2631
2632
2633 void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialAscii(
2634     Register first,
2635     Register second,
2636     Register scratch1,
2637     Register scratch2,
2638     Label* failure) {
2639   ASSERT(!AreAliased(scratch1, second));
2640   ASSERT(!AreAliased(scratch1, scratch2));
2641   static const int kFlatAsciiStringMask =
2642       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2643   static const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
2644   And(scratch1, first, kFlatAsciiStringMask);
2645   And(scratch2, second, kFlatAsciiStringMask);
2646   Cmp(scratch1, kFlatAsciiStringTag);
2647   Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq);
2648   B(ne, failure);
2649 }
2650
2651
2652 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
2653                                                             Register scratch,
2654                                                             Label* failure) {
2655   const int kFlatAsciiStringMask =
2656       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2657   const int kFlatAsciiStringTag =
2658       kStringTag | kOneByteStringTag | kSeqStringTag;
2659   And(scratch, type, kFlatAsciiStringMask);
2660   Cmp(scratch, kFlatAsciiStringTag);
2661   B(ne, failure);
2662 }
2663
2664
2665 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
2666     Register first,
2667     Register second,
2668     Register scratch1,
2669     Register scratch2,
2670     Label* failure) {
2671   ASSERT(!AreAliased(first, second, scratch1, scratch2));
2672   const int kFlatAsciiStringMask =
2673       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2674   const int kFlatAsciiStringTag =
2675       kStringTag | kOneByteStringTag | kSeqStringTag;
2676   And(scratch1, first, kFlatAsciiStringMask);
2677   And(scratch2, second, kFlatAsciiStringMask);
2678   Cmp(scratch1, kFlatAsciiStringTag);
2679   Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq);
2680   B(ne, failure);
2681 }
2682
2683
2684 void MacroAssembler::JumpIfNotUniqueName(Register type,
2685                                          Label* not_unique_name) {
2686   STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
2687   // if ((type is string && type is internalized) || type == SYMBOL_TYPE) {
2688   //   continue
2689   // } else {
2690   //   goto not_unique_name
2691   // }
2692   Tst(type, kIsNotStringMask | kIsNotInternalizedMask);
2693   Ccmp(type, SYMBOL_TYPE, ZFlag, ne);
2694   B(ne, not_unique_name);
2695 }
2696
2697
2698 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2699                                     const ParameterCount& actual,
2700                                     Handle<Code> code_constant,
2701                                     Register code_reg,
2702                                     Label* done,
2703                                     InvokeFlag flag,
2704                                     bool* definitely_mismatches,
2705                                     const CallWrapper& call_wrapper) {
2706   bool definitely_matches = false;
2707   *definitely_mismatches = false;
2708   Label regular_invoke;
2709
2710   // Check whether the expected and actual arguments count match. If not,
2711   // setup registers according to contract with ArgumentsAdaptorTrampoline:
2712   //  x0: actual arguments count.
2713   //  x1: function (passed through to callee).
2714   //  x2: expected arguments count.
2715
2716   // The code below is made a lot easier because the calling code already sets
2717   // up actual and expected registers according to the contract if values are
2718   // passed in registers.
2719   ASSERT(actual.is_immediate() || actual.reg().is(x0));
2720   ASSERT(expected.is_immediate() || expected.reg().is(x2));
2721   ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(x3));
2722
2723   if (expected.is_immediate()) {
2724     ASSERT(actual.is_immediate());
2725     if (expected.immediate() == actual.immediate()) {
2726       definitely_matches = true;
2727
2728     } else {
2729       Mov(x0, actual.immediate());
2730       if (expected.immediate() ==
2731           SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
2732         // Don't worry about adapting arguments for builtins that
2733         // don't want that done. Skip adaption code by making it look
2734         // like we have a match between expected and actual number of
2735         // arguments.
2736         definitely_matches = true;
2737       } else {
2738         *definitely_mismatches = true;
2739         // Set up x2 for the argument adaptor.
2740         Mov(x2, expected.immediate());
2741       }
2742     }
2743
2744   } else {  // expected is a register.
2745     Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
2746                                               : Operand(actual.reg());
2747     // If actual == expected perform a regular invocation.
2748     Cmp(expected.reg(), actual_op);
2749     B(eq, &regular_invoke);
2750     // Otherwise set up x0 for the argument adaptor.
2751     Mov(x0, actual_op);
2752   }
2753
2754   // If the argument counts may mismatch, generate a call to the argument
2755   // adaptor.
2756   if (!definitely_matches) {
2757     if (!code_constant.is_null()) {
2758       Mov(x3, Operand(code_constant));
2759       Add(x3, x3, Code::kHeaderSize - kHeapObjectTag);
2760     }
2761
2762     Handle<Code> adaptor =
2763         isolate()->builtins()->ArgumentsAdaptorTrampoline();
2764     if (flag == CALL_FUNCTION) {
2765       call_wrapper.BeforeCall(CallSize(adaptor));
2766       Call(adaptor);
2767       call_wrapper.AfterCall();
2768       if (!*definitely_mismatches) {
2769         // If the arg counts don't match, no extra code is emitted by
2770         // MAsm::InvokeCode and we can just fall through.
2771         B(done);
2772       }
2773     } else {
2774       Jump(adaptor, RelocInfo::CODE_TARGET);
2775     }
2776   }
2777   Bind(&regular_invoke);
2778 }
2779
2780
2781 void MacroAssembler::InvokeCode(Register code,
2782                                 const ParameterCount& expected,
2783                                 const ParameterCount& actual,
2784                                 InvokeFlag flag,
2785                                 const CallWrapper& call_wrapper) {
2786   // You can't call a function without a valid frame.
2787   ASSERT(flag == JUMP_FUNCTION || has_frame());
2788
2789   Label done;
2790
2791   bool definitely_mismatches = false;
2792   InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
2793                  &definitely_mismatches, call_wrapper);
2794
2795   // If we are certain that actual != expected, then we know InvokePrologue will
2796   // have handled the call through the argument adaptor mechanism.
2797   // The called function expects the call kind in x5.
2798   if (!definitely_mismatches) {
2799     if (flag == CALL_FUNCTION) {
2800       call_wrapper.BeforeCall(CallSize(code));
2801       Call(code);
2802       call_wrapper.AfterCall();
2803     } else {
2804       ASSERT(flag == JUMP_FUNCTION);
2805       Jump(code);
2806     }
2807   }
2808
2809   // Continue here if InvokePrologue does handle the invocation due to
2810   // mismatched parameter counts.
2811   Bind(&done);
2812 }
2813
2814
2815 void MacroAssembler::InvokeFunction(Register function,
2816                                     const ParameterCount& actual,
2817                                     InvokeFlag flag,
2818                                     const CallWrapper& call_wrapper) {
2819   // You can't call a function without a valid frame.
2820   ASSERT(flag == JUMP_FUNCTION || has_frame());
2821
2822   // Contract with called JS functions requires that function is passed in x1.
2823   // (See FullCodeGenerator::Generate().)
2824   ASSERT(function.is(x1));
2825
2826   Register expected_reg = x2;
2827   Register code_reg = x3;
2828
2829   Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2830   // The number of arguments is stored as an int32_t, and -1 is a marker
2831   // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
2832   // extension to correctly handle it.
2833   Ldr(expected_reg, FieldMemOperand(function,
2834                                     JSFunction::kSharedFunctionInfoOffset));
2835   Ldrsw(expected_reg,
2836         FieldMemOperand(expected_reg,
2837                         SharedFunctionInfo::kFormalParameterCountOffset));
2838   Ldr(code_reg,
2839       FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2840
2841   ParameterCount expected(expected_reg);
2842   InvokeCode(code_reg, expected, actual, flag, call_wrapper);
2843 }
2844
2845
2846 void MacroAssembler::InvokeFunction(Register function,
2847                                     const ParameterCount& expected,
2848                                     const ParameterCount& actual,
2849                                     InvokeFlag flag,
2850                                     const CallWrapper& call_wrapper) {
2851   // You can't call a function without a valid frame.
2852   ASSERT(flag == JUMP_FUNCTION || has_frame());
2853
2854   // Contract with called JS functions requires that function is passed in x1.
2855   // (See FullCodeGenerator::Generate().)
2856   ASSERT(function.Is(x1));
2857
2858   Register code_reg = x3;
2859
2860   // Set up the context.
2861   Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2862
2863   // We call indirectly through the code field in the function to
2864   // allow recompilation to take effect without changing any of the
2865   // call sites.
2866   Ldr(code_reg, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2867   InvokeCode(code_reg, expected, actual, flag, call_wrapper);
2868 }
2869
2870
2871 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2872                                     const ParameterCount& expected,
2873                                     const ParameterCount& actual,
2874                                     InvokeFlag flag,
2875                                     const CallWrapper& call_wrapper) {
2876   // Contract with called JS functions requires that function is passed in x1.
2877   // (See FullCodeGenerator::Generate().)
2878   __ LoadObject(x1, function);
2879   InvokeFunction(x1, expected, actual, flag, call_wrapper);
2880 }
2881
2882
2883 void MacroAssembler::TryConvertDoubleToInt64(Register result,
2884                                              DoubleRegister double_input,
2885                                              Label* done) {
2886   // Try to convert with an FPU convert instruction. It's trivial to compute
2887   // the modulo operation on an integer register so we convert to a 64-bit
2888   // integer.
2889   //
2890   // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff)
2891   // when the double is out of range. NaNs and infinities will be converted to 0
2892   // (as ECMA-262 requires).
2893   Fcvtzs(result.X(), double_input);
2894
2895   // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not
2896   // representable using a double, so if the result is one of those then we know
2897   // that saturation occured, and we need to manually handle the conversion.
2898   //
2899   // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
2900   // 1 will cause signed overflow.
2901   Cmp(result.X(), 1);
2902   Ccmp(result.X(), -1, VFlag, vc);
2903
2904   B(vc, done);
2905 }
2906
2907
2908 void MacroAssembler::TruncateDoubleToI(Register result,
2909                                        DoubleRegister double_input) {
2910   Label done;
2911   ASSERT(jssp.Is(StackPointer()));
2912
2913   // Try to convert the double to an int64. If successful, the bottom 32 bits
2914   // contain our truncated int32 result.
2915   TryConvertDoubleToInt64(result, double_input, &done);
2916
2917   // If we fell through then inline version didn't succeed - call stub instead.
2918   Push(lr);
2919   Push(double_input);  // Put input on stack.
2920
2921   DoubleToIStub stub(isolate(),
2922                      jssp,
2923                      result,
2924                      0,
2925                      true,   // is_truncating
2926                      true);  // skip_fastpath
2927   CallStub(&stub);  // DoubleToIStub preserves any registers it needs to clobber
2928
2929   Drop(1, kDoubleSize);  // Drop the double input on the stack.
2930   Pop(lr);
2931
2932   Bind(&done);
2933 }
2934
2935
2936 void MacroAssembler::TruncateHeapNumberToI(Register result,
2937                                            Register object) {
2938   Label done;
2939   ASSERT(!result.is(object));
2940   ASSERT(jssp.Is(StackPointer()));
2941
2942   Ldr(fp_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
2943
2944   // Try to convert the double to an int64. If successful, the bottom 32 bits
2945   // contain our truncated int32 result.
2946   TryConvertDoubleToInt64(result, fp_scratch, &done);
2947
2948   // If we fell through then inline version didn't succeed - call stub instead.
2949   Push(lr);
2950   DoubleToIStub stub(isolate(),
2951                      object,
2952                      result,
2953                      HeapNumber::kValueOffset - kHeapObjectTag,
2954                      true,   // is_truncating
2955                      true);  // skip_fastpath
2956   CallStub(&stub);  // DoubleToIStub preserves any registers it needs to clobber
2957   Pop(lr);
2958
2959   Bind(&done);
2960 }
2961
2962
2963 void MacroAssembler::StubPrologue() {
2964   ASSERT(StackPointer().Is(jssp));
2965   UseScratchRegisterScope temps(this);
2966   Register temp = temps.AcquireX();
2967   __ Mov(temp, Smi::FromInt(StackFrame::STUB));
2968   // Compiled stubs don't age, and so they don't need the predictable code
2969   // ageing sequence.
2970   __ Push(lr, fp, cp, temp);
2971   __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
2972 }
2973
2974
2975 void MacroAssembler::Prologue(bool code_pre_aging) {
2976   if (code_pre_aging) {
2977     Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
2978     __ EmitCodeAgeSequence(stub);
2979   } else {
2980     __ EmitFrameSetupForCodeAgePatching();
2981   }
2982 }
2983
2984
2985 void MacroAssembler::EnterFrame(StackFrame::Type type) {
2986   ASSERT(jssp.Is(StackPointer()));
2987   UseScratchRegisterScope temps(this);
2988   Register type_reg = temps.AcquireX();
2989   Register code_reg = temps.AcquireX();
2990
2991   Push(lr, fp, cp);
2992   Mov(type_reg, Smi::FromInt(type));
2993   Mov(code_reg, Operand(CodeObject()));
2994   Push(type_reg, code_reg);
2995   // jssp[4] : lr
2996   // jssp[3] : fp
2997   // jssp[2] : cp
2998   // jssp[1] : type
2999   // jssp[0] : code object
3000
3001   // Adjust FP to point to saved FP.
3002   Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
3003 }
3004
3005
3006 void MacroAssembler::LeaveFrame(StackFrame::Type type) {
3007   ASSERT(jssp.Is(StackPointer()));
3008   // Drop the execution stack down to the frame pointer and restore
3009   // the caller frame pointer and return address.
3010   Mov(jssp, fp);
3011   AssertStackConsistency();
3012   Pop(fp, lr);
3013 }
3014
3015
3016 void MacroAssembler::ExitFramePreserveFPRegs() {
3017   PushCPURegList(kCallerSavedFP);
3018 }
3019
3020
3021 void MacroAssembler::ExitFrameRestoreFPRegs() {
3022   // Read the registers from the stack without popping them. The stack pointer
3023   // will be reset as part of the unwinding process.
3024   CPURegList saved_fp_regs = kCallerSavedFP;
3025   ASSERT(saved_fp_regs.Count() % 2 == 0);
3026
3027   int offset = ExitFrameConstants::kLastExitFrameField;
3028   while (!saved_fp_regs.IsEmpty()) {
3029     const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
3030     const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
3031     offset -= 2 * kDRegSize;
3032     Ldp(dst1, dst0, MemOperand(fp, offset));
3033   }
3034 }
3035
3036
3037 void MacroAssembler::EnterExitFrame(bool save_doubles,
3038                                     const Register& scratch,
3039                                     int extra_space) {
3040   ASSERT(jssp.Is(StackPointer()));
3041
3042   // Set up the new stack frame.
3043   Mov(scratch, Operand(CodeObject()));
3044   Push(lr, fp);
3045   Mov(fp, StackPointer());
3046   Push(xzr, scratch);
3047   //          fp[8]: CallerPC (lr)
3048   //    fp -> fp[0]: CallerFP (old fp)
3049   //          fp[-8]: Space reserved for SPOffset.
3050   //  jssp -> fp[-16]: CodeObject()
3051   STATIC_ASSERT((2 * kPointerSize) ==
3052                 ExitFrameConstants::kCallerSPDisplacement);
3053   STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
3054   STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
3055   STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset);
3056   STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset);
3057
3058   // Save the frame pointer and context pointer in the top frame.
3059   Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
3060                                          isolate())));
3061   Str(fp, MemOperand(scratch));
3062   Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3063                                          isolate())));
3064   Str(cp, MemOperand(scratch));
3065
3066   STATIC_ASSERT((-2 * kPointerSize) ==
3067                 ExitFrameConstants::kLastExitFrameField);
3068   if (save_doubles) {
3069     ExitFramePreserveFPRegs();
3070   }
3071
3072   // Reserve space for the return address and for user requested memory.
3073   // We do this before aligning to make sure that we end up correctly
3074   // aligned with the minimum of wasted space.
3075   Claim(extra_space + 1, kXRegSize);
3076   //         fp[8]: CallerPC (lr)
3077   //   fp -> fp[0]: CallerFP (old fp)
3078   //         fp[-8]: Space reserved for SPOffset.
3079   //         fp[-16]: CodeObject()
3080   //         fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
3081   //         jssp[8]: Extra space reserved for caller (if extra_space != 0).
3082   // jssp -> jssp[0]: Space reserved for the return address.
3083
3084   // Align and synchronize the system stack pointer with jssp.
3085   AlignAndSetCSPForFrame();
3086   ASSERT(csp.Is(StackPointer()));
3087
3088   //         fp[8]: CallerPC (lr)
3089   //   fp -> fp[0]: CallerFP (old fp)
3090   //         fp[-8]: Space reserved for SPOffset.
3091   //         fp[-16]: CodeObject()
3092   //         fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
3093   //         csp[8]: Memory reserved for the caller if extra_space != 0.
3094   //                 Alignment padding, if necessary.
3095   //  csp -> csp[0]: Space reserved for the return address.
3096
3097   // ExitFrame::GetStateForFramePointer expects to find the return address at
3098   // the memory address immediately below the pointer stored in SPOffset.
3099   // It is not safe to derive much else from SPOffset, because the size of the
3100   // padding can vary.
3101   Add(scratch, csp, kXRegSize);
3102   Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
3103 }
3104
3105
3106 // Leave the current exit frame.
3107 void MacroAssembler::LeaveExitFrame(bool restore_doubles,
3108                                     const Register& scratch,
3109                                     bool restore_context) {
3110   ASSERT(csp.Is(StackPointer()));
3111
3112   if (restore_doubles) {
3113     ExitFrameRestoreFPRegs();
3114   }
3115
3116   // Restore the context pointer from the top frame.
3117   if (restore_context) {
3118     Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3119                                            isolate())));
3120     Ldr(cp, MemOperand(scratch));
3121   }
3122
3123   if (emit_debug_code()) {
3124     // Also emit debug code to clear the cp in the top frame.
3125     Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3126                                            isolate())));
3127     Str(xzr, MemOperand(scratch));
3128   }
3129   // Clear the frame pointer from the top frame.
3130   Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
3131                                          isolate())));
3132   Str(xzr, MemOperand(scratch));
3133
3134   // Pop the exit frame.
3135   //         fp[8]: CallerPC (lr)
3136   //   fp -> fp[0]: CallerFP (old fp)
3137   //         fp[...]: The rest of the frame.
3138   Mov(jssp, fp);
3139   SetStackPointer(jssp);
3140   AssertStackConsistency();
3141   Pop(fp, lr);
3142 }
3143
3144
3145 void MacroAssembler::SetCounter(StatsCounter* counter, int value,
3146                                 Register scratch1, Register scratch2) {
3147   if (FLAG_native_code_counters && counter->Enabled()) {
3148     Mov(scratch1, value);
3149     Mov(scratch2, ExternalReference(counter));
3150     Str(scratch1, MemOperand(scratch2));
3151   }
3152 }
3153
3154
3155 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
3156                                       Register scratch1, Register scratch2) {
3157   ASSERT(value != 0);
3158   if (FLAG_native_code_counters && counter->Enabled()) {
3159     Mov(scratch2, ExternalReference(counter));
3160     Ldr(scratch1, MemOperand(scratch2));
3161     Add(scratch1, scratch1, value);
3162     Str(scratch1, MemOperand(scratch2));
3163   }
3164 }
3165
3166
3167 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
3168                                       Register scratch1, Register scratch2) {
3169   IncrementCounter(counter, -value, scratch1, scratch2);
3170 }
3171
3172
3173 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
3174   if (context_chain_length > 0) {
3175     // Move up the chain of contexts to the context containing the slot.
3176     Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
3177     for (int i = 1; i < context_chain_length; i++) {
3178       Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
3179     }
3180   } else {
3181     // Slot is in the current function context.  Move it into the
3182     // destination register in case we store into it (the write barrier
3183     // cannot be allowed to destroy the context in cp).
3184     Mov(dst, cp);
3185   }
3186 }
3187
3188
3189 void MacroAssembler::DebugBreak() {
3190   Mov(x0, 0);
3191   Mov(x1, ExternalReference(Runtime::kDebugBreak, isolate()));
3192   CEntryStub ces(isolate(), 1);
3193   ASSERT(AllowThisStubCall(&ces));
3194   Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
3195 }
3196
3197
3198 void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
3199                                     int handler_index) {
3200   ASSERT(jssp.Is(StackPointer()));
3201   // Adjust this code if the asserts don't hold.
3202   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
3203   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
3204   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
3205   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
3206   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
3207   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
3208
3209   // For the JSEntry handler, we must preserve the live registers x0-x4.
3210   // (See JSEntryStub::GenerateBody().)
3211
3212   unsigned state =
3213       StackHandler::IndexField::encode(handler_index) |
3214       StackHandler::KindField::encode(kind);
3215
3216   // Set up the code object and the state for pushing.
3217   Mov(x10, Operand(CodeObject()));
3218   Mov(x11, state);
3219
3220   // Push the frame pointer, context, state, and code object.
3221   if (kind == StackHandler::JS_ENTRY) {
3222     ASSERT(Smi::FromInt(0) == 0);
3223     Push(xzr, xzr, x11, x10);
3224   } else {
3225     Push(fp, cp, x11, x10);
3226   }
3227
3228   // Link the current handler as the next handler.
3229   Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
3230   Ldr(x10, MemOperand(x11));
3231   Push(x10);
3232   // Set this new handler as the current one.
3233   Str(jssp, MemOperand(x11));
3234 }
3235
3236
3237 void MacroAssembler::PopTryHandler() {
3238   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
3239   Pop(x10);
3240   Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
3241   Drop(StackHandlerConstants::kSize - kXRegSize, kByteSizeInBytes);
3242   Str(x10, MemOperand(x11));
3243 }
3244
3245
3246 void MacroAssembler::Allocate(int object_size,
3247                               Register result,
3248                               Register scratch1,
3249                               Register scratch2,
3250                               Label* gc_required,
3251                               AllocationFlags flags) {
3252   ASSERT(object_size <= Page::kMaxRegularHeapObjectSize);
3253   if (!FLAG_inline_new) {
3254     if (emit_debug_code()) {
3255       // Trash the registers to simulate an allocation failure.
3256       // We apply salt to the original zap value to easily spot the values.
3257       Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3258       Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
3259       Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
3260     }
3261     B(gc_required);
3262     return;
3263   }
3264
3265   UseScratchRegisterScope temps(this);
3266   Register scratch3 = temps.AcquireX();
3267
3268   ASSERT(!AreAliased(result, scratch1, scratch2, scratch3));
3269   ASSERT(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
3270
3271   // Make object size into bytes.
3272   if ((flags & SIZE_IN_WORDS) != 0) {
3273     object_size *= kPointerSize;
3274   }
3275   ASSERT(0 == (object_size & kObjectAlignmentMask));
3276
3277   // Check relative positions of allocation top and limit addresses.
3278   // The values must be adjacent in memory to allow the use of LDP.
3279   ExternalReference heap_allocation_top =
3280       AllocationUtils::GetAllocationTopReference(isolate(), flags);
3281   ExternalReference heap_allocation_limit =
3282       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3283   intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3284   intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3285   ASSERT((limit - top) == kPointerSize);
3286
3287   // Set up allocation top address and object size registers.
3288   Register top_address = scratch1;
3289   Register allocation_limit = scratch2;
3290   Mov(top_address, Operand(heap_allocation_top));
3291
3292   if ((flags & RESULT_CONTAINS_TOP) == 0) {
3293     // Load allocation top into result and the allocation limit.
3294     Ldp(result, allocation_limit, MemOperand(top_address));
3295   } else {
3296     if (emit_debug_code()) {
3297       // Assert that result actually contains top on entry.
3298       Ldr(scratch3, MemOperand(top_address));
3299       Cmp(result, scratch3);
3300       Check(eq, kUnexpectedAllocationTop);
3301     }
3302     // Load the allocation limit. 'result' already contains the allocation top.
3303     Ldr(allocation_limit, MemOperand(top_address, limit - top));
3304   }
3305
3306   // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3307   // the same alignment on ARM64.
3308   STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3309
3310   // Calculate new top and bail out if new space is exhausted.
3311   Adds(scratch3, result, object_size);
3312   Ccmp(scratch3, allocation_limit, CFlag, cc);
3313   B(hi, gc_required);
3314   Str(scratch3, MemOperand(top_address));
3315
3316   // Tag the object if requested.
3317   if ((flags & TAG_OBJECT) != 0) {
3318     ObjectTag(result, result);
3319   }
3320 }
3321
3322
3323 void MacroAssembler::Allocate(Register object_size,
3324                               Register result,
3325                               Register scratch1,
3326                               Register scratch2,
3327                               Label* gc_required,
3328                               AllocationFlags flags) {
3329   if (!FLAG_inline_new) {
3330     if (emit_debug_code()) {
3331       // Trash the registers to simulate an allocation failure.
3332       // We apply salt to the original zap value to easily spot the values.
3333       Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3334       Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
3335       Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
3336     }
3337     B(gc_required);
3338     return;
3339   }
3340
3341   UseScratchRegisterScope temps(this);
3342   Register scratch3 = temps.AcquireX();
3343
3344   ASSERT(!AreAliased(object_size, result, scratch1, scratch2, scratch3));
3345   ASSERT(object_size.Is64Bits() && result.Is64Bits() &&
3346          scratch1.Is64Bits() && scratch2.Is64Bits());
3347
3348   // Check relative positions of allocation top and limit addresses.
3349   // The values must be adjacent in memory to allow the use of LDP.
3350   ExternalReference heap_allocation_top =
3351       AllocationUtils::GetAllocationTopReference(isolate(), flags);
3352   ExternalReference heap_allocation_limit =
3353       AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3354   intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3355   intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3356   ASSERT((limit - top) == kPointerSize);
3357
3358   // Set up allocation top address and object size registers.
3359   Register top_address = scratch1;
3360   Register allocation_limit = scratch2;
3361   Mov(top_address, heap_allocation_top);
3362
3363   if ((flags & RESULT_CONTAINS_TOP) == 0) {
3364     // Load allocation top into result and the allocation limit.
3365     Ldp(result, allocation_limit, MemOperand(top_address));
3366   } else {
3367     if (emit_debug_code()) {
3368       // Assert that result actually contains top on entry.
3369       Ldr(scratch3, MemOperand(top_address));
3370       Cmp(result, scratch3);
3371       Check(eq, kUnexpectedAllocationTop);
3372     }
3373     // Load the allocation limit. 'result' already contains the allocation top.
3374     Ldr(allocation_limit, MemOperand(top_address, limit - top));
3375   }
3376
3377   // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3378   // the same alignment on ARM64.
3379   STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3380
3381   // Calculate new top and bail out if new space is exhausted
3382   if ((flags & SIZE_IN_WORDS) != 0) {
3383     Adds(scratch3, result, Operand(object_size, LSL, kPointerSizeLog2));
3384   } else {
3385     Adds(scratch3, result, object_size);
3386   }
3387
3388   if (emit_debug_code()) {
3389     Tst(scratch3, kObjectAlignmentMask);
3390     Check(eq, kUnalignedAllocationInNewSpace);
3391   }
3392
3393   Ccmp(scratch3, allocation_limit, CFlag, cc);
3394   B(hi, gc_required);
3395   Str(scratch3, MemOperand(top_address));
3396
3397   // Tag the object if requested.
3398   if ((flags & TAG_OBJECT) != 0) {
3399     ObjectTag(result, result);
3400   }
3401 }
3402
3403
3404 void MacroAssembler::UndoAllocationInNewSpace(Register object,
3405                                               Register scratch) {
3406   ExternalReference new_space_allocation_top =
3407       ExternalReference::new_space_allocation_top_address(isolate());
3408
3409   // Make sure the object has no tag before resetting top.
3410   Bic(object, object, kHeapObjectTagMask);
3411 #ifdef DEBUG
3412   // Check that the object un-allocated is below the current top.
3413   Mov(scratch, new_space_allocation_top);
3414   Ldr(scratch, MemOperand(scratch));
3415   Cmp(object, scratch);
3416   Check(lt, kUndoAllocationOfNonAllocatedMemory);
3417 #endif
3418   // Write the address of the object to un-allocate as the current top.
3419   Mov(scratch, new_space_allocation_top);
3420   Str(object, MemOperand(scratch));
3421 }
3422
3423
3424 void MacroAssembler::AllocateTwoByteString(Register result,
3425                                            Register length,
3426                                            Register scratch1,
3427                                            Register scratch2,
3428                                            Register scratch3,
3429                                            Label* gc_required) {
3430   ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3));
3431   // Calculate the number of bytes needed for the characters in the string while
3432   // observing object alignment.
3433   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3434   Add(scratch1, length, length);  // Length in bytes, not chars.
3435   Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
3436   Bic(scratch1, scratch1, kObjectAlignmentMask);
3437
3438   // Allocate two-byte string in new space.
3439   Allocate(scratch1,
3440            result,
3441            scratch2,
3442            scratch3,
3443            gc_required,
3444            TAG_OBJECT);
3445
3446   // Set the map, length and hash field.
3447   InitializeNewString(result,
3448                       length,
3449                       Heap::kStringMapRootIndex,
3450                       scratch1,
3451                       scratch2);
3452 }
3453
3454
3455 void MacroAssembler::AllocateAsciiString(Register result,
3456                                          Register length,
3457                                          Register scratch1,
3458                                          Register scratch2,
3459                                          Register scratch3,
3460                                          Label* gc_required) {
3461   ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3));
3462   // Calculate the number of bytes needed for the characters in the string while
3463   // observing object alignment.
3464   STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3465   STATIC_ASSERT(kCharSize == 1);
3466   Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
3467   Bic(scratch1, scratch1, kObjectAlignmentMask);
3468
3469   // Allocate ASCII string in new space.
3470   Allocate(scratch1,
3471            result,
3472            scratch2,
3473            scratch3,
3474            gc_required,
3475            TAG_OBJECT);
3476
3477   // Set the map, length and hash field.
3478   InitializeNewString(result,
3479                       length,
3480                       Heap::kAsciiStringMapRootIndex,
3481                       scratch1,
3482                       scratch2);
3483 }
3484
3485
3486 void MacroAssembler::AllocateTwoByteConsString(Register result,
3487                                                Register length,
3488                                                Register scratch1,
3489                                                Register scratch2,
3490                                                Label* gc_required) {
3491   Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
3492            TAG_OBJECT);
3493
3494   InitializeNewString(result,
3495                       length,
3496                       Heap::kConsStringMapRootIndex,
3497                       scratch1,
3498                       scratch2);
3499 }
3500
3501
3502 void MacroAssembler::AllocateAsciiConsString(Register result,
3503                                              Register length,
3504                                              Register scratch1,
3505                                              Register scratch2,
3506                                              Label* gc_required) {
3507   Allocate(ConsString::kSize,
3508            result,
3509            scratch1,
3510            scratch2,
3511            gc_required,
3512            TAG_OBJECT);
3513
3514   InitializeNewString(result,
3515                       length,
3516                       Heap::kConsAsciiStringMapRootIndex,
3517                       scratch1,
3518                       scratch2);
3519 }
3520
3521
3522 void MacroAssembler::AllocateTwoByteSlicedString(Register result,
3523                                                  Register length,
3524                                                  Register scratch1,
3525                                                  Register scratch2,
3526                                                  Label* gc_required) {
3527   ASSERT(!AreAliased(result, length, scratch1, scratch2));
3528   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3529            TAG_OBJECT);
3530
3531   InitializeNewString(result,
3532                       length,
3533                       Heap::kSlicedStringMapRootIndex,
3534                       scratch1,
3535                       scratch2);
3536 }
3537
3538
3539 void MacroAssembler::AllocateAsciiSlicedString(Register result,
3540                                                Register length,
3541                                                Register scratch1,
3542                                                Register scratch2,
3543                                                Label* gc_required) {
3544   ASSERT(!AreAliased(result, length, scratch1, scratch2));
3545   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3546            TAG_OBJECT);
3547
3548   InitializeNewString(result,
3549                       length,
3550                       Heap::kSlicedAsciiStringMapRootIndex,
3551                       scratch1,
3552                       scratch2);
3553 }
3554
3555
3556 // Allocates a heap number or jumps to the need_gc label if the young space
3557 // is full and a scavenge is needed.
3558 void MacroAssembler::AllocateHeapNumber(Register result,
3559                                         Label* gc_required,
3560                                         Register scratch1,
3561                                         Register scratch2,
3562                                         CPURegister value,
3563                                         CPURegister heap_number_map) {
3564   ASSERT(!value.IsValid() || value.Is64Bits());
3565   UseScratchRegisterScope temps(this);
3566
3567   // Allocate an object in the heap for the heap number and tag it as a heap
3568   // object.
3569   Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
3570            NO_ALLOCATION_FLAGS);
3571
3572   // Prepare the heap number map.
3573   if (!heap_number_map.IsValid()) {
3574     // If we have a valid value register, use the same type of register to store
3575     // the map so we can use STP to store both in one instruction.
3576     if (value.IsValid() && value.IsFPRegister()) {
3577       heap_number_map = temps.AcquireD();
3578     } else {
3579       heap_number_map = scratch1;
3580     }
3581     LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
3582   }
3583   if (emit_debug_code()) {
3584     Register map;
3585     if (heap_number_map.IsFPRegister()) {
3586       map = scratch1;
3587       Fmov(map, DoubleRegister(heap_number_map));
3588     } else {
3589       map = Register(heap_number_map);
3590     }
3591     AssertRegisterIsRoot(map, Heap::kHeapNumberMapRootIndex);
3592   }
3593
3594   // Store the heap number map and the value in the allocated object.
3595   if (value.IsSameSizeAndType(heap_number_map)) {
3596     STATIC_ASSERT(HeapObject::kMapOffset + kPointerSize ==
3597                   HeapNumber::kValueOffset);
3598     Stp(heap_number_map, value, MemOperand(result, HeapObject::kMapOffset));
3599   } else {
3600     Str(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
3601     if (value.IsValid()) {
3602       Str(value, MemOperand(result, HeapNumber::kValueOffset));
3603     }
3604   }
3605   ObjectTag(result, result);
3606 }
3607
3608
3609 void MacroAssembler::JumpIfObjectType(Register object,
3610                                       Register map,
3611                                       Register type_reg,
3612                                       InstanceType type,
3613                                       Label* if_cond_pass,
3614                                       Condition cond) {
3615   CompareObjectType(object, map, type_reg, type);
3616   B(cond, if_cond_pass);
3617 }
3618
3619
3620 void MacroAssembler::JumpIfNotObjectType(Register object,
3621                                          Register map,
3622                                          Register type_reg,
3623                                          InstanceType type,
3624                                          Label* if_not_object) {
3625   JumpIfObjectType(object, map, type_reg, type, if_not_object, ne);
3626 }
3627
3628
3629 // Sets condition flags based on comparison, and returns type in type_reg.
3630 void MacroAssembler::CompareObjectType(Register object,
3631                                        Register map,
3632                                        Register type_reg,
3633                                        InstanceType type) {
3634   Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
3635   CompareInstanceType(map, type_reg, type);
3636 }
3637
3638
3639 // Sets condition flags based on comparison, and returns type in type_reg.
3640 void MacroAssembler::CompareInstanceType(Register map,
3641                                          Register type_reg,
3642                                          InstanceType type) {
3643   Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
3644   Cmp(type_reg, type);
3645 }
3646
3647
3648 void MacroAssembler::CompareMap(Register obj,
3649                                 Register scratch,
3650                                 Handle<Map> map) {
3651   Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3652   CompareMap(scratch, map);
3653 }
3654
3655
3656 void MacroAssembler::CompareMap(Register obj_map,
3657                                 Handle<Map> map) {
3658   Cmp(obj_map, Operand(map));
3659 }
3660
3661
3662 void MacroAssembler::CheckMap(Register obj,
3663                               Register scratch,
3664                               Handle<Map> map,
3665                               Label* fail,
3666                               SmiCheckType smi_check_type) {
3667   if (smi_check_type == DO_SMI_CHECK) {
3668     JumpIfSmi(obj, fail);
3669   }
3670
3671   CompareMap(obj, scratch, map);
3672   B(ne, fail);
3673 }
3674
3675
3676 void MacroAssembler::CheckMap(Register obj,
3677                               Register scratch,
3678                               Heap::RootListIndex index,
3679                               Label* fail,
3680                               SmiCheckType smi_check_type) {
3681   if (smi_check_type == DO_SMI_CHECK) {
3682     JumpIfSmi(obj, fail);
3683   }
3684   Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3685   JumpIfNotRoot(scratch, index, fail);
3686 }
3687
3688
3689 void MacroAssembler::CheckMap(Register obj_map,
3690                               Handle<Map> map,
3691                               Label* fail,
3692                               SmiCheckType smi_check_type) {
3693   if (smi_check_type == DO_SMI_CHECK) {
3694     JumpIfSmi(obj_map, fail);
3695   }
3696
3697   CompareMap(obj_map, map);
3698   B(ne, fail);
3699 }
3700
3701
3702 void MacroAssembler::DispatchMap(Register obj,
3703                                  Register scratch,
3704                                  Handle<Map> map,
3705                                  Handle<Code> success,
3706                                  SmiCheckType smi_check_type) {
3707   Label fail;
3708   if (smi_check_type == DO_SMI_CHECK) {
3709     JumpIfSmi(obj, &fail);
3710   }
3711   Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3712   Cmp(scratch, Operand(map));
3713   B(ne, &fail);
3714   Jump(success, RelocInfo::CODE_TARGET);
3715   Bind(&fail);
3716 }
3717
3718
3719 void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) {
3720   UseScratchRegisterScope temps(this);
3721   Register temp = temps.AcquireX();
3722   Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
3723   Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
3724   Tst(temp, mask);
3725 }
3726
3727
3728 void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) {
3729   // Load the map's "bit field 2".
3730   __ Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset));
3731   // Retrieve elements_kind from bit field 2.
3732   DecodeField<Map::ElementsKindBits>(result);
3733 }
3734
3735
3736 void MacroAssembler::TryGetFunctionPrototype(Register function,
3737                                              Register result,
3738                                              Register scratch,
3739                                              Label* miss,
3740                                              BoundFunctionAction action) {
3741   ASSERT(!AreAliased(function, result, scratch));
3742
3743   // Check that the receiver isn't a smi.
3744   JumpIfSmi(function, miss);
3745
3746   // Check that the function really is a function. Load map into result reg.
3747   JumpIfNotObjectType(function, result, scratch, JS_FUNCTION_TYPE, miss);
3748
3749   if (action == kMissOnBoundFunction) {
3750     Register scratch_w = scratch.W();
3751     Ldr(scratch,
3752         FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3753     // On 64-bit platforms, compiler hints field is not a smi. See definition of
3754     // kCompilerHintsOffset in src/objects.h.
3755     Ldr(scratch_w,
3756         FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
3757     Tbnz(scratch, SharedFunctionInfo::kBoundFunction, miss);
3758   }
3759
3760   // Make sure that the function has an instance prototype.
3761   Label non_instance;
3762   Ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
3763   Tbnz(scratch, Map::kHasNonInstancePrototype, &non_instance);
3764
3765   // Get the prototype or initial map from the function.
3766   Ldr(result,
3767       FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3768
3769   // If the prototype or initial map is the hole, don't return it and simply
3770   // miss the cache instead. This will allow us to allocate a prototype object
3771   // on-demand in the runtime system.
3772   JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss);
3773
3774   // If the function does not have an initial map, we're done.
3775   Label done;
3776   JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done);
3777
3778   // Get the prototype from the initial map.
3779   Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3780   B(&done);
3781
3782   // Non-instance prototype: fetch prototype from constructor field in initial
3783   // map.
3784   Bind(&non_instance);
3785   Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
3786
3787   // All done.
3788   Bind(&done);
3789 }
3790
3791
3792 void MacroAssembler::CompareRoot(const Register& obj,
3793                                  Heap::RootListIndex index) {
3794   UseScratchRegisterScope temps(this);
3795   Register temp = temps.AcquireX();
3796   ASSERT(!AreAliased(obj, temp));
3797   LoadRoot(temp, index);
3798   Cmp(obj, temp);
3799 }
3800
3801
3802 void MacroAssembler::JumpIfRoot(const Register& obj,
3803                                 Heap::RootListIndex index,
3804                                 Label* if_equal) {
3805   CompareRoot(obj, index);
3806   B(eq, if_equal);
3807 }
3808
3809
3810 void MacroAssembler::JumpIfNotRoot(const Register& obj,
3811                                    Heap::RootListIndex index,
3812                                    Label* if_not_equal) {
3813   CompareRoot(obj, index);
3814   B(ne, if_not_equal);
3815 }
3816
3817
3818 void MacroAssembler::CompareAndSplit(const Register& lhs,
3819                                      const Operand& rhs,
3820                                      Condition cond,
3821                                      Label* if_true,
3822                                      Label* if_false,
3823                                      Label* fall_through) {
3824   if ((if_true == if_false) && (if_false == fall_through)) {
3825     // Fall through.
3826   } else if (if_true == if_false) {
3827     B(if_true);
3828   } else if (if_false == fall_through) {
3829     CompareAndBranch(lhs, rhs, cond, if_true);
3830   } else if (if_true == fall_through) {
3831     CompareAndBranch(lhs, rhs, NegateCondition(cond), if_false);
3832   } else {
3833     CompareAndBranch(lhs, rhs, cond, if_true);
3834     B(if_false);
3835   }
3836 }
3837
3838
3839 void MacroAssembler::TestAndSplit(const Register& reg,
3840                                   uint64_t bit_pattern,
3841                                   Label* if_all_clear,
3842                                   Label* if_any_set,
3843                                   Label* fall_through) {
3844   if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
3845     // Fall through.
3846   } else if (if_all_clear == if_any_set) {
3847     B(if_all_clear);
3848   } else if (if_all_clear == fall_through) {
3849     TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3850   } else if (if_any_set == fall_through) {
3851     TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
3852   } else {
3853     TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3854     B(if_all_clear);
3855   }
3856 }
3857
3858
3859 void MacroAssembler::CheckFastElements(Register map,
3860                                        Register scratch,
3861                                        Label* fail) {
3862   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3863   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3864   STATIC_ASSERT(FAST_ELEMENTS == 2);
3865   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3866   Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3867   Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue);
3868   B(hi, fail);
3869 }
3870
3871
3872 void MacroAssembler::CheckFastObjectElements(Register map,
3873                                              Register scratch,
3874                                              Label* fail) {
3875   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3876   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3877   STATIC_ASSERT(FAST_ELEMENTS == 2);
3878   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3879   Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3880   Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
3881   // If cond==ls, set cond=hi, otherwise compare.
3882   Ccmp(scratch,
3883        Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi);
3884   B(hi, fail);
3885 }
3886
3887
3888 // Note: The ARM version of this clobbers elements_reg, but this version does
3889 // not. Some uses of this in ARM64 assume that elements_reg will be preserved.
3890 void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
3891                                                  Register key_reg,
3892                                                  Register elements_reg,
3893                                                  Register scratch1,
3894                                                  FPRegister fpscratch1,
3895                                                  Label* fail,
3896                                                  int elements_offset) {
3897   ASSERT(!AreAliased(value_reg, key_reg, elements_reg, scratch1));
3898   Label store_num;
3899
3900   // Speculatively convert the smi to a double - all smis can be exactly
3901   // represented as a double.
3902   SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag);
3903
3904   // If value_reg is a smi, we're done.
3905   JumpIfSmi(value_reg, &store_num);
3906
3907   // Ensure that the object is a heap number.
3908   CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(),
3909            fail, DONT_DO_SMI_CHECK);
3910
3911   Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
3912
3913   // Canonicalize NaNs.
3914   CanonicalizeNaN(fpscratch1);
3915
3916   // Store the result.
3917   Bind(&store_num);
3918   Add(scratch1, elements_reg,
3919       Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2));
3920   Str(fpscratch1,
3921       FieldMemOperand(scratch1,
3922                       FixedDoubleArray::kHeaderSize - elements_offset));
3923 }
3924
3925
3926 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
3927   return has_frame_ || !stub->SometimesSetsUpAFrame();
3928 }
3929
3930
3931 void MacroAssembler::IndexFromHash(Register hash, Register index) {
3932   // If the hash field contains an array index pick it out. The assert checks
3933   // that the constants for the maximum number of digits for an array index
3934   // cached in the hash field and the number of bits reserved for it does not
3935   // conflict.
3936   ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
3937          (1 << String::kArrayIndexValueBits));
3938   DecodeField<String::ArrayIndexValueBits>(index, hash);
3939   SmiTag(index, index);
3940 }
3941
3942
3943 void MacroAssembler::EmitSeqStringSetCharCheck(
3944     Register string,
3945     Register index,
3946     SeqStringSetCharCheckIndexType index_type,
3947     Register scratch,
3948     uint32_t encoding_mask) {
3949   ASSERT(!AreAliased(string, index, scratch));
3950
3951   if (index_type == kIndexIsSmi) {
3952     AssertSmi(index);
3953   }
3954
3955   // Check that string is an object.
3956   AssertNotSmi(string, kNonObject);
3957
3958   // Check that string has an appropriate map.
3959   Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
3960   Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
3961
3962   And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask);
3963   Cmp(scratch, encoding_mask);
3964   Check(eq, kUnexpectedStringType);
3965
3966   Ldr(scratch, FieldMemOperand(string, String::kLengthOffset));
3967   Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch));
3968   Check(lt, kIndexIsTooLarge);
3969
3970   ASSERT_EQ(0, Smi::FromInt(0));
3971   Cmp(index, 0);
3972   Check(ge, kIndexIsNegative);
3973 }
3974
3975
3976 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
3977                                             Register scratch1,
3978                                             Register scratch2,
3979                                             Label* miss) {
3980   ASSERT(!AreAliased(holder_reg, scratch1, scratch2));
3981   Label same_contexts;
3982
3983   // Load current lexical context from the stack frame.
3984   Ldr(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset));
3985   // In debug mode, make sure the lexical context is set.
3986 #ifdef DEBUG
3987   Cmp(scratch1, 0);
3988   Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
3989 #endif
3990
3991   // Load the native context of the current context.
3992   int offset =
3993       Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
3994   Ldr(scratch1, FieldMemOperand(scratch1, offset));
3995   Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
3996
3997   // Check the context is a native context.
3998   if (emit_debug_code()) {
3999     // Read the first word and compare to the global_context_map.
4000     Ldr(scratch2, FieldMemOperand(scratch1, HeapObject::kMapOffset));
4001     CompareRoot(scratch2, Heap::kNativeContextMapRootIndex);
4002     Check(eq, kExpectedNativeContext);
4003   }
4004
4005   // Check if both contexts are the same.
4006   Ldr(scratch2, FieldMemOperand(holder_reg,
4007                                 JSGlobalProxy::kNativeContextOffset));
4008   Cmp(scratch1, scratch2);
4009   B(&same_contexts, eq);
4010
4011   // Check the context is a native context.
4012   if (emit_debug_code()) {
4013     // We're short on scratch registers here, so use holder_reg as a scratch.
4014     Push(holder_reg);
4015     Register scratch3 = holder_reg;
4016
4017     CompareRoot(scratch2, Heap::kNullValueRootIndex);
4018     Check(ne, kExpectedNonNullContext);
4019
4020     Ldr(scratch3, FieldMemOperand(scratch2, HeapObject::kMapOffset));
4021     CompareRoot(scratch3, Heap::kNativeContextMapRootIndex);
4022     Check(eq, kExpectedNativeContext);
4023     Pop(holder_reg);
4024   }
4025
4026   // Check that the security token in the calling global object is
4027   // compatible with the security token in the receiving global
4028   // object.
4029   int token_offset = Context::kHeaderSize +
4030                      Context::SECURITY_TOKEN_INDEX * kPointerSize;
4031
4032   Ldr(scratch1, FieldMemOperand(scratch1, token_offset));
4033   Ldr(scratch2, FieldMemOperand(scratch2, token_offset));
4034   Cmp(scratch1, scratch2);
4035   B(miss, ne);
4036
4037   Bind(&same_contexts);
4038 }
4039
4040
4041 // Compute the hash code from the untagged key. This must be kept in sync with
4042 // ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in
4043 // code-stub-hydrogen.cc
4044 void MacroAssembler::GetNumberHash(Register key, Register scratch) {
4045   ASSERT(!AreAliased(key, scratch));
4046
4047   // Xor original key with a seed.
4048   LoadRoot(scratch, Heap::kHashSeedRootIndex);
4049   Eor(key, key, Operand::UntagSmi(scratch));
4050
4051   // The algorithm uses 32-bit integer values.
4052   key = key.W();
4053   scratch = scratch.W();
4054
4055   // Compute the hash code from the untagged key.  This must be kept in sync
4056   // with ComputeIntegerHash in utils.h.
4057   //
4058   // hash = ~hash + (hash <<1 15);
4059   Mvn(scratch, key);
4060   Add(key, scratch, Operand(key, LSL, 15));
4061   // hash = hash ^ (hash >> 12);
4062   Eor(key, key, Operand(key, LSR, 12));
4063   // hash = hash + (hash << 2);
4064   Add(key, key, Operand(key, LSL, 2));
4065   // hash = hash ^ (hash >> 4);
4066   Eor(key, key, Operand(key, LSR, 4));
4067   // hash = hash * 2057;
4068   Mov(scratch, Operand(key, LSL, 11));
4069   Add(key, key, Operand(key, LSL, 3));
4070   Add(key, key, scratch);
4071   // hash = hash ^ (hash >> 16);
4072   Eor(key, key, Operand(key, LSR, 16));
4073 }
4074
4075
4076 void MacroAssembler::LoadFromNumberDictionary(Label* miss,
4077                                               Register elements,
4078                                               Register key,
4079                                               Register result,
4080                                               Register scratch0,
4081                                               Register scratch1,
4082                                               Register scratch2,
4083                                               Register scratch3) {
4084   ASSERT(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3));
4085
4086   Label done;
4087
4088   SmiUntag(scratch0, key);
4089   GetNumberHash(scratch0, scratch1);
4090
4091   // Compute the capacity mask.
4092   Ldrsw(scratch1,
4093         UntagSmiFieldMemOperand(elements,
4094                                 SeededNumberDictionary::kCapacityOffset));
4095   Sub(scratch1, scratch1, 1);
4096
4097   // Generate an unrolled loop that performs a few probes before giving up.
4098   for (int i = 0; i < kNumberDictionaryProbes; i++) {
4099     // Compute the masked index: (hash + i + i * i) & mask.
4100     if (i > 0) {
4101       Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i));
4102     } else {
4103       Mov(scratch2, scratch0);
4104     }
4105     And(scratch2, scratch2, scratch1);
4106
4107     // Scale the index by multiplying by the element size.
4108     ASSERT(SeededNumberDictionary::kEntrySize == 3);
4109     Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
4110
4111     // Check if the key is identical to the name.
4112     Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
4113     Ldr(scratch3,
4114         FieldMemOperand(scratch2,
4115                         SeededNumberDictionary::kElementsStartOffset));
4116     Cmp(key, scratch3);
4117     if (i != (kNumberDictionaryProbes - 1)) {
4118       B(eq, &done);
4119     } else {
4120       B(ne, miss);
4121     }
4122   }
4123
4124   Bind(&done);
4125   // Check that the value is a normal property.
4126   const int kDetailsOffset =
4127       SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
4128   Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset));
4129   TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss);
4130
4131   // Get the value at the masked, scaled index and return.
4132   const int kValueOffset =
4133       SeededNumberDictionary::kElementsStartOffset + kPointerSize;
4134   Ldr(result, FieldMemOperand(scratch2, kValueOffset));
4135 }
4136
4137
4138 void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
4139                                          Register address,
4140                                          Register scratch1,
4141                                          SaveFPRegsMode fp_mode,
4142                                          RememberedSetFinalAction and_then) {
4143   ASSERT(!AreAliased(object, address, scratch1));
4144   Label done, store_buffer_overflow;
4145   if (emit_debug_code()) {
4146     Label ok;
4147     JumpIfNotInNewSpace(object, &ok);
4148     Abort(kRememberedSetPointerInNewSpace);
4149     bind(&ok);
4150   }
4151   UseScratchRegisterScope temps(this);
4152   Register scratch2 = temps.AcquireX();
4153
4154   // Load store buffer top.
4155   Mov(scratch2, ExternalReference::store_buffer_top(isolate()));
4156   Ldr(scratch1, MemOperand(scratch2));
4157   // Store pointer to buffer and increment buffer top.
4158   Str(address, MemOperand(scratch1, kPointerSize, PostIndex));
4159   // Write back new top of buffer.
4160   Str(scratch1, MemOperand(scratch2));
4161   // Call stub on end of buffer.
4162   // Check for end of buffer.
4163   ASSERT(StoreBuffer::kStoreBufferOverflowBit ==
4164          (1 << (14 + kPointerSizeLog2)));
4165   if (and_then == kFallThroughAtEnd) {
4166     Tbz(scratch1, (14 + kPointerSizeLog2), &done);
4167   } else {
4168     ASSERT(and_then == kReturnAtEnd);
4169     Tbnz(scratch1, (14 + kPointerSizeLog2), &store_buffer_overflow);
4170     Ret();
4171   }
4172
4173   Bind(&store_buffer_overflow);
4174   Push(lr);
4175   StoreBufferOverflowStub store_buffer_overflow_stub =
4176       StoreBufferOverflowStub(isolate(), fp_mode);
4177   CallStub(&store_buffer_overflow_stub);
4178   Pop(lr);
4179
4180   Bind(&done);
4181   if (and_then == kReturnAtEnd) {
4182     Ret();
4183   }
4184 }
4185
4186
4187 void MacroAssembler::PopSafepointRegisters() {
4188   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
4189   PopXRegList(kSafepointSavedRegisters);
4190   Drop(num_unsaved);
4191 }
4192
4193
4194 void MacroAssembler::PushSafepointRegisters() {
4195   // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
4196   // adjust the stack for unsaved registers.
4197   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
4198   ASSERT(num_unsaved >= 0);
4199   Claim(num_unsaved);
4200   PushXRegList(kSafepointSavedRegisters);
4201 }
4202
4203
4204 void MacroAssembler::PushSafepointRegistersAndDoubles() {
4205   PushSafepointRegisters();
4206   PushCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
4207                             FPRegister::kAllocatableFPRegisters));
4208 }
4209
4210
4211 void MacroAssembler::PopSafepointRegistersAndDoubles() {
4212   PopCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
4213                            FPRegister::kAllocatableFPRegisters));
4214   PopSafepointRegisters();
4215 }
4216
4217
4218 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
4219   // Make sure the safepoint registers list is what we expect.
4220   ASSERT(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff);
4221
4222   // Safepoint registers are stored contiguously on the stack, but not all the
4223   // registers are saved. The following registers are excluded:
4224   //  - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
4225   //    the macro assembler.
4226   //  - x28 (jssp) because JS stack pointer doesn't need to be included in
4227   //    safepoint registers.
4228   //  - x31 (csp) because the system stack pointer doesn't need to be included
4229   //    in safepoint registers.
4230   //
4231   // This function implements the mapping of register code to index into the
4232   // safepoint register slots.
4233   if ((reg_code >= 0) && (reg_code <= 15)) {
4234     return reg_code;
4235   } else if ((reg_code >= 18) && (reg_code <= 27)) {
4236     // Skip ip0 and ip1.
4237     return reg_code - 2;
4238   } else if ((reg_code == 29) || (reg_code == 30)) {
4239     // Also skip jssp.
4240     return reg_code - 3;
4241   } else {
4242     // This register has no safepoint register slot.
4243     UNREACHABLE();
4244     return -1;
4245   }
4246 }
4247
4248
4249 void MacroAssembler::CheckPageFlagSet(const Register& object,
4250                                       const Register& scratch,
4251                                       int mask,
4252                                       Label* if_any_set) {
4253   And(scratch, object, ~Page::kPageAlignmentMask);
4254   Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
4255   TestAndBranchIfAnySet(scratch, mask, if_any_set);
4256 }
4257
4258
4259 void MacroAssembler::CheckPageFlagClear(const Register& object,
4260                                         const Register& scratch,
4261                                         int mask,
4262                                         Label* if_all_clear) {
4263   And(scratch, object, ~Page::kPageAlignmentMask);
4264   Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
4265   TestAndBranchIfAllClear(scratch, mask, if_all_clear);
4266 }
4267
4268
4269 void MacroAssembler::RecordWriteField(
4270     Register object,
4271     int offset,
4272     Register value,
4273     Register scratch,
4274     LinkRegisterStatus lr_status,
4275     SaveFPRegsMode save_fp,
4276     RememberedSetAction remembered_set_action,
4277     SmiCheck smi_check,
4278     PointersToHereCheck pointers_to_here_check_for_value) {
4279   // First, check if a write barrier is even needed. The tests below
4280   // catch stores of Smis.
4281   Label done;
4282
4283   // Skip the barrier if writing a smi.
4284   if (smi_check == INLINE_SMI_CHECK) {
4285     JumpIfSmi(value, &done);
4286   }
4287
4288   // Although the object register is tagged, the offset is relative to the start
4289   // of the object, so offset must be a multiple of kPointerSize.
4290   ASSERT(IsAligned(offset, kPointerSize));
4291
4292   Add(scratch, object, offset - kHeapObjectTag);
4293   if (emit_debug_code()) {
4294     Label ok;
4295     Tst(scratch, (1 << kPointerSizeLog2) - 1);
4296     B(eq, &ok);
4297     Abort(kUnalignedCellInWriteBarrier);
4298     Bind(&ok);
4299   }
4300
4301   RecordWrite(object,
4302               scratch,
4303               value,
4304               lr_status,
4305               save_fp,
4306               remembered_set_action,
4307               OMIT_SMI_CHECK,
4308               pointers_to_here_check_for_value);
4309
4310   Bind(&done);
4311
4312   // Clobber clobbered input registers when running with the debug-code flag
4313   // turned on to provoke errors.
4314   if (emit_debug_code()) {
4315     Mov(value, Operand(BitCast<int64_t>(kZapValue + 4)));
4316     Mov(scratch, Operand(BitCast<int64_t>(kZapValue + 8)));
4317   }
4318 }
4319
4320
4321 // Will clobber: object, map, dst.
4322 // If lr_status is kLRHasBeenSaved, lr will also be clobbered.
4323 void MacroAssembler::RecordWriteForMap(Register object,
4324                                        Register map,
4325                                        Register dst,
4326                                        LinkRegisterStatus lr_status,
4327                                        SaveFPRegsMode fp_mode) {
4328   ASM_LOCATION("MacroAssembler::RecordWrite");
4329   ASSERT(!AreAliased(object, map));
4330
4331   if (emit_debug_code()) {
4332     UseScratchRegisterScope temps(this);
4333     Register temp = temps.AcquireX();
4334
4335     CompareMap(map, temp, isolate()->factory()->meta_map());
4336     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4337   }
4338
4339   if (!FLAG_incremental_marking) {
4340     return;
4341   }
4342
4343   if (emit_debug_code()) {
4344     UseScratchRegisterScope temps(this);
4345     Register temp = temps.AcquireX();
4346
4347     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4348     Cmp(temp, map);
4349     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4350   }
4351
4352   // Count number of write barriers in generated code.
4353   isolate()->counters()->write_barriers_static()->Increment();
4354   // TODO(mstarzinger): Dynamic counter missing.
4355
4356   // First, check if a write barrier is even needed. The tests below
4357   // catch stores of smis and stores into the young generation.
4358   Label done;
4359
4360   // A single check of the map's pages interesting flag suffices, since it is
4361   // only set during incremental collection, and then it's also guaranteed that
4362   // the from object's page's interesting flag is also set.  This optimization
4363   // relies on the fact that maps can never be in new space.
4364   CheckPageFlagClear(map,
4365                      map,  // Used as scratch.
4366                      MemoryChunk::kPointersToHereAreInterestingMask,
4367                      &done);
4368
4369   // Record the actual write.
4370   if (lr_status == kLRHasNotBeenSaved) {
4371     Push(lr);
4372   }
4373   Add(dst, object, HeapObject::kMapOffset - kHeapObjectTag);
4374   RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
4375                        fp_mode);
4376   CallStub(&stub);
4377   if (lr_status == kLRHasNotBeenSaved) {
4378     Pop(lr);
4379   }
4380
4381   Bind(&done);
4382
4383   // Clobber clobbered registers when running with the debug-code flag
4384   // turned on to provoke errors.
4385   if (emit_debug_code()) {
4386     Mov(dst, Operand(BitCast<int64_t>(kZapValue + 12)));
4387     Mov(map, Operand(BitCast<int64_t>(kZapValue + 16)));
4388   }
4389 }
4390
4391
4392 // Will clobber: object, address, value.
4393 // If lr_status is kLRHasBeenSaved, lr will also be clobbered.
4394 //
4395 // The register 'object' contains a heap object pointer. The heap object tag is
4396 // shifted away.
4397 void MacroAssembler::RecordWrite(
4398     Register object,
4399     Register address,
4400     Register value,
4401     LinkRegisterStatus lr_status,
4402     SaveFPRegsMode fp_mode,
4403     RememberedSetAction remembered_set_action,
4404     SmiCheck smi_check,
4405     PointersToHereCheck pointers_to_here_check_for_value) {
4406   ASM_LOCATION("MacroAssembler::RecordWrite");
4407   ASSERT(!AreAliased(object, value));
4408
4409   if (emit_debug_code()) {
4410     UseScratchRegisterScope temps(this);
4411     Register temp = temps.AcquireX();
4412
4413     Ldr(temp, MemOperand(address));
4414     Cmp(temp, value);
4415     Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4416   }
4417
4418   // Count number of write barriers in generated code.
4419   isolate()->counters()->write_barriers_static()->Increment();
4420   // TODO(mstarzinger): Dynamic counter missing.
4421
4422   // First, check if a write barrier is even needed. The tests below
4423   // catch stores of smis and stores into the young generation.
4424   Label done;
4425
4426   if (smi_check == INLINE_SMI_CHECK) {
4427     ASSERT_EQ(0, kSmiTag);
4428     JumpIfSmi(value, &done);
4429   }
4430
4431   if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
4432     CheckPageFlagClear(value,
4433                        value,  // Used as scratch.
4434                        MemoryChunk::kPointersToHereAreInterestingMask,
4435                        &done);
4436   }
4437   CheckPageFlagClear(object,
4438                      value,  // Used as scratch.
4439                      MemoryChunk::kPointersFromHereAreInterestingMask,
4440                      &done);
4441
4442   // Record the actual write.
4443   if (lr_status == kLRHasNotBeenSaved) {
4444     Push(lr);
4445   }
4446   RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
4447                        fp_mode);
4448   CallStub(&stub);
4449   if (lr_status == kLRHasNotBeenSaved) {
4450     Pop(lr);
4451   }
4452
4453   Bind(&done);
4454
4455   // Clobber clobbered registers when running with the debug-code flag
4456   // turned on to provoke errors.
4457   if (emit_debug_code()) {
4458     Mov(address, Operand(BitCast<int64_t>(kZapValue + 12)));
4459     Mov(value, Operand(BitCast<int64_t>(kZapValue + 16)));
4460   }
4461 }
4462
4463
4464 void MacroAssembler::AssertHasValidColor(const Register& reg) {
4465   if (emit_debug_code()) {
4466     // The bit sequence is backward. The first character in the string
4467     // represents the least significant bit.
4468     ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
4469
4470     Label color_is_valid;
4471     Tbnz(reg, 0, &color_is_valid);
4472     Tbz(reg, 1, &color_is_valid);
4473     Abort(kUnexpectedColorFound);
4474     Bind(&color_is_valid);
4475   }
4476 }
4477
4478
4479 void MacroAssembler::GetMarkBits(Register addr_reg,
4480                                  Register bitmap_reg,
4481                                  Register shift_reg) {
4482   ASSERT(!AreAliased(addr_reg, bitmap_reg, shift_reg));
4483   ASSERT(addr_reg.Is64Bits() && bitmap_reg.Is64Bits() && shift_reg.Is64Bits());
4484   // addr_reg is divided into fields:
4485   // |63        page base        20|19    high      8|7   shift   3|2  0|
4486   // 'high' gives the index of the cell holding color bits for the object.
4487   // 'shift' gives the offset in the cell for this object's color.
4488   const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
4489   UseScratchRegisterScope temps(this);
4490   Register temp = temps.AcquireX();
4491   Ubfx(temp, addr_reg, kShiftBits, kPageSizeBits - kShiftBits);
4492   Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask);
4493   Add(bitmap_reg, bitmap_reg, Operand(temp, LSL, Bitmap::kBytesPerCellLog2));
4494   // bitmap_reg:
4495   // |63        page base        20|19 zeros 15|14      high      3|2  0|
4496   Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
4497 }
4498
4499
4500 void MacroAssembler::HasColor(Register object,
4501                               Register bitmap_scratch,
4502                               Register shift_scratch,
4503                               Label* has_color,
4504                               int first_bit,
4505                               int second_bit) {
4506   // See mark-compact.h for color definitions.
4507   ASSERT(!AreAliased(object, bitmap_scratch, shift_scratch));
4508
4509   GetMarkBits(object, bitmap_scratch, shift_scratch);
4510   Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4511   // Shift the bitmap down to get the color of the object in bits [1:0].
4512   Lsr(bitmap_scratch, bitmap_scratch, shift_scratch);
4513
4514   AssertHasValidColor(bitmap_scratch);
4515
4516   // These bit sequences are backwards. The first character in the string
4517   // represents the least significant bit.
4518   ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4519   ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
4520   ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
4521
4522   // Check for the color.
4523   if (first_bit == 0) {
4524     // Checking for white.
4525     ASSERT(second_bit == 0);
4526     // We only need to test the first bit.
4527     Tbz(bitmap_scratch, 0, has_color);
4528   } else {
4529     Label other_color;
4530     // Checking for grey or black.
4531     Tbz(bitmap_scratch, 0, &other_color);
4532     if (second_bit == 0) {
4533       Tbz(bitmap_scratch, 1, has_color);
4534     } else {
4535       Tbnz(bitmap_scratch, 1, has_color);
4536     }
4537     Bind(&other_color);
4538   }
4539
4540   // Fall through if it does not have the right color.
4541 }
4542
4543
4544 void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
4545                                         Register scratch,
4546                                         Label* if_deprecated) {
4547   if (map->CanBeDeprecated()) {
4548     Mov(scratch, Operand(map));
4549     Ldrsw(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
4550     TestAndBranchIfAnySet(scratch, Map::Deprecated::kMask, if_deprecated);
4551   }
4552 }
4553
4554
4555 void MacroAssembler::JumpIfBlack(Register object,
4556                                  Register scratch0,
4557                                  Register scratch1,
4558                                  Label* on_black) {
4559   ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
4560   HasColor(object, scratch0, scratch1, on_black, 1, 0);  // kBlackBitPattern.
4561 }
4562
4563
4564 void MacroAssembler::JumpIfDictionaryInPrototypeChain(
4565     Register object,
4566     Register scratch0,
4567     Register scratch1,
4568     Label* found) {
4569   ASSERT(!AreAliased(object, scratch0, scratch1));
4570   Factory* factory = isolate()->factory();
4571   Register current = scratch0;
4572   Label loop_again;
4573
4574   // Scratch contains elements pointer.
4575   Mov(current, object);
4576
4577   // Loop based on the map going up the prototype chain.
4578   Bind(&loop_again);
4579   Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
4580   Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
4581   DecodeField<Map::ElementsKindBits>(scratch1);
4582   CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found);
4583   Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
4584   CompareAndBranch(current, Operand(factory->null_value()), ne, &loop_again);
4585 }
4586
4587
4588 void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
4589                                                Register result) {
4590   ASSERT(!result.Is(ldr_location));
4591   const uint32_t kLdrLitOffset_lsb = 5;
4592   const uint32_t kLdrLitOffset_width = 19;
4593   Ldr(result, MemOperand(ldr_location));
4594   if (emit_debug_code()) {
4595     And(result, result, LoadLiteralFMask);
4596     Cmp(result, LoadLiteralFixed);
4597     Check(eq, kTheInstructionToPatchShouldBeAnLdrLiteral);
4598     // The instruction was clobbered. Reload it.
4599     Ldr(result, MemOperand(ldr_location));
4600   }
4601   Sbfx(result, result, kLdrLitOffset_lsb, kLdrLitOffset_width);
4602   Add(result, ldr_location, Operand(result, LSL, kWordSizeInBytesLog2));
4603 }
4604
4605
4606 void MacroAssembler::EnsureNotWhite(
4607     Register value,
4608     Register bitmap_scratch,
4609     Register shift_scratch,
4610     Register load_scratch,
4611     Register length_scratch,
4612     Label* value_is_white_and_not_data) {
4613   ASSERT(!AreAliased(
4614       value, bitmap_scratch, shift_scratch, load_scratch, length_scratch));
4615
4616   // These bit sequences are backwards. The first character in the string
4617   // represents the least significant bit.
4618   ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4619   ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
4620   ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
4621
4622   GetMarkBits(value, bitmap_scratch, shift_scratch);
4623   Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4624   Lsr(load_scratch, load_scratch, shift_scratch);
4625
4626   AssertHasValidColor(load_scratch);
4627
4628   // If the value is black or grey we don't need to do anything.
4629   // Since both black and grey have a 1 in the first position and white does
4630   // not have a 1 there we only need to check one bit.
4631   Label done;
4632   Tbnz(load_scratch, 0, &done);
4633
4634   // Value is white.  We check whether it is data that doesn't need scanning.
4635   Register map = load_scratch;  // Holds map while checking type.
4636   Label is_data_object;
4637
4638   // Check for heap-number.
4639   Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
4640   Mov(length_scratch, HeapNumber::kSize);
4641   JumpIfRoot(map, Heap::kHeapNumberMapRootIndex, &is_data_object);
4642
4643   // Check for strings.
4644   ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
4645   ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
4646   // If it's a string and it's not a cons string then it's an object containing
4647   // no GC pointers.
4648   Register instance_type = load_scratch;
4649   Ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
4650   TestAndBranchIfAnySet(instance_type,
4651                         kIsIndirectStringMask | kIsNotStringMask,
4652                         value_is_white_and_not_data);
4653
4654   // It's a non-indirect (non-cons and non-slice) string.
4655   // If it's external, the length is just ExternalString::kSize.
4656   // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
4657   // External strings are the only ones with the kExternalStringTag bit
4658   // set.
4659   ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
4660   ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
4661   Mov(length_scratch, ExternalString::kSize);
4662   TestAndBranchIfAnySet(instance_type, kExternalStringTag, &is_data_object);
4663
4664   // Sequential string, either ASCII or UC16.
4665   // For ASCII (char-size of 1) we shift the smi tag away to get the length.
4666   // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
4667   // getting the length multiplied by 2.
4668   ASSERT(kOneByteStringTag == 4 && kStringEncodingMask == 4);
4669   Ldrsw(length_scratch, UntagSmiFieldMemOperand(value,
4670                                                 String::kLengthOffset));
4671   Tst(instance_type, kStringEncodingMask);
4672   Cset(load_scratch, eq);
4673   Lsl(length_scratch, length_scratch, load_scratch);
4674   Add(length_scratch,
4675       length_scratch,
4676       SeqString::kHeaderSize + kObjectAlignmentMask);
4677   Bic(length_scratch, length_scratch, kObjectAlignmentMask);
4678
4679   Bind(&is_data_object);
4680   // Value is a data object, and it is white.  Mark it black.  Since we know
4681   // that the object is white we can make it black by flipping one bit.
4682   Register mask = shift_scratch;
4683   Mov(load_scratch, 1);
4684   Lsl(mask, load_scratch, shift_scratch);
4685
4686   Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4687   Orr(load_scratch, load_scratch, mask);
4688   Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4689
4690   Bic(bitmap_scratch, bitmap_scratch, Page::kPageAlignmentMask);
4691   Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
4692   Add(load_scratch, load_scratch, length_scratch);
4693   Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
4694
4695   Bind(&done);
4696 }
4697
4698
4699 void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
4700   if (emit_debug_code()) {
4701     Check(cond, reason);
4702   }
4703 }
4704
4705
4706
4707 void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) {
4708   if (emit_debug_code()) {
4709     CheckRegisterIsClear(reg, reason);
4710   }
4711 }
4712
4713
4714 void MacroAssembler::AssertRegisterIsRoot(Register reg,
4715                                           Heap::RootListIndex index,
4716                                           BailoutReason reason) {
4717   if (emit_debug_code()) {
4718     CompareRoot(reg, index);
4719     Check(eq, reason);
4720   }
4721 }
4722
4723
4724 void MacroAssembler::AssertFastElements(Register elements) {
4725   if (emit_debug_code()) {
4726     UseScratchRegisterScope temps(this);
4727     Register temp = temps.AcquireX();
4728     Label ok;
4729     Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset));
4730     JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok);
4731     JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok);
4732     JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok);
4733     Abort(kJSObjectWithFastElementsMapHasSlowElements);
4734     Bind(&ok);
4735   }
4736 }
4737
4738
4739 void MacroAssembler::AssertIsString(const Register& object) {
4740   if (emit_debug_code()) {
4741     UseScratchRegisterScope temps(this);
4742     Register temp = temps.AcquireX();
4743     STATIC_ASSERT(kSmiTag == 0);
4744     Tst(object, kSmiTagMask);
4745     Check(ne, kOperandIsNotAString);
4746     Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4747     CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
4748     Check(lo, kOperandIsNotAString);
4749   }
4750 }
4751
4752
4753 void MacroAssembler::Check(Condition cond, BailoutReason reason) {
4754   Label ok;
4755   B(cond, &ok);
4756   Abort(reason);
4757   // Will not return here.
4758   Bind(&ok);
4759 }
4760
4761
4762 void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) {
4763   Label ok;
4764   Cbz(reg, &ok);
4765   Abort(reason);
4766   // Will not return here.
4767   Bind(&ok);
4768 }
4769
4770
4771 void MacroAssembler::Abort(BailoutReason reason) {
4772 #ifdef DEBUG
4773   RecordComment("Abort message: ");
4774   RecordComment(GetBailoutReason(reason));
4775
4776   if (FLAG_trap_on_abort) {
4777     Brk(0);
4778     return;
4779   }
4780 #endif
4781
4782   // Abort is used in some contexts where csp is the stack pointer. In order to
4783   // simplify the CallRuntime code, make sure that jssp is the stack pointer.
4784   // There is no risk of register corruption here because Abort doesn't return.
4785   Register old_stack_pointer = StackPointer();
4786   SetStackPointer(jssp);
4787   Mov(jssp, old_stack_pointer);
4788
4789   // We need some scratch registers for the MacroAssembler, so make sure we have
4790   // some. This is safe here because Abort never returns.
4791   RegList old_tmp_list = TmpList()->list();
4792   TmpList()->Combine(MacroAssembler::DefaultTmpList());
4793
4794   if (use_real_aborts()) {
4795     // Avoid infinite recursion; Push contains some assertions that use Abort.
4796     NoUseRealAbortsScope no_real_aborts(this);
4797
4798     Mov(x0, Smi::FromInt(reason));
4799     Push(x0);
4800
4801     if (!has_frame_) {
4802       // We don't actually want to generate a pile of code for this, so just
4803       // claim there is a stack frame, without generating one.
4804       FrameScope scope(this, StackFrame::NONE);
4805       CallRuntime(Runtime::kAbort, 1);
4806     } else {
4807       CallRuntime(Runtime::kAbort, 1);
4808     }
4809   } else {
4810     // Load the string to pass to Printf.
4811     Label msg_address;
4812     Adr(x0, &msg_address);
4813
4814     // Call Printf directly to report the error.
4815     CallPrintf();
4816
4817     // We need a way to stop execution on both the simulator and real hardware,
4818     // and Unreachable() is the best option.
4819     Unreachable();
4820
4821     // Emit the message string directly in the instruction stream.
4822     {
4823       BlockPoolsScope scope(this);
4824       Bind(&msg_address);
4825       EmitStringData(GetBailoutReason(reason));
4826     }
4827   }
4828
4829   SetStackPointer(old_stack_pointer);
4830   TmpList()->set_list(old_tmp_list);
4831 }
4832
4833
4834 void MacroAssembler::LoadTransitionedArrayMapConditional(
4835     ElementsKind expected_kind,
4836     ElementsKind transitioned_kind,
4837     Register map_in_out,
4838     Register scratch1,
4839     Register scratch2,
4840     Label* no_map_match) {
4841   // Load the global or builtins object from the current context.
4842   Ldr(scratch1, GlobalObjectMemOperand());
4843   Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
4844
4845   // Check that the function's map is the same as the expected cached map.
4846   Ldr(scratch1, ContextMemOperand(scratch1, Context::JS_ARRAY_MAPS_INDEX));
4847   size_t offset = (expected_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
4848   Ldr(scratch2, FieldMemOperand(scratch1, offset));
4849   Cmp(map_in_out, scratch2);
4850   B(ne, no_map_match);
4851
4852   // Use the transitioned cached map.
4853   offset = (transitioned_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
4854   Ldr(map_in_out, FieldMemOperand(scratch1, offset));
4855 }
4856
4857
4858 void MacroAssembler::LoadGlobalFunction(int index, Register function) {
4859   // Load the global or builtins object from the current context.
4860   Ldr(function, GlobalObjectMemOperand());
4861   // Load the native context from the global or builtins object.
4862   Ldr(function, FieldMemOperand(function,
4863                                 GlobalObject::kNativeContextOffset));
4864   // Load the function from the native context.
4865   Ldr(function, ContextMemOperand(function, index));
4866 }
4867
4868
4869 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
4870                                                   Register map,
4871                                                   Register scratch) {
4872   // Load the initial map. The global functions all have initial maps.
4873   Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4874   if (emit_debug_code()) {
4875     Label ok, fail;
4876     CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
4877     B(&ok);
4878     Bind(&fail);
4879     Abort(kGlobalFunctionsMustHaveInitialMap);
4880     Bind(&ok);
4881   }
4882 }
4883
4884
4885 // This is the main Printf implementation. All other Printf variants call
4886 // PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
4887 void MacroAssembler::PrintfNoPreserve(const char * format,
4888                                       const CPURegister& arg0,
4889                                       const CPURegister& arg1,
4890                                       const CPURegister& arg2,
4891                                       const CPURegister& arg3) {
4892   // We cannot handle a caller-saved stack pointer. It doesn't make much sense
4893   // in most cases anyway, so this restriction shouldn't be too serious.
4894   ASSERT(!kCallerSaved.IncludesAliasOf(__ StackPointer()));
4895
4896   // The provided arguments, and their proper procedure-call standard registers.
4897   CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3};
4898   CPURegister pcs[kPrintfMaxArgCount] = {NoReg, NoReg, NoReg, NoReg};
4899
4900   int arg_count = kPrintfMaxArgCount;
4901
4902   // The PCS varargs registers for printf. Note that x0 is used for the printf
4903   // format string.
4904   static const CPURegList kPCSVarargs =
4905       CPURegList(CPURegister::kRegister, kXRegSizeInBits, 1, arg_count);
4906   static const CPURegList kPCSVarargsFP =
4907       CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, arg_count - 1);
4908
4909   // We can use caller-saved registers as scratch values, except for the
4910   // arguments and the PCS registers where they might need to go.
4911   CPURegList tmp_list = kCallerSaved;
4912   tmp_list.Remove(x0);      // Used to pass the format string.
4913   tmp_list.Remove(kPCSVarargs);
4914   tmp_list.Remove(arg0, arg1, arg2, arg3);
4915
4916   CPURegList fp_tmp_list = kCallerSavedFP;
4917   fp_tmp_list.Remove(kPCSVarargsFP);
4918   fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
4919
4920   // Override the MacroAssembler's scratch register list. The lists will be
4921   // reset automatically at the end of the UseScratchRegisterScope.
4922   UseScratchRegisterScope temps(this);
4923   TmpList()->set_list(tmp_list.list());
4924   FPTmpList()->set_list(fp_tmp_list.list());
4925
4926   // Copies of the printf vararg registers that we can pop from.
4927   CPURegList pcs_varargs = kPCSVarargs;
4928   CPURegList pcs_varargs_fp = kPCSVarargsFP;
4929
4930   // Place the arguments. There are lots of clever tricks and optimizations we
4931   // could use here, but Printf is a debug tool so instead we just try to keep
4932   // it simple: Move each input that isn't already in the right place to a
4933   // scratch register, then move everything back.
4934   for (unsigned i = 0; i < kPrintfMaxArgCount; i++) {
4935     // Work out the proper PCS register for this argument.
4936     if (args[i].IsRegister()) {
4937       pcs[i] = pcs_varargs.PopLowestIndex().X();
4938       // We might only need a W register here. We need to know the size of the
4939       // argument so we can properly encode it for the simulator call.
4940       if (args[i].Is32Bits()) pcs[i] = pcs[i].W();
4941     } else if (args[i].IsFPRegister()) {
4942       // In C, floats are always cast to doubles for varargs calls.
4943       pcs[i] = pcs_varargs_fp.PopLowestIndex().D();
4944     } else {
4945       ASSERT(args[i].IsNone());
4946       arg_count = i;
4947       break;
4948     }
4949
4950     // If the argument is already in the right place, leave it where it is.
4951     if (args[i].Aliases(pcs[i])) continue;
4952
4953     // Otherwise, if the argument is in a PCS argument register, allocate an
4954     // appropriate scratch register and then move it out of the way.
4955     if (kPCSVarargs.IncludesAliasOf(args[i]) ||
4956         kPCSVarargsFP.IncludesAliasOf(args[i])) {
4957       if (args[i].IsRegister()) {
4958         Register old_arg = Register(args[i]);
4959         Register new_arg = temps.AcquireSameSizeAs(old_arg);
4960         Mov(new_arg, old_arg);
4961         args[i] = new_arg;
4962       } else {
4963         FPRegister old_arg = FPRegister(args[i]);
4964         FPRegister new_arg = temps.AcquireSameSizeAs(old_arg);
4965         Fmov(new_arg, old_arg);
4966         args[i] = new_arg;
4967       }
4968     }
4969   }
4970
4971   // Do a second pass to move values into their final positions and perform any
4972   // conversions that may be required.
4973   for (int i = 0; i < arg_count; i++) {
4974     ASSERT(pcs[i].type() == args[i].type());
4975     if (pcs[i].IsRegister()) {
4976       Mov(Register(pcs[i]), Register(args[i]), kDiscardForSameWReg);
4977     } else {
4978       ASSERT(pcs[i].IsFPRegister());
4979       if (pcs[i].SizeInBytes() == args[i].SizeInBytes()) {
4980         Fmov(FPRegister(pcs[i]), FPRegister(args[i]));
4981       } else {
4982         Fcvt(FPRegister(pcs[i]), FPRegister(args[i]));
4983       }
4984     }
4985   }
4986
4987   // Load the format string into x0, as per the procedure-call standard.
4988   //
4989   // To make the code as portable as possible, the format string is encoded
4990   // directly in the instruction stream. It might be cleaner to encode it in a
4991   // literal pool, but since Printf is usually used for debugging, it is
4992   // beneficial for it to be minimally dependent on other features.
4993   Label format_address;
4994   Adr(x0, &format_address);
4995
4996   // Emit the format string directly in the instruction stream.
4997   { BlockPoolsScope scope(this);
4998     Label after_data;
4999     B(&after_data);
5000     Bind(&format_address);
5001     EmitStringData(format);
5002     Unreachable();
5003     Bind(&after_data);
5004   }
5005
5006   // We don't pass any arguments on the stack, but we still need to align the C
5007   // stack pointer to a 16-byte boundary for PCS compliance.
5008   if (!csp.Is(StackPointer())) {
5009     Bic(csp, StackPointer(), 0xf);
5010   }
5011
5012   CallPrintf(arg_count, pcs);
5013 }
5014
5015
5016 void MacroAssembler::CallPrintf(int arg_count, const CPURegister * args) {
5017   // A call to printf needs special handling for the simulator, since the system
5018   // printf function will use a different instruction set and the procedure-call
5019   // standard will not be compatible.
5020 #ifdef USE_SIMULATOR
5021   { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
5022     hlt(kImmExceptionIsPrintf);
5023     dc32(arg_count);          // kPrintfArgCountOffset
5024
5025     // Determine the argument pattern.
5026     uint32_t arg_pattern_list = 0;
5027     for (int i = 0; i < arg_count; i++) {
5028       uint32_t arg_pattern;
5029       if (args[i].IsRegister()) {
5030         arg_pattern = args[i].Is32Bits() ? kPrintfArgW : kPrintfArgX;
5031       } else {
5032         ASSERT(args[i].Is64Bits());
5033         arg_pattern = kPrintfArgD;
5034       }
5035       ASSERT(arg_pattern < (1 << kPrintfArgPatternBits));
5036       arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i));
5037     }
5038     dc32(arg_pattern_list);   // kPrintfArgPatternListOffset
5039   }
5040 #else
5041   Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE);
5042 #endif
5043 }
5044
5045
5046 void MacroAssembler::Printf(const char * format,
5047                             CPURegister arg0,
5048                             CPURegister arg1,
5049                             CPURegister arg2,
5050                             CPURegister arg3) {
5051   // We can only print sp if it is the current stack pointer.
5052   if (!csp.Is(StackPointer())) {
5053     ASSERT(!csp.Aliases(arg0));
5054     ASSERT(!csp.Aliases(arg1));
5055     ASSERT(!csp.Aliases(arg2));
5056     ASSERT(!csp.Aliases(arg3));
5057   }
5058
5059   // Printf is expected to preserve all registers, so make sure that none are
5060   // available as scratch registers until we've preserved them.
5061   RegList old_tmp_list = TmpList()->list();
5062   RegList old_fp_tmp_list = FPTmpList()->list();
5063   TmpList()->set_list(0);
5064   FPTmpList()->set_list(0);
5065
5066   // Preserve all caller-saved registers as well as NZCV.
5067   // If csp is the stack pointer, PushCPURegList asserts that the size of each
5068   // list is a multiple of 16 bytes.
5069   PushCPURegList(kCallerSaved);
5070   PushCPURegList(kCallerSavedFP);
5071
5072   // We can use caller-saved registers as scratch values (except for argN).
5073   CPURegList tmp_list = kCallerSaved;
5074   CPURegList fp_tmp_list = kCallerSavedFP;
5075   tmp_list.Remove(arg0, arg1, arg2, arg3);
5076   fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
5077   TmpList()->set_list(tmp_list.list());
5078   FPTmpList()->set_list(fp_tmp_list.list());
5079
5080   { UseScratchRegisterScope temps(this);
5081     // If any of the arguments are the current stack pointer, allocate a new
5082     // register for them, and adjust the value to compensate for pushing the
5083     // caller-saved registers.
5084     bool arg0_sp = StackPointer().Aliases(arg0);
5085     bool arg1_sp = StackPointer().Aliases(arg1);
5086     bool arg2_sp = StackPointer().Aliases(arg2);
5087     bool arg3_sp = StackPointer().Aliases(arg3);
5088     if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) {
5089       // Allocate a register to hold the original stack pointer value, to pass
5090       // to PrintfNoPreserve as an argument.
5091       Register arg_sp = temps.AcquireX();
5092       Add(arg_sp, StackPointer(),
5093           kCallerSaved.TotalSizeInBytes() + kCallerSavedFP.TotalSizeInBytes());
5094       if (arg0_sp) arg0 = Register::Create(arg_sp.code(), arg0.SizeInBits());
5095       if (arg1_sp) arg1 = Register::Create(arg_sp.code(), arg1.SizeInBits());
5096       if (arg2_sp) arg2 = Register::Create(arg_sp.code(), arg2.SizeInBits());
5097       if (arg3_sp) arg3 = Register::Create(arg_sp.code(), arg3.SizeInBits());
5098     }
5099
5100     // Preserve NZCV.
5101     { UseScratchRegisterScope temps(this);
5102       Register tmp = temps.AcquireX();
5103       Mrs(tmp, NZCV);
5104       Push(tmp, xzr);
5105     }
5106
5107     PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
5108
5109     // Restore NZCV.
5110     { UseScratchRegisterScope temps(this);
5111       Register tmp = temps.AcquireX();
5112       Pop(xzr, tmp);
5113       Msr(NZCV, tmp);
5114     }
5115   }
5116
5117   PopCPURegList(kCallerSavedFP);
5118   PopCPURegList(kCallerSaved);
5119
5120   TmpList()->set_list(old_tmp_list);
5121   FPTmpList()->set_list(old_fp_tmp_list);
5122 }
5123
5124
5125 void MacroAssembler::EmitFrameSetupForCodeAgePatching() {
5126   // TODO(jbramley): Other architectures use the internal memcpy to copy the
5127   // sequence. If this is a performance bottleneck, we should consider caching
5128   // the sequence and copying it in the same way.
5129   InstructionAccurateScope scope(this,
5130                                  kNoCodeAgeSequenceLength / kInstructionSize);
5131   ASSERT(jssp.Is(StackPointer()));
5132   EmitFrameSetupForCodeAgePatching(this);
5133 }
5134
5135
5136
5137 void MacroAssembler::EmitCodeAgeSequence(Code* stub) {
5138   InstructionAccurateScope scope(this,
5139                                  kNoCodeAgeSequenceLength / kInstructionSize);
5140   ASSERT(jssp.Is(StackPointer()));
5141   EmitCodeAgeSequence(this, stub);
5142 }
5143
5144
5145 #undef __
5146 #define __ assm->
5147
5148
5149 void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) {
5150   Label start;
5151   __ bind(&start);
5152
5153   // We can do this sequence using four instructions, but the code ageing
5154   // sequence that patches it needs five, so we use the extra space to try to
5155   // simplify some addressing modes and remove some dependencies (compared to
5156   // using two stp instructions with write-back).
5157   __ sub(jssp, jssp, 4 * kXRegSize);
5158   __ sub(csp, csp, 4 * kXRegSize);
5159   __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSize));
5160   __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSize));
5161   __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
5162
5163   __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
5164 }
5165
5166
5167 void MacroAssembler::EmitCodeAgeSequence(Assembler * assm,
5168                                          Code * stub) {
5169   Label start;
5170   __ bind(&start);
5171   // When the stub is called, the sequence is replaced with the young sequence
5172   // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the
5173   // stub jumps to &start, stored in x0. The young sequence does not call the
5174   // stub so there is no infinite loop here.
5175   //
5176   // A branch (br) is used rather than a call (blr) because this code replaces
5177   // the frame setup code that would normally preserve lr.
5178   __ ldr_pcrel(ip0, kCodeAgeStubEntryOffset >> kLoadLiteralScaleLog2);
5179   __ adr(x0, &start);
5180   __ br(ip0);
5181   // IsCodeAgeSequence in codegen-arm64.cc assumes that the code generated up
5182   // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences.
5183   __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset);
5184   if (stub) {
5185     __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start()));
5186     __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
5187   }
5188 }
5189
5190
5191 bool MacroAssembler::IsYoungSequence(Isolate* isolate, byte* sequence) {
5192   bool is_young = isolate->code_aging_helper()->IsYoung(sequence);
5193   ASSERT(is_young ||
5194          isolate->code_aging_helper()->IsOld(sequence));
5195   return is_young;
5196 }
5197
5198
5199 void MacroAssembler::TruncatingDiv(Register result,
5200                                    Register dividend,
5201                                    int32_t divisor) {
5202   ASSERT(!AreAliased(result, dividend));
5203   ASSERT(result.Is32Bits() && dividend.Is32Bits());
5204   MultiplierAndShift ms(divisor);
5205   Mov(result, ms.multiplier());
5206   Smull(result.X(), dividend, result);
5207   Asr(result.X(), result.X(), 32);
5208   if (divisor > 0 && ms.multiplier() < 0) Add(result, result, dividend);
5209   if (divisor < 0 && ms.multiplier() > 0) Sub(result, result, dividend);
5210   if (ms.shift() > 0) Asr(result, result, ms.shift());
5211   Add(result, result, Operand(dividend, LSR, 31));
5212 }
5213
5214
5215 #undef __
5216
5217
5218 UseScratchRegisterScope::~UseScratchRegisterScope() {
5219   available_->set_list(old_available_);
5220   availablefp_->set_list(old_availablefp_);
5221 }
5222
5223
5224 Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
5225   int code = AcquireNextAvailable(available_).code();
5226   return Register::Create(code, reg.SizeInBits());
5227 }
5228
5229
5230 FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
5231   int code = AcquireNextAvailable(availablefp_).code();
5232   return FPRegister::Create(code, reg.SizeInBits());
5233 }
5234
5235
5236 CPURegister UseScratchRegisterScope::AcquireNextAvailable(
5237     CPURegList* available) {
5238   CHECK(!available->IsEmpty());
5239   CPURegister result = available->PopLowestIndex();
5240   ASSERT(!AreAliased(result, xzr, csp));
5241   return result;
5242 }
5243
5244
5245 CPURegister UseScratchRegisterScope::UnsafeAcquire(CPURegList* available,
5246                                                    const CPURegister& reg) {
5247   ASSERT(available->IncludesAliasOf(reg));
5248   available->Remove(reg);
5249   return reg;
5250 }
5251
5252
5253 #define __ masm->
5254
5255
5256 void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
5257                               const Label* smi_check) {
5258   Assembler::BlockPoolsScope scope(masm);
5259   if (reg.IsValid()) {
5260     ASSERT(smi_check->is_bound());
5261     ASSERT(reg.Is64Bits());
5262
5263     // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
5264     // 'check' in the other bits. The possible offset is limited in that we
5265     // use BitField to pack the data, and the underlying data type is a
5266     // uint32_t.
5267     uint32_t delta = __ InstructionsGeneratedSince(smi_check);
5268     __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
5269   } else {
5270     ASSERT(!smi_check->is_bound());
5271
5272     // An offset of 0 indicates that there is no patch site.
5273     __ InlineData(0);
5274   }
5275 }
5276
5277
5278 InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
5279     : reg_(NoReg), smi_check_(NULL) {
5280   InstructionSequence* inline_data = InstructionSequence::At(info);
5281   ASSERT(inline_data->IsInlineData());
5282   if (inline_data->IsInlineData()) {
5283     uint64_t payload = inline_data->InlineData();
5284     // We use BitField to decode the payload, and BitField can only handle
5285     // 32-bit values.
5286     ASSERT(is_uint32(payload));
5287     if (payload != 0) {
5288       int reg_code = RegisterBits::decode(payload);
5289       reg_ = Register::XRegFromCode(reg_code);
5290       uint64_t smi_check_delta = DeltaBits::decode(payload);
5291       ASSERT(smi_check_delta != 0);
5292       smi_check_ = inline_data->preceding(smi_check_delta);
5293     }
5294   }
5295 }
5296
5297
5298 #undef __
5299
5300
5301 } }  // namespace v8::internal
5302
5303 #endif  // V8_TARGET_ARCH_ARM64