- add sources.
[platform/framework/web/crosswalk.git] / src / ui / gfx / skbitmap_operations.cc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "ui/gfx/skbitmap_operations.h"
6
7 #include <algorithm>
8 #include <string.h>
9
10 #include "base/logging.h"
11 #include "skia/ext/refptr.h"
12 #include "third_party/skia/include/core/SkBitmap.h"
13 #include "third_party/skia/include/core/SkCanvas.h"
14 #include "third_party/skia/include/core/SkColorFilter.h"
15 #include "third_party/skia/include/core/SkColorPriv.h"
16 #include "third_party/skia/include/core/SkUnPreMultiply.h"
17 #include "third_party/skia/include/effects/SkBlurImageFilter.h"
18 #include "ui/gfx/insets.h"
19 #include "ui/gfx/point.h"
20 #include "ui/gfx/size.h"
21
22 // static
23 SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) {
24   DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
25
26   SkAutoLockPixels lock_image(image);
27
28   SkBitmap inverted;
29   inverted.setConfig(SkBitmap::kARGB_8888_Config, image.width(), image.height(),
30                      0);
31   inverted.allocPixels();
32   inverted.eraseARGB(0, 0, 0, 0);
33
34   for (int y = 0; y < image.height(); ++y) {
35     uint32* image_row = image.getAddr32(0, y);
36     uint32* dst_row = inverted.getAddr32(0, y);
37
38     for (int x = 0; x < image.width(); ++x) {
39       uint32 image_pixel = image_row[x];
40       dst_row[x] = (image_pixel & 0xFF000000) |
41                    (0x00FFFFFF - (image_pixel & 0x00FFFFFF));
42     }
43   }
44
45   return inverted;
46 }
47
48 // static
49 SkBitmap SkBitmapOperations::CreateSuperimposedBitmap(const SkBitmap& first,
50                                                       const SkBitmap& second) {
51   DCHECK(first.width() == second.width());
52   DCHECK(first.height() == second.height());
53   DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
54   DCHECK(first.config() == SkBitmap::kARGB_8888_Config);
55
56   SkAutoLockPixels lock_first(first);
57   SkAutoLockPixels lock_second(second);
58
59   SkBitmap superimposed;
60   superimposed.setConfig(SkBitmap::kARGB_8888_Config,
61                          first.width(), first.height());
62   superimposed.allocPixels();
63   superimposed.eraseARGB(0, 0, 0, 0);
64
65   SkCanvas canvas(superimposed);
66
67   SkRect rect;
68   rect.fLeft = 0;
69   rect.fTop = 0;
70   rect.fRight = SkIntToScalar(first.width());
71   rect.fBottom = SkIntToScalar(first.height());
72
73   canvas.drawBitmapRect(first, NULL, rect);
74   canvas.drawBitmapRect(second, NULL, rect);
75
76   return superimposed;
77 }
78
79 // static
80 SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first,
81                                                  const SkBitmap& second,
82                                                  double alpha) {
83   DCHECK((alpha >= 0) && (alpha <= 1));
84   DCHECK(first.width() == second.width());
85   DCHECK(first.height() == second.height());
86   DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
87   DCHECK(first.config() == SkBitmap::kARGB_8888_Config);
88
89   // Optimize for case where we won't need to blend anything.
90   static const double alpha_min = 1.0 / 255;
91   static const double alpha_max = 254.0 / 255;
92   if (alpha < alpha_min)
93     return first;
94   else if (alpha > alpha_max)
95     return second;
96
97   SkAutoLockPixels lock_first(first);
98   SkAutoLockPixels lock_second(second);
99
100   SkBitmap blended;
101   blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), first.height(),
102                     0);
103   blended.allocPixels();
104   blended.eraseARGB(0, 0, 0, 0);
105
106   double first_alpha = 1 - alpha;
107
108   for (int y = 0; y < first.height(); ++y) {
109     uint32* first_row = first.getAddr32(0, y);
110     uint32* second_row = second.getAddr32(0, y);
111     uint32* dst_row = blended.getAddr32(0, y);
112
113     for (int x = 0; x < first.width(); ++x) {
114       uint32 first_pixel = first_row[x];
115       uint32 second_pixel = second_row[x];
116
117       int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) +
118                                (SkColorGetA(second_pixel) * alpha));
119       int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) +
120                                (SkColorGetR(second_pixel) * alpha));
121       int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) +
122                                (SkColorGetG(second_pixel) * alpha));
123       int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) +
124                                (SkColorGetB(second_pixel) * alpha));
125
126       dst_row[x] = SkColorSetARGB(a, r, g, b);
127     }
128   }
129
130   return blended;
131 }
132
133 // static
134 SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb,
135                                                 const SkBitmap& alpha) {
136   DCHECK(rgb.width() == alpha.width());
137   DCHECK(rgb.height() == alpha.height());
138   DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel());
139   DCHECK(rgb.config() == SkBitmap::kARGB_8888_Config);
140   DCHECK(alpha.config() == SkBitmap::kARGB_8888_Config);
141
142   SkBitmap masked;
143   masked.setConfig(SkBitmap::kARGB_8888_Config, rgb.width(), rgb.height(), 0);
144   masked.allocPixels();
145   masked.eraseARGB(0, 0, 0, 0);
146
147   SkAutoLockPixels lock_rgb(rgb);
148   SkAutoLockPixels lock_alpha(alpha);
149   SkAutoLockPixels lock_masked(masked);
150
151   for (int y = 0; y < masked.height(); ++y) {
152     uint32* rgb_row = rgb.getAddr32(0, y);
153     uint32* alpha_row = alpha.getAddr32(0, y);
154     uint32* dst_row = masked.getAddr32(0, y);
155
156     for (int x = 0; x < masked.width(); ++x) {
157       SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]);
158       SkColor alpha_pixel = SkUnPreMultiply::PMColorToColor(alpha_row[x]);
159       int alpha = SkAlphaMul(SkColorGetA(rgb_pixel),
160                              SkAlpha255To256(SkColorGetA(alpha_pixel)));
161       int alpha_256 = SkAlpha255To256(alpha);
162       dst_row[x] = SkColorSetARGB(alpha,
163                                   SkAlphaMul(SkColorGetR(rgb_pixel), alpha_256),
164                                   SkAlphaMul(SkColorGetG(rgb_pixel), alpha_256),
165                                   SkAlphaMul(SkColorGetB(rgb_pixel),
166                                              alpha_256));
167     }
168   }
169
170   return masked;
171 }
172
173 // static
174 SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color,
175                                                     const SkBitmap& image,
176                                                     const SkBitmap& mask) {
177   DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
178   DCHECK(mask.config() == SkBitmap::kARGB_8888_Config);
179
180   SkBitmap background;
181   background.setConfig(
182       SkBitmap::kARGB_8888_Config, mask.width(), mask.height(), 0);
183   background.allocPixels();
184
185   double bg_a = SkColorGetA(color);
186   double bg_r = SkColorGetR(color);
187   double bg_g = SkColorGetG(color);
188   double bg_b = SkColorGetB(color);
189
190   SkAutoLockPixels lock_mask(mask);
191   SkAutoLockPixels lock_image(image);
192   SkAutoLockPixels lock_background(background);
193
194   for (int y = 0; y < mask.height(); ++y) {
195     uint32* dst_row = background.getAddr32(0, y);
196     uint32* image_row = image.getAddr32(0, y % image.height());
197     uint32* mask_row = mask.getAddr32(0, y);
198
199     for (int x = 0; x < mask.width(); ++x) {
200       uint32 image_pixel = image_row[x % image.width()];
201
202       double img_a = SkColorGetA(image_pixel);
203       double img_r = SkColorGetR(image_pixel);
204       double img_g = SkColorGetG(image_pixel);
205       double img_b = SkColorGetB(image_pixel);
206
207       double img_alpha = static_cast<double>(img_a) / 255.0;
208       double img_inv = 1 - img_alpha;
209
210       double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0;
211
212       dst_row[x] = SkColorSetARGB(
213           static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a),
214           static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a),
215           static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a),
216           static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a));
217     }
218   }
219
220   return background;
221 }
222
223 namespace {
224 namespace HSLShift {
225
226 // TODO(viettrungluu): Some things have yet to be optimized at all.
227
228 // Notes on and conventions used in the following code
229 //
230 // Conventions:
231 //  - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below)
232 //  - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below)
233 //  - variables derived from S, L shift parameters: |sdec| and |sinc| for S
234 //    increase and decrease factors, |ldec| and |linc| for L (see also below)
235 //
236 // To try to optimize HSL shifts, we do several things:
237 //  - Avoid unpremultiplying (then processing) then premultiplying. This means
238 //    that R, G, B values (and also L, but not H and S) should be treated as
239 //    having a range of 0..A (where A is alpha).
240 //  - Do things in integer/fixed-point. This avoids costly conversions between
241 //    floating-point and integer, though I should study the tradeoff more
242 //    carefully (presumably, at some point of processing complexity, converting
243 //    and processing using simpler floating-point code will begin to win in
244 //    performance). Also to be studied is the speed/type of floating point
245 //    conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>.
246 //
247 // Conventions for fixed-point arithmetic
248 //  - Each function has a constant denominator (called |den|, which should be a
249 //    power of 2), appropriate for the computations done in that function.
250 //  - A value |x| is then typically represented by a numerator, named |x_num|,
251 //    so that its actual value is |x_num / den| (casting to floating-point
252 //    before division).
253 //  - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x *
254 //    den| (casting appropriately).
255 //  - When necessary, a value |x| may also be represented as a numerator over
256 //    the denominator squared (set |den2 = den * den|). In such a case, the
257 //    corresponding variable is called |x_num2| (so that its actual value is
258 //    |x_num^2 / den2|.
259 //  - The representation of the product of |x| and |y| is be called |x_y_num| if
260 //    |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In
261 //    the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|.
262
263 // Routine used to process a line; typically specialized for specific kinds of
264 // HSL shifts (to optimize).
265 typedef void (*LineProcessor)(const color_utils::HSL&,
266                               const SkPMColor*,
267                               SkPMColor*,
268                               int width);
269
270 enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps };
271 enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps };
272 enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps };
273
274 // Epsilon used to judge when shift values are close enough to various critical
275 // values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should
276 // be small enough, but let's play it safe>
277 const double epsilon = 0.0005;
278
279 // Line processor: default/universal (i.e., old-school).
280 void LineProcDefault(const color_utils::HSL& hsl_shift,
281                      const SkPMColor* in,
282                      SkPMColor* out,
283                      int width) {
284   for (int x = 0; x < width; x++) {
285     out[x] = SkPreMultiplyColor(color_utils::HSLShift(
286         SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift));
287   }
288 }
289
290 // Line processor: no-op (i.e., copy).
291 void LineProcCopy(const color_utils::HSL& hsl_shift,
292                   const SkPMColor* in,
293                   SkPMColor* out,
294                   int width) {
295   DCHECK(hsl_shift.h < 0);
296   DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
297   DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
298   memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0]));
299 }
300
301 // Line processor: H no-op, S no-op, L decrease.
302 void LineProcHnopSnopLdec(const color_utils::HSL& hsl_shift,
303                           const SkPMColor* in,
304                           SkPMColor* out,
305                           int width) {
306   const uint32_t den = 65536;
307
308   DCHECK(hsl_shift.h < 0);
309   DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
310   DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0);
311
312   uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den);
313   for (int x = 0; x < width; x++) {
314     uint32_t a = SkGetPackedA32(in[x]);
315     uint32_t r = SkGetPackedR32(in[x]);
316     uint32_t g = SkGetPackedG32(in[x]);
317     uint32_t b = SkGetPackedB32(in[x]);
318     r = r * ldec_num / den;
319     g = g * ldec_num / den;
320     b = b * ldec_num / den;
321     out[x] = SkPackARGB32(a, r, g, b);
322   }
323 }
324
325 // Line processor: H no-op, S no-op, L increase.
326 void LineProcHnopSnopLinc(const color_utils::HSL& hsl_shift,
327                           const SkPMColor* in,
328                           SkPMColor* out,
329                           int width) {
330   const uint32_t den = 65536;
331
332   DCHECK(hsl_shift.h < 0);
333   DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
334   DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
335
336   uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den);
337   for (int x = 0; x < width; x++) {
338     uint32_t a = SkGetPackedA32(in[x]);
339     uint32_t r = SkGetPackedR32(in[x]);
340     uint32_t g = SkGetPackedG32(in[x]);
341     uint32_t b = SkGetPackedB32(in[x]);
342     r += (a - r) * linc_num / den;
343     g += (a - g) * linc_num / den;
344     b += (a - b) * linc_num / den;
345     out[x] = SkPackARGB32(a, r, g, b);
346   }
347 }
348
349 // Saturation changes modifications in RGB
350 //
351 // (Note that as a further complication, the values we deal in are
352 // premultiplied, so R/G/B values must be in the range 0..A. For mathematical
353 // purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of
354 // generality, assume that R/G/B values are in the range 0..1.)
355 //
356 // Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L =
357 // (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant.
358 //
359 // For H to remain constant, first, the (numerical) order of R/G/B (from
360 // smallest to largest) must remain the same. Second, all the ratios
361 // (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of
362 // course, if Max = Min, then S = 0 and no saturation change is well-defined,
363 // since H is not well-defined).
364 //
365 // Let C_max be a colour with value Max, C_min be one with value Min, and C_med
366 // the remaining colour. Increasing saturation (to the maximum) is accomplished
367 // by increasing the value of C_max while simultaneously decreasing C_min and
368 // changing C_med so that the ratios are maintained; for the latter, it suffices
369 // to keep (C_med-C_min)/(C_max-C_min) constant (and equal to
370 // (Med-Min)/(Max-Min)).
371
372 // Line processor: H no-op, S decrease, L no-op.
373 void LineProcHnopSdecLnop(const color_utils::HSL& hsl_shift,
374                           const SkPMColor* in,
375                           SkPMColor* out,
376                           int width) {
377   DCHECK(hsl_shift.h < 0);
378   DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
379   DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
380
381   const int32_t denom = 65536;
382   int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
383   for (int x = 0; x < width; x++) {
384     int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
385     int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
386     int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
387     int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
388
389     int32_t vmax, vmin;
390     if (r > g) {  // This uses 3 compares rather than 4.
391       vmax = std::max(r, b);
392       vmin = std::min(g, b);
393     } else {
394       vmax = std::max(g, b);
395       vmin = std::min(r, b);
396     }
397
398     // Use denom * L to avoid rounding.
399     int32_t denom_l = (vmax + vmin) * (denom / 2);
400     int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
401
402     r = (denom_l + r * s_numer - s_numer_l) / denom;
403     g = (denom_l + g * s_numer - s_numer_l) / denom;
404     b = (denom_l + b * s_numer - s_numer_l) / denom;
405     out[x] = SkPackARGB32(a, r, g, b);
406   }
407 }
408
409 // Line processor: H no-op, S decrease, L decrease.
410 void LineProcHnopSdecLdec(const color_utils::HSL& hsl_shift,
411                           const SkPMColor* in,
412                           SkPMColor* out,
413                           int width) {
414   DCHECK(hsl_shift.h < 0);
415   DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
416   DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon);
417
418   // Can't be too big since we need room for denom*denom and a bit for sign.
419   const int32_t denom = 1024;
420   int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom);
421   int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
422   for (int x = 0; x < width; x++) {
423     int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
424     int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
425     int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
426     int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
427
428     int32_t vmax, vmin;
429     if (r > g) {  // This uses 3 compares rather than 4.
430       vmax = std::max(r, b);
431       vmin = std::min(g, b);
432     } else {
433       vmax = std::max(g, b);
434       vmin = std::min(r, b);
435     }
436
437     // Use denom * L to avoid rounding.
438     int32_t denom_l = (vmax + vmin) * (denom / 2);
439     int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
440
441     r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom);
442     g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom);
443     b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom);
444     out[x] = SkPackARGB32(a, r, g, b);
445   }
446 }
447
448 // Line processor: H no-op, S decrease, L increase.
449 void LineProcHnopSdecLinc(const color_utils::HSL& hsl_shift,
450                           const SkPMColor* in,
451                           SkPMColor* out,
452                           int width) {
453   DCHECK(hsl_shift.h < 0);
454   DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
455   DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
456
457   // Can't be too big since we need room for denom*denom and a bit for sign.
458   const int32_t denom = 1024;
459   int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom);
460   int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
461   for (int x = 0; x < width; x++) {
462     int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
463     int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
464     int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
465     int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
466
467     int32_t vmax, vmin;
468     if (r > g) {  // This uses 3 compares rather than 4.
469       vmax = std::max(r, b);
470       vmin = std::min(g, b);
471     } else {
472       vmax = std::max(g, b);
473       vmin = std::min(r, b);
474     }
475
476     // Use denom * L to avoid rounding.
477     int32_t denom_l = (vmax + vmin) * (denom / 2);
478     int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
479
480     r = denom_l + r * s_numer - s_numer_l;
481     g = denom_l + g * s_numer - s_numer_l;
482     b = denom_l + b * s_numer - s_numer_l;
483
484     r = (r * denom + (a * denom - r) * l_numer) / (denom * denom);
485     g = (g * denom + (a * denom - g) * l_numer) / (denom * denom);
486     b = (b * denom + (a * denom - b) * l_numer) / (denom * denom);
487     out[x] = SkPackARGB32(a, r, g, b);
488   }
489 }
490
491 const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = {
492   { // H: kOpHNone
493     { // S: kOpSNone
494       LineProcCopy,         // L: kOpLNone
495       LineProcHnopSnopLdec, // L: kOpLDec
496       LineProcHnopSnopLinc  // L: kOpLInc
497     },
498     { // S: kOpSDec
499       LineProcHnopSdecLnop, // L: kOpLNone
500       LineProcHnopSdecLdec, // L: kOpLDec
501       LineProcHnopSdecLinc  // L: kOpLInc
502     },
503     { // S: kOpSInc
504       LineProcDefault, // L: kOpLNone
505       LineProcDefault, // L: kOpLDec
506       LineProcDefault  // L: kOpLInc
507     }
508   },
509   { // H: kOpHShift
510     { // S: kOpSNone
511       LineProcDefault, // L: kOpLNone
512       LineProcDefault, // L: kOpLDec
513       LineProcDefault  // L: kOpLInc
514     },
515     { // S: kOpSDec
516       LineProcDefault, // L: kOpLNone
517       LineProcDefault, // L: kOpLDec
518       LineProcDefault  // L: kOpLInc
519     },
520     { // S: kOpSInc
521       LineProcDefault, // L: kOpLNone
522       LineProcDefault, // L: kOpLDec
523       LineProcDefault  // L: kOpLInc
524     }
525   }
526 };
527
528 }  // namespace HSLShift
529 }  // namespace
530
531 // static
532 SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap(
533     const SkBitmap& bitmap,
534     const color_utils::HSL& hsl_shift) {
535   // Default to NOPs.
536   HSLShift::OperationOnH H_op = HSLShift::kOpHNone;
537   HSLShift::OperationOnS S_op = HSLShift::kOpSNone;
538   HSLShift::OperationOnL L_op = HSLShift::kOpLNone;
539
540   if (hsl_shift.h >= 0 && hsl_shift.h <= 1)
541     H_op = HSLShift::kOpHShift;
542
543   // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate.
544   if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon))
545     S_op = HSLShift::kOpSDec;
546   else if (hsl_shift.s >= (0.5 + HSLShift::epsilon))
547     S_op = HSLShift::kOpSInc;
548
549   // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white.
550   if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon))
551     L_op = HSLShift::kOpLDec;
552   else if (hsl_shift.l >= (0.5 + HSLShift::epsilon))
553     L_op = HSLShift::kOpLInc;
554
555   HSLShift::LineProcessor line_proc =
556       HSLShift::kLineProcessors[H_op][S_op][L_op];
557
558   DCHECK(bitmap.empty() == false);
559   DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);
560
561   SkBitmap shifted;
562   shifted.setConfig(SkBitmap::kARGB_8888_Config, bitmap.width(),
563                     bitmap.height());
564   shifted.allocPixels();
565   shifted.eraseARGB(0, 0, 0, 0);
566
567   SkAutoLockPixels lock_bitmap(bitmap);
568   SkAutoLockPixels lock_shifted(shifted);
569
570   // Loop through the pixels of the original bitmap.
571   for (int y = 0; y < bitmap.height(); ++y) {
572     SkPMColor* pixels = bitmap.getAddr32(0, y);
573     SkPMColor* tinted_pixels = shifted.getAddr32(0, y);
574
575     (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width());
576   }
577
578   return shifted;
579 }
580
581 // static
582 SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source,
583                                                int src_x, int src_y,
584                                                int dst_w, int dst_h) {
585   DCHECK(source.config() == SkBitmap::kARGB_8888_Config);
586
587   SkBitmap cropped;
588   cropped.setConfig(SkBitmap::kARGB_8888_Config, dst_w, dst_h, 0);
589   cropped.allocPixels();
590   cropped.eraseARGB(0, 0, 0, 0);
591
592   SkAutoLockPixels lock_source(source);
593   SkAutoLockPixels lock_cropped(cropped);
594
595   // Loop through the pixels of the original bitmap.
596   for (int y = 0; y < dst_h; ++y) {
597     int y_pix = (src_y + y) % source.height();
598     while (y_pix < 0)
599       y_pix += source.height();
600
601     uint32* source_row = source.getAddr32(0, y_pix);
602     uint32* dst_row = cropped.getAddr32(0, y);
603
604     for (int x = 0; x < dst_w; ++x) {
605       int x_pix = (src_x + x) % source.width();
606       while (x_pix < 0)
607         x_pix += source.width();
608
609       dst_row[x] = source_row[x_pix];
610     }
611   }
612
613   return cropped;
614 }
615
616 // static
617 SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap,
618                                                       int min_w, int min_h) {
619   if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) ||
620       (min_w < 0) || (min_h < 0))
621     return bitmap;
622
623   // Since bitmaps are refcounted, this copy will be fast.
624   SkBitmap current = bitmap;
625   while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) &&
626          (current.width() > 1) && (current.height() > 1))
627     current = DownsampleByTwo(current);
628   return current;
629 }
630
631 // static
632 SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) {
633   // Handle the nop case.
634   if ((bitmap.width() <= 1) || (bitmap.height() <= 1))
635     return bitmap;
636
637   SkBitmap result;
638   result.setConfig(SkBitmap::kARGB_8888_Config,
639                    (bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2);
640   result.allocPixels();
641
642   SkAutoLockPixels lock(bitmap);
643
644   const int resultLastX = result.width() - 1;
645   const int srcLastX = bitmap.width() - 1;
646
647   for (int dest_y = 0; dest_y < result.height(); ++dest_y) {
648     const int src_y = dest_y << 1;
649     const SkPMColor* SK_RESTRICT cur_src0 = bitmap.getAddr32(0, src_y);
650     const SkPMColor* SK_RESTRICT cur_src1 = cur_src0;
651     if (src_y + 1 < bitmap.height())
652       cur_src1 = bitmap.getAddr32(0, src_y + 1);
653
654     SkPMColor* SK_RESTRICT cur_dst = result.getAddr32(0, dest_y);
655
656     for (int dest_x = 0; dest_x <= resultLastX; ++dest_x) {
657       // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very
658       // clever in that it does two channels at once: alpha and green ("ag")
659       // and red and blue ("rb"). Each channel gets averaged across 4 pixels
660       // to get the result.
661       int bump_x = (dest_x << 1) < srcLastX;
662       SkPMColor tmp, ag, rb;
663
664       // Top left pixel of the 2x2 block.
665       tmp = cur_src0[0];
666       ag = (tmp >> 8) & 0xFF00FF;
667       rb = tmp & 0xFF00FF;
668
669       // Top right pixel of the 2x2 block.
670       tmp = cur_src0[bump_x];
671       ag += (tmp >> 8) & 0xFF00FF;
672       rb += tmp & 0xFF00FF;
673
674       // Bottom left pixel of the 2x2 block.
675       tmp = cur_src1[0];
676       ag += (tmp >> 8) & 0xFF00FF;
677       rb += tmp & 0xFF00FF;
678
679       // Bottom right pixel of the 2x2 block.
680       tmp = cur_src1[bump_x];
681       ag += (tmp >> 8) & 0xFF00FF;
682       rb += tmp & 0xFF00FF;
683
684       // Put the channels back together, dividing each by 4 to get the average.
685       // |ag| has the alpha and green channels shifted right by 8 bits from
686       // there they should end up, so shifting left by 6 gives them in the
687       // correct position divided by 4.
688       *cur_dst++ = ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00);
689
690       cur_src0 += 2;
691       cur_src1 += 2;
692     }
693   }
694
695   return result;
696 }
697
698 // static
699 SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) {
700   if (bitmap.isNull())
701     return bitmap;
702   if (bitmap.isOpaque())
703     return bitmap;
704
705   SkBitmap opaque_bitmap;
706   opaque_bitmap.setConfig(bitmap.config(), bitmap.width(), bitmap.height(),
707                           0, kOpaque_SkAlphaType);
708   opaque_bitmap.allocPixels();
709
710   {
711     SkAutoLockPixels bitmap_lock(bitmap);
712     SkAutoLockPixels opaque_bitmap_lock(opaque_bitmap);
713     for (int y = 0; y < opaque_bitmap.height(); y++) {
714       for (int x = 0; x < opaque_bitmap.width(); x++) {
715         uint32 src_pixel = *bitmap.getAddr32(x, y);
716         uint32* dst_pixel = opaque_bitmap.getAddr32(x, y);
717         SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel);
718         *dst_pixel = unmultiplied;
719       }
720     }
721   }
722
723   return opaque_bitmap;
724 }
725
726 // static
727 SkBitmap SkBitmapOperations::CreateTransposedBitmap(const SkBitmap& image) {
728   DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
729
730   SkBitmap transposed;
731   transposed.setConfig(
732       SkBitmap::kARGB_8888_Config, image.height(), image.width(), 0);
733   transposed.allocPixels();
734
735   SkAutoLockPixels lock_image(image);
736   SkAutoLockPixels lock_transposed(transposed);
737
738   for (int y = 0; y < image.height(); ++y) {
739     uint32* image_row = image.getAddr32(0, y);
740     for (int x = 0; x < image.width(); ++x) {
741       uint32* dst = transposed.getAddr32(y, x);
742       *dst = image_row[x];
743     }
744   }
745
746   return transposed;
747 }
748
749 // static
750 SkBitmap SkBitmapOperations::CreateColorMask(const SkBitmap& bitmap,
751                                              SkColor c) {
752   DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);
753
754   SkBitmap color_mask;
755   color_mask.setConfig(SkBitmap::kARGB_8888_Config,
756                        bitmap.width(), bitmap.height());
757   color_mask.allocPixels();
758   color_mask.eraseARGB(0, 0, 0, 0);
759
760   SkCanvas canvas(color_mask);
761
762   skia::RefPtr<SkColorFilter> color_filter = skia::AdoptRef(
763       SkColorFilter::CreateModeFilter(c, SkXfermode::kSrcIn_Mode));
764   SkPaint paint;
765   paint.setColorFilter(color_filter.get());
766   canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0), &paint);
767   return color_mask;
768 }
769
770 // static
771 SkBitmap SkBitmapOperations::CreateDropShadow(
772     const SkBitmap& bitmap,
773     const gfx::ShadowValues& shadows) {
774   DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);
775
776   // Shadow margin insets are negative values because they grow outside.
777   // Negate them here as grow direction is not important and only pixel value
778   // is of interest here.
779   gfx::Insets shadow_margin = -gfx::ShadowValue::GetMargin(shadows);
780
781   SkBitmap image_with_shadow;
782   image_with_shadow.setConfig(SkBitmap::kARGB_8888_Config,
783                               bitmap.width() + shadow_margin.width(),
784                               bitmap.height() + shadow_margin.height());
785   image_with_shadow.allocPixels();
786   image_with_shadow.eraseARGB(0, 0, 0, 0);
787
788   SkCanvas canvas(image_with_shadow);
789   canvas.translate(SkIntToScalar(shadow_margin.left()),
790                    SkIntToScalar(shadow_margin.top()));
791
792   SkPaint paint;
793   for (size_t i = 0; i < shadows.size(); ++i) {
794     const gfx::ShadowValue& shadow = shadows[i];
795     SkBitmap shadow_image = SkBitmapOperations::CreateColorMask(bitmap,
796                                                                 shadow.color());
797
798     skia::RefPtr<SkBlurImageFilter> filter =
799         skia::AdoptRef(new SkBlurImageFilter(SkDoubleToScalar(shadow.blur()),
800                                              SkDoubleToScalar(shadow.blur())));
801     paint.setImageFilter(filter.get());
802
803     canvas.saveLayer(0, &paint);
804     canvas.drawBitmap(shadow_image,
805                       SkIntToScalar(shadow.x()),
806                       SkIntToScalar(shadow.y()));
807     canvas.restore();
808   }
809
810   canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0));
811   return image_with_shadow;
812 }
813
814 // static
815 SkBitmap SkBitmapOperations::Rotate(const SkBitmap& source,
816                                     RotationAmount rotation) {
817   SkBitmap result;
818   SkScalar angle = SkFloatToScalar(0.0f);
819
820   switch (rotation) {
821    case ROTATION_90_CW:
822      angle = SkFloatToScalar(90.0f);
823      result.setConfig(
824          SkBitmap::kARGB_8888_Config, source.height(), source.width());
825      break;
826    case ROTATION_180_CW:
827      angle = SkFloatToScalar(180.0f);
828      result.setConfig(
829          SkBitmap::kARGB_8888_Config, source.width(), source.height());
830      break;
831    case ROTATION_270_CW:
832      angle = SkFloatToScalar(270.0f);
833      result.setConfig(
834          SkBitmap::kARGB_8888_Config, source.height(), source.width());
835      break;
836   }
837   result.allocPixels();
838   SkCanvas canvas(result);
839   canvas.clear(SkColorSetARGB(0, 0, 0, 0));
840
841   canvas.translate(SkFloatToScalar(result.width() * 0.5f),
842                    SkFloatToScalar(result.height() * 0.5f));
843   canvas.rotate(angle);
844   canvas.translate(-SkFloatToScalar(source.width() * 0.5f),
845                    -SkFloatToScalar(source.height() * 0.5f));
846   canvas.drawBitmap(source, 0, 0);
847   canvas.flush();
848
849   return result;
850 }