16047258dc449019c2a3641709a768251a4a3d0e
[platform/framework/web/crosswalk.git] / src / testing / gtest / include / gtest / internal / gtest-internal.h
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31 //
32 // The Google C++ Testing Framework (Google Test)
33 //
34 // This header file declares functions and macros used internally by
35 // Google Test.  They are subject to change without notice.
36
37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39
40 #include "gtest/internal/gtest-port.h"
41
42 #if GTEST_OS_LINUX
43 # include <stdlib.h>
44 # include <sys/types.h>
45 # include <sys/wait.h>
46 # include <unistd.h>
47 #endif  // GTEST_OS_LINUX
48
49 #if GTEST_HAS_EXCEPTIONS
50 # include <stdexcept>
51 #endif
52
53 #include <ctype.h>
54 #include <string.h>
55 #include <iomanip>
56 #include <limits>
57 #include <set>
58
59 #include "gtest/gtest-message.h"
60 #include "gtest/internal/gtest-string.h"
61 #include "gtest/internal/gtest-filepath.h"
62 #include "gtest/internal/gtest-type-util.h"
63
64 // Due to C++ preprocessor weirdness, we need double indirection to
65 // concatenate two tokens when one of them is __LINE__.  Writing
66 //
67 //   foo ## __LINE__
68 //
69 // will result in the token foo__LINE__, instead of foo followed by
70 // the current line number.  For more details, see
71 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
72 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
73 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
74
75 class ProtocolMessage;
76 namespace proto2 { class Message; }
77
78 namespace testing {
79
80 // Forward declarations.
81
82 class AssertionResult;                 // Result of an assertion.
83 class Message;                         // Represents a failure message.
84 class Test;                            // Represents a test.
85 class TestInfo;                        // Information about a test.
86 class TestPartResult;                  // Result of a test part.
87 class UnitTest;                        // A collection of test cases.
88
89 template <typename T>
90 ::std::string PrintToString(const T& value);
91
92 namespace internal {
93
94 struct TraceInfo;                      // Information about a trace point.
95 class ScopedTrace;                     // Implements scoped trace.
96 class TestInfoImpl;                    // Opaque implementation of TestInfo
97 class UnitTestImpl;                    // Opaque implementation of UnitTest
98
99 // How many times InitGoogleTest() has been called.
100 GTEST_API_ extern int g_init_gtest_count;
101
102 // The text used in failure messages to indicate the start of the
103 // stack trace.
104 GTEST_API_ extern const char kStackTraceMarker[];
105
106 // Two overloaded helpers for checking at compile time whether an
107 // expression is a null pointer literal (i.e. NULL or any 0-valued
108 // compile-time integral constant).  Their return values have
109 // different sizes, so we can use sizeof() to test which version is
110 // picked by the compiler.  These helpers have no implementations, as
111 // we only need their signatures.
112 //
113 // Given IsNullLiteralHelper(x), the compiler will pick the first
114 // version if x can be implicitly converted to Secret*, and pick the
115 // second version otherwise.  Since Secret is a secret and incomplete
116 // type, the only expression a user can write that has type Secret* is
117 // a null pointer literal.  Therefore, we know that x is a null
118 // pointer literal if and only if the first version is picked by the
119 // compiler.
120 char IsNullLiteralHelper(Secret* p);
121 char (&IsNullLiteralHelper(...))[2];  // NOLINT
122
123 // A compile-time bool constant that is true if and only if x is a
124 // null pointer literal (i.e. NULL or any 0-valued compile-time
125 // integral constant).
126 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
127 // We lose support for NULL detection where the compiler doesn't like
128 // passing non-POD classes through ellipsis (...).
129 # define GTEST_IS_NULL_LITERAL_(x) false
130 #else
131 # define GTEST_IS_NULL_LITERAL_(x) \
132     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
133 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
134
135 // Appends the user-supplied message to the Google-Test-generated message.
136 GTEST_API_ std::string AppendUserMessage(
137     const std::string& gtest_msg, const Message& user_msg);
138
139 #if GTEST_HAS_EXCEPTIONS
140
141 // This exception is thrown by (and only by) a failed Google Test
142 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
143 // are enabled).  We derive it from std::runtime_error, which is for
144 // errors presumably detectable only at run time.  Since
145 // std::runtime_error inherits from std::exception, many testing
146 // frameworks know how to extract and print the message inside it.
147 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
148  public:
149   explicit GoogleTestFailureException(const TestPartResult& failure);
150 };
151
152 #endif  // GTEST_HAS_EXCEPTIONS
153
154 // A helper class for creating scoped traces in user programs.
155 class GTEST_API_ ScopedTrace {
156  public:
157   // The c'tor pushes the given source file location and message onto
158   // a trace stack maintained by Google Test.
159   ScopedTrace(const char* file, int line, const Message& message);
160
161   // The d'tor pops the info pushed by the c'tor.
162   //
163   // Note that the d'tor is not virtual in order to be efficient.
164   // Don't inherit from ScopedTrace!
165   ~ScopedTrace();
166
167  private:
168   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
169 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
170                             // c'tor and d'tor.  Therefore it doesn't
171                             // need to be used otherwise.
172
173 // Constructs and returns the message for an equality assertion
174 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
175 //
176 // The first four parameters are the expressions used in the assertion
177 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
178 // where foo is 5 and bar is 6, we have:
179 //
180 //   expected_expression: "foo"
181 //   actual_expression:   "bar"
182 //   expected_value:      "5"
183 //   actual_value:        "6"
184 //
185 // The ignoring_case parameter is true iff the assertion is a
186 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
187 // be inserted into the message.
188 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
189                                      const char* actual_expression,
190                                      const std::string& expected_value,
191                                      const std::string& actual_value,
192                                      bool ignoring_case);
193
194 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
195 GTEST_API_ std::string GetBoolAssertionFailureMessage(
196     const AssertionResult& assertion_result,
197     const char* expression_text,
198     const char* actual_predicate_value,
199     const char* expected_predicate_value);
200
201 // This template class represents an IEEE floating-point number
202 // (either single-precision or double-precision, depending on the
203 // template parameters).
204 //
205 // The purpose of this class is to do more sophisticated number
206 // comparison.  (Due to round-off error, etc, it's very unlikely that
207 // two floating-points will be equal exactly.  Hence a naive
208 // comparison by the == operation often doesn't work.)
209 //
210 // Format of IEEE floating-point:
211 //
212 //   The most-significant bit being the leftmost, an IEEE
213 //   floating-point looks like
214 //
215 //     sign_bit exponent_bits fraction_bits
216 //
217 //   Here, sign_bit is a single bit that designates the sign of the
218 //   number.
219 //
220 //   For float, there are 8 exponent bits and 23 fraction bits.
221 //
222 //   For double, there are 11 exponent bits and 52 fraction bits.
223 //
224 //   More details can be found at
225 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
226 //
227 // Template parameter:
228 //
229 //   RawType: the raw floating-point type (either float or double)
230 template <typename RawType>
231 class FloatingPoint {
232  public:
233   // Defines the unsigned integer type that has the same size as the
234   // floating point number.
235   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
236
237   // Constants.
238
239   // # of bits in a number.
240   static const size_t kBitCount = 8*sizeof(RawType);
241
242   // # of fraction bits in a number.
243   static const size_t kFractionBitCount =
244     std::numeric_limits<RawType>::digits - 1;
245
246   // # of exponent bits in a number.
247   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
248
249   // The mask for the sign bit.
250   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
251
252   // The mask for the fraction bits.
253   static const Bits kFractionBitMask =
254     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
255
256   // The mask for the exponent bits.
257   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
258
259   // How many ULP's (Units in the Last Place) we want to tolerate when
260   // comparing two numbers.  The larger the value, the more error we
261   // allow.  A 0 value means that two numbers must be exactly the same
262   // to be considered equal.
263   //
264   // The maximum error of a single floating-point operation is 0.5
265   // units in the last place.  On Intel CPU's, all floating-point
266   // calculations are done with 80-bit precision, while double has 64
267   // bits.  Therefore, 4 should be enough for ordinary use.
268   //
269   // See the following article for more details on ULP:
270   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
271   static const size_t kMaxUlps = 4;
272
273   // Constructs a FloatingPoint from a raw floating-point number.
274   //
275   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
276   // around may change its bits, although the new value is guaranteed
277   // to be also a NAN.  Therefore, don't expect this constructor to
278   // preserve the bits in x when x is a NAN.
279   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
280
281   // Static methods
282
283   // Reinterprets a bit pattern as a floating-point number.
284   //
285   // This function is needed to test the AlmostEquals() method.
286   static RawType ReinterpretBits(const Bits bits) {
287     FloatingPoint fp(0);
288     fp.u_.bits_ = bits;
289     return fp.u_.value_;
290   }
291
292   // Returns the floating-point number that represent positive infinity.
293   static RawType Infinity() {
294     return ReinterpretBits(kExponentBitMask);
295   }
296
297   // Non-static methods
298
299   // Returns the bits that represents this number.
300   const Bits &bits() const { return u_.bits_; }
301
302   // Returns the exponent bits of this number.
303   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
304
305   // Returns the fraction bits of this number.
306   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
307
308   // Returns the sign bit of this number.
309   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
310
311   // Returns true iff this is NAN (not a number).
312   bool is_nan() const {
313     // It's a NAN if the exponent bits are all ones and the fraction
314     // bits are not entirely zeros.
315     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
316   }
317
318   // Returns true iff this number is at most kMaxUlps ULP's away from
319   // rhs.  In particular, this function:
320   //
321   //   - returns false if either number is (or both are) NAN.
322   //   - treats really large numbers as almost equal to infinity.
323   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
324   bool AlmostEquals(const FloatingPoint& rhs) const {
325     // The IEEE standard says that any comparison operation involving
326     // a NAN must return false.
327     if (is_nan() || rhs.is_nan()) return false;
328
329     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
330         <= kMaxUlps;
331   }
332
333  private:
334   // The data type used to store the actual floating-point number.
335   union FloatingPointUnion {
336     RawType value_;  // The raw floating-point number.
337     Bits bits_;      // The bits that represent the number.
338   };
339
340   // Converts an integer from the sign-and-magnitude representation to
341   // the biased representation.  More precisely, let N be 2 to the
342   // power of (kBitCount - 1), an integer x is represented by the
343   // unsigned number x + N.
344   //
345   // For instance,
346   //
347   //   -N + 1 (the most negative number representable using
348   //          sign-and-magnitude) is represented by 1;
349   //   0      is represented by N; and
350   //   N - 1  (the biggest number representable using
351   //          sign-and-magnitude) is represented by 2N - 1.
352   //
353   // Read http://en.wikipedia.org/wiki/Signed_number_representations
354   // for more details on signed number representations.
355   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
356     if (kSignBitMask & sam) {
357       // sam represents a negative number.
358       return ~sam + 1;
359     } else {
360       // sam represents a positive number.
361       return kSignBitMask | sam;
362     }
363   }
364
365   // Given two numbers in the sign-and-magnitude representation,
366   // returns the distance between them as an unsigned number.
367   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
368                                                      const Bits &sam2) {
369     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
370     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
371     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
372   }
373
374   FloatingPointUnion u_;
375 };
376
377 // Typedefs the instances of the FloatingPoint template class that we
378 // care to use.
379 typedef FloatingPoint<float> Float;
380 typedef FloatingPoint<double> Double;
381
382 // In order to catch the mistake of putting tests that use different
383 // test fixture classes in the same test case, we need to assign
384 // unique IDs to fixture classes and compare them.  The TypeId type is
385 // used to hold such IDs.  The user should treat TypeId as an opaque
386 // type: the only operation allowed on TypeId values is to compare
387 // them for equality using the == operator.
388 typedef const void* TypeId;
389
390 template <typename T>
391 class TypeIdHelper {
392  public:
393   // dummy_ must not have a const type.  Otherwise an overly eager
394   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
395   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
396   static bool dummy_;
397 };
398
399 template <typename T>
400 bool TypeIdHelper<T>::dummy_ = false;
401
402 // GetTypeId<T>() returns the ID of type T.  Different values will be
403 // returned for different types.  Calling the function twice with the
404 // same type argument is guaranteed to return the same ID.
405 template <typename T>
406 TypeId GetTypeId() {
407   // The compiler is required to allocate a different
408   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
409   // the template.  Therefore, the address of dummy_ is guaranteed to
410   // be unique.
411   return &(TypeIdHelper<T>::dummy_);
412 }
413
414 // Returns the type ID of ::testing::Test.  Always call this instead
415 // of GetTypeId< ::testing::Test>() to get the type ID of
416 // ::testing::Test, as the latter may give the wrong result due to a
417 // suspected linker bug when compiling Google Test as a Mac OS X
418 // framework.
419 GTEST_API_ TypeId GetTestTypeId();
420
421 // Defines the abstract factory interface that creates instances
422 // of a Test object.
423 class TestFactoryBase {
424  public:
425   virtual ~TestFactoryBase() {}
426
427   // Creates a test instance to run. The instance is both created and destroyed
428   // within TestInfoImpl::Run()
429   virtual Test* CreateTest() = 0;
430
431  protected:
432   TestFactoryBase() {}
433
434  private:
435   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
436 };
437
438 // This class provides implementation of TeastFactoryBase interface.
439 // It is used in TEST and TEST_F macros.
440 template <class TestClass>
441 class TestFactoryImpl : public TestFactoryBase {
442  public:
443   virtual Test* CreateTest() { return new TestClass; }
444 };
445
446 #if GTEST_OS_WINDOWS
447
448 // Predicate-formatters for implementing the HRESULT checking macros
449 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
450 // We pass a long instead of HRESULT to avoid causing an
451 // include dependency for the HRESULT type.
452 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
453                                             long hr);  // NOLINT
454 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
455                                             long hr);  // NOLINT
456
457 #endif  // GTEST_OS_WINDOWS
458
459 // Types of SetUpTestCase() and TearDownTestCase() functions.
460 typedef void (*SetUpTestCaseFunc)();
461 typedef void (*TearDownTestCaseFunc)();
462
463 // Creates a new TestInfo object and registers it with Google Test;
464 // returns the created object.
465 //
466 // Arguments:
467 //
468 //   test_case_name:   name of the test case
469 //   name:             name of the test
470 //   type_param        the name of the test's type parameter, or NULL if
471 //                     this is not a typed or a type-parameterized test.
472 //   value_param       text representation of the test's value parameter,
473 //                     or NULL if this is not a type-parameterized test.
474 //   fixture_class_id: ID of the test fixture class
475 //   set_up_tc:        pointer to the function that sets up the test case
476 //   tear_down_tc:     pointer to the function that tears down the test case
477 //   factory:          pointer to the factory that creates a test object.
478 //                     The newly created TestInfo instance will assume
479 //                     ownership of the factory object.
480 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
481     const char* test_case_name,
482     const char* name,
483     const char* type_param,
484     const char* value_param,
485     TypeId fixture_class_id,
486     SetUpTestCaseFunc set_up_tc,
487     TearDownTestCaseFunc tear_down_tc,
488     TestFactoryBase* factory);
489
490 // If *pstr starts with the given prefix, modifies *pstr to be right
491 // past the prefix and returns true; otherwise leaves *pstr unchanged
492 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
493 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
494
495 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
496
497 // State of the definition of a type-parameterized test case.
498 class GTEST_API_ TypedTestCasePState {
499  public:
500   TypedTestCasePState() : registered_(false) {}
501
502   // Adds the given test name to defined_test_names_ and return true
503   // if the test case hasn't been registered; otherwise aborts the
504   // program.
505   bool AddTestName(const char* file, int line, const char* case_name,
506                    const char* test_name) {
507     if (registered_) {
508       fprintf(stderr, "%s Test %s must be defined before "
509               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
510               FormatFileLocation(file, line).c_str(), test_name, case_name);
511       fflush(stderr);
512       posix::Abort();
513     }
514     defined_test_names_.insert(test_name);
515     return true;
516   }
517
518   // Verifies that registered_tests match the test names in
519   // defined_test_names_; returns registered_tests if successful, or
520   // aborts the program otherwise.
521   const char* VerifyRegisteredTestNames(
522       const char* file, int line, const char* registered_tests);
523
524  private:
525   bool registered_;
526   ::std::set<const char*> defined_test_names_;
527 };
528
529 // Skips to the first non-space char after the first comma in 'str';
530 // returns NULL if no comma is found in 'str'.
531 inline const char* SkipComma(const char* str) {
532   const char* comma = strchr(str, ',');
533   if (comma == NULL) {
534     return NULL;
535   }
536   while (IsSpace(*(++comma))) {}
537   return comma;
538 }
539
540 // Returns the prefix of 'str' before the first comma in it; returns
541 // the entire string if it contains no comma.
542 inline std::string GetPrefixUntilComma(const char* str) {
543   const char* comma = strchr(str, ',');
544   return comma == NULL ? str : std::string(str, comma);
545 }
546
547 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
548 // registers a list of type-parameterized tests with Google Test.  The
549 // return value is insignificant - we just need to return something
550 // such that we can call this function in a namespace scope.
551 //
552 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
553 // template parameter.  It's defined in gtest-type-util.h.
554 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
555 class TypeParameterizedTest {
556  public:
557   // 'index' is the index of the test in the type list 'Types'
558   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
559   // Types).  Valid values for 'index' are [0, N - 1] where N is the
560   // length of Types.
561   static bool Register(const char* prefix, const char* case_name,
562                        const char* test_names, int index) {
563     typedef typename Types::Head Type;
564     typedef Fixture<Type> FixtureClass;
565     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
566
567     // First, registers the first type-parameterized test in the type
568     // list.
569     MakeAndRegisterTestInfo(
570         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
571          + StreamableToString(index)).c_str(),
572         GetPrefixUntilComma(test_names).c_str(),
573         GetTypeName<Type>().c_str(),
574         NULL,  // No value parameter.
575         GetTypeId<FixtureClass>(),
576         TestClass::SetUpTestCase,
577         TestClass::TearDownTestCase,
578         new TestFactoryImpl<TestClass>);
579
580     // Next, recurses (at compile time) with the tail of the type list.
581     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
582         ::Register(prefix, case_name, test_names, index + 1);
583   }
584 };
585
586 // The base case for the compile time recursion.
587 template <GTEST_TEMPLATE_ Fixture, class TestSel>
588 class TypeParameterizedTest<Fixture, TestSel, Types0> {
589  public:
590   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
591                        const char* /*test_names*/, int /*index*/) {
592     return true;
593   }
594 };
595
596 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
597 // registers *all combinations* of 'Tests' and 'Types' with Google
598 // Test.  The return value is insignificant - we just need to return
599 // something such that we can call this function in a namespace scope.
600 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
601 class TypeParameterizedTestCase {
602  public:
603   static bool Register(const char* prefix, const char* case_name,
604                        const char* test_names) {
605     typedef typename Tests::Head Head;
606
607     // First, register the first test in 'Test' for each type in 'Types'.
608     TypeParameterizedTest<Fixture, Head, Types>::Register(
609         prefix, case_name, test_names, 0);
610
611     // Next, recurses (at compile time) with the tail of the test list.
612     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
613         ::Register(prefix, case_name, SkipComma(test_names));
614   }
615 };
616
617 // The base case for the compile time recursion.
618 template <GTEST_TEMPLATE_ Fixture, typename Types>
619 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
620  public:
621   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
622                        const char* /*test_names*/) {
623     return true;
624   }
625 };
626
627 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
628
629 // Returns the current OS stack trace as an std::string.
630 //
631 // The maximum number of stack frames to be included is specified by
632 // the gtest_stack_trace_depth flag.  The skip_count parameter
633 // specifies the number of top frames to be skipped, which doesn't
634 // count against the number of frames to be included.
635 //
636 // For example, if Foo() calls Bar(), which in turn calls
637 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
638 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
639 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
640     UnitTest* unit_test, int skip_count);
641
642 // Helpers for suppressing warnings on unreachable code or constant
643 // condition.
644
645 // Always returns true.
646 GTEST_API_ bool AlwaysTrue();
647
648 // Always returns false.
649 inline bool AlwaysFalse() { return !AlwaysTrue(); }
650
651 // Helper for suppressing false warning from Clang on a const char*
652 // variable declared in a conditional expression always being NULL in
653 // the else branch.
654 struct GTEST_API_ ConstCharPtr {
655   ConstCharPtr(const char* str) : value(str) {}
656   operator bool() const { return true; }
657   const char* value;
658 };
659
660 // A simple Linear Congruential Generator for generating random
661 // numbers with a uniform distribution.  Unlike rand() and srand(), it
662 // doesn't use global state (and therefore can't interfere with user
663 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
664 // but it's good enough for our purposes.
665 class GTEST_API_ Random {
666  public:
667   static const UInt32 kMaxRange = 1u << 31;
668
669   explicit Random(UInt32 seed) : state_(seed) {}
670
671   void Reseed(UInt32 seed) { state_ = seed; }
672
673   // Generates a random number from [0, range).  Crashes if 'range' is
674   // 0 or greater than kMaxRange.
675   UInt32 Generate(UInt32 range);
676
677  private:
678   UInt32 state_;
679   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
680 };
681
682 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
683 // compiler error iff T1 and T2 are different types.
684 template <typename T1, typename T2>
685 struct CompileAssertTypesEqual;
686
687 template <typename T>
688 struct CompileAssertTypesEqual<T, T> {
689 };
690
691 // Removes the reference from a type if it is a reference type,
692 // otherwise leaves it unchanged.  This is the same as
693 // tr1::remove_reference, which is not widely available yet.
694 template <typename T>
695 struct RemoveReference { typedef T type; };  // NOLINT
696 template <typename T>
697 struct RemoveReference<T&> { typedef T type; };  // NOLINT
698
699 // A handy wrapper around RemoveReference that works when the argument
700 // T depends on template parameters.
701 #define GTEST_REMOVE_REFERENCE_(T) \
702     typename ::testing::internal::RemoveReference<T>::type
703
704 // Removes const from a type if it is a const type, otherwise leaves
705 // it unchanged.  This is the same as tr1::remove_const, which is not
706 // widely available yet.
707 template <typename T>
708 struct RemoveConst { typedef T type; };  // NOLINT
709 template <typename T>
710 struct RemoveConst<const T> { typedef T type; };  // NOLINT
711
712 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
713 // definition to fail to remove the const in 'const int[3]' and 'const
714 // char[3][4]'.  The following specialization works around the bug.
715 template <typename T, size_t N>
716 struct RemoveConst<const T[N]> {
717   typedef typename RemoveConst<T>::type type[N];
718 };
719
720 #if defined(_MSC_VER) && _MSC_VER < 1400
721 // This is the only specialization that allows VC++ 7.1 to remove const in
722 // 'const int[3] and 'const int[3][4]'.  However, it causes trouble with GCC
723 // and thus needs to be conditionally compiled.
724 template <typename T, size_t N>
725 struct RemoveConst<T[N]> {
726   typedef typename RemoveConst<T>::type type[N];
727 };
728 #endif
729
730 // A handy wrapper around RemoveConst that works when the argument
731 // T depends on template parameters.
732 #define GTEST_REMOVE_CONST_(T) \
733     typename ::testing::internal::RemoveConst<T>::type
734
735 // Turns const U&, U&, const U, and U all into U.
736 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
737     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
738
739 // Adds reference to a type if it is not a reference type,
740 // otherwise leaves it unchanged.  This is the same as
741 // tr1::add_reference, which is not widely available yet.
742 template <typename T>
743 struct AddReference { typedef T& type; };  // NOLINT
744 template <typename T>
745 struct AddReference<T&> { typedef T& type; };  // NOLINT
746
747 // A handy wrapper around AddReference that works when the argument T
748 // depends on template parameters.
749 #define GTEST_ADD_REFERENCE_(T) \
750     typename ::testing::internal::AddReference<T>::type
751
752 // Adds a reference to const on top of T as necessary.  For example,
753 // it transforms
754 //
755 //   char         ==> const char&
756 //   const char   ==> const char&
757 //   char&        ==> const char&
758 //   const char&  ==> const char&
759 //
760 // The argument T must depend on some template parameters.
761 #define GTEST_REFERENCE_TO_CONST_(T) \
762     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
763
764 // ImplicitlyConvertible<From, To>::value is a compile-time bool
765 // constant that's true iff type From can be implicitly converted to
766 // type To.
767 template <typename From, typename To>
768 class ImplicitlyConvertible {
769  private:
770   // We need the following helper functions only for their types.
771   // They have no implementations.
772
773   // MakeFrom() is an expression whose type is From.  We cannot simply
774   // use From(), as the type From may not have a public default
775   // constructor.
776   static From MakeFrom();
777
778   // These two functions are overloaded.  Given an expression
779   // Helper(x), the compiler will pick the first version if x can be
780   // implicitly converted to type To; otherwise it will pick the
781   // second version.
782   //
783   // The first version returns a value of size 1, and the second
784   // version returns a value of size 2.  Therefore, by checking the
785   // size of Helper(x), which can be done at compile time, we can tell
786   // which version of Helper() is used, and hence whether x can be
787   // implicitly converted to type To.
788   static char Helper(To);
789   static char (&Helper(...))[2];  // NOLINT
790
791   // We have to put the 'public' section after the 'private' section,
792   // or MSVC refuses to compile the code.
793  public:
794   // MSVC warns about implicitly converting from double to int for
795   // possible loss of data, so we need to temporarily disable the
796   // warning.
797 #ifdef _MSC_VER
798 # pragma warning(push)          // Saves the current warning state.
799 # pragma warning(disable:4244)  // Temporarily disables warning 4244.
800
801   static const bool value =
802       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
803 # pragma warning(pop)           // Restores the warning state.
804 #elif defined(__BORLANDC__)
805   // C++Builder cannot use member overload resolution during template
806   // instantiation.  The simplest workaround is to use its C++0x type traits
807   // functions (C++Builder 2009 and above only).
808   static const bool value = __is_convertible(From, To);
809 #else
810   static const bool value =
811       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
812 #endif  // _MSV_VER
813 };
814 template <typename From, typename To>
815 const bool ImplicitlyConvertible<From, To>::value;
816
817 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
818 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
819 // of those.
820 template <typename T>
821 struct IsAProtocolMessage
822     : public bool_constant<
823   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
824   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
825 };
826
827 // When the compiler sees expression IsContainerTest<C>(0), if C is an
828 // STL-style container class, the first overload of IsContainerTest
829 // will be viable (since both C::iterator* and C::const_iterator* are
830 // valid types and NULL can be implicitly converted to them).  It will
831 // be picked over the second overload as 'int' is a perfect match for
832 // the type of argument 0.  If C::iterator or C::const_iterator is not
833 // a valid type, the first overload is not viable, and the second
834 // overload will be picked.  Therefore, we can determine whether C is
835 // a container class by checking the type of IsContainerTest<C>(0).
836 // The value of the expression is insignificant.
837 //
838 // Note that we look for both C::iterator and C::const_iterator.  The
839 // reason is that C++ injects the name of a class as a member of the
840 // class itself (e.g. you can refer to class iterator as either
841 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
842 // only, for example, we would mistakenly think that a class named
843 // iterator is an STL container.
844 //
845 // Also note that the simpler approach of overloading
846 // IsContainerTest(typename C::const_iterator*) and
847 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
848 typedef int IsContainer;
849 template <class C>
850 IsContainer IsContainerTest(int /* dummy */,
851                             typename C::iterator* /* it */ = NULL,
852                             typename C::const_iterator* /* const_it */ = NULL) {
853   return 0;
854 }
855
856 typedef char IsNotContainer;
857 template <class C>
858 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
859
860 // EnableIf<condition>::type is void when 'Cond' is true, and
861 // undefined when 'Cond' is false.  To use SFINAE to make a function
862 // overload only apply when a particular expression is true, add
863 // "typename EnableIf<expression>::type* = 0" as the last parameter.
864 template<bool> struct EnableIf;
865 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
866
867 // Utilities for native arrays.
868
869 // ArrayEq() compares two k-dimensional native arrays using the
870 // elements' operator==, where k can be any integer >= 0.  When k is
871 // 0, ArrayEq() degenerates into comparing a single pair of values.
872
873 template <typename T, typename U>
874 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
875
876 // This generic version is used when k is 0.
877 template <typename T, typename U>
878 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
879
880 // This overload is used when k >= 1.
881 template <typename T, typename U, size_t N>
882 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
883   return internal::ArrayEq(lhs, N, rhs);
884 }
885
886 // This helper reduces code bloat.  If we instead put its logic inside
887 // the previous ArrayEq() function, arrays with different sizes would
888 // lead to different copies of the template code.
889 template <typename T, typename U>
890 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
891   for (size_t i = 0; i != size; i++) {
892     if (!internal::ArrayEq(lhs[i], rhs[i]))
893       return false;
894   }
895   return true;
896 }
897
898 // Finds the first element in the iterator range [begin, end) that
899 // equals elem.  Element may be a native array type itself.
900 template <typename Iter, typename Element>
901 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
902   for (Iter it = begin; it != end; ++it) {
903     if (internal::ArrayEq(*it, elem))
904       return it;
905   }
906   return end;
907 }
908
909 // CopyArray() copies a k-dimensional native array using the elements'
910 // operator=, where k can be any integer >= 0.  When k is 0,
911 // CopyArray() degenerates into copying a single value.
912
913 template <typename T, typename U>
914 void CopyArray(const T* from, size_t size, U* to);
915
916 // This generic version is used when k is 0.
917 template <typename T, typename U>
918 inline void CopyArray(const T& from, U* to) { *to = from; }
919
920 // This overload is used when k >= 1.
921 template <typename T, typename U, size_t N>
922 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
923   internal::CopyArray(from, N, *to);
924 }
925
926 // This helper reduces code bloat.  If we instead put its logic inside
927 // the previous CopyArray() function, arrays with different sizes
928 // would lead to different copies of the template code.
929 template <typename T, typename U>
930 void CopyArray(const T* from, size_t size, U* to) {
931   for (size_t i = 0; i != size; i++) {
932     internal::CopyArray(from[i], to + i);
933   }
934 }
935
936 // The relation between an NativeArray object (see below) and the
937 // native array it represents.
938 enum RelationToSource {
939   kReference,  // The NativeArray references the native array.
940   kCopy        // The NativeArray makes a copy of the native array and
941                // owns the copy.
942 };
943
944 // Adapts a native array to a read-only STL-style container.  Instead
945 // of the complete STL container concept, this adaptor only implements
946 // members useful for Google Mock's container matchers.  New members
947 // should be added as needed.  To simplify the implementation, we only
948 // support Element being a raw type (i.e. having no top-level const or
949 // reference modifier).  It's the client's responsibility to satisfy
950 // this requirement.  Element can be an array type itself (hence
951 // multi-dimensional arrays are supported).
952 template <typename Element>
953 class NativeArray {
954  public:
955   // STL-style container typedefs.
956   typedef Element value_type;
957   typedef Element* iterator;
958   typedef const Element* const_iterator;
959
960   // Constructs from a native array.
961   NativeArray(const Element* array, size_t count, RelationToSource relation) {
962     Init(array, count, relation);
963   }
964
965   // Copy constructor.
966   NativeArray(const NativeArray& rhs) {
967     Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
968   }
969
970   ~NativeArray() {
971     // Ensures that the user doesn't instantiate NativeArray with a
972     // const or reference type.
973     static_cast<void>(StaticAssertTypeEqHelper<Element,
974         GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
975     if (relation_to_source_ == kCopy)
976       delete[] array_;
977   }
978
979   // STL-style container methods.
980   size_t size() const { return size_; }
981   const_iterator begin() const { return array_; }
982   const_iterator end() const { return array_ + size_; }
983   bool operator==(const NativeArray& rhs) const {
984     return size() == rhs.size() &&
985         ArrayEq(begin(), size(), rhs.begin());
986   }
987
988  private:
989   // Initializes this object; makes a copy of the input array if
990   // 'relation' is kCopy.
991   void Init(const Element* array, size_t a_size, RelationToSource relation) {
992     if (relation == kReference) {
993       array_ = array;
994     } else {
995       Element* const copy = new Element[a_size];
996       CopyArray(array, a_size, copy);
997       array_ = copy;
998     }
999     size_ = a_size;
1000     relation_to_source_ = relation;
1001   }
1002
1003   const Element* array_;
1004   size_t size_;
1005   RelationToSource relation_to_source_;
1006
1007   GTEST_DISALLOW_ASSIGN_(NativeArray);
1008 };
1009
1010 }  // namespace internal
1011 }  // namespace testing
1012
1013 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1014   ::testing::internal::AssertHelper(result_type, file, line, message) \
1015     = ::testing::Message()
1016
1017 #define GTEST_MESSAGE_(message, result_type) \
1018   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1019
1020 #define GTEST_FATAL_FAILURE_(message) \
1021   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1022
1023 #define GTEST_NONFATAL_FAILURE_(message) \
1024   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1025
1026 #define GTEST_SUCCESS_(message) \
1027   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1028
1029 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
1030 // statement if it returns or throws (or doesn't return or throw in some
1031 // situations).
1032 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1033   if (::testing::internal::AlwaysTrue()) { statement; }
1034
1035 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1036   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1037   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1038     bool gtest_caught_expected = false; \
1039     try { \
1040       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1041     } \
1042     catch (expected_exception const&) { \
1043       gtest_caught_expected = true; \
1044     } \
1045     catch (...) { \
1046       gtest_msg.value = \
1047           "Expected: " #statement " throws an exception of type " \
1048           #expected_exception ".\n  Actual: it throws a different type."; \
1049       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1050     } \
1051     if (!gtest_caught_expected) { \
1052       gtest_msg.value = \
1053           "Expected: " #statement " throws an exception of type " \
1054           #expected_exception ".\n  Actual: it throws nothing."; \
1055       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1056     } \
1057   } else \
1058     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1059       fail(gtest_msg.value)
1060
1061 #define GTEST_TEST_NO_THROW_(statement, fail) \
1062   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1063   if (::testing::internal::AlwaysTrue()) { \
1064     try { \
1065       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1066     } \
1067     catch (...) { \
1068       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1069     } \
1070   } else \
1071     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1072       fail("Expected: " #statement " doesn't throw an exception.\n" \
1073            "  Actual: it throws.")
1074
1075 #define GTEST_TEST_ANY_THROW_(statement, fail) \
1076   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1077   if (::testing::internal::AlwaysTrue()) { \
1078     bool gtest_caught_any = false; \
1079     try { \
1080       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1081     } \
1082     catch (...) { \
1083       gtest_caught_any = true; \
1084     } \
1085     if (!gtest_caught_any) { \
1086       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1087     } \
1088   } else \
1089     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1090       fail("Expected: " #statement " throws an exception.\n" \
1091            "  Actual: it doesn't.")
1092
1093
1094 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1095 // either a boolean expression or an AssertionResult. text is a textual
1096 // represenation of expression as it was passed into the EXPECT_TRUE.
1097 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1098   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1099   if (const ::testing::AssertionResult gtest_ar_ = \
1100       ::testing::AssertionResult(expression)) \
1101     ; \
1102   else \
1103     fail(::testing::internal::GetBoolAssertionFailureMessage(\
1104         gtest_ar_, text, #actual, #expected).c_str())
1105
1106 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1107   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1108   if (::testing::internal::AlwaysTrue()) { \
1109     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1110     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1111     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1112       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1113     } \
1114   } else \
1115     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1116       fail("Expected: " #statement " doesn't generate new fatal " \
1117            "failures in the current thread.\n" \
1118            "  Actual: it does.")
1119
1120 // Expands to the name of the class that implements the given test.
1121 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1122   test_case_name##_##test_name##_Test
1123
1124 // Helper macro for defining tests.
1125 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1126 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1127  public:\
1128   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1129  private:\
1130   virtual void TestBody();\
1131   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1132   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1133       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1134 };\
1135 \
1136 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1137   ::test_info_ =\
1138     ::testing::internal::MakeAndRegisterTestInfo(\
1139         #test_case_name, #test_name, NULL, NULL, \
1140         (parent_id), \
1141         parent_class::SetUpTestCase, \
1142         parent_class::TearDownTestCase, \
1143         new ::testing::internal::TestFactoryImpl<\
1144             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1145 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1146
1147 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_