Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / v8 / src / arm64 / code-stubs-arm64.cc
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #if V8_TARGET_ARCH_ARM64
8
9 #include "src/bootstrapper.h"
10 #include "src/code-stubs.h"
11 #include "src/codegen.h"
12 #include "src/ic/handler-compiler.h"
13 #include "src/ic/ic.h"
14 #include "src/isolate.h"
15 #include "src/jsregexp.h"
16 #include "src/regexp-macro-assembler.h"
17 #include "src/runtime.h"
18
19 namespace v8 {
20 namespace internal {
21
22
23 static void InitializeArrayConstructorDescriptor(
24     Isolate* isolate, CodeStubDescriptor* descriptor,
25     int constant_stack_parameter_count) {
26   // cp: context
27   // x1: function
28   // x2: allocation site with elements kind
29   // x0: number of arguments to the constructor function
30   Address deopt_handler = Runtime::FunctionForId(
31       Runtime::kArrayConstructor)->entry;
32
33   if (constant_stack_parameter_count == 0) {
34     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
35                            JS_FUNCTION_STUB_MODE);
36   } else {
37     descriptor->Initialize(x0, deopt_handler, constant_stack_parameter_count,
38                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
39   }
40 }
41
42
43 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
44     CodeStubDescriptor* descriptor) {
45   InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
46 }
47
48
49 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
50     CodeStubDescriptor* descriptor) {
51   InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
52 }
53
54
55 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
56     CodeStubDescriptor* descriptor) {
57   InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
58 }
59
60
61 static void InitializeInternalArrayConstructorDescriptor(
62     Isolate* isolate, CodeStubDescriptor* descriptor,
63     int constant_stack_parameter_count) {
64   Address deopt_handler = Runtime::FunctionForId(
65       Runtime::kInternalArrayConstructor)->entry;
66
67   if (constant_stack_parameter_count == 0) {
68     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
69                            JS_FUNCTION_STUB_MODE);
70   } else {
71     descriptor->Initialize(x0, deopt_handler, constant_stack_parameter_count,
72                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
73   }
74 }
75
76
77 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
78     CodeStubDescriptor* descriptor) {
79   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
80 }
81
82
83 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
84     CodeStubDescriptor* descriptor) {
85   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
86 }
87
88
89 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
90     CodeStubDescriptor* descriptor) {
91   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
92 }
93
94
95 #define __ ACCESS_MASM(masm)
96
97
98 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
99                                                ExternalReference miss) {
100   // Update the static counter each time a new code stub is generated.
101   isolate()->counters()->code_stubs()->Increment();
102
103   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
104   int param_count = descriptor.GetEnvironmentParameterCount();
105   {
106     // Call the runtime system in a fresh internal frame.
107     FrameScope scope(masm, StackFrame::INTERNAL);
108     DCHECK((param_count == 0) ||
109            x0.Is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
110
111     // Push arguments
112     MacroAssembler::PushPopQueue queue(masm);
113     for (int i = 0; i < param_count; ++i) {
114       queue.Queue(descriptor.GetEnvironmentParameterRegister(i));
115     }
116     queue.PushQueued();
117
118     __ CallExternalReference(miss, param_count);
119   }
120
121   __ Ret();
122 }
123
124
125 void DoubleToIStub::Generate(MacroAssembler* masm) {
126   Label done;
127   Register input = source();
128   Register result = destination();
129   DCHECK(is_truncating());
130
131   DCHECK(result.Is64Bits());
132   DCHECK(jssp.Is(masm->StackPointer()));
133
134   int double_offset = offset();
135
136   DoubleRegister double_scratch = d0;  // only used if !skip_fastpath()
137   Register scratch1 = GetAllocatableRegisterThatIsNotOneOf(input, result);
138   Register scratch2 =
139       GetAllocatableRegisterThatIsNotOneOf(input, result, scratch1);
140
141   __ Push(scratch1, scratch2);
142   // Account for saved regs if input is jssp.
143   if (input.is(jssp)) double_offset += 2 * kPointerSize;
144
145   if (!skip_fastpath()) {
146     __ Push(double_scratch);
147     if (input.is(jssp)) double_offset += 1 * kDoubleSize;
148     __ Ldr(double_scratch, MemOperand(input, double_offset));
149     // Try to convert with a FPU convert instruction.  This handles all
150     // non-saturating cases.
151     __ TryConvertDoubleToInt64(result, double_scratch, &done);
152     __ Fmov(result, double_scratch);
153   } else {
154     __ Ldr(result, MemOperand(input, double_offset));
155   }
156
157   // If we reach here we need to manually convert the input to an int32.
158
159   // Extract the exponent.
160   Register exponent = scratch1;
161   __ Ubfx(exponent, result, HeapNumber::kMantissaBits,
162           HeapNumber::kExponentBits);
163
164   // It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since
165   // the mantissa gets shifted completely out of the int32_t result.
166   __ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32);
167   __ CzeroX(result, ge);
168   __ B(ge, &done);
169
170   // The Fcvtzs sequence handles all cases except where the conversion causes
171   // signed overflow in the int64_t target. Since we've already handled
172   // exponents >= 84, we can guarantee that 63 <= exponent < 84.
173
174   if (masm->emit_debug_code()) {
175     __ Cmp(exponent, HeapNumber::kExponentBias + 63);
176     // Exponents less than this should have been handled by the Fcvt case.
177     __ Check(ge, kUnexpectedValue);
178   }
179
180   // Isolate the mantissa bits, and set the implicit '1'.
181   Register mantissa = scratch2;
182   __ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits);
183   __ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits);
184
185   // Negate the mantissa if necessary.
186   __ Tst(result, kXSignMask);
187   __ Cneg(mantissa, mantissa, ne);
188
189   // Shift the mantissa bits in the correct place. We know that we have to shift
190   // it left here, because exponent >= 63 >= kMantissaBits.
191   __ Sub(exponent, exponent,
192          HeapNumber::kExponentBias + HeapNumber::kMantissaBits);
193   __ Lsl(result, mantissa, exponent);
194
195   __ Bind(&done);
196   if (!skip_fastpath()) {
197     __ Pop(double_scratch);
198   }
199   __ Pop(scratch2, scratch1);
200   __ Ret();
201 }
202
203
204 // See call site for description.
205 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
206                                           Register left,
207                                           Register right,
208                                           Register scratch,
209                                           FPRegister double_scratch,
210                                           Label* slow,
211                                           Condition cond) {
212   DCHECK(!AreAliased(left, right, scratch));
213   Label not_identical, return_equal, heap_number;
214   Register result = x0;
215
216   __ Cmp(right, left);
217   __ B(ne, &not_identical);
218
219   // Test for NaN. Sadly, we can't just compare to factory::nan_value(),
220   // so we do the second best thing - test it ourselves.
221   // They are both equal and they are not both Smis so both of them are not
222   // Smis.  If it's not a heap number, then return equal.
223   if ((cond == lt) || (cond == gt)) {
224     __ JumpIfObjectType(right, scratch, scratch, FIRST_SPEC_OBJECT_TYPE, slow,
225                         ge);
226   } else if (cond == eq) {
227     __ JumpIfHeapNumber(right, &heap_number);
228   } else {
229     Register right_type = scratch;
230     __ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE,
231                         &heap_number);
232     // Comparing JS objects with <=, >= is complicated.
233     __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
234     __ B(ge, slow);
235     // Normally here we fall through to return_equal, but undefined is
236     // special: (undefined == undefined) == true, but
237     // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
238     if ((cond == le) || (cond == ge)) {
239       __ Cmp(right_type, ODDBALL_TYPE);
240       __ B(ne, &return_equal);
241       __ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal);
242       if (cond == le) {
243         // undefined <= undefined should fail.
244         __ Mov(result, GREATER);
245       } else {
246         // undefined >= undefined should fail.
247         __ Mov(result, LESS);
248       }
249       __ Ret();
250     }
251   }
252
253   __ Bind(&return_equal);
254   if (cond == lt) {
255     __ Mov(result, GREATER);  // Things aren't less than themselves.
256   } else if (cond == gt) {
257     __ Mov(result, LESS);     // Things aren't greater than themselves.
258   } else {
259     __ Mov(result, EQUAL);    // Things are <=, >=, ==, === themselves.
260   }
261   __ Ret();
262
263   // Cases lt and gt have been handled earlier, and case ne is never seen, as
264   // it is handled in the parser (see Parser::ParseBinaryExpression). We are
265   // only concerned with cases ge, le and eq here.
266   if ((cond != lt) && (cond != gt)) {
267     DCHECK((cond == ge) || (cond == le) || (cond == eq));
268     __ Bind(&heap_number);
269     // Left and right are identical pointers to a heap number object. Return
270     // non-equal if the heap number is a NaN, and equal otherwise. Comparing
271     // the number to itself will set the overflow flag iff the number is NaN.
272     __ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset));
273     __ Fcmp(double_scratch, double_scratch);
274     __ B(vc, &return_equal);  // Not NaN, so treat as normal heap number.
275
276     if (cond == le) {
277       __ Mov(result, GREATER);
278     } else {
279       __ Mov(result, LESS);
280     }
281     __ Ret();
282   }
283
284   // No fall through here.
285   if (FLAG_debug_code) {
286     __ Unreachable();
287   }
288
289   __ Bind(&not_identical);
290 }
291
292
293 // See call site for description.
294 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
295                                            Register left,
296                                            Register right,
297                                            Register left_type,
298                                            Register right_type,
299                                            Register scratch) {
300   DCHECK(!AreAliased(left, right, left_type, right_type, scratch));
301
302   if (masm->emit_debug_code()) {
303     // We assume that the arguments are not identical.
304     __ Cmp(left, right);
305     __ Assert(ne, kExpectedNonIdenticalObjects);
306   }
307
308   // If either operand is a JS object or an oddball value, then they are not
309   // equal since their pointers are different.
310   // There is no test for undetectability in strict equality.
311   STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
312   Label right_non_object;
313
314   __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
315   __ B(lt, &right_non_object);
316
317   // Return non-zero - x0 already contains a non-zero pointer.
318   DCHECK(left.is(x0) || right.is(x0));
319   Label return_not_equal;
320   __ Bind(&return_not_equal);
321   __ Ret();
322
323   __ Bind(&right_non_object);
324
325   // Check for oddballs: true, false, null, undefined.
326   __ Cmp(right_type, ODDBALL_TYPE);
327
328   // If right is not ODDBALL, test left. Otherwise, set eq condition.
329   __ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne);
330
331   // If right or left is not ODDBALL, test left >= FIRST_SPEC_OBJECT_TYPE.
332   // Otherwise, right or left is ODDBALL, so set a ge condition.
333   __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NVFlag, ne);
334
335   __ B(ge, &return_not_equal);
336
337   // Internalized strings are unique, so they can only be equal if they are the
338   // same object. We have already tested that case, so if left and right are
339   // both internalized strings, they cannot be equal.
340   STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
341   __ Orr(scratch, left_type, right_type);
342   __ TestAndBranchIfAllClear(
343       scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal);
344 }
345
346
347 // See call site for description.
348 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
349                                     Register left,
350                                     Register right,
351                                     FPRegister left_d,
352                                     FPRegister right_d,
353                                     Label* slow,
354                                     bool strict) {
355   DCHECK(!AreAliased(left_d, right_d));
356   DCHECK((left.is(x0) && right.is(x1)) ||
357          (right.is(x0) && left.is(x1)));
358   Register result = x0;
359
360   Label right_is_smi, done;
361   __ JumpIfSmi(right, &right_is_smi);
362
363   // Left is the smi. Check whether right is a heap number.
364   if (strict) {
365     // If right is not a number and left is a smi, then strict equality cannot
366     // succeed. Return non-equal.
367     Label is_heap_number;
368     __ JumpIfHeapNumber(right, &is_heap_number);
369     // Register right is a non-zero pointer, which is a valid NOT_EQUAL result.
370     if (!right.is(result)) {
371       __ Mov(result, NOT_EQUAL);
372     }
373     __ Ret();
374     __ Bind(&is_heap_number);
375   } else {
376     // Smi compared non-strictly with a non-smi, non-heap-number. Call the
377     // runtime.
378     __ JumpIfNotHeapNumber(right, slow);
379   }
380
381   // Left is the smi. Right is a heap number. Load right value into right_d, and
382   // convert left smi into double in left_d.
383   __ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset));
384   __ SmiUntagToDouble(left_d, left);
385   __ B(&done);
386
387   __ Bind(&right_is_smi);
388   // Right is a smi. Check whether the non-smi left is a heap number.
389   if (strict) {
390     // If left is not a number and right is a smi then strict equality cannot
391     // succeed. Return non-equal.
392     Label is_heap_number;
393     __ JumpIfHeapNumber(left, &is_heap_number);
394     // Register left is a non-zero pointer, which is a valid NOT_EQUAL result.
395     if (!left.is(result)) {
396       __ Mov(result, NOT_EQUAL);
397     }
398     __ Ret();
399     __ Bind(&is_heap_number);
400   } else {
401     // Smi compared non-strictly with a non-smi, non-heap-number. Call the
402     // runtime.
403     __ JumpIfNotHeapNumber(left, slow);
404   }
405
406   // Right is the smi. Left is a heap number. Load left value into left_d, and
407   // convert right smi into double in right_d.
408   __ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset));
409   __ SmiUntagToDouble(right_d, right);
410
411   // Fall through to both_loaded_as_doubles.
412   __ Bind(&done);
413 }
414
415
416 // Fast negative check for internalized-to-internalized equality.
417 // See call site for description.
418 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
419                                                      Register left,
420                                                      Register right,
421                                                      Register left_map,
422                                                      Register right_map,
423                                                      Register left_type,
424                                                      Register right_type,
425                                                      Label* possible_strings,
426                                                      Label* not_both_strings) {
427   DCHECK(!AreAliased(left, right, left_map, right_map, left_type, right_type));
428   Register result = x0;
429
430   Label object_test;
431   STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
432   // TODO(all): reexamine this branch sequence for optimisation wrt branch
433   // prediction.
434   __ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test);
435   __ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
436   __ Tbnz(left_type, MaskToBit(kIsNotStringMask), not_both_strings);
437   __ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
438
439   // Both are internalized. We already checked that they weren't the same
440   // pointer, so they are not equal.
441   __ Mov(result, NOT_EQUAL);
442   __ Ret();
443
444   __ Bind(&object_test);
445
446   __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
447
448   // If right >= FIRST_SPEC_OBJECT_TYPE, test left.
449   // Otherwise, right < FIRST_SPEC_OBJECT_TYPE, so set lt condition.
450   __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NFlag, ge);
451
452   __ B(lt, not_both_strings);
453
454   // If both objects are undetectable, they are equal. Otherwise, they are not
455   // equal, since they are different objects and an object is not equal to
456   // undefined.
457
458   // Returning here, so we can corrupt right_type and left_type.
459   Register right_bitfield = right_type;
460   Register left_bitfield = left_type;
461   __ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset));
462   __ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset));
463   __ And(result, right_bitfield, left_bitfield);
464   __ And(result, result, 1 << Map::kIsUndetectable);
465   __ Eor(result, result, 1 << Map::kIsUndetectable);
466   __ Ret();
467 }
468
469
470 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
471                                          CompareICState::State expected,
472                                          Label* fail) {
473   Label ok;
474   if (expected == CompareICState::SMI) {
475     __ JumpIfNotSmi(input, fail);
476   } else if (expected == CompareICState::NUMBER) {
477     __ JumpIfSmi(input, &ok);
478     __ JumpIfNotHeapNumber(input, fail);
479   }
480   // We could be strict about internalized/non-internalized here, but as long as
481   // hydrogen doesn't care, the stub doesn't have to care either.
482   __ Bind(&ok);
483 }
484
485
486 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
487   Register lhs = x1;
488   Register rhs = x0;
489   Register result = x0;
490   Condition cond = GetCondition();
491
492   Label miss;
493   CompareICStub_CheckInputType(masm, lhs, left(), &miss);
494   CompareICStub_CheckInputType(masm, rhs, right(), &miss);
495
496   Label slow;  // Call builtin.
497   Label not_smis, both_loaded_as_doubles;
498   Label not_two_smis, smi_done;
499   __ JumpIfEitherNotSmi(lhs, rhs, &not_two_smis);
500   __ SmiUntag(lhs);
501   __ Sub(result, lhs, Operand::UntagSmi(rhs));
502   __ Ret();
503
504   __ Bind(&not_two_smis);
505
506   // NOTICE! This code is only reached after a smi-fast-case check, so it is
507   // certain that at least one operand isn't a smi.
508
509   // Handle the case where the objects are identical. Either returns the answer
510   // or goes to slow. Only falls through if the objects were not identical.
511   EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond);
512
513   // If either is a smi (we know that at least one is not a smi), then they can
514   // only be strictly equal if the other is a HeapNumber.
515   __ JumpIfBothNotSmi(lhs, rhs, &not_smis);
516
517   // Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that
518   // can:
519   //  1) Return the answer.
520   //  2) Branch to the slow case.
521   //  3) Fall through to both_loaded_as_doubles.
522   // In case 3, we have found out that we were dealing with a number-number
523   // comparison. The double values of the numbers have been loaded, right into
524   // rhs_d, left into lhs_d.
525   FPRegister rhs_d = d0;
526   FPRegister lhs_d = d1;
527   EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, &slow, strict());
528
529   __ Bind(&both_loaded_as_doubles);
530   // The arguments have been converted to doubles and stored in rhs_d and
531   // lhs_d.
532   Label nan;
533   __ Fcmp(lhs_d, rhs_d);
534   __ B(vs, &nan);  // Overflow flag set if either is NaN.
535   STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
536   __ Cset(result, gt);  // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
537   __ Csinv(result, result, xzr, ge);  // lt => -1, gt => 1, eq => 0.
538   __ Ret();
539
540   __ Bind(&nan);
541   // Left and/or right is a NaN. Load the result register with whatever makes
542   // the comparison fail, since comparisons with NaN always fail (except ne,
543   // which is filtered out at a higher level.)
544   DCHECK(cond != ne);
545   if ((cond == lt) || (cond == le)) {
546     __ Mov(result, GREATER);
547   } else {
548     __ Mov(result, LESS);
549   }
550   __ Ret();
551
552   __ Bind(&not_smis);
553   // At this point we know we are dealing with two different objects, and
554   // neither of them is a smi. The objects are in rhs_ and lhs_.
555
556   // Load the maps and types of the objects.
557   Register rhs_map = x10;
558   Register rhs_type = x11;
559   Register lhs_map = x12;
560   Register lhs_type = x13;
561   __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
562   __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
563   __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
564   __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
565
566   if (strict()) {
567     // This emits a non-equal return sequence for some object types, or falls
568     // through if it was not lucky.
569     EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14);
570   }
571
572   Label check_for_internalized_strings;
573   Label flat_string_check;
574   // Check for heap number comparison. Branch to earlier double comparison code
575   // if they are heap numbers, otherwise, branch to internalized string check.
576   __ Cmp(rhs_type, HEAP_NUMBER_TYPE);
577   __ B(ne, &check_for_internalized_strings);
578   __ Cmp(lhs_map, rhs_map);
579
580   // If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat
581   // string check.
582   __ B(ne, &flat_string_check);
583
584   // Both lhs_ and rhs_ are heap numbers. Load them and branch to the double
585   // comparison code.
586   __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
587   __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
588   __ B(&both_loaded_as_doubles);
589
590   __ Bind(&check_for_internalized_strings);
591   // In the strict case, the EmitStrictTwoHeapObjectCompare already took care
592   // of internalized strings.
593   if ((cond == eq) && !strict()) {
594     // Returns an answer for two internalized strings or two detectable objects.
595     // Otherwise branches to the string case or not both strings case.
596     EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map,
597                                              lhs_type, rhs_type,
598                                              &flat_string_check, &slow);
599   }
600
601   // Check for both being sequential one-byte strings,
602   // and inline if that is the case.
603   __ Bind(&flat_string_check);
604   __ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x14,
605                                                     x15, &slow);
606
607   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, x10,
608                       x11);
609   if (cond == eq) {
610     StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11,
611                                                   x12);
612   } else {
613     StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11,
614                                                     x12, x13);
615   }
616
617   // Never fall through to here.
618   if (FLAG_debug_code) {
619     __ Unreachable();
620   }
621
622   __ Bind(&slow);
623
624   __ Push(lhs, rhs);
625   // Figure out which native to call and setup the arguments.
626   Builtins::JavaScript native;
627   if (cond == eq) {
628     native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
629   } else {
630     native = Builtins::COMPARE;
631     int ncr;  // NaN compare result
632     if ((cond == lt) || (cond == le)) {
633       ncr = GREATER;
634     } else {
635       DCHECK((cond == gt) || (cond == ge));  // remaining cases
636       ncr = LESS;
637     }
638     __ Mov(x10, Smi::FromInt(ncr));
639     __ Push(x10);
640   }
641
642   // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
643   // tagged as a small integer.
644   __ InvokeBuiltin(native, JUMP_FUNCTION);
645
646   __ Bind(&miss);
647   GenerateMiss(masm);
648 }
649
650
651 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
652   CPURegList saved_regs = kCallerSaved;
653   CPURegList saved_fp_regs = kCallerSavedFP;
654
655   // We don't allow a GC during a store buffer overflow so there is no need to
656   // store the registers in any particular way, but we do have to store and
657   // restore them.
658
659   // We don't care if MacroAssembler scratch registers are corrupted.
660   saved_regs.Remove(*(masm->TmpList()));
661   saved_fp_regs.Remove(*(masm->FPTmpList()));
662
663   __ PushCPURegList(saved_regs);
664   if (save_doubles()) {
665     __ PushCPURegList(saved_fp_regs);
666   }
667
668   AllowExternalCallThatCantCauseGC scope(masm);
669   __ Mov(x0, ExternalReference::isolate_address(isolate()));
670   __ CallCFunction(
671       ExternalReference::store_buffer_overflow_function(isolate()), 1, 0);
672
673   if (save_doubles()) {
674     __ PopCPURegList(saved_fp_regs);
675   }
676   __ PopCPURegList(saved_regs);
677   __ Ret();
678 }
679
680
681 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
682     Isolate* isolate) {
683   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
684   stub1.GetCode();
685   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
686   stub2.GetCode();
687 }
688
689
690 void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
691   MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
692   UseScratchRegisterScope temps(masm);
693   Register saved_lr = temps.UnsafeAcquire(to_be_pushed_lr());
694   Register return_address = temps.AcquireX();
695   __ Mov(return_address, lr);
696   // Restore lr with the value it had before the call to this stub (the value
697   // which must be pushed).
698   __ Mov(lr, saved_lr);
699   __ PushSafepointRegisters();
700   __ Ret(return_address);
701 }
702
703
704 void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
705   MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
706   UseScratchRegisterScope temps(masm);
707   Register return_address = temps.AcquireX();
708   // Preserve the return address (lr will be clobbered by the pop).
709   __ Mov(return_address, lr);
710   __ PopSafepointRegisters();
711   __ Ret(return_address);
712 }
713
714
715 void MathPowStub::Generate(MacroAssembler* masm) {
716   // Stack on entry:
717   // jssp[0]: Exponent (as a tagged value).
718   // jssp[1]: Base (as a tagged value).
719   //
720   // The (tagged) result will be returned in x0, as a heap number.
721
722   Register result_tagged = x0;
723   Register base_tagged = x10;
724   Register exponent_tagged = MathPowTaggedDescriptor::exponent();
725   DCHECK(exponent_tagged.is(x11));
726   Register exponent_integer = MathPowIntegerDescriptor::exponent();
727   DCHECK(exponent_integer.is(x12));
728   Register scratch1 = x14;
729   Register scratch0 = x15;
730   Register saved_lr = x19;
731   FPRegister result_double = d0;
732   FPRegister base_double = d0;
733   FPRegister exponent_double = d1;
734   FPRegister base_double_copy = d2;
735   FPRegister scratch1_double = d6;
736   FPRegister scratch0_double = d7;
737
738   // A fast-path for integer exponents.
739   Label exponent_is_smi, exponent_is_integer;
740   // Bail out to runtime.
741   Label call_runtime;
742   // Allocate a heap number for the result, and return it.
743   Label done;
744
745   // Unpack the inputs.
746   if (exponent_type() == ON_STACK) {
747     Label base_is_smi;
748     Label unpack_exponent;
749
750     __ Pop(exponent_tagged, base_tagged);
751
752     __ JumpIfSmi(base_tagged, &base_is_smi);
753     __ JumpIfNotHeapNumber(base_tagged, &call_runtime);
754     // base_tagged is a heap number, so load its double value.
755     __ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset));
756     __ B(&unpack_exponent);
757     __ Bind(&base_is_smi);
758     // base_tagged is a SMI, so untag it and convert it to a double.
759     __ SmiUntagToDouble(base_double, base_tagged);
760
761     __ Bind(&unpack_exponent);
762     //  x10   base_tagged       The tagged base (input).
763     //  x11   exponent_tagged   The tagged exponent (input).
764     //  d1    base_double       The base as a double.
765     __ JumpIfSmi(exponent_tagged, &exponent_is_smi);
766     __ JumpIfNotHeapNumber(exponent_tagged, &call_runtime);
767     // exponent_tagged is a heap number, so load its double value.
768     __ Ldr(exponent_double,
769            FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
770   } else if (exponent_type() == TAGGED) {
771     __ JumpIfSmi(exponent_tagged, &exponent_is_smi);
772     __ Ldr(exponent_double,
773            FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
774   }
775
776   // Handle double (heap number) exponents.
777   if (exponent_type() != INTEGER) {
778     // Detect integer exponents stored as doubles and handle those in the
779     // integer fast-path.
780     __ TryRepresentDoubleAsInt64(exponent_integer, exponent_double,
781                                  scratch0_double, &exponent_is_integer);
782
783     if (exponent_type() == ON_STACK) {
784       FPRegister  half_double = d3;
785       FPRegister  minus_half_double = d4;
786       // Detect square root case. Crankshaft detects constant +/-0.5 at compile
787       // time and uses DoMathPowHalf instead. We then skip this check for
788       // non-constant cases of +/-0.5 as these hardly occur.
789
790       __ Fmov(minus_half_double, -0.5);
791       __ Fmov(half_double, 0.5);
792       __ Fcmp(minus_half_double, exponent_double);
793       __ Fccmp(half_double, exponent_double, NZFlag, ne);
794       // Condition flags at this point:
795       //    0.5;  nZCv    // Identified by eq && pl
796       //   -0.5:  NZcv    // Identified by eq && mi
797       //  other:  ?z??    // Identified by ne
798       __ B(ne, &call_runtime);
799
800       // The exponent is 0.5 or -0.5.
801
802       // Given that exponent is known to be either 0.5 or -0.5, the following
803       // special cases could apply (according to ECMA-262 15.8.2.13):
804       //
805       //  base.isNaN():                   The result is NaN.
806       //  (base == +INFINITY) || (base == -INFINITY)
807       //    exponent == 0.5:              The result is +INFINITY.
808       //    exponent == -0.5:             The result is +0.
809       //  (base == +0) || (base == -0)
810       //    exponent == 0.5:              The result is +0.
811       //    exponent == -0.5:             The result is +INFINITY.
812       //  (base < 0) && base.isFinite():  The result is NaN.
813       //
814       // Fsqrt (and Fdiv for the -0.5 case) can handle all of those except
815       // where base is -INFINITY or -0.
816
817       // Add +0 to base. This has no effect other than turning -0 into +0.
818       __ Fadd(base_double, base_double, fp_zero);
819       // The operation -0+0 results in +0 in all cases except where the
820       // FPCR rounding mode is 'round towards minus infinity' (RM). The
821       // ARM64 simulator does not currently simulate FPCR (where the rounding
822       // mode is set), so test the operation with some debug code.
823       if (masm->emit_debug_code()) {
824         UseScratchRegisterScope temps(masm);
825         Register temp = temps.AcquireX();
826         __ Fneg(scratch0_double, fp_zero);
827         // Verify that we correctly generated +0.0 and -0.0.
828         //  bits(+0.0) = 0x0000000000000000
829         //  bits(-0.0) = 0x8000000000000000
830         __ Fmov(temp, fp_zero);
831         __ CheckRegisterIsClear(temp, kCouldNotGenerateZero);
832         __ Fmov(temp, scratch0_double);
833         __ Eor(temp, temp, kDSignMask);
834         __ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero);
835         // Check that -0.0 + 0.0 == +0.0.
836         __ Fadd(scratch0_double, scratch0_double, fp_zero);
837         __ Fmov(temp, scratch0_double);
838         __ CheckRegisterIsClear(temp, kExpectedPositiveZero);
839       }
840
841       // If base is -INFINITY, make it +INFINITY.
842       //  * Calculate base - base: All infinities will become NaNs since both
843       //    -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in ARM64.
844       //  * If the result is NaN, calculate abs(base).
845       __ Fsub(scratch0_double, base_double, base_double);
846       __ Fcmp(scratch0_double, 0.0);
847       __ Fabs(scratch1_double, base_double);
848       __ Fcsel(base_double, scratch1_double, base_double, vs);
849
850       // Calculate the square root of base.
851       __ Fsqrt(result_double, base_double);
852       __ Fcmp(exponent_double, 0.0);
853       __ B(ge, &done);  // Finish now for exponents of 0.5.
854       // Find the inverse for exponents of -0.5.
855       __ Fmov(scratch0_double, 1.0);
856       __ Fdiv(result_double, scratch0_double, result_double);
857       __ B(&done);
858     }
859
860     {
861       AllowExternalCallThatCantCauseGC scope(masm);
862       __ Mov(saved_lr, lr);
863       __ CallCFunction(
864           ExternalReference::power_double_double_function(isolate()),
865           0, 2);
866       __ Mov(lr, saved_lr);
867       __ B(&done);
868     }
869
870     // Handle SMI exponents.
871     __ Bind(&exponent_is_smi);
872     //  x10   base_tagged       The tagged base (input).
873     //  x11   exponent_tagged   The tagged exponent (input).
874     //  d1    base_double       The base as a double.
875     __ SmiUntag(exponent_integer, exponent_tagged);
876   }
877
878   __ Bind(&exponent_is_integer);
879   //  x10   base_tagged       The tagged base (input).
880   //  x11   exponent_tagged   The tagged exponent (input).
881   //  x12   exponent_integer  The exponent as an integer.
882   //  d1    base_double       The base as a double.
883
884   // Find abs(exponent). For negative exponents, we can find the inverse later.
885   Register exponent_abs = x13;
886   __ Cmp(exponent_integer, 0);
887   __ Cneg(exponent_abs, exponent_integer, mi);
888   //  x13   exponent_abs      The value of abs(exponent_integer).
889
890   // Repeatedly multiply to calculate the power.
891   //  result = 1.0;
892   //  For each bit n (exponent_integer{n}) {
893   //    if (exponent_integer{n}) {
894   //      result *= base;
895   //    }
896   //    base *= base;
897   //    if (remaining bits in exponent_integer are all zero) {
898   //      break;
899   //    }
900   //  }
901   Label power_loop, power_loop_entry, power_loop_exit;
902   __ Fmov(scratch1_double, base_double);
903   __ Fmov(base_double_copy, base_double);
904   __ Fmov(result_double, 1.0);
905   __ B(&power_loop_entry);
906
907   __ Bind(&power_loop);
908   __ Fmul(scratch1_double, scratch1_double, scratch1_double);
909   __ Lsr(exponent_abs, exponent_abs, 1);
910   __ Cbz(exponent_abs, &power_loop_exit);
911
912   __ Bind(&power_loop_entry);
913   __ Tbz(exponent_abs, 0, &power_loop);
914   __ Fmul(result_double, result_double, scratch1_double);
915   __ B(&power_loop);
916
917   __ Bind(&power_loop_exit);
918
919   // If the exponent was positive, result_double holds the result.
920   __ Tbz(exponent_integer, kXSignBit, &done);
921
922   // The exponent was negative, so find the inverse.
923   __ Fmov(scratch0_double, 1.0);
924   __ Fdiv(result_double, scratch0_double, result_double);
925   // ECMA-262 only requires Math.pow to return an 'implementation-dependent
926   // approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow
927   // to calculate the subnormal value 2^-1074. This method of calculating
928   // negative powers doesn't work because 2^1074 overflows to infinity. To
929   // catch this corner-case, we bail out if the result was 0. (This can only
930   // occur if the divisor is infinity or the base is zero.)
931   __ Fcmp(result_double, 0.0);
932   __ B(&done, ne);
933
934   if (exponent_type() == ON_STACK) {
935     // Bail out to runtime code.
936     __ Bind(&call_runtime);
937     // Put the arguments back on the stack.
938     __ Push(base_tagged, exponent_tagged);
939     __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
940
941     // Return.
942     __ Bind(&done);
943     __ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1,
944                           result_double);
945     DCHECK(result_tagged.is(x0));
946     __ IncrementCounter(
947         isolate()->counters()->math_pow(), 1, scratch0, scratch1);
948     __ Ret();
949   } else {
950     AllowExternalCallThatCantCauseGC scope(masm);
951     __ Mov(saved_lr, lr);
952     __ Fmov(base_double, base_double_copy);
953     __ Scvtf(exponent_double, exponent_integer);
954     __ CallCFunction(
955         ExternalReference::power_double_double_function(isolate()),
956         0, 2);
957     __ Mov(lr, saved_lr);
958     __ Bind(&done);
959     __ IncrementCounter(
960         isolate()->counters()->math_pow(), 1, scratch0, scratch1);
961     __ Ret();
962   }
963 }
964
965
966 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
967   // It is important that the following stubs are generated in this order
968   // because pregenerated stubs can only call other pregenerated stubs.
969   // RecordWriteStub uses StoreBufferOverflowStub, which in turn uses
970   // CEntryStub.
971   CEntryStub::GenerateAheadOfTime(isolate);
972   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
973   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
974   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
975   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
976   BinaryOpICStub::GenerateAheadOfTime(isolate);
977   StoreRegistersStateStub::GenerateAheadOfTime(isolate);
978   RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
979   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
980 }
981
982
983 void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
984   StoreRegistersStateStub stub(isolate);
985   stub.GetCode();
986 }
987
988
989 void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
990   RestoreRegistersStateStub stub(isolate);
991   stub.GetCode();
992 }
993
994
995 void CodeStub::GenerateFPStubs(Isolate* isolate) {
996   // Floating-point code doesn't get special handling in ARM64, so there's
997   // nothing to do here.
998   USE(isolate);
999 }
1000
1001
1002 bool CEntryStub::NeedsImmovableCode() {
1003   // CEntryStub stores the return address on the stack before calling into
1004   // C++ code. In some cases, the VM accesses this address, but it is not used
1005   // when the C++ code returns to the stub because LR holds the return address
1006   // in AAPCS64. If the stub is moved (perhaps during a GC), we could end up
1007   // returning to dead code.
1008   // TODO(jbramley): Whilst this is the only analysis that makes sense, I can't
1009   // find any comment to confirm this, and I don't hit any crashes whatever
1010   // this function returns. The anaylsis should be properly confirmed.
1011   return true;
1012 }
1013
1014
1015 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1016   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1017   stub.GetCode();
1018   CEntryStub stub_fp(isolate, 1, kSaveFPRegs);
1019   stub_fp.GetCode();
1020 }
1021
1022
1023 void CEntryStub::Generate(MacroAssembler* masm) {
1024   // The Abort mechanism relies on CallRuntime, which in turn relies on
1025   // CEntryStub, so until this stub has been generated, we have to use a
1026   // fall-back Abort mechanism.
1027   //
1028   // Note that this stub must be generated before any use of Abort.
1029   MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
1030
1031   ASM_LOCATION("CEntryStub::Generate entry");
1032   ProfileEntryHookStub::MaybeCallEntryHook(masm);
1033
1034   // Register parameters:
1035   //    x0: argc (including receiver, untagged)
1036   //    x1: target
1037   //
1038   // The stack on entry holds the arguments and the receiver, with the receiver
1039   // at the highest address:
1040   //
1041   //    jssp]argc-1]: receiver
1042   //    jssp[argc-2]: arg[argc-2]
1043   //    ...           ...
1044   //    jssp[1]:      arg[1]
1045   //    jssp[0]:      arg[0]
1046   //
1047   // The arguments are in reverse order, so that arg[argc-2] is actually the
1048   // first argument to the target function and arg[0] is the last.
1049   DCHECK(jssp.Is(__ StackPointer()));
1050   const Register& argc_input = x0;
1051   const Register& target_input = x1;
1052
1053   // Calculate argv, argc and the target address, and store them in
1054   // callee-saved registers so we can retry the call without having to reload
1055   // these arguments.
1056   // TODO(jbramley): If the first call attempt succeeds in the common case (as
1057   // it should), then we might be better off putting these parameters directly
1058   // into their argument registers, rather than using callee-saved registers and
1059   // preserving them on the stack.
1060   const Register& argv = x21;
1061   const Register& argc = x22;
1062   const Register& target = x23;
1063
1064   // Derive argv from the stack pointer so that it points to the first argument
1065   // (arg[argc-2]), or just below the receiver in case there are no arguments.
1066   //  - Adjust for the arg[] array.
1067   Register temp_argv = x11;
1068   __ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2));
1069   //  - Adjust for the receiver.
1070   __ Sub(temp_argv, temp_argv, 1 * kPointerSize);
1071
1072   // Enter the exit frame. Reserve three slots to preserve x21-x23 callee-saved
1073   // registers.
1074   FrameScope scope(masm, StackFrame::MANUAL);
1075   __ EnterExitFrame(save_doubles(), x10, 3);
1076   DCHECK(csp.Is(__ StackPointer()));
1077
1078   // Poke callee-saved registers into reserved space.
1079   __ Poke(argv, 1 * kPointerSize);
1080   __ Poke(argc, 2 * kPointerSize);
1081   __ Poke(target, 3 * kPointerSize);
1082
1083   // We normally only keep tagged values in callee-saved registers, as they
1084   // could be pushed onto the stack by called stubs and functions, and on the
1085   // stack they can confuse the GC. However, we're only calling C functions
1086   // which can push arbitrary data onto the stack anyway, and so the GC won't
1087   // examine that part of the stack.
1088   __ Mov(argc, argc_input);
1089   __ Mov(target, target_input);
1090   __ Mov(argv, temp_argv);
1091
1092   // x21 : argv
1093   // x22 : argc
1094   // x23 : call target
1095   //
1096   // The stack (on entry) holds the arguments and the receiver, with the
1097   // receiver at the highest address:
1098   //
1099   //         argv[8]:     receiver
1100   // argv -> argv[0]:     arg[argc-2]
1101   //         ...          ...
1102   //         argv[...]:   arg[1]
1103   //         argv[...]:   arg[0]
1104   //
1105   // Immediately below (after) this is the exit frame, as constructed by
1106   // EnterExitFrame:
1107   //         fp[8]:    CallerPC (lr)
1108   //   fp -> fp[0]:    CallerFP (old fp)
1109   //         fp[-8]:   Space reserved for SPOffset.
1110   //         fp[-16]:  CodeObject()
1111   //         csp[...]: Saved doubles, if saved_doubles is true.
1112   //         csp[32]:  Alignment padding, if necessary.
1113   //         csp[24]:  Preserved x23 (used for target).
1114   //         csp[16]:  Preserved x22 (used for argc).
1115   //         csp[8]:   Preserved x21 (used for argv).
1116   //  csp -> csp[0]:   Space reserved for the return address.
1117   //
1118   // After a successful call, the exit frame, preserved registers (x21-x23) and
1119   // the arguments (including the receiver) are dropped or popped as
1120   // appropriate. The stub then returns.
1121   //
1122   // After an unsuccessful call, the exit frame and suchlike are left
1123   // untouched, and the stub either throws an exception by jumping to one of
1124   // the exception_returned label.
1125
1126   DCHECK(csp.Is(__ StackPointer()));
1127
1128   // Prepare AAPCS64 arguments to pass to the builtin.
1129   __ Mov(x0, argc);
1130   __ Mov(x1, argv);
1131   __ Mov(x2, ExternalReference::isolate_address(isolate()));
1132
1133   Label return_location;
1134   __ Adr(x12, &return_location);
1135   __ Poke(x12, 0);
1136
1137   if (__ emit_debug_code()) {
1138     // Verify that the slot below fp[kSPOffset]-8 points to the return location
1139     // (currently in x12).
1140     UseScratchRegisterScope temps(masm);
1141     Register temp = temps.AcquireX();
1142     __ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset));
1143     __ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSize)));
1144     __ Cmp(temp, x12);
1145     __ Check(eq, kReturnAddressNotFoundInFrame);
1146   }
1147
1148   // Call the builtin.
1149   __ Blr(target);
1150   __ Bind(&return_location);
1151
1152   //  x0    result      The return code from the call.
1153   //  x21   argv
1154   //  x22   argc
1155   //  x23   target
1156   const Register& result = x0;
1157
1158   // Check result for exception sentinel.
1159   Label exception_returned;
1160   __ CompareRoot(result, Heap::kExceptionRootIndex);
1161   __ B(eq, &exception_returned);
1162
1163   // The call succeeded, so unwind the stack and return.
1164
1165   // Restore callee-saved registers x21-x23.
1166   __ Mov(x11, argc);
1167
1168   __ Peek(argv, 1 * kPointerSize);
1169   __ Peek(argc, 2 * kPointerSize);
1170   __ Peek(target, 3 * kPointerSize);
1171
1172   __ LeaveExitFrame(save_doubles(), x10, true);
1173   DCHECK(jssp.Is(__ StackPointer()));
1174   // Pop or drop the remaining stack slots and return from the stub.
1175   //         jssp[24]:    Arguments array (of size argc), including receiver.
1176   //         jssp[16]:    Preserved x23 (used for target).
1177   //         jssp[8]:     Preserved x22 (used for argc).
1178   //         jssp[0]:     Preserved x21 (used for argv).
1179   __ Drop(x11);
1180   __ AssertFPCRState();
1181   __ Ret();
1182
1183   // The stack pointer is still csp if we aren't returning, and the frame
1184   // hasn't changed (except for the return address).
1185   __ SetStackPointer(csp);
1186
1187   // Handling of exception.
1188   __ Bind(&exception_returned);
1189
1190   // Retrieve the pending exception.
1191   ExternalReference pending_exception_address(
1192       Isolate::kPendingExceptionAddress, isolate());
1193   const Register& exception = result;
1194   const Register& exception_address = x11;
1195   __ Mov(exception_address, Operand(pending_exception_address));
1196   __ Ldr(exception, MemOperand(exception_address));
1197
1198   // Clear the pending exception.
1199   __ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
1200   __ Str(x10, MemOperand(exception_address));
1201
1202   //  x0    exception   The exception descriptor.
1203   //  x21   argv
1204   //  x22   argc
1205   //  x23   target
1206
1207   // Special handling of termination exceptions, which are uncatchable by
1208   // JavaScript code.
1209   Label throw_termination_exception;
1210   __ Cmp(exception, Operand(isolate()->factory()->termination_exception()));
1211   __ B(eq, &throw_termination_exception);
1212
1213   // We didn't execute a return case, so the stack frame hasn't been updated
1214   // (except for the return address slot). However, we don't need to initialize
1215   // jssp because the throw method will immediately overwrite it when it
1216   // unwinds the stack.
1217   __ SetStackPointer(jssp);
1218
1219   ASM_LOCATION("Throw normal");
1220   __ Mov(argv, 0);
1221   __ Mov(argc, 0);
1222   __ Mov(target, 0);
1223   __ Throw(x0, x10, x11, x12, x13);
1224
1225   __ Bind(&throw_termination_exception);
1226   ASM_LOCATION("Throw termination");
1227   __ Mov(argv, 0);
1228   __ Mov(argc, 0);
1229   __ Mov(target, 0);
1230   __ ThrowUncatchable(x0, x10, x11, x12, x13);
1231 }
1232
1233
1234 // This is the entry point from C++. 5 arguments are provided in x0-x4.
1235 // See use of the CALL_GENERATED_CODE macro for example in src/execution.cc.
1236 // Input:
1237 //   x0: code entry.
1238 //   x1: function.
1239 //   x2: receiver.
1240 //   x3: argc.
1241 //   x4: argv.
1242 // Output:
1243 //   x0: result.
1244 void JSEntryStub::Generate(MacroAssembler* masm) {
1245   DCHECK(jssp.Is(__ StackPointer()));
1246   Register code_entry = x0;
1247
1248   // Enable instruction instrumentation. This only works on the simulator, and
1249   // will have no effect on the model or real hardware.
1250   __ EnableInstrumentation();
1251
1252   Label invoke, handler_entry, exit;
1253
1254   // Push callee-saved registers and synchronize the system stack pointer (csp)
1255   // and the JavaScript stack pointer (jssp).
1256   //
1257   // We must not write to jssp until after the PushCalleeSavedRegisters()
1258   // call, since jssp is itself a callee-saved register.
1259   __ SetStackPointer(csp);
1260   __ PushCalleeSavedRegisters();
1261   __ Mov(jssp, csp);
1262   __ SetStackPointer(jssp);
1263
1264   // Configure the FPCR. We don't restore it, so this is technically not allowed
1265   // according to AAPCS64. However, we only set default-NaN mode and this will
1266   // be harmless for most C code. Also, it works for ARM.
1267   __ ConfigureFPCR();
1268
1269   ProfileEntryHookStub::MaybeCallEntryHook(masm);
1270
1271   // Set up the reserved register for 0.0.
1272   __ Fmov(fp_zero, 0.0);
1273
1274   // Build an entry frame (see layout below).
1275   int marker = type();
1276   int64_t bad_frame_pointer = -1L;  // Bad frame pointer to fail if it is used.
1277   __ Mov(x13, bad_frame_pointer);
1278   __ Mov(x12, Smi::FromInt(marker));
1279   __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
1280   __ Ldr(x10, MemOperand(x11));
1281
1282   __ Push(x13, xzr, x12, x10);
1283   // Set up fp.
1284   __ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset);
1285
1286   // Push the JS entry frame marker. Also set js_entry_sp if this is the
1287   // outermost JS call.
1288   Label non_outermost_js, done;
1289   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1290   __ Mov(x10, ExternalReference(js_entry_sp));
1291   __ Ldr(x11, MemOperand(x10));
1292   __ Cbnz(x11, &non_outermost_js);
1293   __ Str(fp, MemOperand(x10));
1294   __ Mov(x12, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1295   __ Push(x12);
1296   __ B(&done);
1297   __ Bind(&non_outermost_js);
1298   // We spare one instruction by pushing xzr since the marker is 0.
1299   DCHECK(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL);
1300   __ Push(xzr);
1301   __ Bind(&done);
1302
1303   // The frame set up looks like this:
1304   // jssp[0] : JS entry frame marker.
1305   // jssp[1] : C entry FP.
1306   // jssp[2] : stack frame marker.
1307   // jssp[3] : stack frmae marker.
1308   // jssp[4] : bad frame pointer 0xfff...ff   <- fp points here.
1309
1310
1311   // Jump to a faked try block that does the invoke, with a faked catch
1312   // block that sets the pending exception.
1313   __ B(&invoke);
1314
1315   // Prevent the constant pool from being emitted between the record of the
1316   // handler_entry position and the first instruction of the sequence here.
1317   // There is no risk because Assembler::Emit() emits the instruction before
1318   // checking for constant pool emission, but we do not want to depend on
1319   // that.
1320   {
1321     Assembler::BlockPoolsScope block_pools(masm);
1322     __ bind(&handler_entry);
1323     handler_offset_ = handler_entry.pos();
1324     // Caught exception: Store result (exception) in the pending exception
1325     // field in the JSEnv and return a failure sentinel. Coming in here the
1326     // fp will be invalid because the PushTryHandler below sets it to 0 to
1327     // signal the existence of the JSEntry frame.
1328     __ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1329                                           isolate())));
1330   }
1331   __ Str(code_entry, MemOperand(x10));
1332   __ LoadRoot(x0, Heap::kExceptionRootIndex);
1333   __ B(&exit);
1334
1335   // Invoke: Link this frame into the handler chain.  There's only one
1336   // handler block in this code object, so its index is 0.
1337   __ Bind(&invoke);
1338   __ PushTryHandler(StackHandler::JS_ENTRY, 0);
1339   // If an exception not caught by another handler occurs, this handler
1340   // returns control to the code after the B(&invoke) above, which
1341   // restores all callee-saved registers (including cp and fp) to their
1342   // saved values before returning a failure to C.
1343
1344   // Clear any pending exceptions.
1345   __ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
1346   __ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1347                                         isolate())));
1348   __ Str(x10, MemOperand(x11));
1349
1350   // Invoke the function by calling through the JS entry trampoline builtin.
1351   // Notice that we cannot store a reference to the trampoline code directly in
1352   // this stub, because runtime stubs are not traversed when doing GC.
1353
1354   // Expected registers by Builtins::JSEntryTrampoline
1355   // x0: code entry.
1356   // x1: function.
1357   // x2: receiver.
1358   // x3: argc.
1359   // x4: argv.
1360   ExternalReference entry(type() == StackFrame::ENTRY_CONSTRUCT
1361                               ? Builtins::kJSConstructEntryTrampoline
1362                               : Builtins::kJSEntryTrampoline,
1363                           isolate());
1364   __ Mov(x10, entry);
1365
1366   // Call the JSEntryTrampoline.
1367   __ Ldr(x11, MemOperand(x10));  // Dereference the address.
1368   __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag);
1369   __ Blr(x12);
1370
1371   // Unlink this frame from the handler chain.
1372   __ PopTryHandler();
1373
1374
1375   __ Bind(&exit);
1376   // x0 holds the result.
1377   // The stack pointer points to the top of the entry frame pushed on entry from
1378   // C++ (at the beginning of this stub):
1379   // jssp[0] : JS entry frame marker.
1380   // jssp[1] : C entry FP.
1381   // jssp[2] : stack frame marker.
1382   // jssp[3] : stack frmae marker.
1383   // jssp[4] : bad frame pointer 0xfff...ff   <- fp points here.
1384
1385   // Check if the current stack frame is marked as the outermost JS frame.
1386   Label non_outermost_js_2;
1387   __ Pop(x10);
1388   __ Cmp(x10, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1389   __ B(ne, &non_outermost_js_2);
1390   __ Mov(x11, ExternalReference(js_entry_sp));
1391   __ Str(xzr, MemOperand(x11));
1392   __ Bind(&non_outermost_js_2);
1393
1394   // Restore the top frame descriptors from the stack.
1395   __ Pop(x10);
1396   __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
1397   __ Str(x10, MemOperand(x11));
1398
1399   // Reset the stack to the callee saved registers.
1400   __ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes);
1401   // Restore the callee-saved registers and return.
1402   DCHECK(jssp.Is(__ StackPointer()));
1403   __ Mov(csp, jssp);
1404   __ SetStackPointer(csp);
1405   __ PopCalleeSavedRegisters();
1406   // After this point, we must not modify jssp because it is a callee-saved
1407   // register which we have just restored.
1408   __ Ret();
1409 }
1410
1411
1412 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1413   Label miss;
1414   Register receiver = LoadDescriptor::ReceiverRegister();
1415
1416   NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10,
1417                                                           x11, &miss);
1418
1419   __ Bind(&miss);
1420   PropertyAccessCompiler::TailCallBuiltin(
1421       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1422 }
1423
1424
1425 void InstanceofStub::Generate(MacroAssembler* masm) {
1426   // Stack on entry:
1427   // jssp[0]: function.
1428   // jssp[8]: object.
1429   //
1430   // Returns result in x0. Zero indicates instanceof, smi 1 indicates not
1431   // instanceof.
1432
1433   Register result = x0;
1434   Register function = right();
1435   Register object = left();
1436   Register scratch1 = x6;
1437   Register scratch2 = x7;
1438   Register res_true = x8;
1439   Register res_false = x9;
1440   // Only used if there was an inline map check site. (See
1441   // LCodeGen::DoInstanceOfKnownGlobal().)
1442   Register map_check_site = x4;
1443   // Delta for the instructions generated between the inline map check and the
1444   // instruction setting the result.
1445   const int32_t kDeltaToLoadBoolResult = 4 * kInstructionSize;
1446
1447   Label not_js_object, slow;
1448
1449   if (!HasArgsInRegisters()) {
1450     __ Pop(function, object);
1451   }
1452
1453   if (ReturnTrueFalseObject()) {
1454     __ LoadTrueFalseRoots(res_true, res_false);
1455   } else {
1456     // This is counter-intuitive, but correct.
1457     __ Mov(res_true, Smi::FromInt(0));
1458     __ Mov(res_false, Smi::FromInt(1));
1459   }
1460
1461   // Check that the left hand side is a JS object and load its map as a side
1462   // effect.
1463   Register map = x12;
1464   __ JumpIfSmi(object, &not_js_object);
1465   __ IsObjectJSObjectType(object, map, scratch2, &not_js_object);
1466
1467   // If there is a call site cache, don't look in the global cache, but do the
1468   // real lookup and update the call site cache.
1469   if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
1470     Label miss;
1471     __ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex, &miss);
1472     __ JumpIfNotRoot(map, Heap::kInstanceofCacheMapRootIndex, &miss);
1473     __ LoadRoot(result, Heap::kInstanceofCacheAnswerRootIndex);
1474     __ Ret();
1475     __ Bind(&miss);
1476   }
1477
1478   // Get the prototype of the function.
1479   Register prototype = x13;
1480   __ TryGetFunctionPrototype(function, prototype, scratch2, &slow,
1481                              MacroAssembler::kMissOnBoundFunction);
1482
1483   // Check that the function prototype is a JS object.
1484   __ JumpIfSmi(prototype, &slow);
1485   __ IsObjectJSObjectType(prototype, scratch1, scratch2, &slow);
1486
1487   // Update the global instanceof or call site inlined cache with the current
1488   // map and function. The cached answer will be set when it is known below.
1489   if (HasCallSiteInlineCheck()) {
1490     // Patch the (relocated) inlined map check.
1491     __ GetRelocatedValueLocation(map_check_site, scratch1);
1492     // We have a cell, so need another level of dereferencing.
1493     __ Ldr(scratch1, MemOperand(scratch1));
1494     __ Str(map, FieldMemOperand(scratch1, Cell::kValueOffset));
1495   } else {
1496     __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1497     __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
1498   }
1499
1500   Label return_true, return_result;
1501   Register smi_value = scratch1;
1502   {
1503     // Loop through the prototype chain looking for the function prototype.
1504     Register chain_map = x1;
1505     Register chain_prototype = x14;
1506     Register null_value = x15;
1507     Label loop;
1508     __ Ldr(chain_prototype, FieldMemOperand(map, Map::kPrototypeOffset));
1509     __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1510     // Speculatively set a result.
1511     __ Mov(result, res_false);
1512     if (!HasCallSiteInlineCheck() && ReturnTrueFalseObject()) {
1513       // Value to store in the cache cannot be an object.
1514       __ Mov(smi_value, Smi::FromInt(1));
1515     }
1516
1517     __ Bind(&loop);
1518
1519     // If the chain prototype is the object prototype, return true.
1520     __ Cmp(chain_prototype, prototype);
1521     __ B(eq, &return_true);
1522
1523     // If the chain prototype is null, we've reached the end of the chain, so
1524     // return false.
1525     __ Cmp(chain_prototype, null_value);
1526     __ B(eq, &return_result);
1527
1528     // Otherwise, load the next prototype in the chain, and loop.
1529     __ Ldr(chain_map, FieldMemOperand(chain_prototype, HeapObject::kMapOffset));
1530     __ Ldr(chain_prototype, FieldMemOperand(chain_map, Map::kPrototypeOffset));
1531     __ B(&loop);
1532   }
1533
1534   // Return sequence when no arguments are on the stack.
1535   // We cannot fall through to here.
1536   __ Bind(&return_true);
1537   __ Mov(result, res_true);
1538   if (!HasCallSiteInlineCheck() && ReturnTrueFalseObject()) {
1539     // Value to store in the cache cannot be an object.
1540     __ Mov(smi_value, Smi::FromInt(0));
1541   }
1542   __ Bind(&return_result);
1543   if (HasCallSiteInlineCheck()) {
1544     DCHECK(ReturnTrueFalseObject());
1545     __ Add(map_check_site, map_check_site, kDeltaToLoadBoolResult);
1546     __ GetRelocatedValueLocation(map_check_site, scratch2);
1547     __ Str(result, MemOperand(scratch2));
1548   } else {
1549     Register cached_value = ReturnTrueFalseObject() ? smi_value : result;
1550     __ StoreRoot(cached_value, Heap::kInstanceofCacheAnswerRootIndex);
1551   }
1552   __ Ret();
1553
1554   Label object_not_null, object_not_null_or_smi;
1555
1556   __ Bind(&not_js_object);
1557   Register object_type = x14;
1558   //   x0   result        result return register (uninit)
1559   //   x10  function      pointer to function
1560   //   x11  object        pointer to object
1561   //   x14  object_type   type of object (uninit)
1562
1563   // Before null, smi and string checks, check that the rhs is a function.
1564   // For a non-function rhs, an exception must be thrown.
1565   __ JumpIfSmi(function, &slow);
1566   __ JumpIfNotObjectType(
1567       function, scratch1, object_type, JS_FUNCTION_TYPE, &slow);
1568
1569   __ Mov(result, res_false);
1570
1571   // Null is not instance of anything.
1572   __ Cmp(object_type, Operand(isolate()->factory()->null_value()));
1573   __ B(ne, &object_not_null);
1574   __ Ret();
1575
1576   __ Bind(&object_not_null);
1577   // Smi values are not instances of anything.
1578   __ JumpIfNotSmi(object, &object_not_null_or_smi);
1579   __ Ret();
1580
1581   __ Bind(&object_not_null_or_smi);
1582   // String values are not instances of anything.
1583   __ IsObjectJSStringType(object, scratch2, &slow);
1584   __ Ret();
1585
1586   // Slow-case. Tail call builtin.
1587   __ Bind(&slow);
1588   {
1589     FrameScope scope(masm, StackFrame::INTERNAL);
1590     // Arguments have either been passed into registers or have been previously
1591     // popped. We need to push them before calling builtin.
1592     __ Push(object, function);
1593     __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
1594   }
1595   if (ReturnTrueFalseObject()) {
1596     // Reload true/false because they were clobbered in the builtin call.
1597     __ LoadTrueFalseRoots(res_true, res_false);
1598     __ Cmp(result, 0);
1599     __ Csel(result, res_true, res_false, eq);
1600   }
1601   __ Ret();
1602 }
1603
1604
1605 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
1606   Register arg_count = ArgumentsAccessReadDescriptor::parameter_count();
1607   Register key = ArgumentsAccessReadDescriptor::index();
1608   DCHECK(arg_count.is(x0));
1609   DCHECK(key.is(x1));
1610
1611   // The displacement is the offset of the last parameter (if any) relative
1612   // to the frame pointer.
1613   static const int kDisplacement =
1614       StandardFrameConstants::kCallerSPOffset - kPointerSize;
1615
1616   // Check that the key is a smi.
1617   Label slow;
1618   __ JumpIfNotSmi(key, &slow);
1619
1620   // Check if the calling frame is an arguments adaptor frame.
1621   Register local_fp = x11;
1622   Register caller_fp = x11;
1623   Register caller_ctx = x12;
1624   Label skip_adaptor;
1625   __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1626   __ Ldr(caller_ctx, MemOperand(caller_fp,
1627                                 StandardFrameConstants::kContextOffset));
1628   __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1629   __ Csel(local_fp, fp, caller_fp, ne);
1630   __ B(ne, &skip_adaptor);
1631
1632   // Load the actual arguments limit found in the arguments adaptor frame.
1633   __ Ldr(arg_count, MemOperand(caller_fp,
1634                                ArgumentsAdaptorFrameConstants::kLengthOffset));
1635   __ Bind(&skip_adaptor);
1636
1637   // Check index against formal parameters count limit. Use unsigned comparison
1638   // to get negative check for free: branch if key < 0 or key >= arg_count.
1639   __ Cmp(key, arg_count);
1640   __ B(hs, &slow);
1641
1642   // Read the argument from the stack and return it.
1643   __ Sub(x10, arg_count, key);
1644   __ Add(x10, local_fp, Operand::UntagSmiAndScale(x10, kPointerSizeLog2));
1645   __ Ldr(x0, MemOperand(x10, kDisplacement));
1646   __ Ret();
1647
1648   // Slow case: handle non-smi or out-of-bounds access to arguments by calling
1649   // the runtime system.
1650   __ Bind(&slow);
1651   __ Push(key);
1652   __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
1653 }
1654
1655
1656 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1657   // Stack layout on entry.
1658   //  jssp[0]:  number of parameters (tagged)
1659   //  jssp[8]:  address of receiver argument
1660   //  jssp[16]: function
1661
1662   // Check if the calling frame is an arguments adaptor frame.
1663   Label runtime;
1664   Register caller_fp = x10;
1665   __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1666   // Load and untag the context.
1667   __ Ldr(w11, UntagSmiMemOperand(caller_fp,
1668                                  StandardFrameConstants::kContextOffset));
1669   __ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR);
1670   __ B(ne, &runtime);
1671
1672   // Patch the arguments.length and parameters pointer in the current frame.
1673   __ Ldr(x11, MemOperand(caller_fp,
1674                          ArgumentsAdaptorFrameConstants::kLengthOffset));
1675   __ Poke(x11, 0 * kXRegSize);
1676   __ Add(x10, caller_fp, Operand::UntagSmiAndScale(x11, kPointerSizeLog2));
1677   __ Add(x10, x10, StandardFrameConstants::kCallerSPOffset);
1678   __ Poke(x10, 1 * kXRegSize);
1679
1680   __ Bind(&runtime);
1681   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1682 }
1683
1684
1685 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
1686   // Stack layout on entry.
1687   //  jssp[0]:  number of parameters (tagged)
1688   //  jssp[8]:  address of receiver argument
1689   //  jssp[16]: function
1690   //
1691   // Returns pointer to result object in x0.
1692
1693   // Note: arg_count_smi is an alias of param_count_smi.
1694   Register arg_count_smi = x3;
1695   Register param_count_smi = x3;
1696   Register param_count = x7;
1697   Register recv_arg = x14;
1698   Register function = x4;
1699   __ Pop(param_count_smi, recv_arg, function);
1700   __ SmiUntag(param_count, param_count_smi);
1701
1702   // Check if the calling frame is an arguments adaptor frame.
1703   Register caller_fp = x11;
1704   Register caller_ctx = x12;
1705   Label runtime;
1706   Label adaptor_frame, try_allocate;
1707   __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1708   __ Ldr(caller_ctx, MemOperand(caller_fp,
1709                                 StandardFrameConstants::kContextOffset));
1710   __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1711   __ B(eq, &adaptor_frame);
1712
1713   // No adaptor, parameter count = argument count.
1714
1715   //   x1   mapped_params number of mapped params, min(params, args) (uninit)
1716   //   x2   arg_count     number of function arguments (uninit)
1717   //   x3   arg_count_smi number of function arguments (smi)
1718   //   x4   function      function pointer
1719   //   x7   param_count   number of function parameters
1720   //   x11  caller_fp     caller's frame pointer
1721   //   x14  recv_arg      pointer to receiver arguments
1722
1723   Register arg_count = x2;
1724   __ Mov(arg_count, param_count);
1725   __ B(&try_allocate);
1726
1727   // We have an adaptor frame. Patch the parameters pointer.
1728   __ Bind(&adaptor_frame);
1729   __ Ldr(arg_count_smi,
1730          MemOperand(caller_fp,
1731                     ArgumentsAdaptorFrameConstants::kLengthOffset));
1732   __ SmiUntag(arg_count, arg_count_smi);
1733   __ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2));
1734   __ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset);
1735
1736   // Compute the mapped parameter count = min(param_count, arg_count)
1737   Register mapped_params = x1;
1738   __ Cmp(param_count, arg_count);
1739   __ Csel(mapped_params, param_count, arg_count, lt);
1740
1741   __ Bind(&try_allocate);
1742
1743   //   x0   alloc_obj     pointer to allocated objects: param map, backing
1744   //                      store, arguments (uninit)
1745   //   x1   mapped_params number of mapped parameters, min(params, args)
1746   //   x2   arg_count     number of function arguments
1747   //   x3   arg_count_smi number of function arguments (smi)
1748   //   x4   function      function pointer
1749   //   x7   param_count   number of function parameters
1750   //   x10  size          size of objects to allocate (uninit)
1751   //   x14  recv_arg      pointer to receiver arguments
1752
1753   // Compute the size of backing store, parameter map, and arguments object.
1754   // 1. Parameter map, has two extra words containing context and backing
1755   // store.
1756   const int kParameterMapHeaderSize =
1757       FixedArray::kHeaderSize + 2 * kPointerSize;
1758
1759   // Calculate the parameter map size, assuming it exists.
1760   Register size = x10;
1761   __ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2));
1762   __ Add(size, size, kParameterMapHeaderSize);
1763
1764   // If there are no mapped parameters, set the running size total to zero.
1765   // Otherwise, use the parameter map size calculated earlier.
1766   __ Cmp(mapped_params, 0);
1767   __ CzeroX(size, eq);
1768
1769   // 2. Add the size of the backing store and arguments object.
1770   __ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2));
1771   __ Add(size, size,
1772          FixedArray::kHeaderSize + Heap::kSloppyArgumentsObjectSize);
1773
1774   // Do the allocation of all three objects in one go. Assign this to x0, as it
1775   // will be returned to the caller.
1776   Register alloc_obj = x0;
1777   __ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT);
1778
1779   // Get the arguments boilerplate from the current (global) context.
1780
1781   //   x0   alloc_obj       pointer to allocated objects (param map, backing
1782   //                        store, arguments)
1783   //   x1   mapped_params   number of mapped parameters, min(params, args)
1784   //   x2   arg_count       number of function arguments
1785   //   x3   arg_count_smi   number of function arguments (smi)
1786   //   x4   function        function pointer
1787   //   x7   param_count     number of function parameters
1788   //   x11  sloppy_args_map offset to args (or aliased args) map (uninit)
1789   //   x14  recv_arg        pointer to receiver arguments
1790
1791   Register global_object = x10;
1792   Register global_ctx = x10;
1793   Register sloppy_args_map = x11;
1794   Register aliased_args_map = x10;
1795   __ Ldr(global_object, GlobalObjectMemOperand());
1796   __ Ldr(global_ctx, FieldMemOperand(global_object,
1797                                      GlobalObject::kNativeContextOffset));
1798
1799   __ Ldr(sloppy_args_map,
1800          ContextMemOperand(global_ctx, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
1801   __ Ldr(aliased_args_map,
1802          ContextMemOperand(global_ctx, Context::ALIASED_ARGUMENTS_MAP_INDEX));
1803   __ Cmp(mapped_params, 0);
1804   __ CmovX(sloppy_args_map, aliased_args_map, ne);
1805
1806   // Copy the JS object part.
1807   __ Str(sloppy_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
1808   __ LoadRoot(x10, Heap::kEmptyFixedArrayRootIndex);
1809   __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
1810   __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
1811
1812   // Set up the callee in-object property.
1813   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1814   const int kCalleeOffset = JSObject::kHeaderSize +
1815                             Heap::kArgumentsCalleeIndex * kPointerSize;
1816   __ AssertNotSmi(function);
1817   __ Str(function, FieldMemOperand(alloc_obj, kCalleeOffset));
1818
1819   // Use the length and set that as an in-object property.
1820   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1821   const int kLengthOffset = JSObject::kHeaderSize +
1822                             Heap::kArgumentsLengthIndex * kPointerSize;
1823   __ Str(arg_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
1824
1825   // Set up the elements pointer in the allocated arguments object.
1826   // If we allocated a parameter map, "elements" will point there, otherwise
1827   // it will point to the backing store.
1828
1829   //   x0   alloc_obj     pointer to allocated objects (param map, backing
1830   //                      store, arguments)
1831   //   x1   mapped_params number of mapped parameters, min(params, args)
1832   //   x2   arg_count     number of function arguments
1833   //   x3   arg_count_smi number of function arguments (smi)
1834   //   x4   function      function pointer
1835   //   x5   elements      pointer to parameter map or backing store (uninit)
1836   //   x6   backing_store pointer to backing store (uninit)
1837   //   x7   param_count   number of function parameters
1838   //   x14  recv_arg      pointer to receiver arguments
1839
1840   Register elements = x5;
1841   __ Add(elements, alloc_obj, Heap::kSloppyArgumentsObjectSize);
1842   __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
1843
1844   // Initialize parameter map. If there are no mapped arguments, we're done.
1845   Label skip_parameter_map;
1846   __ Cmp(mapped_params, 0);
1847   // Set up backing store address, because it is needed later for filling in
1848   // the unmapped arguments.
1849   Register backing_store = x6;
1850   __ CmovX(backing_store, elements, eq);
1851   __ B(eq, &skip_parameter_map);
1852
1853   __ LoadRoot(x10, Heap::kSloppyArgumentsElementsMapRootIndex);
1854   __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
1855   __ Add(x10, mapped_params, 2);
1856   __ SmiTag(x10);
1857   __ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset));
1858   __ Str(cp, FieldMemOperand(elements,
1859                              FixedArray::kHeaderSize + 0 * kPointerSize));
1860   __ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2));
1861   __ Add(x10, x10, kParameterMapHeaderSize);
1862   __ Str(x10, FieldMemOperand(elements,
1863                               FixedArray::kHeaderSize + 1 * kPointerSize));
1864
1865   // Copy the parameter slots and the holes in the arguments.
1866   // We need to fill in mapped_parameter_count slots. Then index the context,
1867   // where parameters are stored in reverse order, at:
1868   //
1869   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1
1870   //
1871   // The mapped parameter thus needs to get indices:
1872   //
1873   //   MIN_CONTEXT_SLOTS + parameter_count - 1 ..
1874   //     MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count
1875   //
1876   // We loop from right to left.
1877
1878   //   x0   alloc_obj     pointer to allocated objects (param map, backing
1879   //                      store, arguments)
1880   //   x1   mapped_params number of mapped parameters, min(params, args)
1881   //   x2   arg_count     number of function arguments
1882   //   x3   arg_count_smi number of function arguments (smi)
1883   //   x4   function      function pointer
1884   //   x5   elements      pointer to parameter map or backing store (uninit)
1885   //   x6   backing_store pointer to backing store (uninit)
1886   //   x7   param_count   number of function parameters
1887   //   x11  loop_count    parameter loop counter (uninit)
1888   //   x12  index         parameter index (smi, uninit)
1889   //   x13  the_hole      hole value (uninit)
1890   //   x14  recv_arg      pointer to receiver arguments
1891
1892   Register loop_count = x11;
1893   Register index = x12;
1894   Register the_hole = x13;
1895   Label parameters_loop, parameters_test;
1896   __ Mov(loop_count, mapped_params);
1897   __ Add(index, param_count, static_cast<int>(Context::MIN_CONTEXT_SLOTS));
1898   __ Sub(index, index, mapped_params);
1899   __ SmiTag(index);
1900   __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
1901   __ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2));
1902   __ Add(backing_store, backing_store, kParameterMapHeaderSize);
1903
1904   __ B(&parameters_test);
1905
1906   __ Bind(&parameters_loop);
1907   __ Sub(loop_count, loop_count, 1);
1908   __ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2));
1909   __ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag);
1910   __ Str(index, MemOperand(elements, x10));
1911   __ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize);
1912   __ Str(the_hole, MemOperand(backing_store, x10));
1913   __ Add(index, index, Smi::FromInt(1));
1914   __ Bind(&parameters_test);
1915   __ Cbnz(loop_count, &parameters_loop);
1916
1917   __ Bind(&skip_parameter_map);
1918   // Copy arguments header and remaining slots (if there are any.)
1919   __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
1920   __ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset));
1921   __ Str(arg_count_smi, FieldMemOperand(backing_store,
1922                                         FixedArray::kLengthOffset));
1923
1924   //   x0   alloc_obj     pointer to allocated objects (param map, backing
1925   //                      store, arguments)
1926   //   x1   mapped_params number of mapped parameters, min(params, args)
1927   //   x2   arg_count     number of function arguments
1928   //   x4   function      function pointer
1929   //   x3   arg_count_smi number of function arguments (smi)
1930   //   x6   backing_store pointer to backing store (uninit)
1931   //   x14  recv_arg      pointer to receiver arguments
1932
1933   Label arguments_loop, arguments_test;
1934   __ Mov(x10, mapped_params);
1935   __ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2));
1936   __ B(&arguments_test);
1937
1938   __ Bind(&arguments_loop);
1939   __ Sub(recv_arg, recv_arg, kPointerSize);
1940   __ Ldr(x11, MemOperand(recv_arg));
1941   __ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2));
1942   __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize));
1943   __ Add(x10, x10, 1);
1944
1945   __ Bind(&arguments_test);
1946   __ Cmp(x10, arg_count);
1947   __ B(lt, &arguments_loop);
1948
1949   __ Ret();
1950
1951   // Do the runtime call to allocate the arguments object.
1952   __ Bind(&runtime);
1953   __ Push(function, recv_arg, arg_count_smi);
1954   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1955 }
1956
1957
1958 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
1959   // Return address is in lr.
1960   Label slow;
1961
1962   Register receiver = LoadDescriptor::ReceiverRegister();
1963   Register key = LoadDescriptor::NameRegister();
1964
1965   // Check that the key is an array index, that is Uint32.
1966   __ TestAndBranchIfAnySet(key, kSmiTagMask | kSmiSignMask, &slow);
1967
1968   // Everything is fine, call runtime.
1969   __ Push(receiver, key);
1970   __ TailCallExternalReference(
1971       ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
1972                         masm->isolate()),
1973       2, 1);
1974
1975   __ Bind(&slow);
1976   PropertyAccessCompiler::TailCallBuiltin(
1977       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1978 }
1979
1980
1981 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1982   // Stack layout on entry.
1983   //  jssp[0]:  number of parameters (tagged)
1984   //  jssp[8]:  address of receiver argument
1985   //  jssp[16]: function
1986   //
1987   // Returns pointer to result object in x0.
1988
1989   // Get the stub arguments from the frame, and make an untagged copy of the
1990   // parameter count.
1991   Register param_count_smi = x1;
1992   Register params = x2;
1993   Register function = x3;
1994   Register param_count = x13;
1995   __ Pop(param_count_smi, params, function);
1996   __ SmiUntag(param_count, param_count_smi);
1997
1998   // Test if arguments adaptor needed.
1999   Register caller_fp = x11;
2000   Register caller_ctx = x12;
2001   Label try_allocate, runtime;
2002   __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2003   __ Ldr(caller_ctx, MemOperand(caller_fp,
2004                                 StandardFrameConstants::kContextOffset));
2005   __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2006   __ B(ne, &try_allocate);
2007
2008   //   x1   param_count_smi   number of parameters passed to function (smi)
2009   //   x2   params            pointer to parameters
2010   //   x3   function          function pointer
2011   //   x11  caller_fp         caller's frame pointer
2012   //   x13  param_count       number of parameters passed to function
2013
2014   // Patch the argument length and parameters pointer.
2015   __ Ldr(param_count_smi,
2016          MemOperand(caller_fp,
2017                     ArgumentsAdaptorFrameConstants::kLengthOffset));
2018   __ SmiUntag(param_count, param_count_smi);
2019   __ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2));
2020   __ Add(params, x10, StandardFrameConstants::kCallerSPOffset);
2021
2022   // Try the new space allocation. Start out with computing the size of the
2023   // arguments object and the elements array in words.
2024   Register size = x10;
2025   __ Bind(&try_allocate);
2026   __ Add(size, param_count, FixedArray::kHeaderSize / kPointerSize);
2027   __ Cmp(param_count, 0);
2028   __ CzeroX(size, eq);
2029   __ Add(size, size, Heap::kStrictArgumentsObjectSize / kPointerSize);
2030
2031   // Do the allocation of both objects in one go. Assign this to x0, as it will
2032   // be returned to the caller.
2033   Register alloc_obj = x0;
2034   __ Allocate(size, alloc_obj, x11, x12, &runtime,
2035               static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
2036
2037   // Get the arguments boilerplate from the current (native) context.
2038   Register global_object = x10;
2039   Register global_ctx = x10;
2040   Register strict_args_map = x4;
2041   __ Ldr(global_object, GlobalObjectMemOperand());
2042   __ Ldr(global_ctx, FieldMemOperand(global_object,
2043                                      GlobalObject::kNativeContextOffset));
2044   __ Ldr(strict_args_map,
2045          ContextMemOperand(global_ctx, Context::STRICT_ARGUMENTS_MAP_INDEX));
2046
2047   //   x0   alloc_obj         pointer to allocated objects: parameter array and
2048   //                          arguments object
2049   //   x1   param_count_smi   number of parameters passed to function (smi)
2050   //   x2   params            pointer to parameters
2051   //   x3   function          function pointer
2052   //   x4   strict_args_map   offset to arguments map
2053   //   x13  param_count       number of parameters passed to function
2054   __ Str(strict_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
2055   __ LoadRoot(x5, Heap::kEmptyFixedArrayRootIndex);
2056   __ Str(x5, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
2057   __ Str(x5, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
2058
2059   // Set the smi-tagged length as an in-object property.
2060   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
2061   const int kLengthOffset = JSObject::kHeaderSize +
2062                             Heap::kArgumentsLengthIndex * kPointerSize;
2063   __ Str(param_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
2064
2065   // If there are no actual arguments, we're done.
2066   Label done;
2067   __ Cbz(param_count, &done);
2068
2069   // Set up the elements pointer in the allocated arguments object and
2070   // initialize the header in the elements fixed array.
2071   Register elements = x5;
2072   __ Add(elements, alloc_obj, Heap::kStrictArgumentsObjectSize);
2073   __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
2074   __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
2075   __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
2076   __ Str(param_count_smi, FieldMemOperand(elements, FixedArray::kLengthOffset));
2077
2078   //   x0   alloc_obj         pointer to allocated objects: parameter array and
2079   //                          arguments object
2080   //   x1   param_count_smi   number of parameters passed to function (smi)
2081   //   x2   params            pointer to parameters
2082   //   x3   function          function pointer
2083   //   x4   array             pointer to array slot (uninit)
2084   //   x5   elements          pointer to elements array of alloc_obj
2085   //   x13  param_count       number of parameters passed to function
2086
2087   // Copy the fixed array slots.
2088   Label loop;
2089   Register array = x4;
2090   // Set up pointer to first array slot.
2091   __ Add(array, elements, FixedArray::kHeaderSize - kHeapObjectTag);
2092
2093   __ Bind(&loop);
2094   // Pre-decrement the parameters pointer by kPointerSize on each iteration.
2095   // Pre-decrement in order to skip receiver.
2096   __ Ldr(x10, MemOperand(params, -kPointerSize, PreIndex));
2097   // Post-increment elements by kPointerSize on each iteration.
2098   __ Str(x10, MemOperand(array, kPointerSize, PostIndex));
2099   __ Sub(param_count, param_count, 1);
2100   __ Cbnz(param_count, &loop);
2101
2102   // Return from stub.
2103   __ Bind(&done);
2104   __ Ret();
2105
2106   // Do the runtime call to allocate the arguments object.
2107   __ Bind(&runtime);
2108   __ Push(function, params, param_count_smi);
2109   __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
2110 }
2111
2112
2113 void RegExpExecStub::Generate(MacroAssembler* masm) {
2114 #ifdef V8_INTERPRETED_REGEXP
2115   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2116 #else  // V8_INTERPRETED_REGEXP
2117
2118   // Stack frame on entry.
2119   //  jssp[0]: last_match_info (expected JSArray)
2120   //  jssp[8]: previous index
2121   //  jssp[16]: subject string
2122   //  jssp[24]: JSRegExp object
2123   Label runtime;
2124
2125   // Use of registers for this function.
2126
2127   // Variable registers:
2128   //   x10-x13                                  used as scratch registers
2129   //   w0       string_type                     type of subject string
2130   //   x2       jsstring_length                 subject string length
2131   //   x3       jsregexp_object                 JSRegExp object
2132   //   w4       string_encoding                 Latin1 or UC16
2133   //   w5       sliced_string_offset            if the string is a SlicedString
2134   //                                            offset to the underlying string
2135   //   w6       string_representation           groups attributes of the string:
2136   //                                              - is a string
2137   //                                              - type of the string
2138   //                                              - is a short external string
2139   Register string_type = w0;
2140   Register jsstring_length = x2;
2141   Register jsregexp_object = x3;
2142   Register string_encoding = w4;
2143   Register sliced_string_offset = w5;
2144   Register string_representation = w6;
2145
2146   // These are in callee save registers and will be preserved by the call
2147   // to the native RegExp code, as this code is called using the normal
2148   // C calling convention. When calling directly from generated code the
2149   // native RegExp code will not do a GC and therefore the content of
2150   // these registers are safe to use after the call.
2151
2152   //   x19       subject                        subject string
2153   //   x20       regexp_data                    RegExp data (FixedArray)
2154   //   x21       last_match_info_elements       info relative to the last match
2155   //                                            (FixedArray)
2156   //   x22       code_object                    generated regexp code
2157   Register subject = x19;
2158   Register regexp_data = x20;
2159   Register last_match_info_elements = x21;
2160   Register code_object = x22;
2161
2162   // TODO(jbramley): Is it necessary to preserve these? I don't think ARM does.
2163   CPURegList used_callee_saved_registers(subject,
2164                                          regexp_data,
2165                                          last_match_info_elements,
2166                                          code_object);
2167   __ PushCPURegList(used_callee_saved_registers);
2168
2169   // Stack frame.
2170   //  jssp[0] : x19
2171   //  jssp[8] : x20
2172   //  jssp[16]: x21
2173   //  jssp[24]: x22
2174   //  jssp[32]: last_match_info (JSArray)
2175   //  jssp[40]: previous index
2176   //  jssp[48]: subject string
2177   //  jssp[56]: JSRegExp object
2178
2179   const int kLastMatchInfoOffset = 4 * kPointerSize;
2180   const int kPreviousIndexOffset = 5 * kPointerSize;
2181   const int kSubjectOffset = 6 * kPointerSize;
2182   const int kJSRegExpOffset = 7 * kPointerSize;
2183
2184   // Ensure that a RegExp stack is allocated.
2185   ExternalReference address_of_regexp_stack_memory_address =
2186       ExternalReference::address_of_regexp_stack_memory_address(isolate());
2187   ExternalReference address_of_regexp_stack_memory_size =
2188       ExternalReference::address_of_regexp_stack_memory_size(isolate());
2189   __ Mov(x10, address_of_regexp_stack_memory_size);
2190   __ Ldr(x10, MemOperand(x10));
2191   __ Cbz(x10, &runtime);
2192
2193   // Check that the first argument is a JSRegExp object.
2194   DCHECK(jssp.Is(__ StackPointer()));
2195   __ Peek(jsregexp_object, kJSRegExpOffset);
2196   __ JumpIfSmi(jsregexp_object, &runtime);
2197   __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime);
2198
2199   // Check that the RegExp has been compiled (data contains a fixed array).
2200   __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset));
2201   if (FLAG_debug_code) {
2202     STATIC_ASSERT(kSmiTag == 0);
2203     __ Tst(regexp_data, kSmiTagMask);
2204     __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2205     __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE);
2206     __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2207   }
2208
2209   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2210   __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
2211   __ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP));
2212   __ B(ne, &runtime);
2213
2214   // Check that the number of captures fit in the static offsets vector buffer.
2215   // We have always at least one capture for the whole match, plus additional
2216   // ones due to capturing parentheses. A capture takes 2 registers.
2217   // The number of capture registers then is (number_of_captures + 1) * 2.
2218   __ Ldrsw(x10,
2219            UntagSmiFieldMemOperand(regexp_data,
2220                                    JSRegExp::kIrregexpCaptureCountOffset));
2221   // Check (number_of_captures + 1) * 2 <= offsets vector size
2222   //             number_of_captures * 2 <= offsets vector size - 2
2223   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
2224   __ Add(x10, x10, x10);
2225   __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
2226   __ B(hi, &runtime);
2227
2228   // Initialize offset for possibly sliced string.
2229   __ Mov(sliced_string_offset, 0);
2230
2231   DCHECK(jssp.Is(__ StackPointer()));
2232   __ Peek(subject, kSubjectOffset);
2233   __ JumpIfSmi(subject, &runtime);
2234
2235   __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
2236   __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2237
2238   __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset));
2239
2240   // Handle subject string according to its encoding and representation:
2241   // (1) Sequential string?  If yes, go to (5).
2242   // (2) Anything but sequential or cons?  If yes, go to (6).
2243   // (3) Cons string.  If the string is flat, replace subject with first string.
2244   //     Otherwise bailout.
2245   // (4) Is subject external?  If yes, go to (7).
2246   // (5) Sequential string.  Load regexp code according to encoding.
2247   // (E) Carry on.
2248   /// [...]
2249
2250   // Deferred code at the end of the stub:
2251   // (6) Not a long external string?  If yes, go to (8).
2252   // (7) External string.  Make it, offset-wise, look like a sequential string.
2253   //     Go to (5).
2254   // (8) Short external string or not a string?  If yes, bail out to runtime.
2255   // (9) Sliced string.  Replace subject with parent.  Go to (4).
2256
2257   Label check_underlying;   // (4)
2258   Label seq_string;         // (5)
2259   Label not_seq_nor_cons;   // (6)
2260   Label external_string;    // (7)
2261   Label not_long_external;  // (8)
2262
2263   // (1) Sequential string?  If yes, go to (5).
2264   __ And(string_representation,
2265          string_type,
2266          kIsNotStringMask |
2267              kStringRepresentationMask |
2268              kShortExternalStringMask);
2269   // We depend on the fact that Strings of type
2270   // SeqString and not ShortExternalString are defined
2271   // by the following pattern:
2272   //   string_type: 0XX0 XX00
2273   //                ^  ^   ^^
2274   //                |  |   ||
2275   //                |  |   is a SeqString
2276   //                |  is not a short external String
2277   //                is a String
2278   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2279   STATIC_ASSERT(kShortExternalStringTag != 0);
2280   __ Cbz(string_representation, &seq_string);  // Go to (5).
2281
2282   // (2) Anything but sequential or cons?  If yes, go to (6).
2283   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2284   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2285   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2286   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2287   __ Cmp(string_representation, kExternalStringTag);
2288   __ B(ge, &not_seq_nor_cons);  // Go to (6).
2289
2290   // (3) Cons string.  Check that it's flat.
2291   __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset));
2292   __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime);
2293   // Replace subject with first string.
2294   __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2295
2296   // (4) Is subject external?  If yes, go to (7).
2297   __ Bind(&check_underlying);
2298   // Reload the string type.
2299   __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
2300   __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2301   STATIC_ASSERT(kSeqStringTag == 0);
2302   // The underlying external string is never a short external string.
2303   STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
2304   STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2305   __ TestAndBranchIfAnySet(string_type.X(),
2306                            kStringRepresentationMask,
2307                            &external_string);  // Go to (7).
2308
2309   // (5) Sequential string.  Load regexp code according to encoding.
2310   __ Bind(&seq_string);
2311
2312   // Check that the third argument is a positive smi less than the subject
2313   // string length. A negative value will be greater (unsigned comparison).
2314   DCHECK(jssp.Is(__ StackPointer()));
2315   __ Peek(x10, kPreviousIndexOffset);
2316   __ JumpIfNotSmi(x10, &runtime);
2317   __ Cmp(jsstring_length, x10);
2318   __ B(ls, &runtime);
2319
2320   // Argument 2 (x1): We need to load argument 2 (the previous index) into x1
2321   // before entering the exit frame.
2322   __ SmiUntag(x1, x10);
2323
2324   // The third bit determines the string encoding in string_type.
2325   STATIC_ASSERT(kOneByteStringTag == 0x04);
2326   STATIC_ASSERT(kTwoByteStringTag == 0x00);
2327   STATIC_ASSERT(kStringEncodingMask == 0x04);
2328
2329   // Find the code object based on the assumptions above.
2330   // kDataOneByteCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset
2331   // of kPointerSize to reach the latter.
2332   DCHECK_EQ(JSRegExp::kDataOneByteCodeOffset + kPointerSize,
2333             JSRegExp::kDataUC16CodeOffset);
2334   __ Mov(x10, kPointerSize);
2335   // We will need the encoding later: Latin1 = 0x04
2336   //                                  UC16   = 0x00
2337   __ Ands(string_encoding, string_type, kStringEncodingMask);
2338   __ CzeroX(x10, ne);
2339   __ Add(x10, regexp_data, x10);
2340   __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataOneByteCodeOffset));
2341
2342   // (E) Carry on.  String handling is done.
2343
2344   // Check that the irregexp code has been generated for the actual string
2345   // encoding. If it has, the field contains a code object otherwise it contains
2346   // a smi (code flushing support).
2347   __ JumpIfSmi(code_object, &runtime);
2348
2349   // All checks done. Now push arguments for native regexp code.
2350   __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1,
2351                       x10,
2352                       x11);
2353
2354   // Isolates: note we add an additional parameter here (isolate pointer).
2355   __ EnterExitFrame(false, x10, 1);
2356   DCHECK(csp.Is(__ StackPointer()));
2357
2358   // We have 9 arguments to pass to the regexp code, therefore we have to pass
2359   // one on the stack and the rest as registers.
2360
2361   // Note that the placement of the argument on the stack isn't standard
2362   // AAPCS64:
2363   // csp[0]: Space for the return address placed by DirectCEntryStub.
2364   // csp[8]: Argument 9, the current isolate address.
2365
2366   __ Mov(x10, ExternalReference::isolate_address(isolate()));
2367   __ Poke(x10, kPointerSize);
2368
2369   Register length = w11;
2370   Register previous_index_in_bytes = w12;
2371   Register start = x13;
2372
2373   // Load start of the subject string.
2374   __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag);
2375   // Load the length from the original subject string from the previous stack
2376   // frame. Therefore we have to use fp, which points exactly to two pointer
2377   // sizes below the previous sp. (Because creating a new stack frame pushes
2378   // the previous fp onto the stack and decrements sp by 2 * kPointerSize.)
2379   __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
2380   __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset));
2381
2382   // Handle UC16 encoding, two bytes make one character.
2383   //   string_encoding: if Latin1: 0x04
2384   //                    if UC16:   0x00
2385   STATIC_ASSERT(kStringEncodingMask == 0x04);
2386   __ Ubfx(string_encoding, string_encoding, 2, 1);
2387   __ Eor(string_encoding, string_encoding, 1);
2388   //   string_encoding: if Latin1: 0
2389   //                    if UC16:   1
2390
2391   // Convert string positions from characters to bytes.
2392   // Previous index is in x1.
2393   __ Lsl(previous_index_in_bytes, w1, string_encoding);
2394   __ Lsl(length, length, string_encoding);
2395   __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding);
2396
2397   // Argument 1 (x0): Subject string.
2398   __ Mov(x0, subject);
2399
2400   // Argument 2 (x1): Previous index, already there.
2401
2402   // Argument 3 (x2): Get the start of input.
2403   // Start of input = start of string + previous index + substring offset
2404   //                                                     (0 if the string
2405   //                                                      is not sliced).
2406   __ Add(w10, previous_index_in_bytes, sliced_string_offset);
2407   __ Add(x2, start, Operand(w10, UXTW));
2408
2409   // Argument 4 (x3):
2410   // End of input = start of input + (length of input - previous index)
2411   __ Sub(w10, length, previous_index_in_bytes);
2412   __ Add(x3, x2, Operand(w10, UXTW));
2413
2414   // Argument 5 (x4): static offsets vector buffer.
2415   __ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate()));
2416
2417   // Argument 6 (x5): Set the number of capture registers to zero to force
2418   // global regexps to behave as non-global. This stub is not used for global
2419   // regexps.
2420   __ Mov(x5, 0);
2421
2422   // Argument 7 (x6): Start (high end) of backtracking stack memory area.
2423   __ Mov(x10, address_of_regexp_stack_memory_address);
2424   __ Ldr(x10, MemOperand(x10));
2425   __ Mov(x11, address_of_regexp_stack_memory_size);
2426   __ Ldr(x11, MemOperand(x11));
2427   __ Add(x6, x10, x11);
2428
2429   // Argument 8 (x7): Indicate that this is a direct call from JavaScript.
2430   __ Mov(x7, 1);
2431
2432   // Locate the code entry and call it.
2433   __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag);
2434   DirectCEntryStub stub(isolate());
2435   stub.GenerateCall(masm, code_object);
2436
2437   __ LeaveExitFrame(false, x10, true);
2438
2439   // The generated regexp code returns an int32 in w0.
2440   Label failure, exception;
2441   __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure);
2442   __ CompareAndBranch(w0,
2443                       NativeRegExpMacroAssembler::EXCEPTION,
2444                       eq,
2445                       &exception);
2446   __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime);
2447
2448   // Success: process the result from the native regexp code.
2449   Register number_of_capture_registers = x12;
2450
2451   // Calculate number of capture registers (number_of_captures + 1) * 2
2452   // and store it in the last match info.
2453   __ Ldrsw(x10,
2454            UntagSmiFieldMemOperand(regexp_data,
2455                                    JSRegExp::kIrregexpCaptureCountOffset));
2456   __ Add(x10, x10, x10);
2457   __ Add(number_of_capture_registers, x10, 2);
2458
2459   // Check that the fourth object is a JSArray object.
2460   DCHECK(jssp.Is(__ StackPointer()));
2461   __ Peek(x10, kLastMatchInfoOffset);
2462   __ JumpIfSmi(x10, &runtime);
2463   __ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime);
2464
2465   // Check that the JSArray is the fast case.
2466   __ Ldr(last_match_info_elements,
2467          FieldMemOperand(x10, JSArray::kElementsOffset));
2468   __ Ldr(x10,
2469          FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
2470   __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime);
2471
2472   // Check that the last match info has space for the capture registers and the
2473   // additional information (overhead).
2474   //     (number_of_captures + 1) * 2 + overhead <= last match info size
2475   //     (number_of_captures * 2) + 2 + overhead <= last match info size
2476   //      number_of_capture_registers + overhead <= last match info size
2477   __ Ldrsw(x10,
2478            UntagSmiFieldMemOperand(last_match_info_elements,
2479                                    FixedArray::kLengthOffset));
2480   __ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead);
2481   __ Cmp(x11, x10);
2482   __ B(gt, &runtime);
2483
2484   // Store the capture count.
2485   __ SmiTag(x10, number_of_capture_registers);
2486   __ Str(x10,
2487          FieldMemOperand(last_match_info_elements,
2488                          RegExpImpl::kLastCaptureCountOffset));
2489   // Store last subject and last input.
2490   __ Str(subject,
2491          FieldMemOperand(last_match_info_elements,
2492                          RegExpImpl::kLastSubjectOffset));
2493   // Use x10 as the subject string in order to only need
2494   // one RecordWriteStub.
2495   __ Mov(x10, subject);
2496   __ RecordWriteField(last_match_info_elements,
2497                       RegExpImpl::kLastSubjectOffset,
2498                       x10,
2499                       x11,
2500                       kLRHasNotBeenSaved,
2501                       kDontSaveFPRegs);
2502   __ Str(subject,
2503          FieldMemOperand(last_match_info_elements,
2504                          RegExpImpl::kLastInputOffset));
2505   __ Mov(x10, subject);
2506   __ RecordWriteField(last_match_info_elements,
2507                       RegExpImpl::kLastInputOffset,
2508                       x10,
2509                       x11,
2510                       kLRHasNotBeenSaved,
2511                       kDontSaveFPRegs);
2512
2513   Register last_match_offsets = x13;
2514   Register offsets_vector_index = x14;
2515   Register current_offset = x15;
2516
2517   // Get the static offsets vector filled by the native regexp code
2518   // and fill the last match info.
2519   ExternalReference address_of_static_offsets_vector =
2520       ExternalReference::address_of_static_offsets_vector(isolate());
2521   __ Mov(offsets_vector_index, address_of_static_offsets_vector);
2522
2523   Label next_capture, done;
2524   // Capture register counter starts from number of capture registers and
2525   // iterates down to zero (inclusive).
2526   __ Add(last_match_offsets,
2527          last_match_info_elements,
2528          RegExpImpl::kFirstCaptureOffset - kHeapObjectTag);
2529   __ Bind(&next_capture);
2530   __ Subs(number_of_capture_registers, number_of_capture_registers, 2);
2531   __ B(mi, &done);
2532   // Read two 32 bit values from the static offsets vector buffer into
2533   // an X register
2534   __ Ldr(current_offset,
2535          MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex));
2536   // Store the smi values in the last match info.
2537   __ SmiTag(x10, current_offset);
2538   // Clearing the 32 bottom bits gives us a Smi.
2539   STATIC_ASSERT(kSmiTag == 0);
2540   __ Bic(x11, current_offset, kSmiShiftMask);
2541   __ Stp(x10,
2542          x11,
2543          MemOperand(last_match_offsets, kXRegSize * 2, PostIndex));
2544   __ B(&next_capture);
2545   __ Bind(&done);
2546
2547   // Return last match info.
2548   __ Peek(x0, kLastMatchInfoOffset);
2549   __ PopCPURegList(used_callee_saved_registers);
2550   // Drop the 4 arguments of the stub from the stack.
2551   __ Drop(4);
2552   __ Ret();
2553
2554   __ Bind(&exception);
2555   Register exception_value = x0;
2556   // A stack overflow (on the backtrack stack) may have occured
2557   // in the RegExp code but no exception has been created yet.
2558   // If there is no pending exception, handle that in the runtime system.
2559   __ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
2560   __ Mov(x11,
2561          Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2562                                    isolate())));
2563   __ Ldr(exception_value, MemOperand(x11));
2564   __ Cmp(x10, exception_value);
2565   __ B(eq, &runtime);
2566
2567   __ Str(x10, MemOperand(x11));  // Clear pending exception.
2568
2569   // Check if the exception is a termination. If so, throw as uncatchable.
2570   Label termination_exception;
2571   __ JumpIfRoot(exception_value,
2572                 Heap::kTerminationExceptionRootIndex,
2573                 &termination_exception);
2574
2575   __ Throw(exception_value, x10, x11, x12, x13);
2576
2577   __ Bind(&termination_exception);
2578   __ ThrowUncatchable(exception_value, x10, x11, x12, x13);
2579
2580   __ Bind(&failure);
2581   __ Mov(x0, Operand(isolate()->factory()->null_value()));
2582   __ PopCPURegList(used_callee_saved_registers);
2583   // Drop the 4 arguments of the stub from the stack.
2584   __ Drop(4);
2585   __ Ret();
2586
2587   __ Bind(&runtime);
2588   __ PopCPURegList(used_callee_saved_registers);
2589   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2590
2591   // Deferred code for string handling.
2592   // (6) Not a long external string?  If yes, go to (8).
2593   __ Bind(&not_seq_nor_cons);
2594   // Compare flags are still set.
2595   __ B(ne, &not_long_external);  // Go to (8).
2596
2597   // (7) External string. Make it, offset-wise, look like a sequential string.
2598   __ Bind(&external_string);
2599   if (masm->emit_debug_code()) {
2600     // Assert that we do not have a cons or slice (indirect strings) here.
2601     // Sequential strings have already been ruled out.
2602     __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
2603     __ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2604     __ Tst(x10, kIsIndirectStringMask);
2605     __ Check(eq, kExternalStringExpectedButNotFound);
2606     __ And(x10, x10, kStringRepresentationMask);
2607     __ Cmp(x10, 0);
2608     __ Check(ne, kExternalStringExpectedButNotFound);
2609   }
2610   __ Ldr(subject,
2611          FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2612   // Move the pointer so that offset-wise, it looks like a sequential string.
2613   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2614   __ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
2615   __ B(&seq_string);    // Go to (5).
2616
2617   // (8) If this is a short external string or not a string, bail out to
2618   // runtime.
2619   __ Bind(&not_long_external);
2620   STATIC_ASSERT(kShortExternalStringTag != 0);
2621   __ TestAndBranchIfAnySet(string_representation,
2622                            kShortExternalStringMask | kIsNotStringMask,
2623                            &runtime);
2624
2625   // (9) Sliced string. Replace subject with parent.
2626   __ Ldr(sliced_string_offset,
2627          UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset));
2628   __ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
2629   __ B(&check_underlying);    // Go to (4).
2630 #endif
2631 }
2632
2633
2634 static void GenerateRecordCallTarget(MacroAssembler* masm,
2635                                      Register argc,
2636                                      Register function,
2637                                      Register feedback_vector,
2638                                      Register index,
2639                                      Register scratch1,
2640                                      Register scratch2) {
2641   ASM_LOCATION("GenerateRecordCallTarget");
2642   DCHECK(!AreAliased(scratch1, scratch2,
2643                      argc, function, feedback_vector, index));
2644   // Cache the called function in a feedback vector slot. Cache states are
2645   // uninitialized, monomorphic (indicated by a JSFunction), and megamorphic.
2646   //  argc :            number of arguments to the construct function
2647   //  function :        the function to call
2648   //  feedback_vector : the feedback vector
2649   //  index :           slot in feedback vector (smi)
2650   Label initialize, done, miss, megamorphic, not_array_function;
2651
2652   DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2653             masm->isolate()->heap()->megamorphic_symbol());
2654   DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2655             masm->isolate()->heap()->uninitialized_symbol());
2656
2657   // Load the cache state.
2658   __ Add(scratch1, feedback_vector,
2659          Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2660   __ Ldr(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
2661
2662   // A monomorphic cache hit or an already megamorphic state: invoke the
2663   // function without changing the state.
2664   __ Cmp(scratch1, function);
2665   __ B(eq, &done);
2666
2667   if (!FLAG_pretenuring_call_new) {
2668     // If we came here, we need to see if we are the array function.
2669     // If we didn't have a matching function, and we didn't find the megamorph
2670     // sentinel, then we have in the slot either some other function or an
2671     // AllocationSite. Do a map check on the object in scratch1 register.
2672     __ Ldr(scratch2, FieldMemOperand(scratch1, AllocationSite::kMapOffset));
2673     __ JumpIfNotRoot(scratch2, Heap::kAllocationSiteMapRootIndex, &miss);
2674
2675     // Make sure the function is the Array() function
2676     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1);
2677     __ Cmp(function, scratch1);
2678     __ B(ne, &megamorphic);
2679     __ B(&done);
2680   }
2681
2682   __ Bind(&miss);
2683
2684   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2685   // megamorphic.
2686   __ JumpIfRoot(scratch1, Heap::kUninitializedSymbolRootIndex, &initialize);
2687   // MegamorphicSentinel is an immortal immovable object (undefined) so no
2688   // write-barrier is needed.
2689   __ Bind(&megamorphic);
2690   __ Add(scratch1, feedback_vector,
2691          Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2692   __ LoadRoot(scratch2, Heap::kMegamorphicSymbolRootIndex);
2693   __ Str(scratch2, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
2694   __ B(&done);
2695
2696   // An uninitialized cache is patched with the function or sentinel to
2697   // indicate the ElementsKind if function is the Array constructor.
2698   __ Bind(&initialize);
2699
2700   if (!FLAG_pretenuring_call_new) {
2701     // Make sure the function is the Array() function
2702     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1);
2703     __ Cmp(function, scratch1);
2704     __ B(ne, &not_array_function);
2705
2706     // The target function is the Array constructor,
2707     // Create an AllocationSite if we don't already have it, store it in the
2708     // slot.
2709     {
2710       FrameScope scope(masm, StackFrame::INTERNAL);
2711       CreateAllocationSiteStub create_stub(masm->isolate());
2712
2713       // Arguments register must be smi-tagged to call out.
2714       __ SmiTag(argc);
2715       __ Push(argc, function, feedback_vector, index);
2716
2717       // CreateAllocationSiteStub expect the feedback vector in x2 and the slot
2718       // index in x3.
2719       DCHECK(feedback_vector.Is(x2) && index.Is(x3));
2720       __ CallStub(&create_stub);
2721
2722       __ Pop(index, feedback_vector, function, argc);
2723       __ SmiUntag(argc);
2724     }
2725     __ B(&done);
2726
2727     __ Bind(&not_array_function);
2728   }
2729
2730   // An uninitialized cache is patched with the function.
2731
2732   __ Add(scratch1, feedback_vector,
2733          Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2734   __ Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
2735   __ Str(function, MemOperand(scratch1, 0));
2736
2737   __ Push(function);
2738   __ RecordWrite(feedback_vector, scratch1, function, kLRHasNotBeenSaved,
2739                  kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2740   __ Pop(function);
2741
2742   __ Bind(&done);
2743 }
2744
2745
2746 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2747   // Do not transform the receiver for strict mode functions.
2748   __ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
2749   __ Ldr(w4, FieldMemOperand(x3, SharedFunctionInfo::kCompilerHintsOffset));
2750   __ Tbnz(w4, SharedFunctionInfo::kStrictModeFunction, cont);
2751
2752   // Do not transform the receiver for native (Compilerhints already in x3).
2753   __ Tbnz(w4, SharedFunctionInfo::kNative, cont);
2754 }
2755
2756
2757 static void EmitSlowCase(MacroAssembler* masm,
2758                          int argc,
2759                          Register function,
2760                          Register type,
2761                          Label* non_function) {
2762   // Check for function proxy.
2763   // x10 : function type.
2764   __ CompareAndBranch(type, JS_FUNCTION_PROXY_TYPE, ne, non_function);
2765   __ Push(function);  // put proxy as additional argument
2766   __ Mov(x0, argc + 1);
2767   __ Mov(x2, 0);
2768   __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY);
2769   {
2770     Handle<Code> adaptor =
2771         masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
2772     __ Jump(adaptor, RelocInfo::CODE_TARGET);
2773   }
2774
2775   // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2776   // of the original receiver from the call site).
2777   __ Bind(non_function);
2778   __ Poke(function, argc * kXRegSize);
2779   __ Mov(x0, argc);  // Set up the number of arguments.
2780   __ Mov(x2, 0);
2781   __ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION);
2782   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2783           RelocInfo::CODE_TARGET);
2784 }
2785
2786
2787 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2788   // Wrap the receiver and patch it back onto the stack.
2789   { FrameScope frame_scope(masm, StackFrame::INTERNAL);
2790     __ Push(x1, x3);
2791     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2792     __ Pop(x1);
2793   }
2794   __ Poke(x0, argc * kPointerSize);
2795   __ B(cont);
2796 }
2797
2798
2799 static void CallFunctionNoFeedback(MacroAssembler* masm,
2800                                    int argc, bool needs_checks,
2801                                    bool call_as_method) {
2802   // x1  function    the function to call
2803   Register function = x1;
2804   Register type = x4;
2805   Label slow, non_function, wrap, cont;
2806
2807   // TODO(jbramley): This function has a lot of unnamed registers. Name them,
2808   // and tidy things up a bit.
2809
2810   if (needs_checks) {
2811     // Check that the function is really a JavaScript function.
2812     __ JumpIfSmi(function, &non_function);
2813
2814     // Goto slow case if we do not have a function.
2815     __ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow);
2816   }
2817
2818   // Fast-case: Invoke the function now.
2819   // x1  function  pushed function
2820   ParameterCount actual(argc);
2821
2822   if (call_as_method) {
2823     if (needs_checks) {
2824       EmitContinueIfStrictOrNative(masm, &cont);
2825     }
2826
2827     // Compute the receiver in sloppy mode.
2828     __ Peek(x3, argc * kPointerSize);
2829
2830     if (needs_checks) {
2831       __ JumpIfSmi(x3, &wrap);
2832       __ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt);
2833     } else {
2834       __ B(&wrap);
2835     }
2836
2837     __ Bind(&cont);
2838   }
2839
2840   __ InvokeFunction(function,
2841                     actual,
2842                     JUMP_FUNCTION,
2843                     NullCallWrapper());
2844   if (needs_checks) {
2845     // Slow-case: Non-function called.
2846     __ Bind(&slow);
2847     EmitSlowCase(masm, argc, function, type, &non_function);
2848   }
2849
2850   if (call_as_method) {
2851     __ Bind(&wrap);
2852     EmitWrapCase(masm, argc, &cont);
2853   }
2854 }
2855
2856
2857 void CallFunctionStub::Generate(MacroAssembler* masm) {
2858   ASM_LOCATION("CallFunctionStub::Generate");
2859   CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2860 }
2861
2862
2863 void CallConstructStub::Generate(MacroAssembler* masm) {
2864   ASM_LOCATION("CallConstructStub::Generate");
2865   // x0 : number of arguments
2866   // x1 : the function to call
2867   // x2 : feedback vector
2868   // x3 : slot in feedback vector (smi) (if r2 is not the megamorphic symbol)
2869   Register function = x1;
2870   Label slow, non_function_call;
2871
2872   // Check that the function is not a smi.
2873   __ JumpIfSmi(function, &non_function_call);
2874   // Check that the function is a JSFunction.
2875   Register object_type = x10;
2876   __ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE,
2877                          &slow);
2878
2879   if (RecordCallTarget()) {
2880     GenerateRecordCallTarget(masm, x0, function, x2, x3, x4, x5);
2881
2882     __ Add(x5, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2));
2883     if (FLAG_pretenuring_call_new) {
2884       // Put the AllocationSite from the feedback vector into x2.
2885       // By adding kPointerSize we encode that we know the AllocationSite
2886       // entry is at the feedback vector slot given by x3 + 1.
2887       __ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize + kPointerSize));
2888     } else {
2889     Label feedback_register_initialized;
2890       // Put the AllocationSite from the feedback vector into x2, or undefined.
2891       __ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize));
2892       __ Ldr(x5, FieldMemOperand(x2, AllocationSite::kMapOffset));
2893       __ JumpIfRoot(x5, Heap::kAllocationSiteMapRootIndex,
2894                     &feedback_register_initialized);
2895       __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
2896       __ bind(&feedback_register_initialized);
2897     }
2898
2899     __ AssertUndefinedOrAllocationSite(x2, x5);
2900   }
2901
2902   // Jump to the function-specific construct stub.
2903   Register jump_reg = x4;
2904   Register shared_func_info = jump_reg;
2905   Register cons_stub = jump_reg;
2906   Register cons_stub_code = jump_reg;
2907   __ Ldr(shared_func_info,
2908          FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
2909   __ Ldr(cons_stub,
2910          FieldMemOperand(shared_func_info,
2911                          SharedFunctionInfo::kConstructStubOffset));
2912   __ Add(cons_stub_code, cons_stub, Code::kHeaderSize - kHeapObjectTag);
2913   __ Br(cons_stub_code);
2914
2915   Label do_call;
2916   __ Bind(&slow);
2917   __ Cmp(object_type, JS_FUNCTION_PROXY_TYPE);
2918   __ B(ne, &non_function_call);
2919   __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2920   __ B(&do_call);
2921
2922   __ Bind(&non_function_call);
2923   __ GetBuiltinFunction(x1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2924
2925   __ Bind(&do_call);
2926   // Set expected number of arguments to zero (not changing x0).
2927   __ Mov(x2, 0);
2928   __ Jump(isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2929           RelocInfo::CODE_TARGET);
2930 }
2931
2932
2933 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2934   __ Ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2935   __ Ldr(vector, FieldMemOperand(vector,
2936                                  JSFunction::kSharedFunctionInfoOffset));
2937   __ Ldr(vector, FieldMemOperand(vector,
2938                                  SharedFunctionInfo::kFeedbackVectorOffset));
2939 }
2940
2941
2942 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2943   // x1 - function
2944   // x3 - slot id
2945   Label miss;
2946   Register function = x1;
2947   Register feedback_vector = x2;
2948   Register index = x3;
2949   Register scratch = x4;
2950
2951   EmitLoadTypeFeedbackVector(masm, feedback_vector);
2952
2953   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch);
2954   __ Cmp(function, scratch);
2955   __ B(ne, &miss);
2956
2957   __ Mov(x0, Operand(arg_count()));
2958
2959   __ Add(scratch, feedback_vector,
2960          Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2961   __ Ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize));
2962
2963   // Verify that scratch contains an AllocationSite
2964   Register map = x5;
2965   __ Ldr(map, FieldMemOperand(scratch, HeapObject::kMapOffset));
2966   __ JumpIfNotRoot(map, Heap::kAllocationSiteMapRootIndex, &miss);
2967
2968   Register allocation_site = feedback_vector;
2969   __ Mov(allocation_site, scratch);
2970   ArrayConstructorStub stub(masm->isolate(), arg_count());
2971   __ TailCallStub(&stub);
2972
2973   __ bind(&miss);
2974   GenerateMiss(masm);
2975
2976   // The slow case, we need this no matter what to complete a call after a miss.
2977   CallFunctionNoFeedback(masm,
2978                          arg_count(),
2979                          true,
2980                          CallAsMethod());
2981
2982   __ Unreachable();
2983 }
2984
2985
2986 void CallICStub::Generate(MacroAssembler* masm) {
2987   ASM_LOCATION("CallICStub");
2988
2989   // x1 - function
2990   // x3 - slot id (Smi)
2991   Label extra_checks_or_miss, slow_start;
2992   Label slow, non_function, wrap, cont;
2993   Label have_js_function;
2994   int argc = arg_count();
2995   ParameterCount actual(argc);
2996
2997   Register function = x1;
2998   Register feedback_vector = x2;
2999   Register index = x3;
3000   Register type = x4;
3001
3002   EmitLoadTypeFeedbackVector(masm, feedback_vector);
3003
3004   // The checks. First, does x1 match the recorded monomorphic target?
3005   __ Add(x4, feedback_vector,
3006          Operand::UntagSmiAndScale(index, kPointerSizeLog2));
3007   __ Ldr(x4, FieldMemOperand(x4, FixedArray::kHeaderSize));
3008
3009   __ Cmp(x4, function);
3010   __ B(ne, &extra_checks_or_miss);
3011
3012   __ bind(&have_js_function);
3013   if (CallAsMethod()) {
3014     EmitContinueIfStrictOrNative(masm, &cont);
3015
3016     // Compute the receiver in sloppy mode.
3017     __ Peek(x3, argc * kPointerSize);
3018
3019     __ JumpIfSmi(x3, &wrap);
3020     __ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt);
3021
3022     __ Bind(&cont);
3023   }
3024
3025   __ InvokeFunction(function,
3026                     actual,
3027                     JUMP_FUNCTION,
3028                     NullCallWrapper());
3029
3030   __ bind(&slow);
3031   EmitSlowCase(masm, argc, function, type, &non_function);
3032
3033   if (CallAsMethod()) {
3034     __ bind(&wrap);
3035     EmitWrapCase(masm, argc, &cont);
3036   }
3037
3038   __ bind(&extra_checks_or_miss);
3039   Label miss;
3040
3041   __ JumpIfRoot(x4, Heap::kMegamorphicSymbolRootIndex, &slow_start);
3042   __ JumpIfRoot(x4, Heap::kUninitializedSymbolRootIndex, &miss);
3043
3044   if (!FLAG_trace_ic) {
3045     // We are going megamorphic. If the feedback is a JSFunction, it is fine
3046     // to handle it here. More complex cases are dealt with in the runtime.
3047     __ AssertNotSmi(x4);
3048     __ JumpIfNotObjectType(x4, x5, x5, JS_FUNCTION_TYPE, &miss);
3049     __ Add(x4, feedback_vector,
3050            Operand::UntagSmiAndScale(index, kPointerSizeLog2));
3051     __ LoadRoot(x5, Heap::kMegamorphicSymbolRootIndex);
3052     __ Str(x5, FieldMemOperand(x4, FixedArray::kHeaderSize));
3053     __ B(&slow_start);
3054   }
3055
3056   // We are here because tracing is on or we are going monomorphic.
3057   __ bind(&miss);
3058   GenerateMiss(masm);
3059
3060   // the slow case
3061   __ bind(&slow_start);
3062
3063   // Check that the function is really a JavaScript function.
3064   __ JumpIfSmi(function, &non_function);
3065
3066   // Goto slow case if we do not have a function.
3067   __ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow);
3068   __ B(&have_js_function);
3069 }
3070
3071
3072 void CallICStub::GenerateMiss(MacroAssembler* masm) {
3073   ASM_LOCATION("CallICStub[Miss]");
3074
3075   // Get the receiver of the function from the stack; 1 ~ return address.
3076   __ Peek(x4, (arg_count() + 1) * kPointerSize);
3077
3078   {
3079     FrameScope scope(masm, StackFrame::INTERNAL);
3080
3081     // Push the receiver and the function and feedback info.
3082     __ Push(x4, x1, x2, x3);
3083
3084     // Call the entry.
3085     IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
3086                                                : IC::kCallIC_Customization_Miss;
3087
3088     ExternalReference miss = ExternalReference(IC_Utility(id),
3089                                                masm->isolate());
3090     __ CallExternalReference(miss, 4);
3091
3092     // Move result to edi and exit the internal frame.
3093     __ Mov(x1, x0);
3094   }
3095 }
3096
3097
3098 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
3099   // If the receiver is a smi trigger the non-string case.
3100   __ JumpIfSmi(object_, receiver_not_string_);
3101
3102   // Fetch the instance type of the receiver into result register.
3103   __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
3104   __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
3105
3106   // If the receiver is not a string trigger the non-string case.
3107   __ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_);
3108
3109   // If the index is non-smi trigger the non-smi case.
3110   __ JumpIfNotSmi(index_, &index_not_smi_);
3111
3112   __ Bind(&got_smi_index_);
3113   // Check for index out of range.
3114   __ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset));
3115   __ Cmp(result_, Operand::UntagSmi(index_));
3116   __ B(ls, index_out_of_range_);
3117
3118   __ SmiUntag(index_);
3119
3120   StringCharLoadGenerator::Generate(masm,
3121                                     object_,
3122                                     index_.W(),
3123                                     result_,
3124                                     &call_runtime_);
3125   __ SmiTag(result_);
3126   __ Bind(&exit_);
3127 }
3128
3129
3130 void StringCharCodeAtGenerator::GenerateSlow(
3131     MacroAssembler* masm,
3132     const RuntimeCallHelper& call_helper) {
3133   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
3134
3135   __ Bind(&index_not_smi_);
3136   // If index is a heap number, try converting it to an integer.
3137   __ JumpIfNotHeapNumber(index_, index_not_number_);
3138   call_helper.BeforeCall(masm);
3139   // Save object_ on the stack and pass index_ as argument for runtime call.
3140   __ Push(object_, index_);
3141   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
3142     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
3143   } else {
3144     DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
3145     // NumberToSmi discards numbers that are not exact integers.
3146     __ CallRuntime(Runtime::kNumberToSmi, 1);
3147   }
3148   // Save the conversion result before the pop instructions below
3149   // have a chance to overwrite it.
3150   __ Mov(index_, x0);
3151   __ Pop(object_);
3152   // Reload the instance type.
3153   __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
3154   __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
3155   call_helper.AfterCall(masm);
3156
3157   // If index is still not a smi, it must be out of range.
3158   __ JumpIfNotSmi(index_, index_out_of_range_);
3159   // Otherwise, return to the fast path.
3160   __ B(&got_smi_index_);
3161
3162   // Call runtime. We get here when the receiver is a string and the
3163   // index is a number, but the code of getting the actual character
3164   // is too complex (e.g., when the string needs to be flattened).
3165   __ Bind(&call_runtime_);
3166   call_helper.BeforeCall(masm);
3167   __ SmiTag(index_);
3168   __ Push(object_, index_);
3169   __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
3170   __ Mov(result_, x0);
3171   call_helper.AfterCall(masm);
3172   __ B(&exit_);
3173
3174   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3175 }
3176
3177
3178 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3179   __ JumpIfNotSmi(code_, &slow_case_);
3180   __ Cmp(code_, Smi::FromInt(String::kMaxOneByteCharCode));
3181   __ B(hi, &slow_case_);
3182
3183   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
3184   // At this point code register contains smi tagged one-byte char code.
3185   __ Add(result_, result_, Operand::UntagSmiAndScale(code_, kPointerSizeLog2));
3186   __ Ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
3187   __ JumpIfRoot(result_, Heap::kUndefinedValueRootIndex, &slow_case_);
3188   __ Bind(&exit_);
3189 }
3190
3191
3192 void StringCharFromCodeGenerator::GenerateSlow(
3193     MacroAssembler* masm,
3194     const RuntimeCallHelper& call_helper) {
3195   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3196
3197   __ Bind(&slow_case_);
3198   call_helper.BeforeCall(masm);
3199   __ Push(code_);
3200   __ CallRuntime(Runtime::kCharFromCode, 1);
3201   __ Mov(result_, x0);
3202   call_helper.AfterCall(masm);
3203   __ B(&exit_);
3204
3205   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3206 }
3207
3208
3209 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3210   // Inputs are in x0 (lhs) and x1 (rhs).
3211   DCHECK(state() == CompareICState::SMI);
3212   ASM_LOCATION("CompareICStub[Smis]");
3213   Label miss;
3214   // Bail out (to 'miss') unless both x0 and x1 are smis.
3215   __ JumpIfEitherNotSmi(x0, x1, &miss);
3216
3217   if (GetCondition() == eq) {
3218     // For equality we do not care about the sign of the result.
3219     __ Sub(x0, x0, x1);
3220   } else {
3221     // Untag before subtracting to avoid handling overflow.
3222     __ SmiUntag(x1);
3223     __ Sub(x0, x1, Operand::UntagSmi(x0));
3224   }
3225   __ Ret();
3226
3227   __ Bind(&miss);
3228   GenerateMiss(masm);
3229 }
3230
3231
3232 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3233   DCHECK(state() == CompareICState::NUMBER);
3234   ASM_LOCATION("CompareICStub[HeapNumbers]");
3235
3236   Label unordered, maybe_undefined1, maybe_undefined2;
3237   Label miss, handle_lhs, values_in_d_regs;
3238   Label untag_rhs, untag_lhs;
3239
3240   Register result = x0;
3241   Register rhs = x0;
3242   Register lhs = x1;
3243   FPRegister rhs_d = d0;
3244   FPRegister lhs_d = d1;
3245
3246   if (left() == CompareICState::SMI) {
3247     __ JumpIfNotSmi(lhs, &miss);
3248   }
3249   if (right() == CompareICState::SMI) {
3250     __ JumpIfNotSmi(rhs, &miss);
3251   }
3252
3253   __ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag);
3254   __ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag);
3255
3256   // Load rhs if it's a heap number.
3257   __ JumpIfSmi(rhs, &handle_lhs);
3258   __ JumpIfNotHeapNumber(rhs, &maybe_undefined1);
3259   __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
3260
3261   // Load lhs if it's a heap number.
3262   __ Bind(&handle_lhs);
3263   __ JumpIfSmi(lhs, &values_in_d_regs);
3264   __ JumpIfNotHeapNumber(lhs, &maybe_undefined2);
3265   __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
3266
3267   __ Bind(&values_in_d_regs);
3268   __ Fcmp(lhs_d, rhs_d);
3269   __ B(vs, &unordered);  // Overflow flag set if either is NaN.
3270   STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
3271   __ Cset(result, gt);  // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
3272   __ Csinv(result, result, xzr, ge);  // lt => -1, gt => 1, eq => 0.
3273   __ Ret();
3274
3275   __ Bind(&unordered);
3276   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
3277                      CompareICState::GENERIC, CompareICState::GENERIC);
3278   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3279
3280   __ Bind(&maybe_undefined1);
3281   if (Token::IsOrderedRelationalCompareOp(op())) {
3282     __ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss);
3283     __ JumpIfSmi(lhs, &unordered);
3284     __ JumpIfNotHeapNumber(lhs, &maybe_undefined2);
3285     __ B(&unordered);
3286   }
3287
3288   __ Bind(&maybe_undefined2);
3289   if (Token::IsOrderedRelationalCompareOp(op())) {
3290     __ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered);
3291   }
3292
3293   __ Bind(&miss);
3294   GenerateMiss(masm);
3295 }
3296
3297
3298 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3299   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3300   ASM_LOCATION("CompareICStub[InternalizedStrings]");
3301   Label miss;
3302
3303   Register result = x0;
3304   Register rhs = x0;
3305   Register lhs = x1;
3306
3307   // Check that both operands are heap objects.
3308   __ JumpIfEitherSmi(lhs, rhs, &miss);
3309
3310   // Check that both operands are internalized strings.
3311   Register rhs_map = x10;
3312   Register lhs_map = x11;
3313   Register rhs_type = x10;
3314   Register lhs_type = x11;
3315   __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
3316   __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
3317   __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
3318   __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
3319
3320   STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
3321   __ Orr(x12, lhs_type, rhs_type);
3322   __ TestAndBranchIfAnySet(
3323       x12, kIsNotStringMask | kIsNotInternalizedMask, &miss);
3324
3325   // Internalized strings are compared by identity.
3326   STATIC_ASSERT(EQUAL == 0);
3327   __ Cmp(lhs, rhs);
3328   __ Cset(result, ne);
3329   __ Ret();
3330
3331   __ Bind(&miss);
3332   GenerateMiss(masm);
3333 }
3334
3335
3336 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3337   DCHECK(state() == CompareICState::UNIQUE_NAME);
3338   ASM_LOCATION("CompareICStub[UniqueNames]");
3339   DCHECK(GetCondition() == eq);
3340   Label miss;
3341
3342   Register result = x0;
3343   Register rhs = x0;
3344   Register lhs = x1;
3345
3346   Register lhs_instance_type = w2;
3347   Register rhs_instance_type = w3;
3348
3349   // Check that both operands are heap objects.
3350   __ JumpIfEitherSmi(lhs, rhs, &miss);
3351
3352   // Check that both operands are unique names. This leaves the instance
3353   // types loaded in tmp1 and tmp2.
3354   __ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset));
3355   __ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset));
3356   __ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
3357   __ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset));
3358
3359   // To avoid a miss, each instance type should be either SYMBOL_TYPE or it
3360   // should have kInternalizedTag set.
3361   __ JumpIfNotUniqueNameInstanceType(lhs_instance_type, &miss);
3362   __ JumpIfNotUniqueNameInstanceType(rhs_instance_type, &miss);
3363
3364   // Unique names are compared by identity.
3365   STATIC_ASSERT(EQUAL == 0);
3366   __ Cmp(lhs, rhs);
3367   __ Cset(result, ne);
3368   __ Ret();
3369
3370   __ Bind(&miss);
3371   GenerateMiss(masm);
3372 }
3373
3374
3375 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3376   DCHECK(state() == CompareICState::STRING);
3377   ASM_LOCATION("CompareICStub[Strings]");
3378
3379   Label miss;
3380
3381   bool equality = Token::IsEqualityOp(op());
3382
3383   Register result = x0;
3384   Register rhs = x0;
3385   Register lhs = x1;
3386
3387   // Check that both operands are heap objects.
3388   __ JumpIfEitherSmi(rhs, lhs, &miss);
3389
3390   // Check that both operands are strings.
3391   Register rhs_map = x10;
3392   Register lhs_map = x11;
3393   Register rhs_type = x10;
3394   Register lhs_type = x11;
3395   __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
3396   __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
3397   __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
3398   __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
3399   STATIC_ASSERT(kNotStringTag != 0);
3400   __ Orr(x12, lhs_type, rhs_type);
3401   __ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss);
3402
3403   // Fast check for identical strings.
3404   Label not_equal;
3405   __ Cmp(lhs, rhs);
3406   __ B(ne, &not_equal);
3407   __ Mov(result, EQUAL);
3408   __ Ret();
3409
3410   __ Bind(&not_equal);
3411   // Handle not identical strings
3412
3413   // Check that both strings are internalized strings. If they are, we're done
3414   // because we already know they are not identical. We know they are both
3415   // strings.
3416   if (equality) {
3417     DCHECK(GetCondition() == eq);
3418     STATIC_ASSERT(kInternalizedTag == 0);
3419     Label not_internalized_strings;
3420     __ Orr(x12, lhs_type, rhs_type);
3421     __ TestAndBranchIfAnySet(
3422         x12, kIsNotInternalizedMask, &not_internalized_strings);
3423     // Result is in rhs (x0), and not EQUAL, as rhs is not a smi.
3424     __ Ret();
3425     __ Bind(&not_internalized_strings);
3426   }
3427
3428   // Check that both strings are sequential one-byte.
3429   Label runtime;
3430   __ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x12,
3431                                                     x13, &runtime);
3432
3433   // Compare flat one-byte strings. Returns when done.
3434   if (equality) {
3435     StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11,
3436                                                   x12);
3437   } else {
3438     StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11,
3439                                                     x12, x13);
3440   }
3441
3442   // Handle more complex cases in runtime.
3443   __ Bind(&runtime);
3444   __ Push(lhs, rhs);
3445   if (equality) {
3446     __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3447   } else {
3448     __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3449   }
3450
3451   __ Bind(&miss);
3452   GenerateMiss(masm);
3453 }
3454
3455
3456 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3457   DCHECK(state() == CompareICState::OBJECT);
3458   ASM_LOCATION("CompareICStub[Objects]");
3459
3460   Label miss;
3461
3462   Register result = x0;
3463   Register rhs = x0;
3464   Register lhs = x1;
3465
3466   __ JumpIfEitherSmi(rhs, lhs, &miss);
3467
3468   __ JumpIfNotObjectType(rhs, x10, x10, JS_OBJECT_TYPE, &miss);
3469   __ JumpIfNotObjectType(lhs, x10, x10, JS_OBJECT_TYPE, &miss);
3470
3471   DCHECK(GetCondition() == eq);
3472   __ Sub(result, rhs, lhs);
3473   __ Ret();
3474
3475   __ Bind(&miss);
3476   GenerateMiss(masm);
3477 }
3478
3479
3480 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3481   ASM_LOCATION("CompareICStub[KnownObjects]");
3482
3483   Label miss;
3484
3485   Register result = x0;
3486   Register rhs = x0;
3487   Register lhs = x1;
3488
3489   __ JumpIfEitherSmi(rhs, lhs, &miss);
3490
3491   Register rhs_map = x10;
3492   Register lhs_map = x11;
3493   __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
3494   __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
3495   __ Cmp(rhs_map, Operand(known_map_));
3496   __ B(ne, &miss);
3497   __ Cmp(lhs_map, Operand(known_map_));
3498   __ B(ne, &miss);
3499
3500   __ Sub(result, rhs, lhs);
3501   __ Ret();
3502
3503   __ Bind(&miss);
3504   GenerateMiss(masm);
3505 }
3506
3507
3508 // This method handles the case where a compare stub had the wrong
3509 // implementation. It calls a miss handler, which re-writes the stub. All other
3510 // CompareICStub::Generate* methods should fall back into this one if their
3511 // operands were not the expected types.
3512 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3513   ASM_LOCATION("CompareICStub[Miss]");
3514
3515   Register stub_entry = x11;
3516   {
3517     ExternalReference miss =
3518       ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
3519
3520     FrameScope scope(masm, StackFrame::INTERNAL);
3521     Register op = x10;
3522     Register left = x1;
3523     Register right = x0;
3524     // Preserve some caller-saved registers.
3525     __ Push(x1, x0, lr);
3526     // Push the arguments.
3527     __ Mov(op, Smi::FromInt(this->op()));
3528     __ Push(left, right, op);
3529
3530     // Call the miss handler. This also pops the arguments.
3531     __ CallExternalReference(miss, 3);
3532
3533     // Compute the entry point of the rewritten stub.
3534     __ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag);
3535     // Restore caller-saved registers.
3536     __ Pop(lr, x0, x1);
3537   }
3538
3539   // Tail-call to the new stub.
3540   __ Jump(stub_entry);
3541 }
3542
3543
3544 void SubStringStub::Generate(MacroAssembler* masm) {
3545   ASM_LOCATION("SubStringStub::Generate");
3546   Label runtime;
3547
3548   // Stack frame on entry.
3549   //  lr: return address
3550   //  jssp[0]:  substring "to" offset
3551   //  jssp[8]:  substring "from" offset
3552   //  jssp[16]: pointer to string object
3553
3554   // This stub is called from the native-call %_SubString(...), so
3555   // nothing can be assumed about the arguments. It is tested that:
3556   //  "string" is a sequential string,
3557   //  both "from" and "to" are smis, and
3558   //  0 <= from <= to <= string.length (in debug mode.)
3559   // If any of these assumptions fail, we call the runtime system.
3560
3561   static const int kToOffset = 0 * kPointerSize;
3562   static const int kFromOffset = 1 * kPointerSize;
3563   static const int kStringOffset = 2 * kPointerSize;
3564
3565   Register to = x0;
3566   Register from = x15;
3567   Register input_string = x10;
3568   Register input_length = x11;
3569   Register input_type = x12;
3570   Register result_string = x0;
3571   Register result_length = x1;
3572   Register temp = x3;
3573
3574   __ Peek(to, kToOffset);
3575   __ Peek(from, kFromOffset);
3576
3577   // Check that both from and to are smis. If not, jump to runtime.
3578   __ JumpIfEitherNotSmi(from, to, &runtime);
3579   __ SmiUntag(from);
3580   __ SmiUntag(to);
3581
3582   // Calculate difference between from and to. If to < from, branch to runtime.
3583   __ Subs(result_length, to, from);
3584   __ B(mi, &runtime);
3585
3586   // Check from is positive.
3587   __ Tbnz(from, kWSignBit, &runtime);
3588
3589   // Make sure first argument is a string.
3590   __ Peek(input_string, kStringOffset);
3591   __ JumpIfSmi(input_string, &runtime);
3592   __ IsObjectJSStringType(input_string, input_type, &runtime);
3593
3594   Label single_char;
3595   __ Cmp(result_length, 1);
3596   __ B(eq, &single_char);
3597
3598   // Short-cut for the case of trivial substring.
3599   Label return_x0;
3600   __ Ldrsw(input_length,
3601            UntagSmiFieldMemOperand(input_string, String::kLengthOffset));
3602
3603   __ Cmp(result_length, input_length);
3604   __ CmovX(x0, input_string, eq);
3605   // Return original string.
3606   __ B(eq, &return_x0);
3607
3608   // Longer than original string's length or negative: unsafe arguments.
3609   __ B(hi, &runtime);
3610
3611   // Shorter than original string's length: an actual substring.
3612
3613   //   x0   to               substring end character offset
3614   //   x1   result_length    length of substring result
3615   //   x10  input_string     pointer to input string object
3616   //   x10  unpacked_string  pointer to unpacked string object
3617   //   x11  input_length     length of input string
3618   //   x12  input_type       instance type of input string
3619   //   x15  from             substring start character offset
3620
3621   // Deal with different string types: update the index if necessary and put
3622   // the underlying string into register unpacked_string.
3623   Label underlying_unpacked, sliced_string, seq_or_external_string;
3624   Label update_instance_type;
3625   // If the string is not indirect, it can only be sequential or external.
3626   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3627   STATIC_ASSERT(kIsIndirectStringMask != 0);
3628
3629   // Test for string types, and branch/fall through to appropriate unpacking
3630   // code.
3631   __ Tst(input_type, kIsIndirectStringMask);
3632   __ B(eq, &seq_or_external_string);
3633   __ Tst(input_type, kSlicedNotConsMask);
3634   __ B(ne, &sliced_string);
3635
3636   Register unpacked_string = input_string;
3637
3638   // Cons string. Check whether it is flat, then fetch first part.
3639   __ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset));
3640   __ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime);
3641   __ Ldr(unpacked_string,
3642          FieldMemOperand(input_string, ConsString::kFirstOffset));
3643   __ B(&update_instance_type);
3644
3645   __ Bind(&sliced_string);
3646   // Sliced string. Fetch parent and correct start index by offset.
3647   __ Ldrsw(temp,
3648            UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset));
3649   __ Add(from, from, temp);
3650   __ Ldr(unpacked_string,
3651          FieldMemOperand(input_string, SlicedString::kParentOffset));
3652
3653   __ Bind(&update_instance_type);
3654   __ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset));
3655   __ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset));
3656   // Now control must go to &underlying_unpacked. Since the no code is generated
3657   // before then we fall through instead of generating a useless branch.
3658
3659   __ Bind(&seq_or_external_string);
3660   // Sequential or external string. Registers unpacked_string and input_string
3661   // alias, so there's nothing to do here.
3662   // Note that if code is added here, the above code must be updated.
3663
3664   //   x0   result_string    pointer to result string object (uninit)
3665   //   x1   result_length    length of substring result
3666   //   x10  unpacked_string  pointer to unpacked string object
3667   //   x11  input_length     length of input string
3668   //   x12  input_type       instance type of input string
3669   //   x15  from             substring start character offset
3670   __ Bind(&underlying_unpacked);
3671
3672   if (FLAG_string_slices) {
3673     Label copy_routine;
3674     __ Cmp(result_length, SlicedString::kMinLength);
3675     // Short slice. Copy instead of slicing.
3676     __ B(lt, &copy_routine);
3677     // Allocate new sliced string. At this point we do not reload the instance
3678     // type including the string encoding because we simply rely on the info
3679     // provided by the original string. It does not matter if the original
3680     // string's encoding is wrong because we always have to recheck encoding of
3681     // the newly created string's parent anyway due to externalized strings.
3682     Label two_byte_slice, set_slice_header;
3683     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3684     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3685     __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice);
3686     __ AllocateOneByteSlicedString(result_string, result_length, x3, x4,
3687                                    &runtime);
3688     __ B(&set_slice_header);
3689
3690     __ Bind(&two_byte_slice);
3691     __ AllocateTwoByteSlicedString(result_string, result_length, x3, x4,
3692                                    &runtime);
3693
3694     __ Bind(&set_slice_header);
3695     __ SmiTag(from);
3696     __ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset));
3697     __ Str(unpacked_string,
3698            FieldMemOperand(result_string, SlicedString::kParentOffset));
3699     __ B(&return_x0);
3700
3701     __ Bind(&copy_routine);
3702   }
3703
3704   //   x0   result_string    pointer to result string object (uninit)
3705   //   x1   result_length    length of substring result
3706   //   x10  unpacked_string  pointer to unpacked string object
3707   //   x11  input_length     length of input string
3708   //   x12  input_type       instance type of input string
3709   //   x13  unpacked_char0   pointer to first char of unpacked string (uninit)
3710   //   x13  substring_char0  pointer to first char of substring (uninit)
3711   //   x14  result_char0     pointer to first char of result (uninit)
3712   //   x15  from             substring start character offset
3713   Register unpacked_char0 = x13;
3714   Register substring_char0 = x13;
3715   Register result_char0 = x14;
3716   Label two_byte_sequential, sequential_string, allocate_result;
3717   STATIC_ASSERT(kExternalStringTag != 0);
3718   STATIC_ASSERT(kSeqStringTag == 0);
3719
3720   __ Tst(input_type, kExternalStringTag);
3721   __ B(eq, &sequential_string);
3722
3723   __ Tst(input_type, kShortExternalStringTag);
3724   __ B(ne, &runtime);
3725   __ Ldr(unpacked_char0,
3726          FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset));
3727   // unpacked_char0 points to the first character of the underlying string.
3728   __ B(&allocate_result);
3729
3730   __ Bind(&sequential_string);
3731   // Locate first character of underlying subject string.
3732   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3733   __ Add(unpacked_char0, unpacked_string,
3734          SeqOneByteString::kHeaderSize - kHeapObjectTag);
3735
3736   __ Bind(&allocate_result);
3737   // Sequential one-byte string. Allocate the result.
3738   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3739   __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential);
3740
3741   // Allocate and copy the resulting one-byte string.
3742   __ AllocateOneByteString(result_string, result_length, x3, x4, x5, &runtime);
3743
3744   // Locate first character of substring to copy.
3745   __ Add(substring_char0, unpacked_char0, from);
3746
3747   // Locate first character of result.
3748   __ Add(result_char0, result_string,
3749          SeqOneByteString::kHeaderSize - kHeapObjectTag);
3750
3751   STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3752   __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
3753   __ B(&return_x0);
3754
3755   // Allocate and copy the resulting two-byte string.
3756   __ Bind(&two_byte_sequential);
3757   __ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime);
3758
3759   // Locate first character of substring to copy.
3760   __ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1));
3761
3762   // Locate first character of result.
3763   __ Add(result_char0, result_string,
3764          SeqTwoByteString::kHeaderSize - kHeapObjectTag);
3765
3766   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3767   __ Add(result_length, result_length, result_length);
3768   __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
3769
3770   __ Bind(&return_x0);
3771   Counters* counters = isolate()->counters();
3772   __ IncrementCounter(counters->sub_string_native(), 1, x3, x4);
3773   __ Drop(3);
3774   __ Ret();
3775
3776   __ Bind(&runtime);
3777   __ TailCallRuntime(Runtime::kSubString, 3, 1);
3778
3779   __ bind(&single_char);
3780   // x1: result_length
3781   // x10: input_string
3782   // x12: input_type
3783   // x15: from (untagged)
3784   __ SmiTag(from);
3785   StringCharAtGenerator generator(
3786       input_string, from, result_length, x0,
3787       &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
3788   generator.GenerateFast(masm);
3789   __ Drop(3);
3790   __ Ret();
3791   generator.SkipSlow(masm, &runtime);
3792 }
3793
3794
3795 void StringHelper::GenerateFlatOneByteStringEquals(
3796     MacroAssembler* masm, Register left, Register right, Register scratch1,
3797     Register scratch2, Register scratch3) {
3798   DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3));
3799   Register result = x0;
3800   Register left_length = scratch1;
3801   Register right_length = scratch2;
3802
3803   // Compare lengths. If lengths differ, strings can't be equal. Lengths are
3804   // smis, and don't need to be untagged.
3805   Label strings_not_equal, check_zero_length;
3806   __ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset));
3807   __ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset));
3808   __ Cmp(left_length, right_length);
3809   __ B(eq, &check_zero_length);
3810
3811   __ Bind(&strings_not_equal);
3812   __ Mov(result, Smi::FromInt(NOT_EQUAL));
3813   __ Ret();
3814
3815   // Check if the length is zero. If so, the strings must be equal (and empty.)
3816   Label compare_chars;
3817   __ Bind(&check_zero_length);
3818   STATIC_ASSERT(kSmiTag == 0);
3819   __ Cbnz(left_length, &compare_chars);
3820   __ Mov(result, Smi::FromInt(EQUAL));
3821   __ Ret();
3822
3823   // Compare characters. Falls through if all characters are equal.
3824   __ Bind(&compare_chars);
3825   GenerateOneByteCharsCompareLoop(masm, left, right, left_length, scratch2,
3826                                   scratch3, &strings_not_equal);
3827
3828   // Characters in strings are equal.
3829   __ Mov(result, Smi::FromInt(EQUAL));
3830   __ Ret();
3831 }
3832
3833
3834 void StringHelper::GenerateCompareFlatOneByteStrings(
3835     MacroAssembler* masm, Register left, Register right, Register scratch1,
3836     Register scratch2, Register scratch3, Register scratch4) {
3837   DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4));
3838   Label result_not_equal, compare_lengths;
3839
3840   // Find minimum length and length difference.
3841   Register length_delta = scratch3;
3842   __ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
3843   __ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
3844   __ Subs(length_delta, scratch1, scratch2);
3845
3846   Register min_length = scratch1;
3847   __ Csel(min_length, scratch2, scratch1, gt);
3848   __ Cbz(min_length, &compare_lengths);
3849
3850   // Compare loop.
3851   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3852                                   scratch4, &result_not_equal);
3853
3854   // Compare lengths - strings up to min-length are equal.
3855   __ Bind(&compare_lengths);
3856
3857   DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
3858
3859   // Use length_delta as result if it's zero.
3860   Register result = x0;
3861   __ Subs(result, length_delta, 0);
3862
3863   __ Bind(&result_not_equal);
3864   Register greater = x10;
3865   Register less = x11;
3866   __ Mov(greater, Smi::FromInt(GREATER));
3867   __ Mov(less, Smi::FromInt(LESS));
3868   __ CmovX(result, greater, gt);
3869   __ CmovX(result, less, lt);
3870   __ Ret();
3871 }
3872
3873
3874 void StringHelper::GenerateOneByteCharsCompareLoop(
3875     MacroAssembler* masm, Register left, Register right, Register length,
3876     Register scratch1, Register scratch2, Label* chars_not_equal) {
3877   DCHECK(!AreAliased(left, right, length, scratch1, scratch2));
3878
3879   // Change index to run from -length to -1 by adding length to string
3880   // start. This means that loop ends when index reaches zero, which
3881   // doesn't need an additional compare.
3882   __ SmiUntag(length);
3883   __ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3884   __ Add(left, left, scratch1);
3885   __ Add(right, right, scratch1);
3886
3887   Register index = length;
3888   __ Neg(index, length);  // index = -length;
3889
3890   // Compare loop
3891   Label loop;
3892   __ Bind(&loop);
3893   __ Ldrb(scratch1, MemOperand(left, index));
3894   __ Ldrb(scratch2, MemOperand(right, index));
3895   __ Cmp(scratch1, scratch2);
3896   __ B(ne, chars_not_equal);
3897   __ Add(index, index, 1);
3898   __ Cbnz(index, &loop);
3899 }
3900
3901
3902 void StringCompareStub::Generate(MacroAssembler* masm) {
3903   Label runtime;
3904
3905   Counters* counters = isolate()->counters();
3906
3907   // Stack frame on entry.
3908   //  sp[0]: right string
3909   //  sp[8]: left string
3910   Register right = x10;
3911   Register left = x11;
3912   Register result = x0;
3913   __ Pop(right, left);
3914
3915   Label not_same;
3916   __ Subs(result, right, left);
3917   __ B(ne, &not_same);
3918   STATIC_ASSERT(EQUAL == 0);
3919   __ IncrementCounter(counters->string_compare_native(), 1, x3, x4);
3920   __ Ret();
3921
3922   __ Bind(&not_same);
3923
3924   // Check that both objects are sequential one-byte strings.
3925   __ JumpIfEitherIsNotSequentialOneByteStrings(left, right, x12, x13, &runtime);
3926
3927   // Compare flat one-byte strings natively. Remove arguments from stack first,
3928   // as this function will generate a return.
3929   __ IncrementCounter(counters->string_compare_native(), 1, x3, x4);
3930   StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, x12, x13,
3931                                                   x14, x15);
3932
3933   __ Bind(&runtime);
3934
3935   // Push arguments back on to the stack.
3936   //  sp[0] = right string
3937   //  sp[8] = left string.
3938   __ Push(left, right);
3939
3940   // Call the runtime.
3941   // Returns -1 (less), 0 (equal), or 1 (greater) tagged as a small integer.
3942   __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3943 }
3944
3945
3946 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3947   // ----------- S t a t e -------------
3948   //  -- x1    : left
3949   //  -- x0    : right
3950   //  -- lr    : return address
3951   // -----------------------------------
3952
3953   // Load x2 with the allocation site.  We stick an undefined dummy value here
3954   // and replace it with the real allocation site later when we instantiate this
3955   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3956   __ LoadObject(x2, handle(isolate()->heap()->undefined_value()));
3957
3958   // Make sure that we actually patched the allocation site.
3959   if (FLAG_debug_code) {
3960     __ AssertNotSmi(x2, kExpectedAllocationSite);
3961     __ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset));
3962     __ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex,
3963                             kExpectedAllocationSite);
3964   }
3965
3966   // Tail call into the stub that handles binary operations with allocation
3967   // sites.
3968   BinaryOpWithAllocationSiteStub stub(isolate(), state());
3969   __ TailCallStub(&stub);
3970 }
3971
3972
3973 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3974   // We need some extra registers for this stub, they have been allocated
3975   // but we need to save them before using them.
3976   regs_.Save(masm);
3977
3978   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3979     Label dont_need_remembered_set;
3980
3981     Register val = regs_.scratch0();
3982     __ Ldr(val, MemOperand(regs_.address()));
3983     __ JumpIfNotInNewSpace(val, &dont_need_remembered_set);
3984
3985     __ CheckPageFlagSet(regs_.object(), val, 1 << MemoryChunk::SCAN_ON_SCAVENGE,
3986                         &dont_need_remembered_set);
3987
3988     // First notify the incremental marker if necessary, then update the
3989     // remembered set.
3990     CheckNeedsToInformIncrementalMarker(
3991         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
3992     InformIncrementalMarker(masm);
3993     regs_.Restore(masm);  // Restore the extra scratch registers we used.
3994
3995     __ RememberedSetHelper(object(), address(),
3996                            value(),  // scratch1
3997                            save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
3998
3999     __ Bind(&dont_need_remembered_set);
4000   }
4001
4002   CheckNeedsToInformIncrementalMarker(
4003       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
4004   InformIncrementalMarker(masm);
4005   regs_.Restore(masm);  // Restore the extra scratch registers we used.
4006   __ Ret();
4007 }
4008
4009
4010 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4011   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4012   Register address =
4013     x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address();
4014   DCHECK(!address.Is(regs_.object()));
4015   DCHECK(!address.Is(x0));
4016   __ Mov(address, regs_.address());
4017   __ Mov(x0, regs_.object());
4018   __ Mov(x1, address);
4019   __ Mov(x2, ExternalReference::isolate_address(isolate()));
4020
4021   AllowExternalCallThatCantCauseGC scope(masm);
4022   ExternalReference function =
4023       ExternalReference::incremental_marking_record_write_function(
4024           isolate());
4025   __ CallCFunction(function, 3, 0);
4026
4027   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4028 }
4029
4030
4031 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4032     MacroAssembler* masm,
4033     OnNoNeedToInformIncrementalMarker on_no_need,
4034     Mode mode) {
4035   Label on_black;
4036   Label need_incremental;
4037   Label need_incremental_pop_scratch;
4038
4039   Register mem_chunk = regs_.scratch0();
4040   Register counter = regs_.scratch1();
4041   __ Bic(mem_chunk, regs_.object(), Page::kPageAlignmentMask);
4042   __ Ldr(counter,
4043          MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
4044   __ Subs(counter, counter, 1);
4045   __ Str(counter,
4046          MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
4047   __ B(mi, &need_incremental);
4048
4049   // If the object is not black we don't have to inform the incremental marker.
4050   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
4051
4052   regs_.Restore(masm);  // Restore the extra scratch registers we used.
4053   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4054     __ RememberedSetHelper(object(), address(),
4055                            value(),  // scratch1
4056                            save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4057   } else {
4058     __ Ret();
4059   }
4060
4061   __ Bind(&on_black);
4062   // Get the value from the slot.
4063   Register val = regs_.scratch0();
4064   __ Ldr(val, MemOperand(regs_.address()));
4065
4066   if (mode == INCREMENTAL_COMPACTION) {
4067     Label ensure_not_white;
4068
4069     __ CheckPageFlagClear(val, regs_.scratch1(),
4070                           MemoryChunk::kEvacuationCandidateMask,
4071                           &ensure_not_white);
4072
4073     __ CheckPageFlagClear(regs_.object(),
4074                           regs_.scratch1(),
4075                           MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4076                           &need_incremental);
4077
4078     __ Bind(&ensure_not_white);
4079   }
4080
4081   // We need extra registers for this, so we push the object and the address
4082   // register temporarily.
4083   __ Push(regs_.address(), regs_.object());
4084   __ EnsureNotWhite(val,
4085                     regs_.scratch1(),  // Scratch.
4086                     regs_.object(),    // Scratch.
4087                     regs_.address(),   // Scratch.
4088                     regs_.scratch2(),  // Scratch.
4089                     &need_incremental_pop_scratch);
4090   __ Pop(regs_.object(), regs_.address());
4091
4092   regs_.Restore(masm);  // Restore the extra scratch registers we used.
4093   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4094     __ RememberedSetHelper(object(), address(),
4095                            value(),  // scratch1
4096                            save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4097   } else {
4098     __ Ret();
4099   }
4100
4101   __ Bind(&need_incremental_pop_scratch);
4102   __ Pop(regs_.object(), regs_.address());
4103
4104   __ Bind(&need_incremental);
4105   // Fall through when we need to inform the incremental marker.
4106 }
4107
4108
4109 void RecordWriteStub::Generate(MacroAssembler* masm) {
4110   Label skip_to_incremental_noncompacting;
4111   Label skip_to_incremental_compacting;
4112
4113   // We patch these two first instructions back and forth between a nop and
4114   // real branch when we start and stop incremental heap marking.
4115   // Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops
4116   // are generated.
4117   // See RecordWriteStub::Patch for details.
4118   {
4119     InstructionAccurateScope scope(masm, 2);
4120     __ adr(xzr, &skip_to_incremental_noncompacting);
4121     __ adr(xzr, &skip_to_incremental_compacting);
4122   }
4123
4124   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4125     __ RememberedSetHelper(object(), address(),
4126                            value(),  // scratch1
4127                            save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4128   }
4129   __ Ret();
4130
4131   __ Bind(&skip_to_incremental_noncompacting);
4132   GenerateIncremental(masm, INCREMENTAL);
4133
4134   __ Bind(&skip_to_incremental_compacting);
4135   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4136 }
4137
4138
4139 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4140   // x0     value            element value to store
4141   // x3     index_smi        element index as smi
4142   // sp[0]  array_index_smi  array literal index in function as smi
4143   // sp[1]  array            array literal
4144
4145   Register value = x0;
4146   Register index_smi = x3;
4147
4148   Register array = x1;
4149   Register array_map = x2;
4150   Register array_index_smi = x4;
4151   __ PeekPair(array_index_smi, array, 0);
4152   __ Ldr(array_map, FieldMemOperand(array, JSObject::kMapOffset));
4153
4154   Label double_elements, smi_element, fast_elements, slow_elements;
4155   Register bitfield2 = x10;
4156   __ Ldrb(bitfield2, FieldMemOperand(array_map, Map::kBitField2Offset));
4157
4158   // Jump if array's ElementsKind is not FAST*_SMI_ELEMENTS, FAST_ELEMENTS or
4159   // FAST_HOLEY_ELEMENTS.
4160   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4161   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4162   STATIC_ASSERT(FAST_ELEMENTS == 2);
4163   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4164   __ Cmp(bitfield2, Map::kMaximumBitField2FastHoleyElementValue);
4165   __ B(hi, &double_elements);
4166
4167   __ JumpIfSmi(value, &smi_element);
4168
4169   // Jump if array's ElementsKind is not FAST_ELEMENTS or FAST_HOLEY_ELEMENTS.
4170   __ Tbnz(bitfield2, MaskToBit(FAST_ELEMENTS << Map::ElementsKindBits::kShift),
4171           &fast_elements);
4172
4173   // Store into the array literal requires an elements transition. Call into
4174   // the runtime.
4175   __ Bind(&slow_elements);
4176   __ Push(array, index_smi, value);
4177   __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4178   __ Ldr(x11, FieldMemOperand(x10, JSFunction::kLiteralsOffset));
4179   __ Push(x11, array_index_smi);
4180   __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4181
4182   // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4183   __ Bind(&fast_elements);
4184   __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
4185   __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2));
4186   __ Add(x11, x11, FixedArray::kHeaderSize - kHeapObjectTag);
4187   __ Str(value, MemOperand(x11));
4188   // Update the write barrier for the array store.
4189   __ RecordWrite(x10, x11, value, kLRHasNotBeenSaved, kDontSaveFPRegs,
4190                  EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
4191   __ Ret();
4192
4193   // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4194   // and value is Smi.
4195   __ Bind(&smi_element);
4196   __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
4197   __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2));
4198   __ Str(value, FieldMemOperand(x11, FixedArray::kHeaderSize));
4199   __ Ret();
4200
4201   __ Bind(&double_elements);
4202   __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
4203   __ StoreNumberToDoubleElements(value, index_smi, x10, x11, d0,
4204                                  &slow_elements);
4205   __ Ret();
4206 }
4207
4208
4209 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4210   CEntryStub ces(isolate(), 1, kSaveFPRegs);
4211   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4212   int parameter_count_offset =
4213       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4214   __ Ldr(x1, MemOperand(fp, parameter_count_offset));
4215   if (function_mode() == JS_FUNCTION_STUB_MODE) {
4216     __ Add(x1, x1, 1);
4217   }
4218   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4219   __ Drop(x1);
4220   // Return to IC Miss stub, continuation still on stack.
4221   __ Ret();
4222 }
4223
4224
4225 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4226   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4227   VectorLoadStub stub(isolate(), state());
4228   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4229 }
4230
4231
4232 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4233   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4234   VectorKeyedLoadStub stub(isolate());
4235   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4236 }
4237
4238
4239 static unsigned int GetProfileEntryHookCallSize(MacroAssembler* masm) {
4240   // The entry hook is a "BumpSystemStackPointer" instruction (sub),
4241   // followed by a "Push lr" instruction, followed by a call.
4242   unsigned int size =
4243       Assembler::kCallSizeWithRelocation + (2 * kInstructionSize);
4244   if (CpuFeatures::IsSupported(ALWAYS_ALIGN_CSP)) {
4245     // If ALWAYS_ALIGN_CSP then there will be an extra bic instruction in
4246     // "BumpSystemStackPointer".
4247     size += kInstructionSize;
4248   }
4249   return size;
4250 }
4251
4252
4253 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4254   if (masm->isolate()->function_entry_hook() != NULL) {
4255     ProfileEntryHookStub stub(masm->isolate());
4256     Assembler::BlockConstPoolScope no_const_pools(masm);
4257     DontEmitDebugCodeScope no_debug_code(masm);
4258     Label entry_hook_call_start;
4259     __ Bind(&entry_hook_call_start);
4260     __ Push(lr);
4261     __ CallStub(&stub);
4262     DCHECK(masm->SizeOfCodeGeneratedSince(&entry_hook_call_start) ==
4263            GetProfileEntryHookCallSize(masm));
4264
4265     __ Pop(lr);
4266   }
4267 }
4268
4269
4270 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4271   MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
4272
4273   // Save all kCallerSaved registers (including lr), since this can be called
4274   // from anywhere.
4275   // TODO(jbramley): What about FP registers?
4276   __ PushCPURegList(kCallerSaved);
4277   DCHECK(kCallerSaved.IncludesAliasOf(lr));
4278   const int kNumSavedRegs = kCallerSaved.Count();
4279
4280   // Compute the function's address as the first argument.
4281   __ Sub(x0, lr, GetProfileEntryHookCallSize(masm));
4282
4283 #if V8_HOST_ARCH_ARM64
4284   uintptr_t entry_hook =
4285       reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
4286   __ Mov(x10, entry_hook);
4287 #else
4288   // Under the simulator we need to indirect the entry hook through a trampoline
4289   // function at a known address.
4290   ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4291   __ Mov(x10, Operand(ExternalReference(&dispatcher,
4292                                         ExternalReference::BUILTIN_CALL,
4293                                         isolate())));
4294   // It additionally takes an isolate as a third parameter
4295   __ Mov(x2, ExternalReference::isolate_address(isolate()));
4296 #endif
4297
4298   // The caller's return address is above the saved temporaries.
4299   // Grab its location for the second argument to the hook.
4300   __ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize);
4301
4302   {
4303     // Create a dummy frame, as CallCFunction requires this.
4304     FrameScope frame(masm, StackFrame::MANUAL);
4305     __ CallCFunction(x10, 2, 0);
4306   }
4307
4308   __ PopCPURegList(kCallerSaved);
4309   __ Ret();
4310 }
4311
4312
4313 void DirectCEntryStub::Generate(MacroAssembler* masm) {
4314   // When calling into C++ code the stack pointer must be csp.
4315   // Therefore this code must use csp for peek/poke operations when the
4316   // stub is generated. When the stub is called
4317   // (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame
4318   // and configure the stack pointer *before* doing the call.
4319   const Register old_stack_pointer = __ StackPointer();
4320   __ SetStackPointer(csp);
4321
4322   // Put return address on the stack (accessible to GC through exit frame pc).
4323   __ Poke(lr, 0);
4324   // Call the C++ function.
4325   __ Blr(x10);
4326   // Return to calling code.
4327   __ Peek(lr, 0);
4328   __ AssertFPCRState();
4329   __ Ret();
4330
4331   __ SetStackPointer(old_stack_pointer);
4332 }
4333
4334 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
4335                                     Register target) {
4336   // Make sure the caller configured the stack pointer (see comment in
4337   // DirectCEntryStub::Generate).
4338   DCHECK(csp.Is(__ StackPointer()));
4339
4340   intptr_t code =
4341       reinterpret_cast<intptr_t>(GetCode().location());
4342   __ Mov(lr, Operand(code, RelocInfo::CODE_TARGET));
4343   __ Mov(x10, target);
4344   // Branch to the stub.
4345   __ Blr(lr);
4346 }
4347
4348
4349 // Probe the name dictionary in the 'elements' register.
4350 // Jump to the 'done' label if a property with the given name is found.
4351 // Jump to the 'miss' label otherwise.
4352 //
4353 // If lookup was successful 'scratch2' will be equal to elements + 4 * index.
4354 // 'elements' and 'name' registers are preserved on miss.
4355 void NameDictionaryLookupStub::GeneratePositiveLookup(
4356     MacroAssembler* masm,
4357     Label* miss,
4358     Label* done,
4359     Register elements,
4360     Register name,
4361     Register scratch1,
4362     Register scratch2) {
4363   DCHECK(!AreAliased(elements, name, scratch1, scratch2));
4364
4365   // Assert that name contains a string.
4366   __ AssertName(name);
4367
4368   // Compute the capacity mask.
4369   __ Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, kCapacityOffset));
4370   __ Sub(scratch1, scratch1, 1);
4371
4372   // Generate an unrolled loop that performs a few probes before giving up.
4373   for (int i = 0; i < kInlinedProbes; i++) {
4374     // Compute the masked index: (hash + i + i * i) & mask.
4375     __ Ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
4376     if (i > 0) {
4377       // Add the probe offset (i + i * i) left shifted to avoid right shifting
4378       // the hash in a separate instruction. The value hash + i + i * i is right
4379       // shifted in the following and instruction.
4380       DCHECK(NameDictionary::GetProbeOffset(i) <
4381           1 << (32 - Name::kHashFieldOffset));
4382       __ Add(scratch2, scratch2, Operand(
4383           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4384     }
4385     __ And(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
4386
4387     // Scale the index by multiplying by the element size.
4388     DCHECK(NameDictionary::kEntrySize == 3);
4389     __ Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
4390
4391     // Check if the key is identical to the name.
4392     UseScratchRegisterScope temps(masm);
4393     Register scratch3 = temps.AcquireX();
4394     __ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
4395     __ Ldr(scratch3, FieldMemOperand(scratch2, kElementsStartOffset));
4396     __ Cmp(name, scratch3);
4397     __ B(eq, done);
4398   }
4399
4400   // The inlined probes didn't find the entry.
4401   // Call the complete stub to scan the whole dictionary.
4402
4403   CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
4404   spill_list.Combine(lr);
4405   spill_list.Remove(scratch1);
4406   spill_list.Remove(scratch2);
4407
4408   __ PushCPURegList(spill_list);
4409
4410   if (name.is(x0)) {
4411     DCHECK(!elements.is(x1));
4412     __ Mov(x1, name);
4413     __ Mov(x0, elements);
4414   } else {
4415     __ Mov(x0, elements);
4416     __ Mov(x1, name);
4417   }
4418
4419   Label not_found;
4420   NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
4421   __ CallStub(&stub);
4422   __ Cbz(x0, &not_found);
4423   __ Mov(scratch2, x2);  // Move entry index into scratch2.
4424   __ PopCPURegList(spill_list);
4425   __ B(done);
4426
4427   __ Bind(&not_found);
4428   __ PopCPURegList(spill_list);
4429   __ B(miss);
4430 }
4431
4432
4433 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
4434                                                       Label* miss,
4435                                                       Label* done,
4436                                                       Register receiver,
4437                                                       Register properties,
4438                                                       Handle<Name> name,
4439                                                       Register scratch0) {
4440   DCHECK(!AreAliased(receiver, properties, scratch0));
4441   DCHECK(name->IsUniqueName());
4442   // If names of slots in range from 1 to kProbes - 1 for the hash value are
4443   // not equal to the name and kProbes-th slot is not used (its name is the
4444   // undefined value), it guarantees the hash table doesn't contain the
4445   // property. It's true even if some slots represent deleted properties
4446   // (their names are the hole value).
4447   for (int i = 0; i < kInlinedProbes; i++) {
4448     // scratch0 points to properties hash.
4449     // Compute the masked index: (hash + i + i * i) & mask.
4450     Register index = scratch0;
4451     // Capacity is smi 2^n.
4452     __ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset));
4453     __ Sub(index, index, 1);
4454     __ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i));
4455
4456     // Scale the index by multiplying by the entry size.
4457     DCHECK(NameDictionary::kEntrySize == 3);
4458     __ Add(index, index, Operand(index, LSL, 1));  // index *= 3.
4459
4460     Register entity_name = scratch0;
4461     // Having undefined at this place means the name is not contained.
4462     Register tmp = index;
4463     __ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2));
4464     __ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
4465
4466     __ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done);
4467
4468     // Stop if found the property.
4469     __ Cmp(entity_name, Operand(name));
4470     __ B(eq, miss);
4471
4472     Label good;
4473     __ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good);
4474
4475     // Check if the entry name is not a unique name.
4476     __ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
4477     __ Ldrb(entity_name,
4478             FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
4479     __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
4480     __ Bind(&good);
4481   }
4482
4483   CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
4484   spill_list.Combine(lr);
4485   spill_list.Remove(scratch0);  // Scratch registers don't need to be preserved.
4486
4487   __ PushCPURegList(spill_list);
4488
4489   __ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
4490   __ Mov(x1, Operand(name));
4491   NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
4492   __ CallStub(&stub);
4493   // Move stub return value to scratch0. Note that scratch0 is not included in
4494   // spill_list and won't be clobbered by PopCPURegList.
4495   __ Mov(scratch0, x0);
4496   __ PopCPURegList(spill_list);
4497
4498   __ Cbz(scratch0, done);
4499   __ B(miss);
4500 }
4501
4502
4503 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4504   // This stub overrides SometimesSetsUpAFrame() to return false. That means
4505   // we cannot call anything that could cause a GC from this stub.
4506   //
4507   // Arguments are in x0 and x1:
4508   //   x0: property dictionary.
4509   //   x1: the name of the property we are looking for.
4510   //
4511   // Return value is in x0 and is zero if lookup failed, non zero otherwise.
4512   // If the lookup is successful, x2 will contains the index of the entry.
4513
4514   Register result = x0;
4515   Register dictionary = x0;
4516   Register key = x1;
4517   Register index = x2;
4518   Register mask = x3;
4519   Register hash = x4;
4520   Register undefined = x5;
4521   Register entry_key = x6;
4522
4523   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4524
4525   __ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset));
4526   __ Sub(mask, mask, 1);
4527
4528   __ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
4529   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
4530
4531   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4532     // Compute the masked index: (hash + i + i * i) & mask.
4533     // Capacity is smi 2^n.
4534     if (i > 0) {
4535       // Add the probe offset (i + i * i) left shifted to avoid right shifting
4536       // the hash in a separate instruction. The value hash + i + i * i is right
4537       // shifted in the following and instruction.
4538       DCHECK(NameDictionary::GetProbeOffset(i) <
4539              1 << (32 - Name::kHashFieldOffset));
4540       __ Add(index, hash,
4541              NameDictionary::GetProbeOffset(i) << Name::kHashShift);
4542     } else {
4543       __ Mov(index, hash);
4544     }
4545     __ And(index, mask, Operand(index, LSR, Name::kHashShift));
4546
4547     // Scale the index by multiplying by the entry size.
4548     DCHECK(NameDictionary::kEntrySize == 3);
4549     __ Add(index, index, Operand(index, LSL, 1));  // index *= 3.
4550
4551     __ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2));
4552     __ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
4553
4554     // Having undefined at this place means the name is not contained.
4555     __ Cmp(entry_key, undefined);
4556     __ B(eq, &not_in_dictionary);
4557
4558     // Stop if found the property.
4559     __ Cmp(entry_key, key);
4560     __ B(eq, &in_dictionary);
4561
4562     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4563       // Check if the entry name is not a unique name.
4564       __ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
4565       __ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
4566       __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
4567     }
4568   }
4569
4570   __ Bind(&maybe_in_dictionary);
4571   // If we are doing negative lookup then probing failure should be
4572   // treated as a lookup success. For positive lookup, probing failure
4573   // should be treated as lookup failure.
4574   if (mode() == POSITIVE_LOOKUP) {
4575     __ Mov(result, 0);
4576     __ Ret();
4577   }
4578
4579   __ Bind(&in_dictionary);
4580   __ Mov(result, 1);
4581   __ Ret();
4582
4583   __ Bind(&not_in_dictionary);
4584   __ Mov(result, 0);
4585   __ Ret();
4586 }
4587
4588
4589 template<class T>
4590 static void CreateArrayDispatch(MacroAssembler* masm,
4591                                 AllocationSiteOverrideMode mode) {
4592   ASM_LOCATION("CreateArrayDispatch");
4593   if (mode == DISABLE_ALLOCATION_SITES) {
4594     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4595      __ TailCallStub(&stub);
4596
4597   } else if (mode == DONT_OVERRIDE) {
4598     Register kind = x3;
4599     int last_index =
4600         GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4601     for (int i = 0; i <= last_index; ++i) {
4602       Label next;
4603       ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
4604       // TODO(jbramley): Is this the best way to handle this? Can we make the
4605       // tail calls conditional, rather than hopping over each one?
4606       __ CompareAndBranch(kind, candidate_kind, ne, &next);
4607       T stub(masm->isolate(), candidate_kind);
4608       __ TailCallStub(&stub);
4609       __ Bind(&next);
4610     }
4611
4612     // If we reached this point there is a problem.
4613     __ Abort(kUnexpectedElementsKindInArrayConstructor);
4614
4615   } else {
4616     UNREACHABLE();
4617   }
4618 }
4619
4620
4621 // TODO(jbramley): If this needs to be a special case, make it a proper template
4622 // specialization, and not a separate function.
4623 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4624                                            AllocationSiteOverrideMode mode) {
4625   ASM_LOCATION("CreateArrayDispatchOneArgument");
4626   // x0 - argc
4627   // x1 - constructor?
4628   // x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4629   // x3 - kind (if mode != DISABLE_ALLOCATION_SITES)
4630   // sp[0] - last argument
4631
4632   Register allocation_site = x2;
4633   Register kind = x3;
4634
4635   Label normal_sequence;
4636   if (mode == DONT_OVERRIDE) {
4637     STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4638     STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4639     STATIC_ASSERT(FAST_ELEMENTS == 2);
4640     STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4641     STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
4642     STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4643
4644     // Is the low bit set? If so, the array is holey.
4645     __ Tbnz(kind, 0, &normal_sequence);
4646   }
4647
4648   // Look at the last argument.
4649   // TODO(jbramley): What does a 0 argument represent?
4650   __ Peek(x10, 0);
4651   __ Cbz(x10, &normal_sequence);
4652
4653   if (mode == DISABLE_ALLOCATION_SITES) {
4654     ElementsKind initial = GetInitialFastElementsKind();
4655     ElementsKind holey_initial = GetHoleyElementsKind(initial);
4656
4657     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4658                                                   holey_initial,
4659                                                   DISABLE_ALLOCATION_SITES);
4660     __ TailCallStub(&stub_holey);
4661
4662     __ Bind(&normal_sequence);
4663     ArraySingleArgumentConstructorStub stub(masm->isolate(),
4664                                             initial,
4665                                             DISABLE_ALLOCATION_SITES);
4666     __ TailCallStub(&stub);
4667   } else if (mode == DONT_OVERRIDE) {
4668     // We are going to create a holey array, but our kind is non-holey.
4669     // Fix kind and retry (only if we have an allocation site in the slot).
4670     __ Orr(kind, kind, 1);
4671
4672     if (FLAG_debug_code) {
4673       __ Ldr(x10, FieldMemOperand(allocation_site, 0));
4674       __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex,
4675                        &normal_sequence);
4676       __ Assert(eq, kExpectedAllocationSite);
4677     }
4678
4679     // Save the resulting elements kind in type info. We can't just store 'kind'
4680     // in the AllocationSite::transition_info field because elements kind is
4681     // restricted to a portion of the field; upper bits need to be left alone.
4682     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4683     __ Ldr(x11, FieldMemOperand(allocation_site,
4684                                 AllocationSite::kTransitionInfoOffset));
4685     __ Add(x11, x11, Smi::FromInt(kFastElementsKindPackedToHoley));
4686     __ Str(x11, FieldMemOperand(allocation_site,
4687                                 AllocationSite::kTransitionInfoOffset));
4688
4689     __ Bind(&normal_sequence);
4690     int last_index =
4691         GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4692     for (int i = 0; i <= last_index; ++i) {
4693       Label next;
4694       ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
4695       __ CompareAndBranch(kind, candidate_kind, ne, &next);
4696       ArraySingleArgumentConstructorStub stub(masm->isolate(), candidate_kind);
4697       __ TailCallStub(&stub);
4698       __ Bind(&next);
4699     }
4700
4701     // If we reached this point there is a problem.
4702     __ Abort(kUnexpectedElementsKindInArrayConstructor);
4703   } else {
4704     UNREACHABLE();
4705   }
4706 }
4707
4708
4709 template<class T>
4710 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4711   int to_index = GetSequenceIndexFromFastElementsKind(
4712       TERMINAL_FAST_ELEMENTS_KIND);
4713   for (int i = 0; i <= to_index; ++i) {
4714     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4715     T stub(isolate, kind);
4716     stub.GetCode();
4717     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4718       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4719       stub1.GetCode();
4720     }
4721   }
4722 }
4723
4724
4725 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4726   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4727       isolate);
4728   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4729       isolate);
4730   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4731       isolate);
4732 }
4733
4734
4735 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4736     Isolate* isolate) {
4737   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4738   for (int i = 0; i < 2; i++) {
4739     // For internal arrays we only need a few things
4740     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4741     stubh1.GetCode();
4742     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4743     stubh2.GetCode();
4744     InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4745     stubh3.GetCode();
4746   }
4747 }
4748
4749
4750 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4751     MacroAssembler* masm,
4752     AllocationSiteOverrideMode mode) {
4753   Register argc = x0;
4754   if (argument_count() == ANY) {
4755     Label zero_case, n_case;
4756     __ Cbz(argc, &zero_case);
4757     __ Cmp(argc, 1);
4758     __ B(ne, &n_case);
4759
4760     // One argument.
4761     CreateArrayDispatchOneArgument(masm, mode);
4762
4763     __ Bind(&zero_case);
4764     // No arguments.
4765     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4766
4767     __ Bind(&n_case);
4768     // N arguments.
4769     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4770
4771   } else if (argument_count() == NONE) {
4772     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4773   } else if (argument_count() == ONE) {
4774     CreateArrayDispatchOneArgument(masm, mode);
4775   } else if (argument_count() == MORE_THAN_ONE) {
4776     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4777   } else {
4778     UNREACHABLE();
4779   }
4780 }
4781
4782
4783 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4784   ASM_LOCATION("ArrayConstructorStub::Generate");
4785   // ----------- S t a t e -------------
4786   //  -- x0 : argc (only if argument_count() == ANY)
4787   //  -- x1 : constructor
4788   //  -- x2 : AllocationSite or undefined
4789   //  -- sp[0] : return address
4790   //  -- sp[4] : last argument
4791   // -----------------------------------
4792   Register constructor = x1;
4793   Register allocation_site = x2;
4794
4795   if (FLAG_debug_code) {
4796     // The array construct code is only set for the global and natives
4797     // builtin Array functions which always have maps.
4798
4799     Label unexpected_map, map_ok;
4800     // Initial map for the builtin Array function should be a map.
4801     __ Ldr(x10, FieldMemOperand(constructor,
4802                                 JSFunction::kPrototypeOrInitialMapOffset));
4803     // Will both indicate a NULL and a Smi.
4804     __ JumpIfSmi(x10, &unexpected_map);
4805     __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
4806     __ Bind(&unexpected_map);
4807     __ Abort(kUnexpectedInitialMapForArrayFunction);
4808     __ Bind(&map_ok);
4809
4810     // We should either have undefined in the allocation_site register or a
4811     // valid AllocationSite.
4812     __ AssertUndefinedOrAllocationSite(allocation_site, x10);
4813   }
4814
4815   Register kind = x3;
4816   Label no_info;
4817   // Get the elements kind and case on that.
4818   __ JumpIfRoot(allocation_site, Heap::kUndefinedValueRootIndex, &no_info);
4819
4820   __ Ldrsw(kind,
4821            UntagSmiFieldMemOperand(allocation_site,
4822                                    AllocationSite::kTransitionInfoOffset));
4823   __ And(kind, kind, AllocationSite::ElementsKindBits::kMask);
4824   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4825
4826   __ Bind(&no_info);
4827   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4828 }
4829
4830
4831 void InternalArrayConstructorStub::GenerateCase(
4832     MacroAssembler* masm, ElementsKind kind) {
4833   Label zero_case, n_case;
4834   Register argc = x0;
4835
4836   __ Cbz(argc, &zero_case);
4837   __ CompareAndBranch(argc, 1, ne, &n_case);
4838
4839   // One argument.
4840   if (IsFastPackedElementsKind(kind)) {
4841     Label packed_case;
4842
4843     // We might need to create a holey array; look at the first argument.
4844     __ Peek(x10, 0);
4845     __ Cbz(x10, &packed_case);
4846
4847     InternalArraySingleArgumentConstructorStub
4848         stub1_holey(isolate(), GetHoleyElementsKind(kind));
4849     __ TailCallStub(&stub1_holey);
4850
4851     __ Bind(&packed_case);
4852   }
4853   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4854   __ TailCallStub(&stub1);
4855
4856   __ Bind(&zero_case);
4857   // No arguments.
4858   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4859   __ TailCallStub(&stub0);
4860
4861   __ Bind(&n_case);
4862   // N arguments.
4863   InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4864   __ TailCallStub(&stubN);
4865 }
4866
4867
4868 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4869   // ----------- S t a t e -------------
4870   //  -- x0 : argc
4871   //  -- x1 : constructor
4872   //  -- sp[0] : return address
4873   //  -- sp[4] : last argument
4874   // -----------------------------------
4875
4876   Register constructor = x1;
4877
4878   if (FLAG_debug_code) {
4879     // The array construct code is only set for the global and natives
4880     // builtin Array functions which always have maps.
4881
4882     Label unexpected_map, map_ok;
4883     // Initial map for the builtin Array function should be a map.
4884     __ Ldr(x10, FieldMemOperand(constructor,
4885                                 JSFunction::kPrototypeOrInitialMapOffset));
4886     // Will both indicate a NULL and a Smi.
4887     __ JumpIfSmi(x10, &unexpected_map);
4888     __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
4889     __ Bind(&unexpected_map);
4890     __ Abort(kUnexpectedInitialMapForArrayFunction);
4891     __ Bind(&map_ok);
4892   }
4893
4894   Register kind = w3;
4895   // Figure out the right elements kind
4896   __ Ldr(x10, FieldMemOperand(constructor,
4897                               JSFunction::kPrototypeOrInitialMapOffset));
4898
4899   // Retrieve elements_kind from map.
4900   __ LoadElementsKindFromMap(kind, x10);
4901
4902   if (FLAG_debug_code) {
4903     Label done;
4904     __ Cmp(x3, FAST_ELEMENTS);
4905     __ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne);
4906     __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4907   }
4908
4909   Label fast_elements_case;
4910   __ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case);
4911   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4912
4913   __ Bind(&fast_elements_case);
4914   GenerateCase(masm, FAST_ELEMENTS);
4915 }
4916
4917
4918 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
4919   // ----------- S t a t e -------------
4920   //  -- x0                  : callee
4921   //  -- x4                  : call_data
4922   //  -- x2                  : holder
4923   //  -- x1                  : api_function_address
4924   //  -- cp                  : context
4925   //  --
4926   //  -- sp[0]               : last argument
4927   //  -- ...
4928   //  -- sp[(argc - 1) * 8]  : first argument
4929   //  -- sp[argc * 8]        : receiver
4930   // -----------------------------------
4931
4932   Register callee = x0;
4933   Register call_data = x4;
4934   Register holder = x2;
4935   Register api_function_address = x1;
4936   Register context = cp;
4937
4938   int argc = this->argc();
4939   bool is_store = this->is_store();
4940   bool call_data_undefined = this->call_data_undefined();
4941
4942   typedef FunctionCallbackArguments FCA;
4943
4944   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4945   STATIC_ASSERT(FCA::kCalleeIndex == 5);
4946   STATIC_ASSERT(FCA::kDataIndex == 4);
4947   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4948   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4949   STATIC_ASSERT(FCA::kIsolateIndex == 1);
4950   STATIC_ASSERT(FCA::kHolderIndex == 0);
4951   STATIC_ASSERT(FCA::kArgsLength == 7);
4952
4953   // FunctionCallbackArguments: context, callee and call data.
4954   __ Push(context, callee, call_data);
4955
4956   // Load context from callee
4957   __ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
4958
4959   if (!call_data_undefined) {
4960     __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
4961   }
4962   Register isolate_reg = x5;
4963   __ Mov(isolate_reg, ExternalReference::isolate_address(isolate()));
4964
4965   // FunctionCallbackArguments:
4966   //    return value, return value default, isolate, holder.
4967   __ Push(call_data, call_data, isolate_reg, holder);
4968
4969   // Prepare arguments.
4970   Register args = x6;
4971   __ Mov(args, masm->StackPointer());
4972
4973   // Allocate the v8::Arguments structure in the arguments' space, since it's
4974   // not controlled by GC.
4975   const int kApiStackSpace = 4;
4976
4977   // Allocate space for CallApiFunctionAndReturn can store some scratch
4978   // registeres on the stack.
4979   const int kCallApiFunctionSpillSpace = 4;
4980
4981   FrameScope frame_scope(masm, StackFrame::MANUAL);
4982   __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
4983
4984   DCHECK(!AreAliased(x0, api_function_address));
4985   // x0 = FunctionCallbackInfo&
4986   // Arguments is after the return address.
4987   __ Add(x0, masm->StackPointer(), 1 * kPointerSize);
4988   // FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_
4989   __ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
4990   __ Stp(args, x10, MemOperand(x0, 0 * kPointerSize));
4991   // FunctionCallbackInfo::length_ = argc and
4992   // FunctionCallbackInfo::is_construct_call = 0
4993   __ Mov(x10, argc);
4994   __ Stp(x10, xzr, MemOperand(x0, 2 * kPointerSize));
4995
4996   const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
4997   ExternalReference thunk_ref =
4998       ExternalReference::invoke_function_callback(isolate());
4999
5000   AllowExternalCallThatCantCauseGC scope(masm);
5001   MemOperand context_restore_operand(
5002       fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
5003   // Stores return the first js argument
5004   int return_value_offset = 0;
5005   if (is_store) {
5006     return_value_offset = 2 + FCA::kArgsLength;
5007   } else {
5008     return_value_offset = 2 + FCA::kReturnValueOffset;
5009   }
5010   MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
5011
5012   const int spill_offset = 1 + kApiStackSpace;
5013   __ CallApiFunctionAndReturn(api_function_address,
5014                               thunk_ref,
5015                               kStackUnwindSpace,
5016                               spill_offset,
5017                               return_value_operand,
5018                               &context_restore_operand);
5019 }
5020
5021
5022 void CallApiGetterStub::Generate(MacroAssembler* masm) {
5023   // ----------- S t a t e -------------
5024   //  -- sp[0]                  : name
5025   //  -- sp[8 - kArgsLength*8]  : PropertyCallbackArguments object
5026   //  -- ...
5027   //  -- x2                     : api_function_address
5028   // -----------------------------------
5029
5030   Register api_function_address = ApiGetterDescriptor::function_address();
5031   DCHECK(api_function_address.is(x2));
5032
5033   __ Mov(x0, masm->StackPointer());  // x0 = Handle<Name>
5034   __ Add(x1, x0, 1 * kPointerSize);  // x1 = PCA
5035
5036   const int kApiStackSpace = 1;
5037
5038   // Allocate space for CallApiFunctionAndReturn can store some scratch
5039   // registeres on the stack.
5040   const int kCallApiFunctionSpillSpace = 4;
5041
5042   FrameScope frame_scope(masm, StackFrame::MANUAL);
5043   __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
5044
5045   // Create PropertyAccessorInfo instance on the stack above the exit frame with
5046   // x1 (internal::Object** args_) as the data.
5047   __ Poke(x1, 1 * kPointerSize);
5048   __ Add(x1, masm->StackPointer(), 1 * kPointerSize);  // x1 = AccessorInfo&
5049
5050   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
5051
5052   ExternalReference thunk_ref =
5053       ExternalReference::invoke_accessor_getter_callback(isolate());
5054
5055   const int spill_offset = 1 + kApiStackSpace;
5056   __ CallApiFunctionAndReturn(api_function_address,
5057                               thunk_ref,
5058                               kStackUnwindSpace,
5059                               spill_offset,
5060                               MemOperand(fp, 6 * kPointerSize),
5061                               NULL);
5062 }
5063
5064
5065 #undef __
5066
5067 } }  // namespace v8::internal
5068
5069 #endif  // V8_TARGET_ARCH_ARM64