Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / third_party / skia / tests / PathCoverageTest.cpp
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7
8 #include "SkMath.h"
9 #include "SkPoint.h"
10 #include "SkScalar.h"
11 #include "Test.h"
12
13 /*
14    Duplicates lots of code from gpu/src/GrPathUtils.cpp
15    It'd be nice not to do so, but that code's set up currently to only have
16    a single implementation.
17 */
18
19 // Sk uses 6, Gr (implicitly) used 10, both apparently arbitrarily.
20 #define MAX_COEFF_SHIFT     6
21 static const uint32_t MAX_POINTS_PER_CURVE = 1 << MAX_COEFF_SHIFT;
22
23 // max + 0.5 min has error [0.0, 0.12]
24 // max + 0.375 min has error [-.03, 0.07]
25 // 0.96043387 max + 0.397824735 min has error [-.06, +.05]
26 // For determining the maximum possible number of points to use in
27 // drawing a quadratic, we want to err on the high side.
28 static inline int cheap_distance(SkScalar dx, SkScalar dy) {
29     int idx = SkAbs32(SkScalarRoundToInt(dx));
30     int idy = SkAbs32(SkScalarRoundToInt(dy));
31     if (idx > idy) {
32         idx += idy >> 1;
33     } else {
34         idx = idy + (idx >> 1);
35     }
36     return idx;
37 }
38
39 static inline int estimate_distance(const SkPoint points[]) {
40     return cheap_distance(points[1].fX * 2 - points[2].fX - points[0].fX,
41                           points[1].fY * 2 - points[2].fY - points[0].fY);
42 }
43
44 static inline SkScalar compute_distance(const SkPoint points[]) {
45     return points[1].distanceToLineSegmentBetween(points[0], points[2]);
46 }
47
48 static inline uint32_t estimate_pointCount(int distance) {
49     // Includes -2 bias because this estimator runs 4x high?
50     int shift = 30 - SkCLZ(distance);
51     // Clamp to zero if above subtraction went negative.
52     shift &= ~(shift>>31);
53     if (shift > MAX_COEFF_SHIFT) {
54         shift = MAX_COEFF_SHIFT;
55     }
56     return 1 << shift;
57 }
58
59 static inline uint32_t compute_pointCount(SkScalar d, SkScalar tol) {
60     if (d < tol) {
61        return 1;
62     } else {
63        int temp = SkScalarCeilToInt(SkScalarSqrt(SkScalarDiv(d, tol)));
64        uint32_t count = SkMin32(SkNextPow2(temp), MAX_POINTS_PER_CURVE);
65        return count;
66     }
67 }
68
69 static uint32_t quadraticPointCount_EE(const SkPoint points[]) {
70     int distance = estimate_distance(points);
71     return estimate_pointCount(distance);
72 }
73
74 static uint32_t quadraticPointCount_EC(const SkPoint points[], SkScalar tol) {
75     int distance = estimate_distance(points);
76     return compute_pointCount(SkIntToScalar(distance), tol);
77 }
78
79 static uint32_t quadraticPointCount_CE(const SkPoint points[]) {
80     SkScalar distance = compute_distance(points);
81     return estimate_pointCount(SkScalarRoundToInt(distance));
82 }
83
84 static uint32_t quadraticPointCount_CC(const SkPoint points[], SkScalar tol) {
85     SkScalar distance = compute_distance(points);
86     return compute_pointCount(distance, tol);
87 }
88
89 // Curve from samplecode/SampleSlides.cpp
90 static const int gXY[] = {
91     4, 0, 0, -4, 8, -4, 12, 0, 8, 4, 0, 4
92 };
93
94 static const int gSawtooth[] = {
95     0, 0, 10, 10, 20, 20, 30, 10, 40, 0, 50, -10, 60, -20, 70, -10, 80, 0
96 };
97
98 static const int gOvalish[] = {
99     0, 0, 5, 15, 20, 20, 35, 15, 40, 0
100 };
101
102 static const int gSharpSawtooth[] = {
103     0, 0, 1, 10, 2, 0, 3, -10, 4, 0
104 };
105
106 // Curve crosses back over itself around 0,10
107 static const int gRibbon[] = {
108    -4, 0, 4, 20, 0, 25, -4, 20, 4, 0
109 };
110
111 static bool one_d_pe(const int* array, const unsigned int count,
112                      skiatest::Reporter* reporter) {
113     SkPoint path [3];
114     path[1] = SkPoint::Make(SkIntToScalar(array[0]), SkIntToScalar(array[1]));
115     path[2] = SkPoint::Make(SkIntToScalar(array[2]), SkIntToScalar(array[3]));
116     int numErrors = 0;
117     for (unsigned i = 4; i < count; i += 2) {
118         path[0] = path[1];
119         path[1] = path[2];
120         path[2] = SkPoint::Make(SkIntToScalar(array[i]),
121                                 SkIntToScalar(array[i+1]));
122         uint32_t computedCount =
123             quadraticPointCount_CC(path, SkIntToScalar(1));
124         uint32_t estimatedCount =
125             quadraticPointCount_EE(path);
126
127         if (false) { // avoid bit rot, suppress warning
128             computedCount =
129                     quadraticPointCount_EC(path, SkIntToScalar(1));
130             estimatedCount =
131                     quadraticPointCount_CE(path);
132         }
133         // Allow estimated to be high by a factor of two, but no less than
134         // the computed value.
135         bool isAccurate = (estimatedCount >= computedCount) &&
136             (estimatedCount <= 2 * computedCount);
137
138         if (!isAccurate) {
139             ERRORF(reporter, "Curve from %.2f %.2f through %.2f %.2f to "
140                    "%.2f %.2f computes %d, estimates %d\n",
141                    path[0].fX, path[0].fY, path[1].fX, path[1].fY,
142                    path[2].fX, path[2].fY, computedCount, estimatedCount);
143             numErrors++;
144         }
145     }
146
147     return (numErrors == 0);
148 }
149
150
151
152 static void TestQuadPointCount(skiatest::Reporter* reporter) {
153     one_d_pe(gXY, SK_ARRAY_COUNT(gXY), reporter);
154     one_d_pe(gSawtooth, SK_ARRAY_COUNT(gSawtooth), reporter);
155     one_d_pe(gOvalish, SK_ARRAY_COUNT(gOvalish), reporter);
156     one_d_pe(gSharpSawtooth, SK_ARRAY_COUNT(gSharpSawtooth), reporter);
157     one_d_pe(gRibbon, SK_ARRAY_COUNT(gRibbon), reporter);
158 }
159
160 DEF_TEST(PathCoverage, reporter) {
161     TestQuadPointCount(reporter);
162
163 }