5e1bed1e8a96642852d5fe305eb6a8f30ec6b670
[platform/framework/web/crosswalk.git] / src / v8 / src / arm64 / assembler-arm64-inl.h
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_ARM64_ASSEMBLER_ARM64_INL_H_
6 #define V8_ARM64_ASSEMBLER_ARM64_INL_H_
7
8 #include "src/arm64/assembler-arm64.h"
9 #include "src/assembler.h"
10 #include "src/debug.h"
11
12
13 namespace v8 {
14 namespace internal {
15
16
17 bool CpuFeatures::SupportsCrankshaft() { return true; }
18
19
20 void RelocInfo::apply(intptr_t delta, ICacheFlushMode icache_flush_mode) {
21   UNIMPLEMENTED();
22 }
23
24
25 void RelocInfo::set_target_address(Address target,
26                                    WriteBarrierMode write_barrier_mode,
27                                    ICacheFlushMode icache_flush_mode) {
28   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
29   Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode);
30   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
31       IsCodeTarget(rmode_)) {
32     Object* target_code = Code::GetCodeFromTargetAddress(target);
33     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
34         host(), this, HeapObject::cast(target_code));
35   }
36 }
37
38
39 inline unsigned CPURegister::code() const {
40   DCHECK(IsValid());
41   return reg_code;
42 }
43
44
45 inline CPURegister::RegisterType CPURegister::type() const {
46   DCHECK(IsValidOrNone());
47   return reg_type;
48 }
49
50
51 inline RegList CPURegister::Bit() const {
52   DCHECK(reg_code < (sizeof(RegList) * kBitsPerByte));
53   return IsValid() ? 1UL << reg_code : 0;
54 }
55
56
57 inline unsigned CPURegister::SizeInBits() const {
58   DCHECK(IsValid());
59   return reg_size;
60 }
61
62
63 inline int CPURegister::SizeInBytes() const {
64   DCHECK(IsValid());
65   DCHECK(SizeInBits() % 8 == 0);
66   return reg_size / 8;
67 }
68
69
70 inline bool CPURegister::Is32Bits() const {
71   DCHECK(IsValid());
72   return reg_size == 32;
73 }
74
75
76 inline bool CPURegister::Is64Bits() const {
77   DCHECK(IsValid());
78   return reg_size == 64;
79 }
80
81
82 inline bool CPURegister::IsValid() const {
83   if (IsValidRegister() || IsValidFPRegister()) {
84     DCHECK(!IsNone());
85     return true;
86   } else {
87     DCHECK(IsNone());
88     return false;
89   }
90 }
91
92
93 inline bool CPURegister::IsValidRegister() const {
94   return IsRegister() &&
95          ((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)) &&
96          ((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode));
97 }
98
99
100 inline bool CPURegister::IsValidFPRegister() const {
101   return IsFPRegister() &&
102          ((reg_size == kSRegSizeInBits) || (reg_size == kDRegSizeInBits)) &&
103          (reg_code < kNumberOfFPRegisters);
104 }
105
106
107 inline bool CPURegister::IsNone() const {
108   // kNoRegister types should always have size 0 and code 0.
109   DCHECK((reg_type != kNoRegister) || (reg_code == 0));
110   DCHECK((reg_type != kNoRegister) || (reg_size == 0));
111
112   return reg_type == kNoRegister;
113 }
114
115
116 inline bool CPURegister::Is(const CPURegister& other) const {
117   DCHECK(IsValidOrNone() && other.IsValidOrNone());
118   return Aliases(other) && (reg_size == other.reg_size);
119 }
120
121
122 inline bool CPURegister::Aliases(const CPURegister& other) const {
123   DCHECK(IsValidOrNone() && other.IsValidOrNone());
124   return (reg_code == other.reg_code) && (reg_type == other.reg_type);
125 }
126
127
128 inline bool CPURegister::IsRegister() const {
129   return reg_type == kRegister;
130 }
131
132
133 inline bool CPURegister::IsFPRegister() const {
134   return reg_type == kFPRegister;
135 }
136
137
138 inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
139   return (reg_size == other.reg_size) && (reg_type == other.reg_type);
140 }
141
142
143 inline bool CPURegister::IsValidOrNone() const {
144   return IsValid() || IsNone();
145 }
146
147
148 inline bool CPURegister::IsZero() const {
149   DCHECK(IsValid());
150   return IsRegister() && (reg_code == kZeroRegCode);
151 }
152
153
154 inline bool CPURegister::IsSP() const {
155   DCHECK(IsValid());
156   return IsRegister() && (reg_code == kSPRegInternalCode);
157 }
158
159
160 inline void CPURegList::Combine(const CPURegList& other) {
161   DCHECK(IsValid());
162   DCHECK(other.type() == type_);
163   DCHECK(other.RegisterSizeInBits() == size_);
164   list_ |= other.list();
165 }
166
167
168 inline void CPURegList::Remove(const CPURegList& other) {
169   DCHECK(IsValid());
170   if (other.type() == type_) {
171     list_ &= ~other.list();
172   }
173 }
174
175
176 inline void CPURegList::Combine(const CPURegister& other) {
177   DCHECK(other.type() == type_);
178   DCHECK(other.SizeInBits() == size_);
179   Combine(other.code());
180 }
181
182
183 inline void CPURegList::Remove(const CPURegister& other1,
184                                const CPURegister& other2,
185                                const CPURegister& other3,
186                                const CPURegister& other4) {
187   if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code());
188   if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code());
189   if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code());
190   if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code());
191 }
192
193
194 inline void CPURegList::Combine(int code) {
195   DCHECK(IsValid());
196   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
197   list_ |= (1UL << code);
198 }
199
200
201 inline void CPURegList::Remove(int code) {
202   DCHECK(IsValid());
203   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
204   list_ &= ~(1UL << code);
205 }
206
207
208 inline Register Register::XRegFromCode(unsigned code) {
209   if (code == kSPRegInternalCode) {
210     return csp;
211   } else {
212     DCHECK(code < kNumberOfRegisters);
213     return Register::Create(code, kXRegSizeInBits);
214   }
215 }
216
217
218 inline Register Register::WRegFromCode(unsigned code) {
219   if (code == kSPRegInternalCode) {
220     return wcsp;
221   } else {
222     DCHECK(code < kNumberOfRegisters);
223     return Register::Create(code, kWRegSizeInBits);
224   }
225 }
226
227
228 inline FPRegister FPRegister::SRegFromCode(unsigned code) {
229   DCHECK(code < kNumberOfFPRegisters);
230   return FPRegister::Create(code, kSRegSizeInBits);
231 }
232
233
234 inline FPRegister FPRegister::DRegFromCode(unsigned code) {
235   DCHECK(code < kNumberOfFPRegisters);
236   return FPRegister::Create(code, kDRegSizeInBits);
237 }
238
239
240 inline Register CPURegister::W() const {
241   DCHECK(IsValidRegister());
242   return Register::WRegFromCode(reg_code);
243 }
244
245
246 inline Register CPURegister::X() const {
247   DCHECK(IsValidRegister());
248   return Register::XRegFromCode(reg_code);
249 }
250
251
252 inline FPRegister CPURegister::S() const {
253   DCHECK(IsValidFPRegister());
254   return FPRegister::SRegFromCode(reg_code);
255 }
256
257
258 inline FPRegister CPURegister::D() const {
259   DCHECK(IsValidFPRegister());
260   return FPRegister::DRegFromCode(reg_code);
261 }
262
263
264 // Immediate.
265 // Default initializer is for int types
266 template<typename T>
267 struct ImmediateInitializer {
268   static const bool kIsIntType = true;
269   static inline RelocInfo::Mode rmode_for(T) {
270     return sizeof(T) == 8 ? RelocInfo::NONE64 : RelocInfo::NONE32;
271   }
272   static inline int64_t immediate_for(T t) {
273     STATIC_ASSERT(sizeof(T) <= 8);
274     return t;
275   }
276 };
277
278
279 template<>
280 struct ImmediateInitializer<Smi*> {
281   static const bool kIsIntType = false;
282   static inline RelocInfo::Mode rmode_for(Smi* t) {
283     return RelocInfo::NONE64;
284   }
285   static inline int64_t immediate_for(Smi* t) {;
286     return reinterpret_cast<int64_t>(t);
287   }
288 };
289
290
291 template<>
292 struct ImmediateInitializer<ExternalReference> {
293   static const bool kIsIntType = false;
294   static inline RelocInfo::Mode rmode_for(ExternalReference t) {
295     return RelocInfo::EXTERNAL_REFERENCE;
296   }
297   static inline int64_t immediate_for(ExternalReference t) {;
298     return reinterpret_cast<int64_t>(t.address());
299   }
300 };
301
302
303 template<typename T>
304 Immediate::Immediate(Handle<T> value) {
305   InitializeHandle(value);
306 }
307
308
309 template<typename T>
310 Immediate::Immediate(T t)
311     : value_(ImmediateInitializer<T>::immediate_for(t)),
312       rmode_(ImmediateInitializer<T>::rmode_for(t)) {}
313
314
315 template<typename T>
316 Immediate::Immediate(T t, RelocInfo::Mode rmode)
317     : value_(ImmediateInitializer<T>::immediate_for(t)),
318       rmode_(rmode) {
319   STATIC_ASSERT(ImmediateInitializer<T>::kIsIntType);
320 }
321
322
323 // Operand.
324 template<typename T>
325 Operand::Operand(Handle<T> value) : immediate_(value), reg_(NoReg) {}
326
327
328 template<typename T>
329 Operand::Operand(T t) : immediate_(t), reg_(NoReg) {}
330
331
332 template<typename T>
333 Operand::Operand(T t, RelocInfo::Mode rmode)
334     : immediate_(t, rmode),
335       reg_(NoReg) {}
336
337
338 Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
339     : immediate_(0),
340       reg_(reg),
341       shift_(shift),
342       extend_(NO_EXTEND),
343       shift_amount_(shift_amount) {
344   DCHECK(reg.Is64Bits() || (shift_amount < kWRegSizeInBits));
345   DCHECK(reg.Is32Bits() || (shift_amount < kXRegSizeInBits));
346   DCHECK(!reg.IsSP());
347 }
348
349
350 Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
351     : immediate_(0),
352       reg_(reg),
353       shift_(NO_SHIFT),
354       extend_(extend),
355       shift_amount_(shift_amount) {
356   DCHECK(reg.IsValid());
357   DCHECK(shift_amount <= 4);
358   DCHECK(!reg.IsSP());
359
360   // Extend modes SXTX and UXTX require a 64-bit register.
361   DCHECK(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
362 }
363
364
365 bool Operand::IsImmediate() const {
366   return reg_.Is(NoReg);
367 }
368
369
370 bool Operand::IsShiftedRegister() const {
371   return reg_.IsValid() && (shift_ != NO_SHIFT);
372 }
373
374
375 bool Operand::IsExtendedRegister() const {
376   return reg_.IsValid() && (extend_ != NO_EXTEND);
377 }
378
379
380 bool Operand::IsZero() const {
381   if (IsImmediate()) {
382     return ImmediateValue() == 0;
383   } else {
384     return reg().IsZero();
385   }
386 }
387
388
389 Operand Operand::ToExtendedRegister() const {
390   DCHECK(IsShiftedRegister());
391   DCHECK((shift_ == LSL) && (shift_amount_ <= 4));
392   return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
393 }
394
395
396 Immediate Operand::immediate() const {
397   DCHECK(IsImmediate());
398   return immediate_;
399 }
400
401
402 int64_t Operand::ImmediateValue() const {
403   DCHECK(IsImmediate());
404   return immediate_.value();
405 }
406
407
408 Register Operand::reg() const {
409   DCHECK(IsShiftedRegister() || IsExtendedRegister());
410   return reg_;
411 }
412
413
414 Shift Operand::shift() const {
415   DCHECK(IsShiftedRegister());
416   return shift_;
417 }
418
419
420 Extend Operand::extend() const {
421   DCHECK(IsExtendedRegister());
422   return extend_;
423 }
424
425
426 unsigned Operand::shift_amount() const {
427   DCHECK(IsShiftedRegister() || IsExtendedRegister());
428   return shift_amount_;
429 }
430
431
432 Operand Operand::UntagSmi(Register smi) {
433   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
434                                                          kSmiValueSize));
435   DCHECK(smi.Is64Bits());
436   return Operand(smi, ASR, kSmiShift);
437 }
438
439
440 Operand Operand::UntagSmiAndScale(Register smi, int scale) {
441   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
442                                                          kSmiValueSize));
443   DCHECK(smi.Is64Bits());
444   DCHECK((scale >= 0) && (scale <= (64 - kSmiValueSize)));
445   if (scale > kSmiShift) {
446     return Operand(smi, LSL, scale - kSmiShift);
447   } else if (scale < kSmiShift) {
448     return Operand(smi, ASR, kSmiShift - scale);
449   }
450   return Operand(smi);
451 }
452
453
454 MemOperand::MemOperand()
455   : base_(NoReg), regoffset_(NoReg), offset_(0), addrmode_(Offset),
456     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
457 }
458
459
460 MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
461   : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode),
462     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
463   DCHECK(base.Is64Bits() && !base.IsZero());
464 }
465
466
467 MemOperand::MemOperand(Register base,
468                        Register regoffset,
469                        Extend extend,
470                        unsigned shift_amount)
471   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
472     shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
473   DCHECK(base.Is64Bits() && !base.IsZero());
474   DCHECK(!regoffset.IsSP());
475   DCHECK((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
476
477   // SXTX extend mode requires a 64-bit offset register.
478   DCHECK(regoffset.Is64Bits() || (extend != SXTX));
479 }
480
481
482 MemOperand::MemOperand(Register base,
483                        Register regoffset,
484                        Shift shift,
485                        unsigned shift_amount)
486   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
487     shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
488   DCHECK(base.Is64Bits() && !base.IsZero());
489   DCHECK(regoffset.Is64Bits() && !regoffset.IsSP());
490   DCHECK(shift == LSL);
491 }
492
493
494 MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
495   : base_(base), addrmode_(addrmode) {
496   DCHECK(base.Is64Bits() && !base.IsZero());
497
498   if (offset.IsImmediate()) {
499     offset_ = offset.ImmediateValue();
500
501     regoffset_ = NoReg;
502   } else if (offset.IsShiftedRegister()) {
503     DCHECK(addrmode == Offset);
504
505     regoffset_ = offset.reg();
506     shift_= offset.shift();
507     shift_amount_ = offset.shift_amount();
508
509     extend_ = NO_EXTEND;
510     offset_ = 0;
511
512     // These assertions match those in the shifted-register constructor.
513     DCHECK(regoffset_.Is64Bits() && !regoffset_.IsSP());
514     DCHECK(shift_ == LSL);
515   } else {
516     DCHECK(offset.IsExtendedRegister());
517     DCHECK(addrmode == Offset);
518
519     regoffset_ = offset.reg();
520     extend_ = offset.extend();
521     shift_amount_ = offset.shift_amount();
522
523     shift_= NO_SHIFT;
524     offset_ = 0;
525
526     // These assertions match those in the extended-register constructor.
527     DCHECK(!regoffset_.IsSP());
528     DCHECK((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
529     DCHECK((regoffset_.Is64Bits() || (extend_ != SXTX)));
530   }
531 }
532
533 bool MemOperand::IsImmediateOffset() const {
534   return (addrmode_ == Offset) && regoffset_.Is(NoReg);
535 }
536
537
538 bool MemOperand::IsRegisterOffset() const {
539   return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
540 }
541
542
543 bool MemOperand::IsPreIndex() const {
544   return addrmode_ == PreIndex;
545 }
546
547
548 bool MemOperand::IsPostIndex() const {
549   return addrmode_ == PostIndex;
550 }
551
552 Operand MemOperand::OffsetAsOperand() const {
553   if (IsImmediateOffset()) {
554     return offset();
555   } else {
556     DCHECK(IsRegisterOffset());
557     if (extend() == NO_EXTEND) {
558       return Operand(regoffset(), shift(), shift_amount());
559     } else {
560       return Operand(regoffset(), extend(), shift_amount());
561     }
562   }
563 }
564
565
566 void Assembler::Unreachable() {
567 #ifdef USE_SIMULATOR
568   debug("UNREACHABLE", __LINE__, BREAK);
569 #else
570   // Crash by branching to 0. lr now points near the fault.
571   Emit(BLR | Rn(xzr));
572 #endif
573 }
574
575
576 Address Assembler::target_pointer_address_at(Address pc) {
577   Instruction* instr = reinterpret_cast<Instruction*>(pc);
578   DCHECK(instr->IsLdrLiteralX());
579   return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
580 }
581
582
583 // Read/Modify the code target address in the branch/call instruction at pc.
584 Address Assembler::target_address_at(Address pc,
585                                      ConstantPoolArray* constant_pool) {
586   return Memory::Address_at(target_pointer_address_at(pc));
587 }
588
589
590 Address Assembler::target_address_at(Address pc, Code* code) {
591   ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
592   return target_address_at(pc, constant_pool);
593 }
594
595
596 Address Assembler::target_address_from_return_address(Address pc) {
597   // Returns the address of the call target from the return address that will
598   // be returned to after a call.
599   // Call sequence on ARM64 is:
600   //  ldr ip0, #... @ load from literal pool
601   //  blr ip0
602   Address candidate = pc - 2 * kInstructionSize;
603   Instruction* instr = reinterpret_cast<Instruction*>(candidate);
604   USE(instr);
605   DCHECK(instr->IsLdrLiteralX());
606   return candidate;
607 }
608
609
610 Address Assembler::break_address_from_return_address(Address pc) {
611   return pc - Assembler::kPatchDebugBreakSlotReturnOffset;
612 }
613
614
615 Address Assembler::return_address_from_call_start(Address pc) {
616   // The call, generated by MacroAssembler::Call, is one of two possible
617   // sequences:
618   //
619   // Without relocation:
620   //  movz  temp, #(target & 0x000000000000ffff)
621   //  movk  temp, #(target & 0x00000000ffff0000)
622   //  movk  temp, #(target & 0x0000ffff00000000)
623   //  blr   temp
624   //
625   // With relocation:
626   //  ldr   temp, =target
627   //  blr   temp
628   //
629   // The return address is immediately after the blr instruction in both cases,
630   // so it can be found by adding the call size to the address at the start of
631   // the call sequence.
632   STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 4 * kInstructionSize);
633   STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize);
634
635   Instruction* instr = reinterpret_cast<Instruction*>(pc);
636   if (instr->IsMovz()) {
637     // Verify the instruction sequence.
638     DCHECK(instr->following(1)->IsMovk());
639     DCHECK(instr->following(2)->IsMovk());
640     DCHECK(instr->following(3)->IsBranchAndLinkToRegister());
641     return pc + Assembler::kCallSizeWithoutRelocation;
642   } else {
643     // Verify the instruction sequence.
644     DCHECK(instr->IsLdrLiteralX());
645     DCHECK(instr->following(1)->IsBranchAndLinkToRegister());
646     return pc + Assembler::kCallSizeWithRelocation;
647   }
648 }
649
650
651 void Assembler::deserialization_set_special_target_at(
652     Address constant_pool_entry, Code* code, Address target) {
653   Memory::Address_at(constant_pool_entry) = target;
654 }
655
656
657 void Assembler::set_target_address_at(Address pc,
658                                       ConstantPoolArray* constant_pool,
659                                       Address target,
660                                       ICacheFlushMode icache_flush_mode) {
661   Memory::Address_at(target_pointer_address_at(pc)) = target;
662   // Intuitively, we would think it is necessary to always flush the
663   // instruction cache after patching a target address in the code as follows:
664   //   CpuFeatures::FlushICache(pc, sizeof(target));
665   // However, on ARM, an instruction is actually patched in the case of
666   // embedded constants of the form:
667   // ldr   ip, [pc, #...]
668   // since the instruction accessing this address in the constant pool remains
669   // unchanged, a flush is not required.
670 }
671
672
673 void Assembler::set_target_address_at(Address pc,
674                                       Code* code,
675                                       Address target,
676                                       ICacheFlushMode icache_flush_mode) {
677   ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
678   set_target_address_at(pc, constant_pool, target, icache_flush_mode);
679 }
680
681
682 int RelocInfo::target_address_size() {
683   return kPointerSize;
684 }
685
686
687 Address RelocInfo::target_address() {
688   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
689   return Assembler::target_address_at(pc_, host_);
690 }
691
692
693 Address RelocInfo::target_address_address() {
694   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
695                               || rmode_ == EMBEDDED_OBJECT
696                               || rmode_ == EXTERNAL_REFERENCE);
697   return Assembler::target_pointer_address_at(pc_);
698 }
699
700
701 Address RelocInfo::constant_pool_entry_address() {
702   DCHECK(IsInConstantPool());
703   return Assembler::target_pointer_address_at(pc_);
704 }
705
706
707 Object* RelocInfo::target_object() {
708   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
709   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
710 }
711
712
713 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
714   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
715   return Handle<Object>(reinterpret_cast<Object**>(
716       Assembler::target_address_at(pc_, host_)));
717 }
718
719
720 void RelocInfo::set_target_object(Object* target,
721                                   WriteBarrierMode write_barrier_mode,
722                                   ICacheFlushMode icache_flush_mode) {
723   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
724   Assembler::set_target_address_at(pc_, host_,
725                                    reinterpret_cast<Address>(target),
726                                    icache_flush_mode);
727   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
728       host() != NULL &&
729       target->IsHeapObject()) {
730     host()->GetHeap()->incremental_marking()->RecordWrite(
731         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
732   }
733 }
734
735
736 Address RelocInfo::target_reference() {
737   DCHECK(rmode_ == EXTERNAL_REFERENCE);
738   return Assembler::target_address_at(pc_, host_);
739 }
740
741
742 Address RelocInfo::target_runtime_entry(Assembler* origin) {
743   DCHECK(IsRuntimeEntry(rmode_));
744   return target_address();
745 }
746
747
748 void RelocInfo::set_target_runtime_entry(Address target,
749                                          WriteBarrierMode write_barrier_mode,
750                                          ICacheFlushMode icache_flush_mode) {
751   DCHECK(IsRuntimeEntry(rmode_));
752   if (target_address() != target) {
753     set_target_address(target, write_barrier_mode, icache_flush_mode);
754   }
755 }
756
757
758 Handle<Cell> RelocInfo::target_cell_handle() {
759   UNIMPLEMENTED();
760   Cell *null_cell = NULL;
761   return Handle<Cell>(null_cell);
762 }
763
764
765 Cell* RelocInfo::target_cell() {
766   DCHECK(rmode_ == RelocInfo::CELL);
767   return Cell::FromValueAddress(Memory::Address_at(pc_));
768 }
769
770
771 void RelocInfo::set_target_cell(Cell* cell,
772                                 WriteBarrierMode write_barrier_mode,
773                                 ICacheFlushMode icache_flush_mode) {
774   UNIMPLEMENTED();
775 }
776
777
778 static const int kNoCodeAgeSequenceLength = 5 * kInstructionSize;
779 static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize;
780
781
782 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
783   UNREACHABLE();  // This should never be reached on ARM64.
784   return Handle<Object>();
785 }
786
787
788 Code* RelocInfo::code_age_stub() {
789   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
790   // Read the stub entry point from the code age sequence.
791   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
792   return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address));
793 }
794
795
796 void RelocInfo::set_code_age_stub(Code* stub,
797                                   ICacheFlushMode icache_flush_mode) {
798   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
799   DCHECK(!Code::IsYoungSequence(stub->GetIsolate(), pc_));
800   // Overwrite the stub entry point in the code age sequence. This is loaded as
801   // a literal so there is no need to call FlushICache here.
802   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
803   Memory::Address_at(stub_entry_address) = stub->instruction_start();
804 }
805
806
807 Address RelocInfo::call_address() {
808   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
809          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
810   // For the above sequences the Relocinfo points to the load literal loading
811   // the call address.
812   return Assembler::target_address_at(pc_, host_);
813 }
814
815
816 void RelocInfo::set_call_address(Address target) {
817   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
818          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
819   Assembler::set_target_address_at(pc_, host_, target);
820   if (host() != NULL) {
821     Object* target_code = Code::GetCodeFromTargetAddress(target);
822     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
823         host(), this, HeapObject::cast(target_code));
824   }
825 }
826
827
828 void RelocInfo::WipeOut() {
829   DCHECK(IsEmbeddedObject(rmode_) ||
830          IsCodeTarget(rmode_) ||
831          IsRuntimeEntry(rmode_) ||
832          IsExternalReference(rmode_));
833   Assembler::set_target_address_at(pc_, host_, NULL);
834 }
835
836
837 bool RelocInfo::IsPatchedReturnSequence() {
838   // The sequence must be:
839   //   ldr ip0, [pc, #offset]
840   //   blr ip0
841   // See arm64/debug-arm64.cc BreakLocationIterator::SetDebugBreakAtReturn().
842   Instruction* i1 = reinterpret_cast<Instruction*>(pc_);
843   Instruction* i2 = i1->following();
844   return i1->IsLdrLiteralX() && (i1->Rt() == ip0.code()) &&
845          i2->IsBranchAndLinkToRegister() && (i2->Rn() == ip0.code());
846 }
847
848
849 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
850   Instruction* current_instr = reinterpret_cast<Instruction*>(pc_);
851   return !current_instr->IsNop(Assembler::DEBUG_BREAK_NOP);
852 }
853
854
855 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
856   RelocInfo::Mode mode = rmode();
857   if (mode == RelocInfo::EMBEDDED_OBJECT) {
858     visitor->VisitEmbeddedPointer(this);
859   } else if (RelocInfo::IsCodeTarget(mode)) {
860     visitor->VisitCodeTarget(this);
861   } else if (mode == RelocInfo::CELL) {
862     visitor->VisitCell(this);
863   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
864     visitor->VisitExternalReference(this);
865   } else if (((RelocInfo::IsJSReturn(mode) &&
866               IsPatchedReturnSequence()) ||
867              (RelocInfo::IsDebugBreakSlot(mode) &&
868               IsPatchedDebugBreakSlotSequence())) &&
869              isolate->debug()->has_break_points()) {
870     visitor->VisitDebugTarget(this);
871   } else if (RelocInfo::IsRuntimeEntry(mode)) {
872     visitor->VisitRuntimeEntry(this);
873   }
874 }
875
876
877 template<typename StaticVisitor>
878 void RelocInfo::Visit(Heap* heap) {
879   RelocInfo::Mode mode = rmode();
880   if (mode == RelocInfo::EMBEDDED_OBJECT) {
881     StaticVisitor::VisitEmbeddedPointer(heap, this);
882   } else if (RelocInfo::IsCodeTarget(mode)) {
883     StaticVisitor::VisitCodeTarget(heap, this);
884   } else if (mode == RelocInfo::CELL) {
885     StaticVisitor::VisitCell(heap, this);
886   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
887     StaticVisitor::VisitExternalReference(this);
888   } else if (heap->isolate()->debug()->has_break_points() &&
889              ((RelocInfo::IsJSReturn(mode) &&
890               IsPatchedReturnSequence()) ||
891              (RelocInfo::IsDebugBreakSlot(mode) &&
892               IsPatchedDebugBreakSlotSequence()))) {
893     StaticVisitor::VisitDebugTarget(heap, this);
894   } else if (RelocInfo::IsRuntimeEntry(mode)) {
895     StaticVisitor::VisitRuntimeEntry(this);
896   }
897 }
898
899
900 LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
901   DCHECK(rt.IsValid());
902   if (rt.IsRegister()) {
903     return rt.Is64Bits() ? LDR_x : LDR_w;
904   } else {
905     DCHECK(rt.IsFPRegister());
906     return rt.Is64Bits() ? LDR_d : LDR_s;
907   }
908 }
909
910
911 LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
912                                          const CPURegister& rt2) {
913   DCHECK(AreSameSizeAndType(rt, rt2));
914   USE(rt2);
915   if (rt.IsRegister()) {
916     return rt.Is64Bits() ? LDP_x : LDP_w;
917   } else {
918     DCHECK(rt.IsFPRegister());
919     return rt.Is64Bits() ? LDP_d : LDP_s;
920   }
921 }
922
923
924 LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
925   DCHECK(rt.IsValid());
926   if (rt.IsRegister()) {
927     return rt.Is64Bits() ? STR_x : STR_w;
928   } else {
929     DCHECK(rt.IsFPRegister());
930     return rt.Is64Bits() ? STR_d : STR_s;
931   }
932 }
933
934
935 LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
936                                           const CPURegister& rt2) {
937   DCHECK(AreSameSizeAndType(rt, rt2));
938   USE(rt2);
939   if (rt.IsRegister()) {
940     return rt.Is64Bits() ? STP_x : STP_w;
941   } else {
942     DCHECK(rt.IsFPRegister());
943     return rt.Is64Bits() ? STP_d : STP_s;
944   }
945 }
946
947
948 LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor(
949     const CPURegister& rt, const CPURegister& rt2) {
950   DCHECK(AreSameSizeAndType(rt, rt2));
951   USE(rt2);
952   if (rt.IsRegister()) {
953     return rt.Is64Bits() ? LDNP_x : LDNP_w;
954   } else {
955     DCHECK(rt.IsFPRegister());
956     return rt.Is64Bits() ? LDNP_d : LDNP_s;
957   }
958 }
959
960
961 LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor(
962     const CPURegister& rt, const CPURegister& rt2) {
963   DCHECK(AreSameSizeAndType(rt, rt2));
964   USE(rt2);
965   if (rt.IsRegister()) {
966     return rt.Is64Bits() ? STNP_x : STNP_w;
967   } else {
968     DCHECK(rt.IsFPRegister());
969     return rt.Is64Bits() ? STNP_d : STNP_s;
970   }
971 }
972
973
974 LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
975   if (rt.IsRegister()) {
976     return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit;
977   } else {
978     DCHECK(rt.IsFPRegister());
979     return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit;
980   }
981 }
982
983
984 int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
985   DCHECK(kStartOfLabelLinkChain == 0);
986   int offset = LinkAndGetByteOffsetTo(label);
987   DCHECK(IsAligned(offset, kInstructionSize));
988   return offset >> kInstructionSizeLog2;
989 }
990
991
992 Instr Assembler::Flags(FlagsUpdate S) {
993   if (S == SetFlags) {
994     return 1 << FlagsUpdate_offset;
995   } else if (S == LeaveFlags) {
996     return 0 << FlagsUpdate_offset;
997   }
998   UNREACHABLE();
999   return 0;
1000 }
1001
1002
1003 Instr Assembler::Cond(Condition cond) {
1004   return cond << Condition_offset;
1005 }
1006
1007
1008 Instr Assembler::ImmPCRelAddress(int imm21) {
1009   CHECK(is_int21(imm21));
1010   Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
1011   Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
1012   Instr immlo = imm << ImmPCRelLo_offset;
1013   return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
1014 }
1015
1016
1017 Instr Assembler::ImmUncondBranch(int imm26) {
1018   CHECK(is_int26(imm26));
1019   return truncate_to_int26(imm26) << ImmUncondBranch_offset;
1020 }
1021
1022
1023 Instr Assembler::ImmCondBranch(int imm19) {
1024   CHECK(is_int19(imm19));
1025   return truncate_to_int19(imm19) << ImmCondBranch_offset;
1026 }
1027
1028
1029 Instr Assembler::ImmCmpBranch(int imm19) {
1030   CHECK(is_int19(imm19));
1031   return truncate_to_int19(imm19) << ImmCmpBranch_offset;
1032 }
1033
1034
1035 Instr Assembler::ImmTestBranch(int imm14) {
1036   CHECK(is_int14(imm14));
1037   return truncate_to_int14(imm14) << ImmTestBranch_offset;
1038 }
1039
1040
1041 Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
1042   DCHECK(is_uint6(bit_pos));
1043   // Subtract five from the shift offset, as we need bit 5 from bit_pos.
1044   unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
1045   unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
1046   b5 &= ImmTestBranchBit5_mask;
1047   b40 &= ImmTestBranchBit40_mask;
1048   return b5 | b40;
1049 }
1050
1051
1052 Instr Assembler::SF(Register rd) {
1053     return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
1054 }
1055
1056
1057 Instr Assembler::ImmAddSub(int64_t imm) {
1058   DCHECK(IsImmAddSub(imm));
1059   if (is_uint12(imm)) {  // No shift required.
1060     return imm << ImmAddSub_offset;
1061   } else {
1062     return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
1063   }
1064 }
1065
1066
1067 Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
1068   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(imms)) ||
1069          ((reg_size == kWRegSizeInBits) && is_uint5(imms)));
1070   USE(reg_size);
1071   return imms << ImmS_offset;
1072 }
1073
1074
1075 Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
1076   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
1077          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
1078   USE(reg_size);
1079   DCHECK(is_uint6(immr));
1080   return immr << ImmR_offset;
1081 }
1082
1083
1084 Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
1085   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
1086   DCHECK(is_uint6(imms));
1087   DCHECK((reg_size == kXRegSizeInBits) || is_uint6(imms + 3));
1088   USE(reg_size);
1089   return imms << ImmSetBits_offset;
1090 }
1091
1092
1093 Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
1094   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
1095   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
1096          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
1097   USE(reg_size);
1098   return immr << ImmRotate_offset;
1099 }
1100
1101
1102 Instr Assembler::ImmLLiteral(int imm19) {
1103   CHECK(is_int19(imm19));
1104   return truncate_to_int19(imm19) << ImmLLiteral_offset;
1105 }
1106
1107
1108 Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
1109   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
1110   DCHECK((reg_size == kXRegSizeInBits) || (bitn == 0));
1111   USE(reg_size);
1112   return bitn << BitN_offset;
1113 }
1114
1115
1116 Instr Assembler::ShiftDP(Shift shift) {
1117   DCHECK(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
1118   return shift << ShiftDP_offset;
1119 }
1120
1121
1122 Instr Assembler::ImmDPShift(unsigned amount) {
1123   DCHECK(is_uint6(amount));
1124   return amount << ImmDPShift_offset;
1125 }
1126
1127
1128 Instr Assembler::ExtendMode(Extend extend) {
1129   return extend << ExtendMode_offset;
1130 }
1131
1132
1133 Instr Assembler::ImmExtendShift(unsigned left_shift) {
1134   DCHECK(left_shift <= 4);
1135   return left_shift << ImmExtendShift_offset;
1136 }
1137
1138
1139 Instr Assembler::ImmCondCmp(unsigned imm) {
1140   DCHECK(is_uint5(imm));
1141   return imm << ImmCondCmp_offset;
1142 }
1143
1144
1145 Instr Assembler::Nzcv(StatusFlags nzcv) {
1146   return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
1147 }
1148
1149
1150 Instr Assembler::ImmLSUnsigned(int imm12) {
1151   DCHECK(is_uint12(imm12));
1152   return imm12 << ImmLSUnsigned_offset;
1153 }
1154
1155
1156 Instr Assembler::ImmLS(int imm9) {
1157   DCHECK(is_int9(imm9));
1158   return truncate_to_int9(imm9) << ImmLS_offset;
1159 }
1160
1161
1162 Instr Assembler::ImmLSPair(int imm7, LSDataSize size) {
1163   DCHECK(((imm7 >> size) << size) == imm7);
1164   int scaled_imm7 = imm7 >> size;
1165   DCHECK(is_int7(scaled_imm7));
1166   return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
1167 }
1168
1169
1170 Instr Assembler::ImmShiftLS(unsigned shift_amount) {
1171   DCHECK(is_uint1(shift_amount));
1172   return shift_amount << ImmShiftLS_offset;
1173 }
1174
1175
1176 Instr Assembler::ImmException(int imm16) {
1177   DCHECK(is_uint16(imm16));
1178   return imm16 << ImmException_offset;
1179 }
1180
1181
1182 Instr Assembler::ImmSystemRegister(int imm15) {
1183   DCHECK(is_uint15(imm15));
1184   return imm15 << ImmSystemRegister_offset;
1185 }
1186
1187
1188 Instr Assembler::ImmHint(int imm7) {
1189   DCHECK(is_uint7(imm7));
1190   return imm7 << ImmHint_offset;
1191 }
1192
1193
1194 Instr Assembler::ImmBarrierDomain(int imm2) {
1195   DCHECK(is_uint2(imm2));
1196   return imm2 << ImmBarrierDomain_offset;
1197 }
1198
1199
1200 Instr Assembler::ImmBarrierType(int imm2) {
1201   DCHECK(is_uint2(imm2));
1202   return imm2 << ImmBarrierType_offset;
1203 }
1204
1205
1206 LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) {
1207   DCHECK((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
1208   return static_cast<LSDataSize>(op >> SizeLS_offset);
1209 }
1210
1211
1212 Instr Assembler::ImmMoveWide(uint64_t imm) {
1213   DCHECK(is_uint16(imm));
1214   return imm << ImmMoveWide_offset;
1215 }
1216
1217
1218 Instr Assembler::ShiftMoveWide(int64_t shift) {
1219   DCHECK(is_uint2(shift));
1220   return shift << ShiftMoveWide_offset;
1221 }
1222
1223
1224 Instr Assembler::FPType(FPRegister fd) {
1225   return fd.Is64Bits() ? FP64 : FP32;
1226 }
1227
1228
1229 Instr Assembler::FPScale(unsigned scale) {
1230   DCHECK(is_uint6(scale));
1231   return scale << FPScale_offset;
1232 }
1233
1234
1235 const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
1236   return reg.Is64Bits() ? xzr : wzr;
1237 }
1238
1239
1240 inline void Assembler::CheckBufferSpace() {
1241   DCHECK(pc_ < (buffer_ + buffer_size_));
1242   if (buffer_space() < kGap) {
1243     GrowBuffer();
1244   }
1245 }
1246
1247
1248 inline void Assembler::CheckBuffer() {
1249   CheckBufferSpace();
1250   if (pc_offset() >= next_veneer_pool_check_) {
1251     CheckVeneerPool(false, true);
1252   }
1253   if (pc_offset() >= next_constant_pool_check_) {
1254     CheckConstPool(false, true);
1255   }
1256 }
1257
1258
1259 TypeFeedbackId Assembler::RecordedAstId() {
1260   DCHECK(!recorded_ast_id_.IsNone());
1261   return recorded_ast_id_;
1262 }
1263
1264
1265 void Assembler::ClearRecordedAstId() {
1266   recorded_ast_id_ = TypeFeedbackId::None();
1267 }
1268
1269
1270 } }  // namespace v8::internal
1271
1272 #endif  // V8_ARM64_ASSEMBLER_ARM64_INL_H_