3 * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
5 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the copyright holder nor the names of contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35 #include <sys/types.h>
36 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
37 /* #include <assert.h> */ /* assert() */
49 * Some sanity checking code is included using assert(). On my FreeBSD
50 * system, this additional code can be removed by compiling with NDEBUG
51 * defined. Check your own systems manpage on assert() to see how to
52 * compile WITHOUT the sanity checking code on your system.
54 * UNROLLED TRANSFORM LOOP NOTE:
55 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
56 * loop version for the hash transform rounds (defined using macros
57 * later in this file). Either define on the command line, for example:
59 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
63 * #define SHA2_UNROLL_TRANSFORM
67 #define SHA2_UNROLL_TRANSFORM
70 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
74 * Please make sure that your system defines BYTE_ORDER. If your
75 * architecture is little-endian, make sure it also defines
76 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
79 * If your system does not define the above, then you can do so by
82 * #define LITTLE_ENDIAN 1234
83 * #define BIG_ENDIAN 4321
85 * And for little-endian machines, add:
87 * #define BYTE_ORDER LITTLE_ENDIAN
89 * Or for big-endian machines:
91 * #define BYTE_ORDER BIG_ENDIAN
93 * The FreeBSD machine this was written on defines BYTE_ORDER
94 * appropriately by including <sys/types.h> (which in turn includes
95 * <machine/endian.h> where the appropriate definitions are actually
100 * Define the following sha2_* types to types of the correct length on
101 * the native archtecture. Most BSD systems and Linux define u_intXX_t
102 * types. Machines with very recent ANSI C headers, can use the
103 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
104 * during compile or in the sha.h header file.
106 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
107 * will need to define these three typedefs below (and the appropriate
108 * ones in sha.h too) by hand according to their system architecture.
110 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
111 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
113 typedef uint8_t sha2_byte; /* Exactly 1 byte */
114 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
115 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
118 /*** SHA-256/384/512 Various Length Definitions ***********************/
119 /* NOTE: Most of these are in sha2.h */
120 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
121 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
122 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
125 /*** ENDIAN REVERSAL MACROS *******************************************/
126 #ifndef WORDS_BIGENDIAN
127 #define REVERSE32(w,x) { \
128 sha2_word32 tmp = (w); \
129 tmp = (tmp >> 16) | (tmp << 16); \
130 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
132 #define REVERSE64(w,x) { \
133 sha2_word64 tmp = (w); \
134 tmp = (tmp >> 32) | (tmp << 32); \
135 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
136 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
137 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
138 ((tmp & 0x0000ffff0000ffffULL) << 16); \
140 #endif /* !WORDS_BIGENDIAN */
143 * Macro for incrementally adding the unsigned 64-bit integer n to the
144 * unsigned 128-bit integer (represented using a two-element array of
147 #define ADDINC128(w,n) { \
148 (w)[0] += (sha2_word64)(n); \
149 if ((w)[0] < (n)) { \
155 * Macros for copying blocks of memory and for zeroing out ranges
156 * of memory. Using these macros makes it easy to switch from
157 * using memset()/memcpy() and using bzero()/bcopy().
159 * Please define either SHA2_USE_MEMSET_MEMCPY or define
160 * SHA2_USE_BZERO_BCOPY depending on which function set you
163 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
164 /* Default to memset()/memcpy() if no option is specified */
165 #define SHA2_USE_MEMSET_MEMCPY 1
167 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
168 /* Abort with an error if BOTH options are defined */
169 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
172 #ifdef SHA2_USE_MEMSET_MEMCPY
173 #define MEMSET_BZERO(p,l) memset((p), 0, (l))
174 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
176 #ifdef SHA2_USE_BZERO_BCOPY
177 #define MEMSET_BZERO(p,l) bzero((p), (l))
178 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
182 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
184 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
186 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
187 * S is a ROTATION) because the SHA-256/384/512 description document
188 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
189 * same "backwards" definition.
191 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
192 #define R(b,x) ((x) >> (b))
193 /* 32-bit Rotate-right (used in SHA-256): */
194 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
195 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
196 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
198 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
199 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
200 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
202 /* Four of six logical functions used in SHA-256: */
203 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
204 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
205 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
206 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
208 /* Four of six logical functions used in SHA-384 and SHA-512: */
209 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
210 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
211 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
212 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
214 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
215 /* NOTE: These should not be accessed directly from outside this
216 * library -- they are intended for private internal visibility/use
219 static void SHA512_Last(SHA512_CTX*);
220 static void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
221 static void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
224 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
225 /* Hash constant words K for SHA-256: */
226 const static sha2_word32 K256[64] = {
227 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
228 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
229 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
230 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
231 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
232 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
233 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
234 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
235 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
236 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
237 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
238 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
239 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
240 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
241 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
242 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
245 /* Initial hash value H for SHA-256: */
246 const static sha2_word32 sha256_initial_hash_value[8] = {
257 /* Hash constant words K for SHA-384 and SHA-512: */
258 const static sha2_word64 K512[80] = {
259 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
260 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
261 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
262 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
263 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
264 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
265 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
266 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
267 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
268 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
269 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
270 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
271 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
272 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
273 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
274 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
275 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
276 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
277 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
278 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
279 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
280 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
281 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
282 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
283 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
284 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
285 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
286 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
287 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
288 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
289 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
290 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
291 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
292 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
293 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
294 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
295 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
296 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
297 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
298 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
301 /* Initial hash value H for SHA-384 */
302 const static sha2_word64 sha384_initial_hash_value[8] = {
303 0xcbbb9d5dc1059ed8ULL,
304 0x629a292a367cd507ULL,
305 0x9159015a3070dd17ULL,
306 0x152fecd8f70e5939ULL,
307 0x67332667ffc00b31ULL,
308 0x8eb44a8768581511ULL,
309 0xdb0c2e0d64f98fa7ULL,
310 0x47b5481dbefa4fa4ULL
313 /* Initial hash value H for SHA-512 */
314 const static sha2_word64 sha512_initial_hash_value[8] = {
315 0x6a09e667f3bcc908ULL,
316 0xbb67ae8584caa73bULL,
317 0x3c6ef372fe94f82bULL,
318 0xa54ff53a5f1d36f1ULL,
319 0x510e527fade682d1ULL,
320 0x9b05688c2b3e6c1fULL,
321 0x1f83d9abfb41bd6bULL,
322 0x5be0cd19137e2179ULL
326 * Constant used by SHA256/384/512_End() functions for converting the
327 * digest to a readable hexadecimal character string:
329 static const char *sha2_hex_digits = "0123456789abcdef";
332 /*** SHA-256: *********************************************************/
333 void sat_SHA256_Init(SHA256_CTX* context) {
334 if (context == (SHA256_CTX*)0) {
337 MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
338 MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
339 context->bitcount = 0;
342 #ifdef SHA2_UNROLL_TRANSFORM
344 /* Unrolled SHA-256 round macros: */
346 #ifndef WORDS_BIGENDIAN
348 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
349 REVERSE32(*data++, W256[j]); \
350 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
353 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
357 #else /* !WORDS_BIGENDIAN */
359 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
360 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
361 K256[j] + (W256[j] = *data++); \
363 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
366 #endif /* !WORDS_BIGENDIAN */
368 #define ROUND256(a,b,c,d,e,f,g,h) \
369 s0 = W256[(j+1)&0x0f]; \
370 s0 = sigma0_256(s0); \
371 s1 = W256[(j+14)&0x0f]; \
372 s1 = sigma1_256(s1); \
373 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
374 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
376 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
379 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
380 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
381 sha2_word32 T1, *W256;
384 W256 = (sha2_word32*)context->buffer;
386 /* Initialize registers with the prev. intermediate value */
387 a = context->state[0];
388 b = context->state[1];
389 c = context->state[2];
390 d = context->state[3];
391 e = context->state[4];
392 f = context->state[5];
393 g = context->state[6];
394 h = context->state[7];
398 /* Rounds 0 to 15 (unrolled): */
399 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
400 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
401 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
402 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
403 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
404 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
405 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
406 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
409 /* Now for the remaining rounds to 64: */
411 ROUND256(a,b,c,d,e,f,g,h);
412 ROUND256(h,a,b,c,d,e,f,g);
413 ROUND256(g,h,a,b,c,d,e,f);
414 ROUND256(f,g,h,a,b,c,d,e);
415 ROUND256(e,f,g,h,a,b,c,d);
416 ROUND256(d,e,f,g,h,a,b,c);
417 ROUND256(c,d,e,f,g,h,a,b);
418 ROUND256(b,c,d,e,f,g,h,a);
421 /* Compute the current intermediate hash value */
422 context->state[0] += a;
423 context->state[1] += b;
424 context->state[2] += c;
425 context->state[3] += d;
426 context->state[4] += e;
427 context->state[5] += f;
428 context->state[6] += g;
429 context->state[7] += h;
432 a = b = c = d = e = f = g = h = T1 = 0;
435 #else /* SHA2_UNROLL_TRANSFORM */
437 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
438 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
439 sha2_word32 T1, T2, *W256;
442 W256 = (sha2_word32*)context->buffer;
444 /* Initialize registers with the prev. intermediate value */
445 a = context->state[0];
446 b = context->state[1];
447 c = context->state[2];
448 d = context->state[3];
449 e = context->state[4];
450 f = context->state[5];
451 g = context->state[6];
452 h = context->state[7];
456 #ifndef WORDS_BIGENDIAN
457 /* Copy data while converting to host byte order */
458 REVERSE32(*data++,W256[j]);
459 /* Apply the SHA-256 compression function to update a..h */
460 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
461 #else /* !WORDS_BIGENDIAN */
462 /* Apply the SHA-256 compression function to update a..h with copy */
463 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
464 #endif /* !WORDS_BIGENDIAN */
465 T2 = Sigma0_256(a) + Maj(a, b, c);
479 /* Part of the message block expansion: */
480 s0 = W256[(j+1)&0x0f];
482 s1 = W256[(j+14)&0x0f];
485 /* Apply the SHA-256 compression function to update a..h */
486 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
487 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
488 T2 = Sigma0_256(a) + Maj(a, b, c);
501 /* Compute the current intermediate hash value */
502 context->state[0] += a;
503 context->state[1] += b;
504 context->state[2] += c;
505 context->state[3] += d;
506 context->state[4] += e;
507 context->state[5] += f;
508 context->state[6] += g;
509 context->state[7] += h;
512 a = b = c = d = e = f = g = h = T1 = T2 = 0;
515 #endif /* SHA2_UNROLL_TRANSFORM */
517 void sat_SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
518 unsigned int freespace, usedspace;
521 /* Calling with no data is valid - we do nothing */
526 /* assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0); */
528 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
530 /* Calculate how much free space is available in the buffer */
531 freespace = SHA256_BLOCK_LENGTH - usedspace;
533 if (len >= freespace) {
534 /* Fill the buffer completely and process it */
535 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
536 context->bitcount += freespace << 3;
539 SHA256_Transform(context, (sha2_word32*)context->buffer);
541 /* The buffer is not yet full */
542 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
543 context->bitcount += len << 3;
545 usedspace = freespace = 0;
549 while (len >= SHA256_BLOCK_LENGTH) {
550 /* Process as many complete blocks as we can */
551 SHA256_Transform(context, (sha2_word32*)data);
552 context->bitcount += SHA256_BLOCK_LENGTH << 3;
553 len -= SHA256_BLOCK_LENGTH;
554 data += SHA256_BLOCK_LENGTH;
557 /* There's left-overs, so save 'em */
558 MEMCPY_BCOPY(context->buffer, data, len);
559 context->bitcount += len << 3;
562 usedspace = freespace = 0;
565 void sat_SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
566 sha2_word32 *d = (sha2_word32*)digest;
567 unsigned int usedspace;
570 /* assert(context != (SHA256_CTX*)0); */
572 /* If no digest buffer is passed, we don't bother doing this: */
573 if (digest != (sha2_byte*)0) {
574 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
575 #ifndef WORDS_BIGENDIAN
576 /* Convert FROM host byte order */
577 REVERSE64(context->bitcount,context->bitcount);
580 /* Begin padding with a 1 bit: */
581 context->buffer[usedspace++] = 0x80;
583 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
584 /* Set-up for the last transform: */
585 MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
587 if (usedspace < SHA256_BLOCK_LENGTH) {
588 MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
590 /* Do second-to-last transform: */
591 SHA256_Transform(context, (sha2_word32*)context->buffer);
593 /* And set-up for the last transform: */
594 MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
597 /* Set-up for the last transform: */
598 MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
600 /* Begin padding with a 1 bit: */
601 *context->buffer = 0x80;
603 /* Set the bit count: */
604 *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
606 /* Final transform: */
607 SHA256_Transform(context, (sha2_word32*)context->buffer);
609 #ifndef WORDS_BIGENDIAN
611 /* Convert TO host byte order */
613 for (j = 0; j < 8; j++) {
614 REVERSE32(context->state[j],context->state[j]);
615 *d++ = context->state[j];
619 MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
623 /* Clean up state data: */
624 MEMSET_BZERO(context, sizeof(context));
628 char *sat_SHA256_End(SHA256_CTX* context, char buffer[]) {
629 sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
633 /* assert(context != (SHA256_CTX*)0); */
635 if (buffer != (char*)0) {
636 sat_SHA256_Final(digest, context);
638 for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
639 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
640 *buffer++ = sha2_hex_digits[*d & 0x0f];
645 MEMSET_BZERO(context, sizeof(context));
647 MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
651 char* sat_SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
654 sat_SHA256_Init(&context);
655 sat_SHA256_Update(&context, data, len);
656 return sat_SHA256_End(&context, digest);
660 /*** SHA-512: *********************************************************/
661 void sat_SHA512_Init(SHA512_CTX* context) {
662 if (context == (SHA512_CTX*)0) {
665 MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
666 MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
667 context->bitcount[0] = context->bitcount[1] = 0;
670 #ifdef SHA2_UNROLL_TRANSFORM
672 /* Unrolled SHA-512 round macros: */
673 #ifndef WORDS_BIGENDIAN
675 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
676 REVERSE64(*data++, W512[j]); \
677 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
680 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
684 #else /* !WORDS_BIGENDIAN */
686 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
687 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
688 K512[j] + (W512[j] = *data++); \
690 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
693 #endif /* !WORDS_BIGENDIAN */
695 #define ROUND512(a,b,c,d,e,f,g,h) \
696 s0 = W512[(j+1)&0x0f]; \
697 s0 = sigma0_512(s0); \
698 s1 = W512[(j+14)&0x0f]; \
699 s1 = sigma1_512(s1); \
700 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
701 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
703 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
706 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
707 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
708 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
711 /* Initialize registers with the prev. intermediate value */
712 a = context->state[0];
713 b = context->state[1];
714 c = context->state[2];
715 d = context->state[3];
716 e = context->state[4];
717 f = context->state[5];
718 g = context->state[6];
719 h = context->state[7];
723 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
724 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
725 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
726 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
727 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
728 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
729 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
730 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
733 /* Now for the remaining rounds up to 79: */
735 ROUND512(a,b,c,d,e,f,g,h);
736 ROUND512(h,a,b,c,d,e,f,g);
737 ROUND512(g,h,a,b,c,d,e,f);
738 ROUND512(f,g,h,a,b,c,d,e);
739 ROUND512(e,f,g,h,a,b,c,d);
740 ROUND512(d,e,f,g,h,a,b,c);
741 ROUND512(c,d,e,f,g,h,a,b);
742 ROUND512(b,c,d,e,f,g,h,a);
745 /* Compute the current intermediate hash value */
746 context->state[0] += a;
747 context->state[1] += b;
748 context->state[2] += c;
749 context->state[3] += d;
750 context->state[4] += e;
751 context->state[5] += f;
752 context->state[6] += g;
753 context->state[7] += h;
756 a = b = c = d = e = f = g = h = T1 = 0;
759 #else /* SHA2_UNROLL_TRANSFORM */
761 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
762 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
763 sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
766 /* Initialize registers with the prev. intermediate value */
767 a = context->state[0];
768 b = context->state[1];
769 c = context->state[2];
770 d = context->state[3];
771 e = context->state[4];
772 f = context->state[5];
773 g = context->state[6];
774 h = context->state[7];
778 #ifndef WORDS_BIGENDIAN
779 /* Convert TO host byte order */
780 REVERSE64(*data++, W512[j]);
781 /* Apply the SHA-512 compression function to update a..h */
782 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
783 #else /* !WORDS_BIGENDIAN */
784 /* Apply the SHA-512 compression function to update a..h with copy */
785 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
786 #endif /* !WORDS_BIGENDIAN */
787 T2 = Sigma0_512(a) + Maj(a, b, c);
801 /* Part of the message block expansion: */
802 s0 = W512[(j+1)&0x0f];
804 s1 = W512[(j+14)&0x0f];
807 /* Apply the SHA-512 compression function to update a..h */
808 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
809 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
810 T2 = Sigma0_512(a) + Maj(a, b, c);
823 /* Compute the current intermediate hash value */
824 context->state[0] += a;
825 context->state[1] += b;
826 context->state[2] += c;
827 context->state[3] += d;
828 context->state[4] += e;
829 context->state[5] += f;
830 context->state[6] += g;
831 context->state[7] += h;
834 a = b = c = d = e = f = g = h = T1 = T2 = 0;
837 #endif /* SHA2_UNROLL_TRANSFORM */
839 void sat_SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
840 unsigned int freespace, usedspace;
843 /* Calling with no data is valid - we do nothing */
848 /* assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0); */
850 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
852 /* Calculate how much free space is available in the buffer */
853 freespace = SHA512_BLOCK_LENGTH - usedspace;
855 if (len >= freespace) {
856 /* Fill the buffer completely and process it */
857 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
858 ADDINC128(context->bitcount, freespace << 3);
861 SHA512_Transform(context, (sha2_word64*)context->buffer);
863 /* The buffer is not yet full */
864 MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
865 ADDINC128(context->bitcount, len << 3);
867 usedspace = freespace = 0;
871 while (len >= SHA512_BLOCK_LENGTH) {
872 /* Process as many complete blocks as we can */
873 SHA512_Transform(context, (sha2_word64*)data);
874 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
875 len -= SHA512_BLOCK_LENGTH;
876 data += SHA512_BLOCK_LENGTH;
879 /* There's left-overs, so save 'em */
880 MEMCPY_BCOPY(context->buffer, data, len);
881 ADDINC128(context->bitcount, len << 3);
884 usedspace = freespace = 0;
887 static void SHA512_Last(SHA512_CTX* context) {
888 unsigned int usedspace;
890 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
891 #ifndef WORDS_BIGENDIAN
892 /* Convert FROM host byte order */
893 REVERSE64(context->bitcount[0],context->bitcount[0]);
894 REVERSE64(context->bitcount[1],context->bitcount[1]);
897 /* Begin padding with a 1 bit: */
898 context->buffer[usedspace++] = 0x80;
900 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
901 /* Set-up for the last transform: */
902 MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
904 if (usedspace < SHA512_BLOCK_LENGTH) {
905 MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
907 /* Do second-to-last transform: */
908 SHA512_Transform(context, (sha2_word64*)context->buffer);
910 /* And set-up for the last transform: */
911 MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
914 /* Prepare for final transform: */
915 MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
917 /* Begin padding with a 1 bit: */
918 *context->buffer = 0x80;
920 /* Store the length of input data (in bits): */
921 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
922 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
924 /* Final transform: */
925 SHA512_Transform(context, (sha2_word64*)context->buffer);
928 void sat_SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
929 sha2_word64 *d = (sha2_word64*)digest;
932 /* assert(context != (SHA512_CTX*)0); */
934 /* If no digest buffer is passed, we don't bother doing this: */
935 if (digest != (sha2_byte*)0) {
936 SHA512_Last(context);
938 /* Save the hash data for output: */
939 #ifndef WORDS_BIGENDIAN
941 /* Convert TO host byte order */
943 for (j = 0; j < 8; j++) {
944 REVERSE64(context->state[j],context->state[j]);
945 *d++ = context->state[j];
949 MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
953 /* Zero out state data */
954 MEMSET_BZERO(context, sizeof(context));
957 char *sat_SHA512_End(SHA512_CTX* context, char buffer[]) {
958 sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
962 /* assert(context != (SHA512_CTX*)0); */
964 if (buffer != (char*)0) {
965 sat_SHA512_Final(digest, context);
967 for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
968 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
969 *buffer++ = sha2_hex_digits[*d & 0x0f];
974 MEMSET_BZERO(context, sizeof(context));
976 MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
980 char* sat_SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
983 sat_SHA512_Init(&context);
984 sat_SHA512_Update(&context, data, len);
985 return sat_SHA512_End(&context, digest);
989 /*** SHA-384: *********************************************************/
990 void sat_SHA384_Init(SHA384_CTX* context) {
991 if (context == (SHA384_CTX*)0) {
994 MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
995 MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
996 context->bitcount[0] = context->bitcount[1] = 0;
999 void sat_SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
1000 sat_SHA512_Update((SHA512_CTX*)context, data, len);
1003 void sat_SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
1004 sha2_word64 *d = (sha2_word64*)digest;
1007 /* assert(context != (SHA384_CTX*)0); */
1009 /* If no digest buffer is passed, we don't bother doing this: */
1010 if (digest != (sha2_byte*)0) {
1011 SHA512_Last((SHA512_CTX*)context);
1013 /* Save the hash data for output: */
1014 #ifndef WORDS_BIGENDIAN
1016 /* Convert TO host byte order */
1018 for (j = 0; j < 6; j++) {
1019 REVERSE64(context->state[j],context->state[j]);
1020 *d++ = context->state[j];
1024 MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
1028 /* Zero out state data */
1029 MEMSET_BZERO(context, sizeof(context));
1032 char *sat_SHA384_End(SHA384_CTX* context, char buffer[]) {
1033 sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
1037 /* assert(context != (SHA384_CTX*)0); */
1039 if (buffer != (char*)0) {
1040 sat_SHA384_Final(digest, context);
1042 for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1043 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1044 *buffer++ = sha2_hex_digits[*d & 0x0f];
1049 MEMSET_BZERO(context, sizeof(context));
1051 MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
1055 char* sat_SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1058 sat_SHA384_Init(&context);
1059 sat_SHA384_Update(&context, data, len);
1060 return sat_SHA384_End(&context, digest);