Update To 11.40.268.0
[platform/framework/web/crosswalk.git] / src / third_party / skia / src / gpu / GrAAConvexPathRenderer.cpp
1
2 /*
3  * Copyright 2012 Google Inc.
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8
9 #include "GrAAConvexPathRenderer.h"
10
11 #include "GrContext.h"
12 #include "GrDrawState.h"
13 #include "GrDrawTargetCaps.h"
14 #include "GrProcessor.h"
15 #include "GrPathUtils.h"
16 #include "GrTBackendProcessorFactory.h"
17 #include "SkString.h"
18 #include "SkStrokeRec.h"
19 #include "SkTraceEvent.h"
20
21 #include "gl/builders/GrGLProgramBuilder.h"
22 #include "gl/GrGLProcessor.h"
23 #include "gl/GrGLSL.h"
24 #include "gl/GrGLGeometryProcessor.h"
25
26 #include "GrGeometryProcessor.h"
27
28 GrAAConvexPathRenderer::GrAAConvexPathRenderer() {
29 }
30
31 struct Segment {
32     enum {
33         // These enum values are assumed in member functions below.
34         kLine = 0,
35         kQuad = 1,
36     } fType;
37
38     // line uses one pt, quad uses 2 pts
39     SkPoint fPts[2];
40     // normal to edge ending at each pt
41     SkVector fNorms[2];
42     // is the corner where the previous segment meets this segment
43     // sharp. If so, fMid is a normalized bisector facing outward.
44     SkVector fMid;
45
46     int countPoints() {
47         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
48         return fType + 1;
49     }
50     const SkPoint& endPt() const {
51         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
52         return fPts[fType];
53     };
54     const SkPoint& endNorm() const {
55         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
56         return fNorms[fType];
57     };
58 };
59
60 typedef SkTArray<Segment, true> SegmentArray;
61
62 static void center_of_mass(const SegmentArray& segments, SkPoint* c) {
63     SkScalar area = 0;
64     SkPoint center = {0, 0};
65     int count = segments.count();
66     SkPoint p0 = {0, 0};
67     if (count > 2) {
68         // We translate the polygon so that the first point is at the origin.
69         // This avoids some precision issues with small area polygons far away
70         // from the origin.
71         p0 = segments[0].endPt();
72         SkPoint pi;
73         SkPoint pj;
74         // the first and last iteration of the below loop would compute
75         // zeros since the starting / ending point is (0,0). So instead we start
76         // at i=1 and make the last iteration i=count-2.
77         pj = segments[1].endPt() - p0;
78         for (int i = 1; i < count - 1; ++i) {
79             pi = pj;
80             const SkPoint pj = segments[i + 1].endPt() - p0;
81
82             SkScalar t = SkScalarMul(pi.fX, pj.fY) - SkScalarMul(pj.fX, pi.fY);
83             area += t;
84             center.fX += (pi.fX + pj.fX) * t;
85             center.fY += (pi.fY + pj.fY) * t;
86
87         }
88     }
89     // If the poly has no area then we instead return the average of
90     // its points.
91     if (SkScalarNearlyZero(area)) {
92         SkPoint avg;
93         avg.set(0, 0);
94         for (int i = 0; i < count; ++i) {
95             const SkPoint& pt = segments[i].endPt();
96             avg.fX += pt.fX;
97             avg.fY += pt.fY;
98         }
99         SkScalar denom = SK_Scalar1 / count;
100         avg.scale(denom);
101         *c = avg;
102     } else {
103         area *= 3;
104         area = SkScalarDiv(SK_Scalar1, area);
105         center.fX = SkScalarMul(center.fX, area);
106         center.fY = SkScalarMul(center.fY, area);
107         // undo the translate of p0 to the origin.
108         *c = center + p0;
109     }
110     SkASSERT(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY));
111 }
112
113 static void compute_vectors(SegmentArray* segments,
114                             SkPoint* fanPt,
115                             SkPath::Direction dir,
116                             int* vCount,
117                             int* iCount) {
118     center_of_mass(*segments, fanPt);
119     int count = segments->count();
120
121     // Make the normals point towards the outside
122     SkPoint::Side normSide;
123     if (dir == SkPath::kCCW_Direction) {
124         normSide = SkPoint::kRight_Side;
125     } else {
126         normSide = SkPoint::kLeft_Side;
127     }
128
129     *vCount = 0;
130     *iCount = 0;
131     // compute normals at all points
132     for (int a = 0; a < count; ++a) {
133         Segment& sega = (*segments)[a];
134         int b = (a + 1) % count;
135         Segment& segb = (*segments)[b];
136
137         const SkPoint* prevPt = &sega.endPt();
138         int n = segb.countPoints();
139         for (int p = 0; p < n; ++p) {
140             segb.fNorms[p] = segb.fPts[p] - *prevPt;
141             segb.fNorms[p].normalize();
142             segb.fNorms[p].setOrthog(segb.fNorms[p], normSide);
143             prevPt = &segb.fPts[p];
144         }
145         if (Segment::kLine == segb.fType) {
146             *vCount += 5;
147             *iCount += 9;
148         } else {
149             *vCount += 6;
150             *iCount += 12;
151         }
152     }
153
154     // compute mid-vectors where segments meet. TODO: Detect shallow corners
155     // and leave out the wedges and close gaps by stitching segments together.
156     for (int a = 0; a < count; ++a) {
157         const Segment& sega = (*segments)[a];
158         int b = (a + 1) % count;
159         Segment& segb = (*segments)[b];
160         segb.fMid = segb.fNorms[0] + sega.endNorm();
161         segb.fMid.normalize();
162         // corner wedges
163         *vCount += 4;
164         *iCount += 6;
165     }
166 }
167
168 struct DegenerateTestData {
169     DegenerateTestData() { fStage = kInitial; }
170     bool isDegenerate() const { return kNonDegenerate != fStage; }
171     enum {
172         kInitial,
173         kPoint,
174         kLine,
175         kNonDegenerate
176     }           fStage;
177     SkPoint     fFirstPoint;
178     SkVector    fLineNormal;
179     SkScalar    fLineC;
180 };
181
182 static const SkScalar kClose = (SK_Scalar1 / 16);
183 static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose);
184
185 static void update_degenerate_test(DegenerateTestData* data, const SkPoint& pt) {
186     switch (data->fStage) {
187         case DegenerateTestData::kInitial:
188             data->fFirstPoint = pt;
189             data->fStage = DegenerateTestData::kPoint;
190             break;
191         case DegenerateTestData::kPoint:
192             if (pt.distanceToSqd(data->fFirstPoint) > kCloseSqd) {
193                 data->fLineNormal = pt - data->fFirstPoint;
194                 data->fLineNormal.normalize();
195                 data->fLineNormal.setOrthog(data->fLineNormal);
196                 data->fLineC = -data->fLineNormal.dot(data->fFirstPoint);
197                 data->fStage = DegenerateTestData::kLine;
198             }
199             break;
200         case DegenerateTestData::kLine:
201             if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) {
202                 data->fStage = DegenerateTestData::kNonDegenerate;
203             }
204         case DegenerateTestData::kNonDegenerate:
205             break;
206         default:
207             SkFAIL("Unexpected degenerate test stage.");
208     }
209 }
210
211 static inline bool get_direction(const SkPath& path, const SkMatrix& m, SkPath::Direction* dir) {
212     if (!path.cheapComputeDirection(dir)) {
213         return false;
214     }
215     // check whether m reverses the orientation
216     SkASSERT(!m.hasPerspective());
217     SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) -
218                       SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY));
219     if (det2x2 < 0) {
220         *dir = SkPath::OppositeDirection(*dir);
221     }
222     return true;
223 }
224
225 static inline void add_line_to_segment(const SkPoint& pt,
226                                        SegmentArray* segments,
227                                        SkRect* devBounds) {
228     segments->push_back();
229     segments->back().fType = Segment::kLine;
230     segments->back().fPts[0] = pt;
231     devBounds->growToInclude(pt.fX, pt.fY);
232 }
233
234 #ifdef SK_DEBUG
235 static inline bool contains_inclusive(const SkRect& rect, const SkPoint& p) {
236     return p.fX >= rect.fLeft && p.fX <= rect.fRight && p.fY >= rect.fTop && p.fY <= rect.fBottom;
237 }
238 #endif
239
240 static inline void add_quad_segment(const SkPoint pts[3],
241                                     SegmentArray* segments,
242                                     SkRect* devBounds) {
243     if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || pts[1].distanceToSqd(pts[2]) < kCloseSqd) {
244         if (pts[0] != pts[2]) {
245             add_line_to_segment(pts[2], segments, devBounds);
246         }
247     } else {
248         segments->push_back();
249         segments->back().fType = Segment::kQuad;
250         segments->back().fPts[0] = pts[1];
251         segments->back().fPts[1] = pts[2];
252         SkASSERT(contains_inclusive(*devBounds, pts[0]));
253         devBounds->growToInclude(pts + 1, 2);
254     }
255 }
256
257 static inline void add_cubic_segments(const SkPoint pts[4],
258                                       SkPath::Direction dir,
259                                       SegmentArray* segments,
260                                       SkRect* devBounds) {
261     SkSTArray<15, SkPoint, true> quads;
262     GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads);
263     int count = quads.count();
264     for (int q = 0; q < count; q += 3) {
265         add_quad_segment(&quads[q], segments, devBounds);
266     }
267 }
268
269 static bool get_segments(const SkPath& path,
270                          const SkMatrix& m,
271                          SegmentArray* segments,
272                          SkPoint* fanPt,
273                          int* vCount,
274                          int* iCount,
275                          SkRect* devBounds) {
276     SkPath::Iter iter(path, true);
277     // This renderer over-emphasizes very thin path regions. We use the distance
278     // to the path from the sample to compute coverage. Every pixel intersected
279     // by the path will be hit and the maximum distance is sqrt(2)/2. We don't
280     // notice that the sample may be close to a very thin area of the path and
281     // thus should be very light. This is particularly egregious for degenerate
282     // line paths. We detect paths that are very close to a line (zero area) and
283     // draw nothing.
284     DegenerateTestData degenerateData;
285     SkPath::Direction dir;
286     // get_direction can fail for some degenerate paths.
287     if (!get_direction(path, m, &dir)) {
288         return false;
289     }
290
291     for (;;) {
292         SkPoint pts[4];
293         SkPath::Verb verb = iter.next(pts);
294         switch (verb) {
295             case SkPath::kMove_Verb:
296                 m.mapPoints(pts, 1);
297                 update_degenerate_test(&degenerateData, pts[0]);
298                 devBounds->set(pts->fX, pts->fY, pts->fX, pts->fY);
299                 break;
300             case SkPath::kLine_Verb: {
301                 m.mapPoints(&pts[1], 1);
302                 update_degenerate_test(&degenerateData, pts[1]);
303                 add_line_to_segment(pts[1], segments, devBounds);
304                 break;
305             }
306             case SkPath::kQuad_Verb:
307                 m.mapPoints(pts, 3);
308                 update_degenerate_test(&degenerateData, pts[1]);
309                 update_degenerate_test(&degenerateData, pts[2]);
310                 add_quad_segment(pts, segments, devBounds);
311                 break;
312             case SkPath::kCubic_Verb: {
313                 m.mapPoints(pts, 4);
314                 update_degenerate_test(&degenerateData, pts[1]);
315                 update_degenerate_test(&degenerateData, pts[2]);
316                 update_degenerate_test(&degenerateData, pts[3]);
317                 add_cubic_segments(pts, dir, segments, devBounds);
318                 break;
319             };
320             case SkPath::kDone_Verb:
321                 if (degenerateData.isDegenerate()) {
322                     return false;
323                 } else {
324                     compute_vectors(segments, fanPt, dir, vCount, iCount);
325                     return true;
326                 }
327             default:
328                 break;
329         }
330     }
331 }
332
333 struct QuadVertex {
334     SkPoint  fPos;
335     SkPoint  fUV;
336     SkScalar fD0;
337     SkScalar fD1;
338 };
339
340 struct Draw {
341     Draw() : fVertexCnt(0), fIndexCnt(0) {}
342     int fVertexCnt;
343     int fIndexCnt;
344 };
345
346 typedef SkTArray<Draw, true> DrawArray;
347
348 static void create_vertices(const SegmentArray&  segments,
349                             const SkPoint& fanPt,
350                             DrawArray*     draws,
351                             QuadVertex*    verts,
352                             uint16_t*      idxs) {
353     Draw* draw = &draws->push_back();
354     // alias just to make vert/index assignments easier to read.
355     int* v = &draw->fVertexCnt;
356     int* i = &draw->fIndexCnt;
357
358     int count = segments.count();
359     for (int a = 0; a < count; ++a) {
360         const Segment& sega = segments[a];
361         int b = (a + 1) % count;
362         const Segment& segb = segments[b];
363
364         // Check whether adding the verts for this segment to the current draw would cause index
365         // values to overflow.
366         int vCount = 4;
367         if (Segment::kLine == segb.fType) {
368             vCount += 5;
369         } else {
370             vCount += 6;
371         }
372         if (draw->fVertexCnt + vCount > (1 << 16)) {
373             verts += *v;
374             idxs += *i;
375             draw = &draws->push_back();
376             v = &draw->fVertexCnt;
377             i = &draw->fIndexCnt;
378         }
379
380         // FIXME: These tris are inset in the 1 unit arc around the corner
381         verts[*v + 0].fPos = sega.endPt();
382         verts[*v + 1].fPos = verts[*v + 0].fPos + sega.endNorm();
383         verts[*v + 2].fPos = verts[*v + 0].fPos + segb.fMid;
384         verts[*v + 3].fPos = verts[*v + 0].fPos + segb.fNorms[0];
385         verts[*v + 0].fUV.set(0,0);
386         verts[*v + 1].fUV.set(0,-SK_Scalar1);
387         verts[*v + 2].fUV.set(0,-SK_Scalar1);
388         verts[*v + 3].fUV.set(0,-SK_Scalar1);
389         verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1;
390         verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1;
391         verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1;
392         verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1;
393
394         idxs[*i + 0] = *v + 0;
395         idxs[*i + 1] = *v + 2;
396         idxs[*i + 2] = *v + 1;
397         idxs[*i + 3] = *v + 0;
398         idxs[*i + 4] = *v + 3;
399         idxs[*i + 5] = *v + 2;
400
401         *v += 4;
402         *i += 6;
403
404         if (Segment::kLine == segb.fType) {
405             verts[*v + 0].fPos = fanPt;
406             verts[*v + 1].fPos = sega.endPt();
407             verts[*v + 2].fPos = segb.fPts[0];
408
409             verts[*v + 3].fPos = verts[*v + 1].fPos + segb.fNorms[0];
410             verts[*v + 4].fPos = verts[*v + 2].fPos + segb.fNorms[0];
411
412             // we draw the line edge as a degenerate quad (u is 0, v is the
413             // signed distance to the edge)
414             SkScalar dist = fanPt.distanceToLineBetween(verts[*v + 1].fPos,
415                                                         verts[*v + 2].fPos);
416             verts[*v + 0].fUV.set(0, dist);
417             verts[*v + 1].fUV.set(0, 0);
418             verts[*v + 2].fUV.set(0, 0);
419             verts[*v + 3].fUV.set(0, -SK_Scalar1);
420             verts[*v + 4].fUV.set(0, -SK_Scalar1);
421
422             verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1;
423             verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1;
424             verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1;
425             verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1;
426             verts[*v + 4].fD0 = verts[*v + 4].fD1 = -SK_Scalar1;
427
428             idxs[*i + 0] = *v + 0;
429             idxs[*i + 1] = *v + 2;
430             idxs[*i + 2] = *v + 1;
431
432             idxs[*i + 3] = *v + 3;
433             idxs[*i + 4] = *v + 1;
434             idxs[*i + 5] = *v + 2;
435
436             idxs[*i + 6] = *v + 4;
437             idxs[*i + 7] = *v + 3;
438             idxs[*i + 8] = *v + 2;
439
440             *v += 5;
441             *i += 9;
442         } else {
443             SkPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]};
444
445             SkVector midVec = segb.fNorms[0] + segb.fNorms[1];
446             midVec.normalize();
447
448             verts[*v + 0].fPos = fanPt;
449             verts[*v + 1].fPos = qpts[0];
450             verts[*v + 2].fPos = qpts[2];
451             verts[*v + 3].fPos = qpts[0] + segb.fNorms[0];
452             verts[*v + 4].fPos = qpts[2] + segb.fNorms[1];
453             verts[*v + 5].fPos = qpts[1] + midVec;
454
455             SkScalar c = segb.fNorms[0].dot(qpts[0]);
456             verts[*v + 0].fD0 =  -segb.fNorms[0].dot(fanPt) + c;
457             verts[*v + 1].fD0 =  0.f;
458             verts[*v + 2].fD0 =  -segb.fNorms[0].dot(qpts[2]) + c;
459             verts[*v + 3].fD0 = -SK_ScalarMax/100;
460             verts[*v + 4].fD0 = -SK_ScalarMax/100;
461             verts[*v + 5].fD0 = -SK_ScalarMax/100;
462
463             c = segb.fNorms[1].dot(qpts[2]);
464             verts[*v + 0].fD1 =  -segb.fNorms[1].dot(fanPt) + c;
465             verts[*v + 1].fD1 =  -segb.fNorms[1].dot(qpts[0]) + c;
466             verts[*v + 2].fD1 =  0.f;
467             verts[*v + 3].fD1 = -SK_ScalarMax/100;
468             verts[*v + 4].fD1 = -SK_ScalarMax/100;
469             verts[*v + 5].fD1 = -SK_ScalarMax/100;
470
471             GrPathUtils::QuadUVMatrix toUV(qpts);
472             toUV.apply<6, sizeof(QuadVertex), sizeof(SkPoint)>(verts + *v);
473
474             idxs[*i + 0] = *v + 3;
475             idxs[*i + 1] = *v + 1;
476             idxs[*i + 2] = *v + 2;
477             idxs[*i + 3] = *v + 4;
478             idxs[*i + 4] = *v + 3;
479             idxs[*i + 5] = *v + 2;
480
481             idxs[*i + 6] = *v + 5;
482             idxs[*i + 7] = *v + 3;
483             idxs[*i + 8] = *v + 4;
484
485             idxs[*i +  9] = *v + 0;
486             idxs[*i + 10] = *v + 2;
487             idxs[*i + 11] = *v + 1;
488
489             *v += 6;
490             *i += 12;
491         }
492     }
493 }
494
495 ///////////////////////////////////////////////////////////////////////////////
496
497 /*
498  * Quadratic specified by 0=u^2-v canonical coords. u and v are the first
499  * two components of the vertex attribute. Coverage is based on signed
500  * distance with negative being inside, positive outside. The edge is specified in
501  * window space (y-down). If either the third or fourth component of the interpolated
502  * vertex coord is > 0 then the pixel is considered outside the edge. This is used to
503  * attempt to trim to a portion of the infinite quad.
504  * Requires shader derivative instruction support.
505  */
506
507 class QuadEdgeEffect : public GrGeometryProcessor {
508 public:
509
510     static GrGeometryProcessor* Create() {
511         GR_CREATE_STATIC_PROCESSOR(gQuadEdgeEffect, QuadEdgeEffect, ());
512         gQuadEdgeEffect->ref();
513         return gQuadEdgeEffect;
514     }
515
516     virtual ~QuadEdgeEffect() {}
517
518     static const char* Name() { return "QuadEdge"; }
519
520     const GrShaderVar& inQuadEdge() const { return fInQuadEdge; }
521
522     virtual const GrBackendGeometryProcessorFactory& getFactory() const SK_OVERRIDE {
523         return GrTBackendGeometryProcessorFactory<QuadEdgeEffect>::getInstance();
524     }
525
526     class GLProcessor : public GrGLGeometryProcessor {
527     public:
528         GLProcessor(const GrBackendProcessorFactory& factory, const GrProcessor&)
529             : INHERITED (factory) {}
530
531         virtual void emitCode(const EmitArgs& args) SK_OVERRIDE {
532             GrGLVertToFrag v(kVec4f_GrSLType);
533             args.fPB->addVarying("QuadEdge", &v);
534
535             GrGLGPFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder();
536
537             SkAssertResult(fsBuilder->enableFeature(
538                     GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature));
539             fsBuilder->codeAppendf("float edgeAlpha;");
540
541             // keep the derivative instructions outside the conditional
542             fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn());
543             fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn());
544             fsBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn());
545             // today we know z and w are in device space. We could use derivatives
546             fsBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(),
547                                     v.fsIn());
548             fsBuilder->codeAppendf ("} else {");
549             fsBuilder->codeAppendf("vec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,"
550                                    "               2.0*%s.x*duvdy.x - duvdy.y);",
551                                    v.fsIn(), v.fsIn());
552             fsBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(),
553                                     v.fsIn());
554             fsBuilder->codeAppendf("edgeAlpha = "
555                                    "clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);}");
556
557
558             fsBuilder->codeAppendf("%s = %s;", args.fOutput,
559                                    (GrGLSLExpr4(args.fInput) * GrGLSLExpr1("edgeAlpha")).c_str());
560
561             const GrShaderVar& inQuadEdge = args.fGP.cast<QuadEdgeEffect>().inQuadEdge();
562             GrGLVertexBuilder* vsBuilder = args.fPB->getVertexShaderBuilder();
563             vsBuilder->codeAppendf("\t%s = %s;\n", v.vsOut(), inQuadEdge.c_str());
564         }
565
566         static inline void GenKey(const GrProcessor&, const GrGLCaps&, GrProcessorKeyBuilder*) {}
567
568         virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE {}
569
570     private:
571         typedef GrGLGeometryProcessor INHERITED;
572     };
573
574 private:
575     QuadEdgeEffect()
576         : fInQuadEdge(this->addVertexAttrib(GrShaderVar("inQuadEdge",
577                                                         kVec4f_GrSLType,
578                                                         GrShaderVar::kAttribute_TypeModifier))) {
579     }
580
581     virtual bool onIsEqual(const GrGeometryProcessor& other) const SK_OVERRIDE {
582         return true;
583     }
584
585     virtual void onComputeInvariantOutput(InvariantOutput* inout) const SK_OVERRIDE {
586         inout->mulByUnknownAlpha();
587     }
588
589     const GrShaderVar& fInQuadEdge;
590
591     GR_DECLARE_GEOMETRY_PROCESSOR_TEST;
592
593     typedef GrFragmentProcessor INHERITED;
594 };
595
596 GR_DEFINE_GEOMETRY_PROCESSOR_TEST(QuadEdgeEffect);
597
598 GrGeometryProcessor* QuadEdgeEffect::TestCreate(SkRandom* random,
599                                                 GrContext*,
600                                                 const GrDrawTargetCaps& caps,
601                                                 GrTexture*[]) {
602     // Doesn't work without derivative instructions.
603     return caps.shaderDerivativeSupport() ? QuadEdgeEffect::Create() : NULL;
604 }
605
606 ///////////////////////////////////////////////////////////////////////////////
607
608 bool GrAAConvexPathRenderer::canDrawPath(const SkPath& path,
609                                          const SkStrokeRec& stroke,
610                                          const GrDrawTarget* target,
611                                          bool antiAlias) const {
612     return (target->caps()->shaderDerivativeSupport() && antiAlias &&
613             stroke.isFillStyle() && !path.isInverseFillType() && path.isConvex());
614 }
615
616 namespace {
617
618 // position + edge
619 extern const GrVertexAttrib gPathAttribs[] = {
620     {kVec2f_GrVertexAttribType, 0,               kPosition_GrVertexAttribBinding},
621     {kVec4f_GrVertexAttribType, sizeof(SkPoint), kGeometryProcessor_GrVertexAttribBinding}
622 };
623
624 };
625
626 bool GrAAConvexPathRenderer::onDrawPath(const SkPath& origPath,
627                                         const SkStrokeRec&,
628                                         GrDrawTarget* target,
629                                         bool antiAlias) {
630
631     const SkPath* path = &origPath;
632     if (path->isEmpty()) {
633         return true;
634     }
635
636     SkMatrix viewMatrix = target->getDrawState().getViewMatrix();
637     GrDrawTarget::AutoStateRestore asr;
638     if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
639         return false;
640     }
641     GrDrawState* drawState = target->drawState();
642
643     // We use the fact that SkPath::transform path does subdivision based on
644     // perspective. Otherwise, we apply the view matrix when copying to the
645     // segment representation.
646     SkPath tmpPath;
647     if (viewMatrix.hasPerspective()) {
648         origPath.transform(viewMatrix, &tmpPath);
649         path = &tmpPath;
650         viewMatrix = SkMatrix::I();
651     }
652
653     QuadVertex *verts;
654     uint16_t* idxs;
655
656     int vCount;
657     int iCount;
658     enum {
659         kPreallocSegmentCnt = 512 / sizeof(Segment),
660         kPreallocDrawCnt = 4,
661     };
662     SkSTArray<kPreallocSegmentCnt, Segment, true> segments;
663     SkPoint fanPt;
664
665     // We can't simply use the path bounds because we may degenerate cubics to quads which produces
666     // new control points outside the original convex hull.
667     SkRect devBounds;
668     if (!get_segments(*path, viewMatrix, &segments, &fanPt, &vCount, &iCount, &devBounds)) {
669         return false;
670     }
671
672     // Our computed verts should all be within one pixel of the segment control points.
673     devBounds.outset(SK_Scalar1, SK_Scalar1);
674
675     drawState->setVertexAttribs<gPathAttribs>(SK_ARRAY_COUNT(gPathAttribs), sizeof(QuadVertex));
676
677     GrGeometryProcessor* quadProcessor = QuadEdgeEffect::Create();
678     drawState->setGeometryProcessor(quadProcessor)->unref();
679
680     GrDrawTarget::AutoReleaseGeometry arg(target, vCount, iCount);
681     if (!arg.succeeded()) {
682         return false;
683     }
684     verts = reinterpret_cast<QuadVertex*>(arg.vertices());
685     idxs = reinterpret_cast<uint16_t*>(arg.indices());
686
687     SkSTArray<kPreallocDrawCnt, Draw, true> draws;
688     create_vertices(segments, fanPt, &draws, verts, idxs);
689
690     // Check devBounds
691 #ifdef SK_DEBUG
692     SkRect tolDevBounds = devBounds;
693     tolDevBounds.outset(SK_Scalar1 / 10000, SK_Scalar1 / 10000);
694     SkRect actualBounds;
695     actualBounds.set(verts[0].fPos, verts[1].fPos);
696     for (int i = 2; i < vCount; ++i) {
697         actualBounds.growToInclude(verts[i].fPos.fX, verts[i].fPos.fY);
698     }
699     SkASSERT(tolDevBounds.contains(actualBounds));
700 #endif
701
702     int vOffset = 0;
703     for (int i = 0; i < draws.count(); ++i) {
704         const Draw& draw = draws[i];
705         target->drawIndexed(kTriangles_GrPrimitiveType,
706                             vOffset,  // start vertex
707                             0,        // start index
708                             draw.fVertexCnt,
709                             draw.fIndexCnt,
710                             &devBounds);
711         vOffset += draw.fVertexCnt;
712     }
713
714     return true;
715 }