58a16f3affd7dd628a5fe602fc9372e12fa61dcd
[platform/framework/web/crosswalk.git] / src / third_party / skia / src / core / SkAAClip.cpp
1
2 /*
3  * Copyright 2011 Google Inc.
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8
9 #include "SkAAClip.h"
10 #include "SkBlitter.h"
11 #include "SkColorPriv.h"
12 #include "SkPath.h"
13 #include "SkScan.h"
14 #include "SkThread.h"
15 #include "SkUtils.h"
16
17 class AutoAAClipValidate {
18 public:
19     AutoAAClipValidate(const SkAAClip& clip) : fClip(clip) {
20         fClip.validate();
21     }
22     ~AutoAAClipValidate() {
23         fClip.validate();
24     }
25 private:
26     const SkAAClip& fClip;
27 };
28
29 #ifdef SK_DEBUG
30     #define AUTO_AACLIP_VALIDATE(clip)  AutoAAClipValidate acv(clip)
31 #else
32     #define AUTO_AACLIP_VALIDATE(clip)
33 #endif
34
35 ///////////////////////////////////////////////////////////////////////////////
36
37 #define kMaxInt32   0x7FFFFFFF
38
39 #ifdef SK_DEBUG
40 static inline bool x_in_rect(int x, const SkIRect& rect) {
41     return (unsigned)(x - rect.fLeft) < (unsigned)rect.width();
42 }
43 #endif
44
45 static inline bool y_in_rect(int y, const SkIRect& rect) {
46     return (unsigned)(y - rect.fTop) < (unsigned)rect.height();
47 }
48
49 /*
50  *  Data runs are packed [count, alpha]
51  */
52
53 struct SkAAClip::YOffset {
54     int32_t  fY;
55     uint32_t fOffset;
56 };
57
58 struct SkAAClip::RunHead {
59     int32_t fRefCnt;
60     int32_t fRowCount;
61     size_t  fDataSize;
62
63     YOffset* yoffsets() {
64         return (YOffset*)((char*)this + sizeof(RunHead));
65     }
66     const YOffset* yoffsets() const {
67         return (const YOffset*)((const char*)this + sizeof(RunHead));
68     }
69     uint8_t* data() {
70         return (uint8_t*)(this->yoffsets() + fRowCount);
71     }
72     const uint8_t* data() const {
73         return (const uint8_t*)(this->yoffsets() + fRowCount);
74     }
75
76     static RunHead* Alloc(int rowCount, size_t dataSize) {
77         size_t size = sizeof(RunHead) + rowCount * sizeof(YOffset) + dataSize;
78         RunHead* head = (RunHead*)sk_malloc_throw(size);
79         head->fRefCnt = 1;
80         head->fRowCount = rowCount;
81         head->fDataSize = dataSize;
82         return head;
83     }
84
85     static int ComputeRowSizeForWidth(int width) {
86         // 2 bytes per segment, where each segment can store up to 255 for count
87         int segments = 0;
88         while (width > 0) {
89             segments += 1;
90             int n = SkMin32(width, 255);
91             width -= n;
92         }
93         return segments * 2;    // each segment is row[0] + row[1] (n + alpha)
94     }
95
96     static RunHead* AllocRect(const SkIRect& bounds) {
97         SkASSERT(!bounds.isEmpty());
98         int width = bounds.width();
99         size_t rowSize = ComputeRowSizeForWidth(width);
100         RunHead* head = RunHead::Alloc(1, rowSize);
101         YOffset* yoff = head->yoffsets();
102         yoff->fY = bounds.height() - 1;
103         yoff->fOffset = 0;
104         uint8_t* row = head->data();
105         while (width > 0) {
106             int n = SkMin32(width, 255);
107             row[0] = n;
108             row[1] = 0xFF;
109             width -= n;
110             row += 2;
111         }
112         return head;
113     }
114 };
115
116 class SkAAClip::Iter {
117 public:
118     Iter(const SkAAClip&);
119
120     bool done() const { return fDone; }
121     int top() const { return fTop; }
122     int bottom() const { return fBottom; }
123     const uint8_t* data() const { return fData; }
124     void next();
125
126 private:
127     const YOffset* fCurrYOff;
128     const YOffset* fStopYOff;
129     const uint8_t* fData;
130
131     int fTop, fBottom;
132     bool fDone;
133 };
134
135 SkAAClip::Iter::Iter(const SkAAClip& clip) {
136     if (clip.isEmpty()) {
137         fDone = true;
138         fTop = fBottom = clip.fBounds.fBottom;
139         fData = NULL;
140         fCurrYOff = NULL;
141         fStopYOff = NULL;
142         return;
143     }
144
145     const RunHead* head = clip.fRunHead;
146     fCurrYOff = head->yoffsets();
147     fStopYOff = fCurrYOff + head->fRowCount;
148     fData     = head->data() + fCurrYOff->fOffset;
149
150     // setup first value
151     fTop = clip.fBounds.fTop;
152     fBottom = clip.fBounds.fTop + fCurrYOff->fY + 1;
153     fDone = false;
154 }
155
156 void SkAAClip::Iter::next() {
157     if (!fDone) {
158         const YOffset* prev = fCurrYOff;
159         const YOffset* curr = prev + 1;
160         SkASSERT(curr <= fStopYOff);
161
162         fTop = fBottom;
163         if (curr >= fStopYOff) {
164             fDone = true;
165             fBottom = kMaxInt32;
166             fData = NULL;
167         } else {
168             fBottom += curr->fY - prev->fY;
169             fData += curr->fOffset - prev->fOffset;
170             fCurrYOff = curr;
171         }
172     }
173 }
174
175 #ifdef SK_DEBUG
176 // assert we're exactly width-wide, and then return the number of bytes used
177 static size_t compute_row_length(const uint8_t row[], int width) {
178     const uint8_t* origRow = row;
179     while (width > 0) {
180         int n = row[0];
181         SkASSERT(n > 0);
182         SkASSERT(n <= width);
183         row += 2;
184         width -= n;
185     }
186     SkASSERT(0 == width);
187     return row - origRow;
188 }
189
190 void SkAAClip::validate() const {
191     if (NULL == fRunHead) {
192         SkASSERT(fBounds.isEmpty());
193         return;
194     }
195
196     const RunHead* head = fRunHead;
197     SkASSERT(head->fRefCnt > 0);
198     SkASSERT(head->fRowCount > 0);
199
200     const YOffset* yoff = head->yoffsets();
201     const YOffset* ystop = yoff + head->fRowCount;
202     const int lastY = fBounds.height() - 1;
203
204     // Y and offset must be monotonic
205     int prevY = -1;
206     int32_t prevOffset = -1;
207     while (yoff < ystop) {
208         SkASSERT(prevY < yoff->fY);
209         SkASSERT(yoff->fY <= lastY);
210         prevY = yoff->fY;
211         SkASSERT(prevOffset < (int32_t)yoff->fOffset);
212         prevOffset = yoff->fOffset;
213         const uint8_t* row = head->data() + yoff->fOffset;
214         size_t rowLength = compute_row_length(row, fBounds.width());
215         SkASSERT(yoff->fOffset + rowLength <= head->fDataSize);
216         yoff += 1;
217     }
218     // check the last entry;
219     --yoff;
220     SkASSERT(yoff->fY == lastY);
221 }
222
223 static void dump_one_row(const uint8_t* SK_RESTRICT row,
224                          int width, int leading_num) {
225     if (leading_num) {
226         SkDebugf( "%03d ", leading_num );
227     }
228     while (width > 0) {
229         int n = row[0];
230         int val = row[1];
231         char out = '.';
232         if (val == 0xff) {
233             out = '*';
234         } else if (val > 0) {
235             out = '+';
236         }
237         for (int i = 0 ; i < n ; i++) {
238             SkDebugf( "%c", out );
239         }
240         row += 2;
241         width -= n;
242     }
243     SkDebugf( "\n" );
244 }
245
246 void SkAAClip::debug(bool compress_y) const {
247     Iter iter(*this);
248     const int width = fBounds.width();
249
250     int y = fBounds.fTop;
251     while (!iter.done()) {
252         if (compress_y) {
253             dump_one_row(iter.data(), width, iter.bottom() - iter.top() + 1);
254         } else {
255             do {
256                 dump_one_row(iter.data(), width, 0);
257             } while (++y < iter.bottom());
258         }
259         iter.next();
260     }
261 }
262 #endif
263
264 ///////////////////////////////////////////////////////////////////////////////
265
266 // Count the number of zeros on the left and right edges of the passed in
267 // RLE row. If 'row' is all zeros return 'width' in both variables.
268 static void count_left_right_zeros(const uint8_t* row, int width,
269                                    int* leftZ, int* riteZ) {
270     int zeros = 0;
271     do {
272         if (row[1]) {
273             break;
274         }
275         int n = row[0];
276         SkASSERT(n > 0);
277         SkASSERT(n <= width);
278         zeros += n;
279         row += 2;
280         width -= n;
281     } while (width > 0);
282     *leftZ = zeros;
283
284     if (0 == width) {
285         // this line is completely empty return 'width' in both variables
286         *riteZ = *leftZ;
287         return;
288     }
289
290     zeros = 0;
291     while (width > 0) {
292         int n = row[0];
293         SkASSERT(n > 0);
294         if (0 == row[1]) {
295             zeros += n;
296         } else {
297             zeros = 0;
298         }
299         row += 2;
300         width -= n;
301     }
302     *riteZ = zeros;
303 }
304
305 #ifdef SK_DEBUG
306 static void test_count_left_right_zeros() {
307     static bool gOnce;
308     if (gOnce) {
309         return;
310     }
311     gOnce = true;
312
313     const uint8_t data0[] = {  0, 0,     10, 0xFF };
314     const uint8_t data1[] = {  0, 0,     5, 0xFF, 2, 0, 3, 0xFF };
315     const uint8_t data2[] = {  7, 0,     5, 0, 2, 0, 3, 0xFF };
316     const uint8_t data3[] = {  0, 5,     5, 0xFF, 2, 0, 3, 0 };
317     const uint8_t data4[] = {  2, 3,     2, 0, 5, 0xFF, 3, 0 };
318     const uint8_t data5[] = { 10, 10,    10, 0 };
319     const uint8_t data6[] = {  2, 2,     2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
320
321     const uint8_t* array[] = {
322         data0, data1, data2, data3, data4, data5, data6
323     };
324
325     for (size_t i = 0; i < SK_ARRAY_COUNT(array); ++i) {
326         const uint8_t* data = array[i];
327         const int expectedL = *data++;
328         const int expectedR = *data++;
329         int L = 12345, R = 12345;
330         count_left_right_zeros(data, 10, &L, &R);
331         SkASSERT(expectedL == L);
332         SkASSERT(expectedR == R);
333     }
334 }
335 #endif
336
337 // modify row in place, trimming off (zeros) from the left and right sides.
338 // return the number of bytes that were completely eliminated from the left
339 static int trim_row_left_right(uint8_t* row, int width, int leftZ, int riteZ) {
340     int trim = 0;
341     while (leftZ > 0) {
342         SkASSERT(0 == row[1]);
343         int n = row[0];
344         SkASSERT(n > 0);
345         SkASSERT(n <= width);
346         width -= n;
347         row += 2;
348         if (n > leftZ) {
349             row[-2] = n - leftZ;
350             break;
351         }
352         trim += 2;
353         leftZ -= n;
354         SkASSERT(leftZ >= 0);
355     }
356
357     if (riteZ) {
358         // walk row to the end, and then we'll back up to trim riteZ
359         while (width > 0) {
360             int n = row[0];
361             SkASSERT(n <= width);
362             width -= n;
363             row += 2;
364         }
365         // now skip whole runs of zeros
366         do {
367             row -= 2;
368             SkASSERT(0 == row[1]);
369             int n = row[0];
370             SkASSERT(n > 0);
371             if (n > riteZ) {
372                 row[0] = n - riteZ;
373                 break;
374             }
375             riteZ -= n;
376             SkASSERT(riteZ >= 0);
377         } while (riteZ > 0);
378     }
379
380     return trim;
381 }
382
383 #ifdef SK_DEBUG
384 // assert that this row is exactly this width
385 static void assert_row_width(const uint8_t* row, int width) {
386     while (width > 0) {
387         int n = row[0];
388         SkASSERT(n > 0);
389         SkASSERT(n <= width);
390         width -= n;
391         row += 2;
392     }
393     SkASSERT(0 == width);
394 }
395
396 static void test_trim_row_left_right() {
397     static bool gOnce;
398     if (gOnce) {
399         return;
400     }
401     gOnce = true;
402
403     uint8_t data0[] = {  0, 0, 0,   10,    10, 0xFF };
404     uint8_t data1[] = {  2, 0, 0,   10,    5, 0, 2, 0, 3, 0xFF };
405     uint8_t data2[] = {  5, 0, 2,   10,    5, 0, 2, 0, 3, 0xFF };
406     uint8_t data3[] = {  6, 0, 2,   10,    5, 0, 2, 0, 3, 0xFF };
407     uint8_t data4[] = {  0, 0, 0,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
408     uint8_t data5[] = {  1, 0, 0,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
409     uint8_t data6[] = {  0, 1, 0,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
410     uint8_t data7[] = {  1, 1, 0,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
411     uint8_t data8[] = {  2, 2, 2,   10,    2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
412     uint8_t data9[] = {  5, 2, 4,   10,    2, 0, 2, 0, 2, 0, 2, 0xFF, 2, 0 };
413     uint8_t data10[] ={  74, 0, 4, 150,    9, 0, 65, 0, 76, 0xFF };
414
415     uint8_t* array[] = {
416         data0, data1, data2, data3, data4,
417         data5, data6, data7, data8, data9,
418         data10
419     };
420
421     for (size_t i = 0; i < SK_ARRAY_COUNT(array); ++i) {
422         uint8_t* data = array[i];
423         const int trimL = *data++;
424         const int trimR = *data++;
425         const int expectedSkip = *data++;
426         const int origWidth = *data++;
427         assert_row_width(data, origWidth);
428         int skip = trim_row_left_right(data, origWidth, trimL, trimR);
429         SkASSERT(expectedSkip == skip);
430         int expectedWidth = origWidth - trimL - trimR;
431         assert_row_width(data + skip, expectedWidth);
432     }
433 }
434 #endif
435
436 bool SkAAClip::trimLeftRight() {
437     SkDEBUGCODE(test_trim_row_left_right();)
438
439     if (this->isEmpty()) {
440         return false;
441     }
442
443     AUTO_AACLIP_VALIDATE(*this);
444
445     const int width = fBounds.width();
446     RunHead* head = fRunHead;
447     YOffset* yoff = head->yoffsets();
448     YOffset* stop = yoff + head->fRowCount;
449     uint8_t* base = head->data();
450
451     // After this loop, 'leftZeros' & 'rightZeros' will contain the minimum
452     // number of zeros on the left and right of the clip. This information
453     // can be used to shrink the bounding box.
454     int leftZeros = width;
455     int riteZeros = width;
456     while (yoff < stop) {
457         int L, R;
458         count_left_right_zeros(base + yoff->fOffset, width, &L, &R);
459         SkASSERT(L + R < width || (L == width && R == width));
460         if (L < leftZeros) {
461             leftZeros = L;
462         }
463         if (R < riteZeros) {
464             riteZeros = R;
465         }
466         if (0 == (leftZeros | riteZeros)) {
467             // no trimming to do
468             return true;
469         }
470         yoff += 1;
471     }
472
473     SkASSERT(leftZeros || riteZeros);
474     if (width == leftZeros) {
475         SkASSERT(width == riteZeros);
476         return this->setEmpty();
477     }
478
479     this->validate();
480
481     fBounds.fLeft += leftZeros;
482     fBounds.fRight -= riteZeros;
483     SkASSERT(!fBounds.isEmpty());
484
485     // For now we don't realloc the storage (for time), we just shrink in place
486     // This means we don't have to do any memmoves either, since we can just
487     // play tricks with the yoff->fOffset for each row
488     yoff = head->yoffsets();
489     while (yoff < stop) {
490         uint8_t* row = base + yoff->fOffset;
491         SkDEBUGCODE((void)compute_row_length(row, width);)
492         yoff->fOffset += trim_row_left_right(row, width, leftZeros, riteZeros);
493         SkDEBUGCODE((void)compute_row_length(base + yoff->fOffset, width - leftZeros - riteZeros);)
494         yoff += 1;
495     }
496     return true;
497 }
498
499 static bool row_is_all_zeros(const uint8_t* row, int width) {
500     SkASSERT(width > 0);
501     do {
502         if (row[1]) {
503             return false;
504         }
505         int n = row[0];
506         SkASSERT(n <= width);
507         width -= n;
508         row += 2;
509     } while (width > 0);
510     SkASSERT(0 == width);
511     return true;
512 }
513
514 bool SkAAClip::trimTopBottom() {
515     if (this->isEmpty()) {
516         return false;
517     }
518
519     this->validate();
520
521     const int width = fBounds.width();
522     RunHead* head = fRunHead;
523     YOffset* yoff = head->yoffsets();
524     YOffset* stop = yoff + head->fRowCount;
525     const uint8_t* base = head->data();
526
527     //  Look to trim away empty rows from the top.
528     //
529     int skip = 0;
530     while (yoff < stop) {
531         const uint8_t* data = base + yoff->fOffset;
532         if (!row_is_all_zeros(data, width)) {
533             break;
534         }
535         skip += 1;
536         yoff += 1;
537     }
538     SkASSERT(skip <= head->fRowCount);
539     if (skip == head->fRowCount) {
540         return this->setEmpty();
541     }
542     if (skip > 0) {
543         // adjust fRowCount and fBounds.fTop, and slide all the data up
544         // as we remove [skip] number of YOffset entries
545         yoff = head->yoffsets();
546         int dy = yoff[skip - 1].fY + 1;
547         for (int i = skip; i < head->fRowCount; ++i) {
548             SkASSERT(yoff[i].fY >= dy);
549             yoff[i].fY -= dy;
550         }
551         YOffset* dst = head->yoffsets();
552         size_t size = head->fRowCount * sizeof(YOffset) + head->fDataSize;
553         memmove(dst, dst + skip, size - skip * sizeof(YOffset));
554
555         fBounds.fTop += dy;
556         SkASSERT(!fBounds.isEmpty());
557         head->fRowCount -= skip;
558         SkASSERT(head->fRowCount > 0);
559
560         this->validate();
561         // need to reset this after the memmove
562         base = head->data();
563     }
564
565     //  Look to trim away empty rows from the bottom.
566     //  We know that we have at least one non-zero row, so we can just walk
567     //  backwards without checking for running past the start.
568     //
569     stop = yoff = head->yoffsets() + head->fRowCount;
570     do {
571         yoff -= 1;
572     } while (row_is_all_zeros(base + yoff->fOffset, width));
573     skip = SkToInt(stop - yoff - 1);
574     SkASSERT(skip >= 0 && skip < head->fRowCount);
575     if (skip > 0) {
576         // removing from the bottom is easier than from the top, as we don't
577         // have to adjust any of the Y values, we just have to trim the array
578         memmove(stop - skip, stop, head->fDataSize);
579
580         fBounds.fBottom = fBounds.fTop + yoff->fY + 1;
581         SkASSERT(!fBounds.isEmpty());
582         head->fRowCount -= skip;
583         SkASSERT(head->fRowCount > 0);
584     }
585     this->validate();
586
587     return true;
588 }
589
590 // can't validate before we're done, since trimming is part of the process of
591 // making us valid after the Builder. Since we build from top to bottom, its
592 // possible our fBounds.fBottom is bigger than our last scanline of data, so
593 // we trim fBounds.fBottom back up.
594 //
595 // TODO: check for duplicates in X and Y to further compress our data
596 //
597 bool SkAAClip::trimBounds() {
598     if (this->isEmpty()) {
599         return false;
600     }
601
602     const RunHead* head = fRunHead;
603     const YOffset* yoff = head->yoffsets();
604
605     SkASSERT(head->fRowCount > 0);
606     const YOffset& lastY = yoff[head->fRowCount - 1];
607     SkASSERT(lastY.fY + 1 <= fBounds.height());
608     fBounds.fBottom = fBounds.fTop + lastY.fY + 1;
609     SkASSERT(lastY.fY + 1 == fBounds.height());
610     SkASSERT(!fBounds.isEmpty());
611
612     return this->trimTopBottom() && this->trimLeftRight();
613 }
614
615 ///////////////////////////////////////////////////////////////////////////////
616
617 void SkAAClip::freeRuns() {
618     if (fRunHead) {
619         SkASSERT(fRunHead->fRefCnt >= 1);
620         if (1 == sk_atomic_dec(&fRunHead->fRefCnt)) {
621             sk_free(fRunHead);
622         }
623     }
624 }
625
626 SkAAClip::SkAAClip() {
627     fBounds.setEmpty();
628     fRunHead = NULL;
629 }
630
631 SkAAClip::SkAAClip(const SkAAClip& src) {
632     SkDEBUGCODE(fBounds.setEmpty();)    // need this for validate
633     fRunHead = NULL;
634     *this = src;
635 }
636
637 SkAAClip::~SkAAClip() {
638     this->freeRuns();
639 }
640
641 SkAAClip& SkAAClip::operator=(const SkAAClip& src) {
642     AUTO_AACLIP_VALIDATE(*this);
643     src.validate();
644
645     if (this != &src) {
646         this->freeRuns();
647         fBounds = src.fBounds;
648         fRunHead = src.fRunHead;
649         if (fRunHead) {
650             sk_atomic_inc(&fRunHead->fRefCnt);
651         }
652     }
653     return *this;
654 }
655
656 bool operator==(const SkAAClip& a, const SkAAClip& b) {
657     a.validate();
658     b.validate();
659
660     if (&a == &b) {
661         return true;
662     }
663     if (a.fBounds != b.fBounds) {
664         return false;
665     }
666
667     const SkAAClip::RunHead* ah = a.fRunHead;
668     const SkAAClip::RunHead* bh = b.fRunHead;
669
670     // this catches empties and rects being equal
671     if (ah == bh) {
672         return true;
673     }
674
675     // now we insist that both are complex (but different ptrs)
676     if (!a.fRunHead || !b.fRunHead) {
677         return false;
678     }
679
680     return  ah->fRowCount == bh->fRowCount &&
681             ah->fDataSize == bh->fDataSize &&
682             !memcmp(ah->data(), bh->data(), ah->fDataSize);
683 }
684
685 void SkAAClip::swap(SkAAClip& other) {
686     AUTO_AACLIP_VALIDATE(*this);
687     other.validate();
688
689     SkTSwap(fBounds, other.fBounds);
690     SkTSwap(fRunHead, other.fRunHead);
691 }
692
693 bool SkAAClip::set(const SkAAClip& src) {
694     *this = src;
695     return !this->isEmpty();
696 }
697
698 bool SkAAClip::setEmpty() {
699     this->freeRuns();
700     fBounds.setEmpty();
701     fRunHead = NULL;
702     return false;
703 }
704
705 bool SkAAClip::setRect(const SkIRect& bounds) {
706     if (bounds.isEmpty()) {
707         return this->setEmpty();
708     }
709
710     AUTO_AACLIP_VALIDATE(*this);
711
712 #if 0
713     SkRect r;
714     r.set(bounds);
715     SkPath path;
716     path.addRect(r);
717     return this->setPath(path);
718 #else
719     this->freeRuns();
720     fBounds = bounds;
721     fRunHead = RunHead::AllocRect(bounds);
722     SkASSERT(!this->isEmpty());
723     return true;
724 #endif
725 }
726
727 bool SkAAClip::isRect() const {
728     if (this->isEmpty()) {
729         return false;
730     }
731
732     const RunHead* head = fRunHead;
733     if (head->fRowCount != 1) {
734         return false;
735     }
736     const YOffset* yoff = head->yoffsets();
737     if (yoff->fY != fBounds.fBottom - 1) {
738         return false;
739     }
740
741     const uint8_t* row = head->data() + yoff->fOffset;
742     int width = fBounds.width();
743     do {
744         if (row[1] != 0xFF) {
745             return false;
746         }
747         int n = row[0];
748         SkASSERT(n <= width);
749         width -= n;
750         row += 2;
751     } while (width > 0);
752     return true;
753 }
754
755 bool SkAAClip::setRect(const SkRect& r, bool doAA) {
756     if (r.isEmpty()) {
757         return this->setEmpty();
758     }
759
760     AUTO_AACLIP_VALIDATE(*this);
761
762     // TODO: special case this
763
764     SkPath path;
765     path.addRect(r);
766     return this->setPath(path, NULL, doAA);
767 }
768
769 static void append_run(SkTDArray<uint8_t>& array, uint8_t value, int count) {
770     SkASSERT(count >= 0);
771     while (count > 0) {
772         int n = count;
773         if (n > 255) {
774             n = 255;
775         }
776         uint8_t* data = array.append(2);
777         data[0] = n;
778         data[1] = value;
779         count -= n;
780     }
781 }
782
783 bool SkAAClip::setRegion(const SkRegion& rgn) {
784     if (rgn.isEmpty()) {
785         return this->setEmpty();
786     }
787     if (rgn.isRect()) {
788         return this->setRect(rgn.getBounds());
789     }
790
791 #if 0
792     SkAAClip clip;
793     SkRegion::Iterator iter(rgn);
794     for (; !iter.done(); iter.next()) {
795         clip.op(iter.rect(), SkRegion::kUnion_Op);
796     }
797     this->swap(clip);
798     return !this->isEmpty();
799 #else
800     const SkIRect& bounds = rgn.getBounds();
801     const int offsetX = bounds.fLeft;
802     const int offsetY = bounds.fTop;
803
804     SkTDArray<YOffset> yArray;
805     SkTDArray<uint8_t> xArray;
806
807     yArray.setReserve(SkMin32(bounds.height(), 1024));
808     xArray.setReserve(SkMin32(bounds.width() * 128, 64 * 1024));
809
810     SkRegion::Iterator iter(rgn);
811     int prevRight = 0;
812     int prevBot = 0;
813     YOffset* currY = NULL;
814
815     for (; !iter.done(); iter.next()) {
816         const SkIRect& r = iter.rect();
817         SkASSERT(bounds.contains(r));
818
819         int bot = r.fBottom - offsetY;
820         SkASSERT(bot >= prevBot);
821         if (bot > prevBot) {
822             if (currY) {
823                 // flush current row
824                 append_run(xArray, 0, bounds.width() - prevRight);
825             }
826             // did we introduce an empty-gap from the prev row?
827             int top = r.fTop - offsetY;
828             if (top > prevBot) {
829                 currY = yArray.append();
830                 currY->fY = top - 1;
831                 currY->fOffset = xArray.count();
832                 append_run(xArray, 0, bounds.width());
833             }
834             // create a new record for this Y value
835             currY = yArray.append();
836             currY->fY = bot - 1;
837             currY->fOffset = xArray.count();
838             prevRight = 0;
839             prevBot = bot;
840         }
841
842         int x = r.fLeft - offsetX;
843         append_run(xArray, 0, x - prevRight);
844
845         int w = r.fRight - r.fLeft;
846         append_run(xArray, 0xFF, w);
847         prevRight = x + w;
848         SkASSERT(prevRight <= bounds.width());
849     }
850     // flush last row
851     append_run(xArray, 0, bounds.width() - prevRight);
852
853     // now pack everything into a RunHead
854     RunHead* head = RunHead::Alloc(yArray.count(), xArray.bytes());
855     memcpy(head->yoffsets(), yArray.begin(), yArray.bytes());
856     memcpy(head->data(), xArray.begin(), xArray.bytes());
857
858     this->setEmpty();
859     fBounds = bounds;
860     fRunHead = head;
861     this->validate();
862     return true;
863 #endif
864 }
865
866 ///////////////////////////////////////////////////////////////////////////////
867
868 const uint8_t* SkAAClip::findRow(int y, int* lastYForRow) const {
869     SkASSERT(fRunHead);
870
871     if (!y_in_rect(y, fBounds)) {
872         return NULL;
873     }
874     y -= fBounds.y();  // our yoffs values are relative to the top
875
876     const YOffset* yoff = fRunHead->yoffsets();
877     while (yoff->fY < y) {
878         yoff += 1;
879         SkASSERT(yoff - fRunHead->yoffsets() < fRunHead->fRowCount);
880     }
881
882     if (lastYForRow) {
883         *lastYForRow = fBounds.y() + yoff->fY;
884     }
885     return fRunHead->data() + yoff->fOffset;
886 }
887
888 const uint8_t* SkAAClip::findX(const uint8_t data[], int x, int* initialCount) const {
889     SkASSERT(x_in_rect(x, fBounds));
890     x -= fBounds.x();
891
892     // first skip up to X
893     for (;;) {
894         int n = data[0];
895         if (x < n) {
896             if (initialCount) {
897                 *initialCount = n - x;
898             }
899             break;
900         }
901         data += 2;
902         x -= n;
903     }
904     return data;
905 }
906
907 bool SkAAClip::quickContains(int left, int top, int right, int bottom) const {
908     if (this->isEmpty()) {
909         return false;
910     }
911     if (!fBounds.contains(left, top, right, bottom)) {
912         return false;
913     }
914 #if 0
915     if (this->isRect()) {
916         return true;
917     }
918 #endif
919
920     int lastY SK_INIT_TO_AVOID_WARNING;
921     const uint8_t* row = this->findRow(top, &lastY);
922     if (lastY < bottom) {
923         return false;
924     }
925     // now just need to check in X
926     int count;
927     row = this->findX(row, left, &count);
928 #if 0
929     return count >= (right - left) && 0xFF == row[1];
930 #else
931     int rectWidth = right - left;
932     while (0xFF == row[1]) {
933         if (count >= rectWidth) {
934             return true;
935         }
936         rectWidth -= count;
937         row += 2;
938         count = row[0];
939     }
940     return false;
941 #endif
942 }
943
944 ///////////////////////////////////////////////////////////////////////////////
945
946 class SkAAClip::Builder {
947     SkIRect fBounds;
948     struct Row {
949         int fY;
950         int fWidth;
951         SkTDArray<uint8_t>* fData;
952     };
953     SkTDArray<Row>  fRows;
954     Row* fCurrRow;
955     int fPrevY;
956     int fWidth;
957     int fMinY;
958
959 public:
960     Builder(const SkIRect& bounds) : fBounds(bounds) {
961         fPrevY = -1;
962         fWidth = bounds.width();
963         fCurrRow = NULL;
964         fMinY = bounds.fTop;
965     }
966
967     ~Builder() {
968         Row* row = fRows.begin();
969         Row* stop = fRows.end();
970         while (row < stop) {
971             delete row->fData;
972             row += 1;
973         }
974     }
975
976     const SkIRect& getBounds() const { return fBounds; }
977
978     void addRun(int x, int y, U8CPU alpha, int count) {
979         SkASSERT(count > 0);
980         SkASSERT(fBounds.contains(x, y));
981         SkASSERT(fBounds.contains(x + count - 1, y));
982
983         x -= fBounds.left();
984         y -= fBounds.top();
985
986         Row* row = fCurrRow;
987         if (y != fPrevY) {
988             SkASSERT(y > fPrevY);
989             fPrevY = y;
990             row = this->flushRow(true);
991             row->fY = y;
992             row->fWidth = 0;
993             SkASSERT(row->fData);
994             SkASSERT(0 == row->fData->count());
995             fCurrRow = row;
996         }
997
998         SkASSERT(row->fWidth <= x);
999         SkASSERT(row->fWidth < fBounds.width());
1000
1001         SkTDArray<uint8_t>& data = *row->fData;
1002
1003         int gap = x - row->fWidth;
1004         if (gap) {
1005             AppendRun(data, 0, gap);
1006             row->fWidth += gap;
1007             SkASSERT(row->fWidth < fBounds.width());
1008         }
1009
1010         AppendRun(data, alpha, count);
1011         row->fWidth += count;
1012         SkASSERT(row->fWidth <= fBounds.width());
1013     }
1014
1015     void addColumn(int x, int y, U8CPU alpha, int height) {
1016         SkASSERT(fBounds.contains(x, y + height - 1));
1017
1018         this->addRun(x, y, alpha, 1);
1019         this->flushRowH(fCurrRow);
1020         y -= fBounds.fTop;
1021         SkASSERT(y == fCurrRow->fY);
1022         fCurrRow->fY = y + height - 1;
1023     }
1024
1025     void addRectRun(int x, int y, int width, int height) {
1026         SkASSERT(fBounds.contains(x + width - 1, y + height - 1));
1027         this->addRun(x, y, 0xFF, width);
1028
1029         // we assum the rect must be all we'll see for these scanlines
1030         // so we ensure our row goes all the way to our right
1031         this->flushRowH(fCurrRow);
1032
1033         y -= fBounds.fTop;
1034         SkASSERT(y == fCurrRow->fY);
1035         fCurrRow->fY = y + height - 1;
1036     }
1037
1038     void addAntiRectRun(int x, int y, int width, int height,
1039                         SkAlpha leftAlpha, SkAlpha rightAlpha) {
1040         SkASSERT(fBounds.contains(x + width - 1 +
1041                  (leftAlpha > 0 ? 1 : 0) + (rightAlpha > 0 ? 1 : 0),
1042                  y + height - 1));
1043         SkASSERT(width >= 0);
1044
1045         // Conceptually we're always adding 3 runs, but we should
1046         // merge or omit them if possible.
1047         if (leftAlpha == 0xFF) {
1048             width++;
1049         } else if (leftAlpha > 0) {
1050           this->addRun(x++, y, leftAlpha, 1);
1051         }
1052         if (rightAlpha == 0xFF) {
1053             width++;
1054         }
1055         if (width > 0) {
1056             this->addRun(x, y, 0xFF, width);
1057         }
1058         if (rightAlpha > 0 && rightAlpha < 255) {
1059             this->addRun(x + width, y, rightAlpha, 1);
1060         }
1061
1062         // we assume the rect must be all we'll see for these scanlines
1063         // so we ensure our row goes all the way to our right
1064         this->flushRowH(fCurrRow);
1065
1066         y -= fBounds.fTop;
1067         SkASSERT(y == fCurrRow->fY);
1068         fCurrRow->fY = y + height - 1;
1069     }
1070
1071     bool finish(SkAAClip* target) {
1072         this->flushRow(false);
1073
1074         const Row* row = fRows.begin();
1075         const Row* stop = fRows.end();
1076
1077         size_t dataSize = 0;
1078         while (row < stop) {
1079             dataSize += row->fData->count();
1080             row += 1;
1081         }
1082
1083         if (0 == dataSize) {
1084             return target->setEmpty();
1085         }
1086
1087         SkASSERT(fMinY >= fBounds.fTop);
1088         SkASSERT(fMinY < fBounds.fBottom);
1089         int adjustY = fMinY - fBounds.fTop;
1090         fBounds.fTop = fMinY;
1091
1092         RunHead* head = RunHead::Alloc(fRows.count(), dataSize);
1093         YOffset* yoffset = head->yoffsets();
1094         uint8_t* data = head->data();
1095         uint8_t* baseData = data;
1096
1097         row = fRows.begin();
1098         SkDEBUGCODE(int prevY = row->fY - 1;)
1099         while (row < stop) {
1100             SkASSERT(prevY < row->fY);  // must be monotonic
1101             SkDEBUGCODE(prevY = row->fY);
1102
1103             yoffset->fY = row->fY - adjustY;
1104             yoffset->fOffset = SkToU32(data - baseData);
1105             yoffset += 1;
1106
1107             size_t n = row->fData->count();
1108             memcpy(data, row->fData->begin(), n);
1109 #ifdef SK_DEBUG
1110             size_t bytesNeeded = compute_row_length(data, fBounds.width());
1111             SkASSERT(bytesNeeded == n);
1112 #endif
1113             data += n;
1114
1115             row += 1;
1116         }
1117
1118         target->freeRuns();
1119         target->fBounds = fBounds;
1120         target->fRunHead = head;
1121         return target->trimBounds();
1122     }
1123
1124     void dump() {
1125         this->validate();
1126         int y;
1127         for (y = 0; y < fRows.count(); ++y) {
1128             const Row& row = fRows[y];
1129             SkDebugf("Y:%3d W:%3d", row.fY, row.fWidth);
1130             const SkTDArray<uint8_t>& data = *row.fData;
1131             int count = data.count();
1132             SkASSERT(!(count & 1));
1133             const uint8_t* ptr = data.begin();
1134             for (int x = 0; x < count; x += 2) {
1135                 SkDebugf(" [%3d:%02X]", ptr[0], ptr[1]);
1136                 ptr += 2;
1137             }
1138             SkDebugf("\n");
1139         }
1140     }
1141
1142     void validate() {
1143 #ifdef SK_DEBUG
1144         if (false) { // avoid bit rot, suppress warning
1145             test_count_left_right_zeros();
1146         }
1147         int prevY = -1;
1148         for (int i = 0; i < fRows.count(); ++i) {
1149             const Row& row = fRows[i];
1150             SkASSERT(prevY < row.fY);
1151             SkASSERT(fWidth == row.fWidth);
1152             int count = row.fData->count();
1153             const uint8_t* ptr = row.fData->begin();
1154             SkASSERT(!(count & 1));
1155             int w = 0;
1156             for (int x = 0; x < count; x += 2) {
1157                 int n = ptr[0];
1158                 SkASSERT(n > 0);
1159                 w += n;
1160                 SkASSERT(w <= fWidth);
1161                 ptr += 2;
1162             }
1163             SkASSERT(w == fWidth);
1164             prevY = row.fY;
1165         }
1166 #endif
1167     }
1168
1169     // only called by BuilderBlitter
1170     void setMinY(int y) {
1171         fMinY = y;
1172     }
1173
1174 private:
1175     void flushRowH(Row* row) {
1176         // flush current row if needed
1177         if (row->fWidth < fWidth) {
1178             AppendRun(*row->fData, 0, fWidth - row->fWidth);
1179             row->fWidth = fWidth;
1180         }
1181     }
1182
1183     Row* flushRow(bool readyForAnother) {
1184         Row* next = NULL;
1185         int count = fRows.count();
1186         if (count > 0) {
1187             this->flushRowH(&fRows[count - 1]);
1188         }
1189         if (count > 1) {
1190             // are our last two runs the same?
1191             Row* prev = &fRows[count - 2];
1192             Row* curr = &fRows[count - 1];
1193             SkASSERT(prev->fWidth == fWidth);
1194             SkASSERT(curr->fWidth == fWidth);
1195             if (*prev->fData == *curr->fData) {
1196                 prev->fY = curr->fY;
1197                 if (readyForAnother) {
1198                     curr->fData->rewind();
1199                     next = curr;
1200                 } else {
1201                     delete curr->fData;
1202                     fRows.removeShuffle(count - 1);
1203                 }
1204             } else {
1205                 if (readyForAnother) {
1206                     next = fRows.append();
1207                     next->fData = new SkTDArray<uint8_t>;
1208                 }
1209             }
1210         } else {
1211             if (readyForAnother) {
1212                 next = fRows.append();
1213                 next->fData = new SkTDArray<uint8_t>;
1214             }
1215         }
1216         return next;
1217     }
1218
1219     static void AppendRun(SkTDArray<uint8_t>& data, U8CPU alpha, int count) {
1220         do {
1221             int n = count;
1222             if (n > 255) {
1223                 n = 255;
1224             }
1225             uint8_t* ptr = data.append(2);
1226             ptr[0] = n;
1227             ptr[1] = alpha;
1228             count -= n;
1229         } while (count > 0);
1230     }
1231 };
1232
1233 class SkAAClip::BuilderBlitter : public SkBlitter {
1234     int fLastY;
1235
1236     /*
1237         If we see a gap of 1 or more empty scanlines while building in Y-order,
1238         we inject an explicit empty scanline (alpha==0)
1239
1240         See AAClipTest.cpp : test_path_with_hole()
1241      */
1242     void checkForYGap(int y) {
1243         SkASSERT(y >= fLastY);
1244         if (fLastY > -SK_MaxS32) {
1245             int gap = y - fLastY;
1246             if (gap > 1) {
1247                 fBuilder->addRun(fLeft, y - 1, 0, fRight - fLeft);
1248             }
1249         }
1250         fLastY = y;
1251     }
1252
1253 public:
1254
1255     BuilderBlitter(Builder* builder) {
1256         fBuilder = builder;
1257         fLeft = builder->getBounds().fLeft;
1258         fRight = builder->getBounds().fRight;
1259         fMinY = SK_MaxS32;
1260         fLastY = -SK_MaxS32;    // sentinel
1261     }
1262
1263     void finish() {
1264         if (fMinY < SK_MaxS32) {
1265             fBuilder->setMinY(fMinY);
1266         }
1267     }
1268
1269     /**
1270        Must evaluate clips in scan-line order, so don't want to allow blitV(),
1271        but an AAClip can be clipped down to a single pixel wide, so we
1272        must support it (given AntiRect semantics: minimum width is 2).
1273        Instead we'll rely on the runtime asserts to guarantee Y monotonicity;
1274        any failure cases that misses may have minor artifacts.
1275     */
1276     virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
1277         this->recordMinY(y);
1278         fBuilder->addColumn(x, y, alpha, height);
1279         fLastY = y + height - 1;
1280     }
1281
1282     virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE {
1283         this->recordMinY(y);
1284         this->checkForYGap(y);
1285         fBuilder->addRectRun(x, y, width, height);
1286         fLastY = y + height - 1;
1287     }
1288
1289     virtual void blitAntiRect(int x, int y, int width, int height,
1290                      SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE {
1291         this->recordMinY(y);
1292         this->checkForYGap(y);
1293         fBuilder->addAntiRectRun(x, y, width, height, leftAlpha, rightAlpha);
1294         fLastY = y + height - 1;
1295     }
1296
1297     virtual void blitMask(const SkMask&, const SkIRect& clip) SK_OVERRIDE
1298         { unexpected(); }
1299
1300     virtual const SkBitmap* justAnOpaqueColor(uint32_t*) SK_OVERRIDE {
1301         return NULL;
1302     }
1303
1304     virtual void blitH(int x, int y, int width) SK_OVERRIDE {
1305         this->recordMinY(y);
1306         this->checkForYGap(y);
1307         fBuilder->addRun(x, y, 0xFF, width);
1308     }
1309
1310     virtual void blitAntiH(int x, int y, const SkAlpha alpha[],
1311                            const int16_t runs[]) SK_OVERRIDE {
1312         this->recordMinY(y);
1313         this->checkForYGap(y);
1314         for (;;) {
1315             int count = *runs;
1316             if (count <= 0) {
1317                 return;
1318             }
1319
1320             // The supersampler's buffer can be the width of the device, so
1321             // we may have to trim the run to our bounds. If so, we assert that
1322             // the extra spans are always alpha==0
1323             int localX = x;
1324             int localCount = count;
1325             if (x < fLeft) {
1326                 SkASSERT(0 == *alpha);
1327                 int gap = fLeft - x;
1328                 SkASSERT(gap <= count);
1329                 localX += gap;
1330                 localCount -= gap;
1331             }
1332             int right = x + count;
1333             if (right > fRight) {
1334                 SkASSERT(0 == *alpha);
1335                 localCount -= right - fRight;
1336                 SkASSERT(localCount >= 0);
1337             }
1338
1339             if (localCount) {
1340                 fBuilder->addRun(localX, y, *alpha, localCount);
1341             }
1342             // Next run
1343             runs += count;
1344             alpha += count;
1345             x += count;
1346         }
1347     }
1348
1349 private:
1350     Builder* fBuilder;
1351     int      fLeft; // cache of builder's bounds' left edge
1352     int      fRight;
1353     int      fMinY;
1354
1355     /*
1356      *  We track this, in case the scan converter skipped some number of
1357      *  scanlines at the (relative to the bounds it was given). This allows
1358      *  the builder, during its finish, to trip its bounds down to the "real"
1359      *  top.
1360      */
1361     void recordMinY(int y) {
1362         if (y < fMinY) {
1363             fMinY = y;
1364         }
1365     }
1366
1367     void unexpected() {
1368         SkDebugf("---- did not expect to get called here");
1369         sk_throw();
1370     }
1371 };
1372
1373 bool SkAAClip::setPath(const SkPath& path, const SkRegion* clip, bool doAA) {
1374     AUTO_AACLIP_VALIDATE(*this);
1375
1376     if (clip && clip->isEmpty()) {
1377         return this->setEmpty();
1378     }
1379
1380     SkIRect ibounds;
1381     path.getBounds().roundOut(&ibounds);
1382
1383     SkRegion tmpClip;
1384     if (NULL == clip) {
1385         tmpClip.setRect(ibounds);
1386         clip = &tmpClip;
1387     }
1388
1389     if (path.isInverseFillType()) {
1390         ibounds = clip->getBounds();
1391     } else {
1392         if (ibounds.isEmpty() || !ibounds.intersect(clip->getBounds())) {
1393             return this->setEmpty();
1394         }
1395     }
1396
1397     Builder        builder(ibounds);
1398     BuilderBlitter blitter(&builder);
1399
1400     if (doAA) {
1401         SkScan::AntiFillPath(path, *clip, &blitter, true);
1402     } else {
1403         SkScan::FillPath(path, *clip, &blitter);
1404     }
1405
1406     blitter.finish();
1407     return builder.finish(this);
1408 }
1409
1410 ///////////////////////////////////////////////////////////////////////////////
1411
1412 typedef void (*RowProc)(SkAAClip::Builder&, int bottom,
1413                         const uint8_t* rowA, const SkIRect& rectA,
1414                         const uint8_t* rowB, const SkIRect& rectB);
1415
1416 typedef U8CPU (*AlphaProc)(U8CPU alphaA, U8CPU alphaB);
1417
1418 static U8CPU sectAlphaProc(U8CPU alphaA, U8CPU alphaB) {
1419     // Multiply
1420     return SkMulDiv255Round(alphaA, alphaB);
1421 }
1422
1423 static U8CPU unionAlphaProc(U8CPU alphaA, U8CPU alphaB) {
1424     // SrcOver
1425     return alphaA + alphaB - SkMulDiv255Round(alphaA, alphaB);
1426 }
1427
1428 static U8CPU diffAlphaProc(U8CPU alphaA, U8CPU alphaB) {
1429     // SrcOut
1430     return SkMulDiv255Round(alphaA, 0xFF - alphaB);
1431 }
1432
1433 static U8CPU xorAlphaProc(U8CPU alphaA, U8CPU alphaB) {
1434     // XOR
1435     return alphaA + alphaB - 2 * SkMulDiv255Round(alphaA, alphaB);
1436 }
1437
1438 static AlphaProc find_alpha_proc(SkRegion::Op op) {
1439     switch (op) {
1440         case SkRegion::kIntersect_Op:
1441             return sectAlphaProc;
1442         case SkRegion::kDifference_Op:
1443             return diffAlphaProc;
1444         case SkRegion::kUnion_Op:
1445             return unionAlphaProc;
1446         case SkRegion::kXOR_Op:
1447             return xorAlphaProc;
1448         default:
1449             SkDEBUGFAIL("unexpected region op");
1450             return sectAlphaProc;
1451     }
1452 }
1453
1454 class RowIter {
1455 public:
1456     RowIter(const uint8_t* row, const SkIRect& bounds) {
1457         fRow = row;
1458         fLeft = bounds.fLeft;
1459         fBoundsRight = bounds.fRight;
1460         if (row) {
1461             fRight = bounds.fLeft + row[0];
1462             SkASSERT(fRight <= fBoundsRight);
1463             fAlpha = row[1];
1464             fDone = false;
1465         } else {
1466             fDone = true;
1467             fRight = kMaxInt32;
1468             fAlpha = 0;
1469         }
1470     }
1471
1472     bool done() const { return fDone; }
1473     int left() const { return fLeft; }
1474     int right() const { return fRight; }
1475     U8CPU alpha() const { return fAlpha; }
1476     void next() {
1477         if (!fDone) {
1478             fLeft = fRight;
1479             if (fRight == fBoundsRight) {
1480                 fDone = true;
1481                 fRight = kMaxInt32;
1482                 fAlpha = 0;
1483             } else {
1484                 fRow += 2;
1485                 fRight += fRow[0];
1486                 fAlpha = fRow[1];
1487                 SkASSERT(fRight <= fBoundsRight);
1488             }
1489         }
1490     }
1491
1492 private:
1493     const uint8_t*  fRow;
1494     int             fLeft;
1495     int             fRight;
1496     int             fBoundsRight;
1497     bool            fDone;
1498     uint8_t         fAlpha;
1499 };
1500
1501 static void adjust_row(RowIter& iter, int& leftA, int& riteA, int rite) {
1502     if (rite == riteA) {
1503         iter.next();
1504         leftA = iter.left();
1505         riteA = iter.right();
1506     }
1507 }
1508
1509 #if 0 // UNUSED
1510 static bool intersect(int& min, int& max, int boundsMin, int boundsMax) {
1511     SkASSERT(min < max);
1512     SkASSERT(boundsMin < boundsMax);
1513     if (min >= boundsMax || max <= boundsMin) {
1514         return false;
1515     }
1516     if (min < boundsMin) {
1517         min = boundsMin;
1518     }
1519     if (max > boundsMax) {
1520         max = boundsMax;
1521     }
1522     return true;
1523 }
1524 #endif
1525
1526 static void operatorX(SkAAClip::Builder& builder, int lastY,
1527                       RowIter& iterA, RowIter& iterB,
1528                       AlphaProc proc, const SkIRect& bounds) {
1529     int leftA = iterA.left();
1530     int riteA = iterA.right();
1531     int leftB = iterB.left();
1532     int riteB = iterB.right();
1533
1534     int prevRite = bounds.fLeft;
1535
1536     do {
1537         U8CPU alphaA = 0;
1538         U8CPU alphaB = 0;
1539         int left, rite;
1540
1541         if (leftA < leftB) {
1542             left = leftA;
1543             alphaA = iterA.alpha();
1544             if (riteA <= leftB) {
1545                 rite = riteA;
1546             } else {
1547                 rite = leftA = leftB;
1548             }
1549         } else if (leftB < leftA) {
1550             left = leftB;
1551             alphaB = iterB.alpha();
1552             if (riteB <= leftA) {
1553                 rite = riteB;
1554             } else {
1555                 rite = leftB = leftA;
1556             }
1557         } else {
1558             left = leftA;   // or leftB, since leftA == leftB
1559             rite = leftA = leftB = SkMin32(riteA, riteB);
1560             alphaA = iterA.alpha();
1561             alphaB = iterB.alpha();
1562         }
1563
1564         if (left >= bounds.fRight) {
1565             break;
1566         }
1567         if (rite > bounds.fRight) {
1568             rite = bounds.fRight;
1569         }
1570
1571         if (left >= bounds.fLeft) {
1572             SkASSERT(rite > left);
1573             builder.addRun(left, lastY, proc(alphaA, alphaB), rite - left);
1574             prevRite = rite;
1575         }
1576
1577         adjust_row(iterA, leftA, riteA, rite);
1578         adjust_row(iterB, leftB, riteB, rite);
1579     } while (!iterA.done() || !iterB.done());
1580
1581     if (prevRite < bounds.fRight) {
1582         builder.addRun(prevRite, lastY, 0, bounds.fRight - prevRite);
1583     }
1584 }
1585
1586 static void adjust_iter(SkAAClip::Iter& iter, int& topA, int& botA, int bot) {
1587     if (bot == botA) {
1588         iter.next();
1589         topA = botA;
1590         SkASSERT(botA == iter.top());
1591         botA = iter.bottom();
1592     }
1593 }
1594
1595 static void operateY(SkAAClip::Builder& builder, const SkAAClip& A,
1596                      const SkAAClip& B, SkRegion::Op op) {
1597     AlphaProc proc = find_alpha_proc(op);
1598     const SkIRect& bounds = builder.getBounds();
1599
1600     SkAAClip::Iter iterA(A);
1601     SkAAClip::Iter iterB(B);
1602
1603     SkASSERT(!iterA.done());
1604     int topA = iterA.top();
1605     int botA = iterA.bottom();
1606     SkASSERT(!iterB.done());
1607     int topB = iterB.top();
1608     int botB = iterB.bottom();
1609
1610     do {
1611         const uint8_t* rowA = NULL;
1612         const uint8_t* rowB = NULL;
1613         int top, bot;
1614
1615         if (topA < topB) {
1616             top = topA;
1617             rowA = iterA.data();
1618             if (botA <= topB) {
1619                 bot = botA;
1620             } else {
1621                 bot = topA = topB;
1622             }
1623
1624         } else if (topB < topA) {
1625             top = topB;
1626             rowB = iterB.data();
1627             if (botB <= topA) {
1628                 bot = botB;
1629             } else {
1630                 bot = topB = topA;
1631             }
1632         } else {
1633             top = topA;   // or topB, since topA == topB
1634             bot = topA = topB = SkMin32(botA, botB);
1635             rowA = iterA.data();
1636             rowB = iterB.data();
1637         }
1638
1639         if (top >= bounds.fBottom) {
1640             break;
1641         }
1642
1643         if (bot > bounds.fBottom) {
1644             bot = bounds.fBottom;
1645         }
1646         SkASSERT(top < bot);
1647
1648         if (!rowA && !rowB) {
1649             builder.addRun(bounds.fLeft, bot - 1, 0, bounds.width());
1650         } else if (top >= bounds.fTop) {
1651             SkASSERT(bot <= bounds.fBottom);
1652             RowIter rowIterA(rowA, rowA ? A.getBounds() : bounds);
1653             RowIter rowIterB(rowB, rowB ? B.getBounds() : bounds);
1654             operatorX(builder, bot - 1, rowIterA, rowIterB, proc, bounds);
1655         }
1656
1657         adjust_iter(iterA, topA, botA, bot);
1658         adjust_iter(iterB, topB, botB, bot);
1659     } while (!iterA.done() || !iterB.done());
1660 }
1661
1662 bool SkAAClip::op(const SkAAClip& clipAOrig, const SkAAClip& clipBOrig,
1663                   SkRegion::Op op) {
1664     AUTO_AACLIP_VALIDATE(*this);
1665
1666     if (SkRegion::kReplace_Op == op) {
1667         return this->set(clipBOrig);
1668     }
1669
1670     const SkAAClip* clipA = &clipAOrig;
1671     const SkAAClip* clipB = &clipBOrig;
1672
1673     if (SkRegion::kReverseDifference_Op == op) {
1674         SkTSwap(clipA, clipB);
1675         op = SkRegion::kDifference_Op;
1676     }
1677
1678     bool a_empty = clipA->isEmpty();
1679     bool b_empty = clipB->isEmpty();
1680
1681     SkIRect bounds;
1682     switch (op) {
1683         case SkRegion::kDifference_Op:
1684             if (a_empty) {
1685                 return this->setEmpty();
1686             }
1687             if (b_empty || !SkIRect::Intersects(clipA->fBounds, clipB->fBounds)) {
1688                 return this->set(*clipA);
1689             }
1690             bounds = clipA->fBounds;
1691             break;
1692
1693         case SkRegion::kIntersect_Op:
1694             if ((a_empty | b_empty) || !bounds.intersect(clipA->fBounds,
1695                                                          clipB->fBounds)) {
1696                 return this->setEmpty();
1697             }
1698             break;
1699
1700         case SkRegion::kUnion_Op:
1701         case SkRegion::kXOR_Op:
1702             if (a_empty) {
1703                 return this->set(*clipB);
1704             }
1705             if (b_empty) {
1706                 return this->set(*clipA);
1707             }
1708             bounds = clipA->fBounds;
1709             bounds.join(clipB->fBounds);
1710             break;
1711
1712         default:
1713             SkDEBUGFAIL("unknown region op");
1714             return !this->isEmpty();
1715     }
1716
1717     SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds));
1718     SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds));
1719
1720     Builder builder(bounds);
1721     operateY(builder, *clipA, *clipB, op);
1722
1723     return builder.finish(this);
1724 }
1725
1726 /*
1727  *  It can be expensive to build a local aaclip before applying the op, so
1728  *  we first see if we can restrict the bounds of new rect to our current
1729  *  bounds, or note that the new rect subsumes our current clip.
1730  */
1731
1732 bool SkAAClip::op(const SkIRect& rOrig, SkRegion::Op op) {
1733     SkIRect        rStorage;
1734     const SkIRect* r = &rOrig;
1735
1736     switch (op) {
1737         case SkRegion::kIntersect_Op:
1738             if (!rStorage.intersect(rOrig, fBounds)) {
1739                 // no overlap, so we're empty
1740                 return this->setEmpty();
1741             }
1742             if (rStorage == fBounds) {
1743                 // we were wholly inside the rect, no change
1744                 return !this->isEmpty();
1745             }
1746             if (this->quickContains(rStorage)) {
1747                 // the intersection is wholly inside us, we're a rect
1748                 return this->setRect(rStorage);
1749             }
1750             r = &rStorage;   // use the intersected bounds
1751             break;
1752         case SkRegion::kDifference_Op:
1753             break;
1754         case SkRegion::kUnion_Op:
1755             if (rOrig.contains(fBounds)) {
1756                 return this->setRect(rOrig);
1757             }
1758             break;
1759         default:
1760             break;
1761     }
1762
1763     SkAAClip clip;
1764     clip.setRect(*r);
1765     return this->op(*this, clip, op);
1766 }
1767
1768 bool SkAAClip::op(const SkRect& rOrig, SkRegion::Op op, bool doAA) {
1769     SkRect        rStorage, boundsStorage;
1770     const SkRect* r = &rOrig;
1771
1772     boundsStorage.set(fBounds);
1773     switch (op) {
1774         case SkRegion::kIntersect_Op:
1775         case SkRegion::kDifference_Op:
1776             if (!rStorage.intersect(rOrig, boundsStorage)) {
1777                 if (SkRegion::kIntersect_Op == op) {
1778                     return this->setEmpty();
1779                 } else {    // kDifference
1780                     return !this->isEmpty();
1781                 }
1782             }
1783             r = &rStorage;   // use the intersected bounds
1784             break;
1785         case SkRegion::kUnion_Op:
1786             if (rOrig.contains(boundsStorage)) {
1787                 return this->setRect(rOrig);
1788             }
1789             break;
1790         default:
1791             break;
1792     }
1793
1794     SkAAClip clip;
1795     clip.setRect(*r, doAA);
1796     return this->op(*this, clip, op);
1797 }
1798
1799 bool SkAAClip::op(const SkAAClip& clip, SkRegion::Op op) {
1800     return this->op(*this, clip, op);
1801 }
1802
1803 ///////////////////////////////////////////////////////////////////////////////
1804
1805 bool SkAAClip::translate(int dx, int dy, SkAAClip* dst) const {
1806     if (NULL == dst) {
1807         return !this->isEmpty();
1808     }
1809
1810     if (this->isEmpty()) {
1811         return dst->setEmpty();
1812     }
1813
1814     if (this != dst) {
1815         sk_atomic_inc(&fRunHead->fRefCnt);
1816         dst->freeRuns();
1817         dst->fRunHead = fRunHead;
1818         dst->fBounds = fBounds;
1819     }
1820     dst->fBounds.offset(dx, dy);
1821     return true;
1822 }
1823
1824 static void expand_row_to_mask(uint8_t* SK_RESTRICT mask,
1825                                const uint8_t* SK_RESTRICT row,
1826                                int width) {
1827     while (width > 0) {
1828         int n = row[0];
1829         SkASSERT(width >= n);
1830         memset(mask, row[1], n);
1831         mask += n;
1832         row += 2;
1833         width -= n;
1834     }
1835     SkASSERT(0 == width);
1836 }
1837
1838 void SkAAClip::copyToMask(SkMask* mask) const {
1839     mask->fFormat = SkMask::kA8_Format;
1840     if (this->isEmpty()) {
1841         mask->fBounds.setEmpty();
1842         mask->fImage = NULL;
1843         mask->fRowBytes = 0;
1844         return;
1845     }
1846
1847     mask->fBounds = fBounds;
1848     mask->fRowBytes = fBounds.width();
1849     size_t size = mask->computeImageSize();
1850     mask->fImage = SkMask::AllocImage(size);
1851
1852     Iter iter(*this);
1853     uint8_t* dst = mask->fImage;
1854     const int width = fBounds.width();
1855
1856     int y = fBounds.fTop;
1857     while (!iter.done()) {
1858         do {
1859             expand_row_to_mask(dst, iter.data(), width);
1860             dst += mask->fRowBytes;
1861         } while (++y < iter.bottom());
1862         iter.next();
1863     }
1864 }
1865
1866 ///////////////////////////////////////////////////////////////////////////////
1867 ///////////////////////////////////////////////////////////////////////////////
1868
1869 static void expandToRuns(const uint8_t* SK_RESTRICT data, int initialCount, int width,
1870                          int16_t* SK_RESTRICT runs, SkAlpha* SK_RESTRICT aa) {
1871     // we don't read our initial n from data, since the caller may have had to
1872     // clip it, hence the initialCount parameter.
1873     int n = initialCount;
1874     for (;;) {
1875         if (n > width) {
1876             n = width;
1877         }
1878         SkASSERT(n > 0);
1879         runs[0] = n;
1880         runs += n;
1881
1882         aa[0] = data[1];
1883         aa += n;
1884
1885         data += 2;
1886         width -= n;
1887         if (0 == width) {
1888             break;
1889         }
1890         // load the next count
1891         n = data[0];
1892     }
1893     runs[0] = 0;    // sentinel
1894 }
1895
1896 SkAAClipBlitter::~SkAAClipBlitter() {
1897     sk_free(fScanlineScratch);
1898 }
1899
1900 void SkAAClipBlitter::ensureRunsAndAA() {
1901     if (NULL == fScanlineScratch) {
1902         // add 1 so we can store the terminating run count of 0
1903         int count = fAAClipBounds.width() + 1;
1904         // we use this either for fRuns + fAA, or a scaline of a mask
1905         // which may be as deep as 32bits
1906         fScanlineScratch = sk_malloc_throw(count * sizeof(SkPMColor));
1907         fRuns = (int16_t*)fScanlineScratch;
1908         fAA = (SkAlpha*)(fRuns + count);
1909     }
1910 }
1911
1912 void SkAAClipBlitter::blitH(int x, int y, int width) {
1913     SkASSERT(width > 0);
1914     SkASSERT(fAAClipBounds.contains(x, y));
1915     SkASSERT(fAAClipBounds.contains(x + width  - 1, y));
1916
1917     const uint8_t* row = fAAClip->findRow(y);
1918     int initialCount;
1919     row = fAAClip->findX(row, x, &initialCount);
1920
1921     if (initialCount >= width) {
1922         SkAlpha alpha = row[1];
1923         if (0 == alpha) {
1924             return;
1925         }
1926         if (0xFF == alpha) {
1927             fBlitter->blitH(x, y, width);
1928             return;
1929         }
1930     }
1931
1932     this->ensureRunsAndAA();
1933     expandToRuns(row, initialCount, width, fRuns, fAA);
1934
1935     fBlitter->blitAntiH(x, y, fAA, fRuns);
1936 }
1937
1938 static void merge(const uint8_t* SK_RESTRICT row, int rowN,
1939                   const SkAlpha* SK_RESTRICT srcAA,
1940                   const int16_t* SK_RESTRICT srcRuns,
1941                   SkAlpha* SK_RESTRICT dstAA,
1942                   int16_t* SK_RESTRICT dstRuns,
1943                   int width) {
1944     SkDEBUGCODE(int accumulated = 0;)
1945     int srcN = srcRuns[0];
1946     // do we need this check?
1947     if (0 == srcN) {
1948         return;
1949     }
1950
1951     for (;;) {
1952         SkASSERT(rowN > 0);
1953         SkASSERT(srcN > 0);
1954
1955         unsigned newAlpha = SkMulDiv255Round(srcAA[0], row[1]);
1956         int minN = SkMin32(srcN, rowN);
1957         dstRuns[0] = minN;
1958         dstRuns += minN;
1959         dstAA[0] = newAlpha;
1960         dstAA += minN;
1961
1962         if (0 == (srcN -= minN)) {
1963             srcN = srcRuns[0];  // refresh
1964             srcRuns += srcN;
1965             srcAA += srcN;
1966             srcN = srcRuns[0];  // reload
1967             if (0 == srcN) {
1968                 break;
1969             }
1970         }
1971         if (0 == (rowN -= minN)) {
1972             row += 2;
1973             rowN = row[0];  // reload
1974         }
1975
1976         SkDEBUGCODE(accumulated += minN;)
1977         SkASSERT(accumulated <= width);
1978     }
1979     dstRuns[0] = 0;
1980 }
1981
1982 void SkAAClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[],
1983                                 const int16_t runs[]) {
1984
1985     const uint8_t* row = fAAClip->findRow(y);
1986     int initialCount;
1987     row = fAAClip->findX(row, x, &initialCount);
1988
1989     this->ensureRunsAndAA();
1990
1991     merge(row, initialCount, aa, runs, fAA, fRuns, fAAClipBounds.width());
1992     fBlitter->blitAntiH(x, y, fAA, fRuns);
1993 }
1994
1995 void SkAAClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
1996     if (fAAClip->quickContains(x, y, x + 1, y + height)) {
1997         fBlitter->blitV(x, y, height, alpha);
1998         return;
1999     }
2000
2001     for (;;) {
2002         int lastY SK_INIT_TO_AVOID_WARNING;
2003         const uint8_t* row = fAAClip->findRow(y, &lastY);
2004         int dy = lastY - y + 1;
2005         if (dy > height) {
2006             dy = height;
2007         }
2008         height -= dy;
2009
2010         row = fAAClip->findX(row, x);
2011         SkAlpha newAlpha = SkMulDiv255Round(alpha, row[1]);
2012         if (newAlpha) {
2013             fBlitter->blitV(x, y, dy, newAlpha);
2014         }
2015         SkASSERT(height >= 0);
2016         if (height <= 0) {
2017             break;
2018         }
2019         y = lastY + 1;
2020     }
2021 }
2022
2023 void SkAAClipBlitter::blitRect(int x, int y, int width, int height) {
2024     if (fAAClip->quickContains(x, y, x + width, y + height)) {
2025         fBlitter->blitRect(x, y, width, height);
2026         return;
2027     }
2028
2029     while (--height >= 0) {
2030         this->blitH(x, y, width);
2031         y += 1;
2032     }
2033 }
2034
2035 typedef void (*MergeAAProc)(const void* src, int width, const uint8_t* row,
2036                             int initialRowCount, void* dst);
2037
2038 static void small_memcpy(void* dst, const void* src, size_t n) {
2039     memcpy(dst, src, n);
2040 }
2041
2042 static void small_bzero(void* dst, size_t n) {
2043     sk_bzero(dst, n);
2044 }
2045
2046 static inline uint8_t mergeOne(uint8_t value, unsigned alpha) {
2047     return SkMulDiv255Round(value, alpha);
2048 }
2049 static inline uint16_t mergeOne(uint16_t value, unsigned alpha) {
2050     unsigned r = SkGetPackedR16(value);
2051     unsigned g = SkGetPackedG16(value);
2052     unsigned b = SkGetPackedB16(value);
2053     return SkPackRGB16(SkMulDiv255Round(r, alpha),
2054                        SkMulDiv255Round(g, alpha),
2055                        SkMulDiv255Round(b, alpha));
2056 }
2057 static inline SkPMColor mergeOne(SkPMColor value, unsigned alpha) {
2058     unsigned a = SkGetPackedA32(value);
2059     unsigned r = SkGetPackedR32(value);
2060     unsigned g = SkGetPackedG32(value);
2061     unsigned b = SkGetPackedB32(value);
2062     return SkPackARGB32(SkMulDiv255Round(a, alpha),
2063                         SkMulDiv255Round(r, alpha),
2064                         SkMulDiv255Round(g, alpha),
2065                         SkMulDiv255Round(b, alpha));
2066 }
2067
2068 template <typename T> void mergeT(const T* SK_RESTRICT src, int srcN,
2069                                  const uint8_t* SK_RESTRICT row, int rowN,
2070                                  T* SK_RESTRICT dst) {
2071     for (;;) {
2072         SkASSERT(rowN > 0);
2073         SkASSERT(srcN > 0);
2074
2075         int n = SkMin32(rowN, srcN);
2076         unsigned rowA = row[1];
2077         if (0xFF == rowA) {
2078             small_memcpy(dst, src, n * sizeof(T));
2079         } else if (0 == rowA) {
2080             small_bzero(dst, n * sizeof(T));
2081         } else {
2082             for (int i = 0; i < n; ++i) {
2083                 dst[i] = mergeOne(src[i], rowA);
2084             }
2085         }
2086
2087         if (0 == (srcN -= n)) {
2088             break;
2089         }
2090
2091         src += n;
2092         dst += n;
2093
2094         SkASSERT(rowN == n);
2095         row += 2;
2096         rowN = row[0];
2097     }
2098 }
2099
2100 static MergeAAProc find_merge_aa_proc(SkMask::Format format) {
2101     switch (format) {
2102         case SkMask::kBW_Format:
2103             SkDEBUGFAIL("unsupported");
2104             return NULL;
2105         case SkMask::kA8_Format:
2106         case SkMask::k3D_Format: {
2107             void (*proc8)(const uint8_t*, int, const uint8_t*, int, uint8_t*) = mergeT;
2108             return (MergeAAProc)proc8;
2109         }
2110         case SkMask::kLCD16_Format: {
2111             void (*proc16)(const uint16_t*, int, const uint8_t*, int, uint16_t*) = mergeT;
2112             return (MergeAAProc)proc16;
2113         }
2114         case SkMask::kLCD32_Format: {
2115             void (*proc32)(const SkPMColor*, int, const uint8_t*, int, SkPMColor*) = mergeT;
2116             return (MergeAAProc)proc32;
2117         }
2118         default:
2119             SkDEBUGFAIL("unsupported");
2120             return NULL;
2121     }
2122 }
2123
2124 static U8CPU bit2byte(int bitInAByte) {
2125     SkASSERT(bitInAByte <= 0xFF);
2126     // negation turns any non-zero into 0xFFFFFF??, so we just shift down
2127     // some value >= 8 to get a full FF value
2128     return -bitInAByte >> 8;
2129 }
2130
2131 static void upscaleBW2A8(SkMask* dstMask, const SkMask& srcMask) {
2132     SkASSERT(SkMask::kBW_Format == srcMask.fFormat);
2133     SkASSERT(SkMask::kA8_Format == dstMask->fFormat);
2134
2135     const int width = srcMask.fBounds.width();
2136     const int height = srcMask.fBounds.height();
2137
2138     const uint8_t* SK_RESTRICT src = (const uint8_t*)srcMask.fImage;
2139     const size_t srcRB = srcMask.fRowBytes;
2140     uint8_t* SK_RESTRICT dst = (uint8_t*)dstMask->fImage;
2141     const size_t dstRB = dstMask->fRowBytes;
2142
2143     const int wholeBytes = width >> 3;
2144     const int leftOverBits = width & 7;
2145
2146     for (int y = 0; y < height; ++y) {
2147         uint8_t* SK_RESTRICT d = dst;
2148         for (int i = 0; i < wholeBytes; ++i) {
2149             int srcByte = src[i];
2150             d[0] = bit2byte(srcByte & (1 << 7));
2151             d[1] = bit2byte(srcByte & (1 << 6));
2152             d[2] = bit2byte(srcByte & (1 << 5));
2153             d[3] = bit2byte(srcByte & (1 << 4));
2154             d[4] = bit2byte(srcByte & (1 << 3));
2155             d[5] = bit2byte(srcByte & (1 << 2));
2156             d[6] = bit2byte(srcByte & (1 << 1));
2157             d[7] = bit2byte(srcByte & (1 << 0));
2158             d += 8;
2159         }
2160         if (leftOverBits) {
2161             int srcByte = src[wholeBytes];
2162             for (int x = 0; x < leftOverBits; ++x) {
2163                 *d++ = bit2byte(srcByte & 0x80);
2164                 srcByte <<= 1;
2165             }
2166         }
2167         src += srcRB;
2168         dst += dstRB;
2169     }
2170 }
2171
2172 void SkAAClipBlitter::blitMask(const SkMask& origMask, const SkIRect& clip) {
2173     SkASSERT(fAAClip->getBounds().contains(clip));
2174
2175     if (fAAClip->quickContains(clip)) {
2176         fBlitter->blitMask(origMask, clip);
2177         return;
2178     }
2179
2180     const SkMask* mask = &origMask;
2181
2182     // if we're BW, we need to upscale to A8 (ugh)
2183     SkMask  grayMask;
2184     grayMask.fImage = NULL;
2185     if (SkMask::kBW_Format == origMask.fFormat) {
2186         grayMask.fFormat = SkMask::kA8_Format;
2187         grayMask.fBounds = origMask.fBounds;
2188         grayMask.fRowBytes = origMask.fBounds.width();
2189         size_t size = grayMask.computeImageSize();
2190         grayMask.fImage = (uint8_t*)fGrayMaskScratch.reset(size,
2191                                                SkAutoMalloc::kReuse_OnShrink);
2192
2193         upscaleBW2A8(&grayMask, origMask);
2194         mask = &grayMask;
2195     }
2196
2197     this->ensureRunsAndAA();
2198
2199     // HACK -- we are devolving 3D into A8, need to copy the rest of the 3D
2200     // data into a temp block to support it better (ugh)
2201
2202     const void* src = mask->getAddr(clip.fLeft, clip.fTop);
2203     const size_t srcRB = mask->fRowBytes;
2204     const int width = clip.width();
2205     MergeAAProc mergeProc = find_merge_aa_proc(mask->fFormat);
2206
2207     SkMask rowMask;
2208     rowMask.fFormat = SkMask::k3D_Format == mask->fFormat ? SkMask::kA8_Format : mask->fFormat;
2209     rowMask.fBounds.fLeft = clip.fLeft;
2210     rowMask.fBounds.fRight = clip.fRight;
2211     rowMask.fRowBytes = mask->fRowBytes; // doesn't matter, since our height==1
2212     rowMask.fImage = (uint8_t*)fScanlineScratch;
2213
2214     int y = clip.fTop;
2215     const int stopY = y + clip.height();
2216
2217     do {
2218         int localStopY SK_INIT_TO_AVOID_WARNING;
2219         const uint8_t* row = fAAClip->findRow(y, &localStopY);
2220         // findRow returns last Y, not stop, so we add 1
2221         localStopY = SkMin32(localStopY + 1, stopY);
2222
2223         int initialCount;
2224         row = fAAClip->findX(row, clip.fLeft, &initialCount);
2225         do {
2226             mergeProc(src, width, row, initialCount, rowMask.fImage);
2227             rowMask.fBounds.fTop = y;
2228             rowMask.fBounds.fBottom = y + 1;
2229             fBlitter->blitMask(rowMask, rowMask.fBounds);
2230             src = (const void*)((const char*)src + srcRB);
2231         } while (++y < localStopY);
2232     } while (y < stopY);
2233 }
2234
2235 const SkBitmap* SkAAClipBlitter::justAnOpaqueColor(uint32_t* value) {
2236     return NULL;
2237 }