Upstream version 5.34.92.0
[platform/framework/web/crosswalk.git] / src / third_party / WebKit / Source / platform / Timer.cpp
1 /*
2  * Copyright (C) 2006, 2008 Apple Inc. All rights reserved.
3  * Copyright (C) 2009 Google Inc. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
15  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
22  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include "config.h"
28 #include "platform/Timer.h"
29
30 #include "platform/PlatformThreadData.h"
31 #include "platform/ThreadTimers.h"
32 #include "wtf/CurrentTime.h"
33 #include "wtf/HashSet.h"
34 #include <limits.h>
35 #include <math.h>
36 #include <limits>
37
38 using namespace std;
39
40 namespace WebCore {
41
42 class TimerHeapReference;
43
44 // Timers are stored in a heap data structure, used to implement a priority queue.
45 // This allows us to efficiently determine which timer needs to fire the soonest.
46 // Then we set a single shared system timer to fire at that time.
47 //
48 // When a timer's "next fire time" changes, we need to move it around in the priority queue.
49 static Vector<TimerBase*>& threadGlobalTimerHeap()
50 {
51     return PlatformThreadData::current().threadTimers().timerHeap();
52 }
53 // ----------------
54
55 class TimerHeapPointer {
56 public:
57     TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { }
58     TimerHeapReference operator*() const;
59     TimerBase* operator->() const { return *m_pointer; }
60 private:
61     TimerBase** m_pointer;
62 };
63
64 class TimerHeapReference {
65 public:
66     TimerHeapReference(TimerBase*& reference) : m_reference(reference) { }
67     operator TimerBase*() const { return m_reference; }
68     TimerHeapPointer operator&() const { return &m_reference; }
69     TimerHeapReference& operator=(TimerBase*);
70     TimerHeapReference& operator=(TimerHeapReference);
71 private:
72     TimerBase*& m_reference;
73 };
74
75 inline TimerHeapReference TimerHeapPointer::operator*() const
76 {
77     return *m_pointer;
78 }
79
80 inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer)
81 {
82     m_reference = timer;
83     Vector<TimerBase*>& heap = timer->timerHeap();
84     if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size())
85         timer->m_heapIndex = &m_reference - heap.data();
86     return *this;
87 }
88
89 inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b)
90 {
91     TimerBase* timer = b;
92     return *this = timer;
93 }
94
95 inline void swap(TimerHeapReference a, TimerHeapReference b)
96 {
97     TimerBase* timerA = a;
98     TimerBase* timerB = b;
99
100     // Invoke the assignment operator, since that takes care of updating m_heapIndex.
101     a = timerB;
102     b = timerA;
103 }
104
105 // ----------------
106
107 // Class to represent iterators in the heap when calling the standard library heap algorithms.
108 // Uses a custom pointer and reference type that update indices for pointers in the heap.
109 class TimerHeapIterator : public iterator<random_access_iterator_tag, TimerBase*, ptrdiff_t, TimerHeapPointer, TimerHeapReference> {
110 public:
111     explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { checkConsistency(); }
112
113     TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; }
114     TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); }
115
116     TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; }
117     TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); }
118
119     TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; }
120     TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; }
121
122     TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); }
123     TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); }
124     TimerBase* operator->() const { return *m_pointer; }
125
126 private:
127     void checkConsistency(ptrdiff_t offset = 0) const
128     {
129         ASSERT(m_pointer >= threadGlobalTimerHeap().data());
130         ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
131         ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data());
132         ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
133     }
134
135     friend bool operator==(TimerHeapIterator, TimerHeapIterator);
136     friend bool operator!=(TimerHeapIterator, TimerHeapIterator);
137     friend bool operator<(TimerHeapIterator, TimerHeapIterator);
138     friend bool operator>(TimerHeapIterator, TimerHeapIterator);
139     friend bool operator<=(TimerHeapIterator, TimerHeapIterator);
140     friend bool operator>=(TimerHeapIterator, TimerHeapIterator);
141
142     friend TimerHeapIterator operator+(TimerHeapIterator, size_t);
143     friend TimerHeapIterator operator+(size_t, TimerHeapIterator);
144
145     friend TimerHeapIterator operator-(TimerHeapIterator, size_t);
146     friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator);
147
148     TimerBase** m_pointer;
149 };
150
151 inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; }
152 inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; }
153 inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; }
154 inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; }
155 inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; }
156 inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; }
157
158 inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); }
159 inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); }
160
161 inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); }
162 inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; }
163
164 // ----------------
165
166 class TimerHeapLessThanFunction {
167 public:
168     bool operator()(const TimerBase*, const TimerBase*) const;
169 };
170
171 inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const TimerBase* b) const
172 {
173     // The comparisons below are "backwards" because the heap puts the largest
174     // element first and we want the lowest time to be the first one in the heap.
175     double aFireTime = a->m_nextFireTime;
176     double bFireTime = b->m_nextFireTime;
177     if (bFireTime != aFireTime)
178         return bFireTime < aFireTime;
179
180     // We need to look at the difference of the insertion orders instead of comparing the two
181     // outright in case of overflow.
182     unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder;
183     return difference < numeric_limits<unsigned>::max() / 2;
184 }
185
186 // ----------------
187
188 TimerBase::TimerBase()
189     : m_nextFireTime(0)
190     , m_unalignedNextFireTime(0)
191     , m_repeatInterval(0)
192     , m_heapIndex(-1)
193     , m_cachedThreadGlobalTimerHeap(0)
194 #ifndef NDEBUG
195     , m_thread(currentThread())
196 #endif
197 {
198 }
199
200 TimerBase::~TimerBase()
201 {
202     stop();
203     ASSERT(!inHeap());
204 }
205
206 void TimerBase::start(double nextFireInterval, double repeatInterval)
207 {
208     ASSERT(m_thread == currentThread());
209
210     m_repeatInterval = repeatInterval;
211     setNextFireTime(monotonicallyIncreasingTime() + nextFireInterval);
212 }
213
214 void TimerBase::stop()
215 {
216     ASSERT(m_thread == currentThread());
217
218     m_repeatInterval = 0;
219     setNextFireTime(0);
220
221     ASSERT(m_nextFireTime == 0);
222     ASSERT(m_repeatInterval == 0);
223     ASSERT(!inHeap());
224 }
225
226 double TimerBase::nextFireInterval() const
227 {
228     ASSERT(isActive());
229     double current = monotonicallyIncreasingTime();
230     if (m_nextFireTime < current)
231         return 0;
232     return m_nextFireTime - current;
233 }
234
235 inline void TimerBase::checkHeapIndex() const
236 {
237     ASSERT(timerHeap() == threadGlobalTimerHeap());
238     ASSERT(!timerHeap().isEmpty());
239     ASSERT(m_heapIndex >= 0);
240     ASSERT(m_heapIndex < static_cast<int>(timerHeap().size()));
241     ASSERT(timerHeap()[m_heapIndex] == this);
242 }
243
244 inline void TimerBase::checkConsistency() const
245 {
246     // Timers should be in the heap if and only if they have a non-zero next fire time.
247     ASSERT(inHeap() == (m_nextFireTime != 0));
248     if (inHeap())
249         checkHeapIndex();
250 }
251
252 void TimerBase::heapDecreaseKey()
253 {
254     ASSERT(m_nextFireTime != 0);
255     checkHeapIndex();
256     TimerBase** heapData = timerHeap().data();
257     push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIndex + 1), TimerHeapLessThanFunction());
258     checkHeapIndex();
259 }
260
261 inline void TimerBase::heapDelete()
262 {
263     ASSERT(m_nextFireTime == 0);
264     heapPop();
265     timerHeap().removeLast();
266     m_heapIndex = -1;
267 }
268
269 void TimerBase::heapDeleteMin()
270 {
271     ASSERT(m_nextFireTime == 0);
272     heapPopMin();
273     timerHeap().removeLast();
274     m_heapIndex = -1;
275 }
276
277 inline void TimerBase::heapIncreaseKey()
278 {
279     ASSERT(m_nextFireTime != 0);
280     heapPop();
281     heapDecreaseKey();
282 }
283
284 inline void TimerBase::heapInsert()
285 {
286     ASSERT(!inHeap());
287     timerHeap().append(this);
288     m_heapIndex = timerHeap().size() - 1;
289     heapDecreaseKey();
290 }
291
292 inline void TimerBase::heapPop()
293 {
294     // Temporarily force this timer to have the minimum key so we can pop it.
295     double fireTime = m_nextFireTime;
296     m_nextFireTime = -numeric_limits<double>::infinity();
297     heapDecreaseKey();
298     heapPopMin();
299     m_nextFireTime = fireTime;
300 }
301
302 void TimerBase::heapPopMin()
303 {
304     ASSERT(this == timerHeap().first());
305     checkHeapIndex();
306     Vector<TimerBase*>& heap = timerHeap();
307     TimerBase** heapData = heap.data();
308     pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction());
309     checkHeapIndex();
310     ASSERT(this == timerHeap().last());
311 }
312
313 static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned currentIndex)
314 {
315     if (!currentIndex)
316         return true;
317     unsigned parentIndex = (currentIndex - 1) / 2;
318     TimerHeapLessThanFunction compareHeapPosition;
319     return compareHeapPosition(current, heap[parentIndex]);
320 }
321
322 static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned childIndex)
323 {
324     if (childIndex >= heap.size())
325         return true;
326     TimerHeapLessThanFunction compareHeapPosition;
327     return compareHeapPosition(heap[childIndex], current);
328 }
329
330 bool TimerBase::hasValidHeapPosition() const
331 {
332     ASSERT(m_nextFireTime);
333     if (!inHeap())
334         return false;
335     // Check if the heap property still holds with the new fire time. If it does we don't need to do anything.
336     // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions
337     // in updateHeapIfNeeded() will get hit.
338     const Vector<TimerBase*>& heap = timerHeap();
339     if (!parentHeapPropertyHolds(this, heap, m_heapIndex))
340         return false;
341     unsigned childIndex1 = 2 * m_heapIndex + 1;
342     unsigned childIndex2 = childIndex1 + 1;
343     return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2);
344 }
345
346 void TimerBase::updateHeapIfNeeded(double oldTime)
347 {
348     if (m_nextFireTime && hasValidHeapPosition())
349         return;
350 #ifndef NDEBUG
351     int oldHeapIndex = m_heapIndex;
352 #endif
353     if (!oldTime)
354         heapInsert();
355     else if (!m_nextFireTime)
356         heapDelete();
357     else if (m_nextFireTime < oldTime)
358         heapDecreaseKey();
359     else
360         heapIncreaseKey();
361     ASSERT(m_heapIndex != oldHeapIndex);
362     ASSERT(!inHeap() || hasValidHeapPosition());
363 }
364
365 void TimerBase::setNextFireTime(double newUnalignedTime)
366 {
367     ASSERT(m_thread == currentThread());
368
369     if (m_unalignedNextFireTime != newUnalignedTime)
370         m_unalignedNextFireTime = newUnalignedTime;
371
372     // Accessing thread global data is slow. Cache the heap pointer.
373     if (!m_cachedThreadGlobalTimerHeap)
374         m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap();
375
376     // Keep heap valid while changing the next-fire time.
377     double oldTime = m_nextFireTime;
378     double newTime = alignedFireTime(newUnalignedTime);
379     if (oldTime != newTime) {
380         m_nextFireTime = newTime;
381         static unsigned currentHeapInsertionOrder;
382         m_heapInsertionOrder = currentHeapInsertionOrder++;
383
384         bool wasFirstTimerInHeap = m_heapIndex == 0;
385
386         updateHeapIfNeeded(oldTime);
387
388         bool isFirstTimerInHeap = m_heapIndex == 0;
389
390         if (wasFirstTimerInHeap || isFirstTimerInHeap)
391             PlatformThreadData::current().threadTimers().updateSharedTimer();
392     }
393
394     checkConsistency();
395 }
396
397 void TimerBase::fireTimersInNestedEventLoop()
398 {
399     // Redirect to ThreadTimers.
400     PlatformThreadData::current().threadTimers().fireTimersInNestedEventLoop();
401 }
402
403 void TimerBase::didChangeAlignmentInterval()
404 {
405     setNextFireTime(m_unalignedNextFireTime);
406 }
407
408 double TimerBase::nextUnalignedFireInterval() const
409 {
410     ASSERT(isActive());
411     return max(m_unalignedNextFireTime - monotonicallyIncreasingTime(), 0.0);
412 }
413
414 } // namespace WebCore
415