3 * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
5 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the copyright holder nor the names of contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35 #include <sys/types.h>
36 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
37 /* #include <assert.h> */ /* assert() */
48 * Some sanity checking code is included using assert(). On my FreeBSD
49 * system, this additional code can be removed by compiling with NDEBUG
50 * defined. Check your own systems manpage on assert() to see how to
51 * compile WITHOUT the sanity checking code on your system.
53 * UNROLLED TRANSFORM LOOP NOTE:
54 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
55 * loop version for the hash transform rounds (defined using macros
56 * later in this file). Either define on the command line, for example:
58 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
62 * #define SHA2_UNROLL_TRANSFORM
66 #define SHA2_UNROLL_TRANSFORM
69 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
73 * Please make sure that your system defines BYTE_ORDER. If your
74 * architecture is little-endian, make sure it also defines
75 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
78 * If your system does not define the above, then you can do so by
81 * #define LITTLE_ENDIAN 1234
82 * #define BIG_ENDIAN 4321
84 * And for little-endian machines, add:
86 * #define BYTE_ORDER LITTLE_ENDIAN
88 * Or for big-endian machines:
90 * #define BYTE_ORDER BIG_ENDIAN
92 * The FreeBSD machine this was written on defines BYTE_ORDER
93 * appropriately by including <sys/types.h> (which in turn includes
94 * <machine/endian.h> where the appropriate definitions are actually
99 * Define the following sha2_* types to types of the correct length on
100 * the native archtecture. Most BSD systems and Linux define u_intXX_t
101 * types. Machines with very recent ANSI C headers, can use the
102 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
103 * during compile or in the sha.h header file.
105 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
106 * will need to define these three typedefs below (and the appropriate
107 * ones in sha.h too) by hand according to their system architecture.
109 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
110 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
112 typedef uint8_t sha2_byte; /* Exactly 1 byte */
113 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
114 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
117 /*** SHA-256/384/512 Various Length Definitions ***********************/
118 /* NOTE: Most of these are in sha2.h */
119 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
120 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
121 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
124 /*** ENDIAN REVERSAL MACROS *******************************************/
125 #ifndef WORDS_BIGENDIAN
126 #define REVERSE32(w,x) { \
127 sha2_word32 tmp = (w); \
128 tmp = (tmp >> 16) | (tmp << 16); \
129 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
131 #define REVERSE64(w,x) { \
132 sha2_word64 tmp = (w); \
133 tmp = (tmp >> 32) | (tmp << 32); \
134 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
135 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
136 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
137 ((tmp & 0x0000ffff0000ffffULL) << 16); \
139 #endif /* !WORDS_BIGENDIAN */
142 * Macro for incrementally adding the unsigned 64-bit integer n to the
143 * unsigned 128-bit integer (represented using a two-element array of
146 #define ADDINC128(w,n) { \
147 (w)[0] += (sha2_word64)(n); \
148 if ((w)[0] < (n)) { \
154 * Macros for copying blocks of memory and for zeroing out ranges
155 * of memory. Using these macros makes it easy to switch from
156 * using memset()/memcpy() and using bzero()/bcopy().
158 * Please define either SHA2_USE_MEMSET_MEMCPY or define
159 * SHA2_USE_BZERO_BCOPY depending on which function set you
162 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
163 /* Default to memset()/memcpy() if no option is specified */
164 #define SHA2_USE_MEMSET_MEMCPY 1
166 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
167 /* Abort with an error if BOTH options are defined */
168 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
171 #ifdef SHA2_USE_MEMSET_MEMCPY
172 #define MEMSET_BZERO(p,l) memset((p), 0, (l))
173 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
175 #ifdef SHA2_USE_BZERO_BCOPY
176 #define MEMSET_BZERO(p,l) bzero((p), (l))
177 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
181 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
183 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
185 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
186 * S is a ROTATION) because the SHA-256/384/512 description document
187 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
188 * same "backwards" definition.
190 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
191 #define R(b,x) ((x) >> (b))
192 /* 32-bit Rotate-right (used in SHA-256): */
193 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
194 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
195 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
197 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
198 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
199 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
201 /* Four of six logical functions used in SHA-256: */
202 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
203 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
204 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
205 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
207 /* Four of six logical functions used in SHA-384 and SHA-512: */
208 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
209 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
210 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
211 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
213 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
214 /* NOTE: These should not be accessed directly from outside this
215 * library -- they are intended for private internal visibility/use
218 static void SHA256_Last(SHA256_CTX*);
219 static void SHA512_Last(SHA512_CTX*);
220 static void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
221 static void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
224 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
225 /* Hash constant words K for SHA-256: */
226 const static sha2_word32 K256[64] = {
227 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
228 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
229 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
230 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
231 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
232 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
233 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
234 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
235 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
236 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
237 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
238 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
239 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
240 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
241 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
242 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
245 /* Initial hash value H for SHA-256: */
246 const static sha2_word32 sha256_initial_hash_value[8] = {
257 /* Hash constant words K for SHA-384 and SHA-512: */
258 const static sha2_word64 K512[80] = {
259 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
260 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
261 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
262 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
263 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
264 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
265 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
266 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
267 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
268 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
269 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
270 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
271 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
272 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
273 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
274 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
275 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
276 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
277 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
278 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
279 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
280 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
281 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
282 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
283 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
284 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
285 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
286 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
287 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
288 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
289 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
290 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
291 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
292 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
293 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
294 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
295 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
296 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
297 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
298 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
301 /* Initial hash value H for SHA-384 */
302 const static sha2_word64 sha384_initial_hash_value[8] = {
303 0xcbbb9d5dc1059ed8ULL,
304 0x629a292a367cd507ULL,
305 0x9159015a3070dd17ULL,
306 0x152fecd8f70e5939ULL,
307 0x67332667ffc00b31ULL,
308 0x8eb44a8768581511ULL,
309 0xdb0c2e0d64f98fa7ULL,
310 0x47b5481dbefa4fa4ULL
313 /* Initial hash value H for SHA-512 */
314 const static sha2_word64 sha512_initial_hash_value[8] = {
315 0x6a09e667f3bcc908ULL,
316 0xbb67ae8584caa73bULL,
317 0x3c6ef372fe94f82bULL,
318 0xa54ff53a5f1d36f1ULL,
319 0x510e527fade682d1ULL,
320 0x9b05688c2b3e6c1fULL,
321 0x1f83d9abfb41bd6bULL,
322 0x5be0cd19137e2179ULL
325 /* Initial hash value H for SHA-224: */
326 const static sha2_word32 sha224_initial_hash_value[8] = {
338 /*** SHA-256: *********************************************************/
339 void solv_SHA256_Init(SHA256_CTX* context) {
340 if (context == (SHA256_CTX*)0) {
343 MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
344 MEMSET_BZERO((char *)context->buffer, SHA256_BLOCK_LENGTH);
345 context->bitcount = 0;
348 #ifdef SHA2_UNROLL_TRANSFORM
350 /* Unrolled SHA-256 round macros: */
352 #ifndef WORDS_BIGENDIAN
354 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
355 REVERSE32(*data++, W256[j]); \
356 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
359 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
363 #else /* !WORDS_BIGENDIAN */
365 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
366 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
367 K256[j] + (W256[j] = *data++); \
369 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
372 #endif /* !WORDS_BIGENDIAN */
374 #define ROUND256(a,b,c,d,e,f,g,h) \
375 s0 = W256[(j+1)&0x0f]; \
376 s0 = sigma0_256(s0); \
377 s1 = W256[(j+14)&0x0f]; \
378 s1 = sigma1_256(s1); \
379 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
380 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
382 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
385 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
386 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
387 sha2_word32 T1, *W256;
390 W256 = context->buffer;
392 /* Initialize registers with the prev. intermediate value */
393 a = context->state[0];
394 b = context->state[1];
395 c = context->state[2];
396 d = context->state[3];
397 e = context->state[4];
398 f = context->state[5];
399 g = context->state[6];
400 h = context->state[7];
404 /* Rounds 0 to 15 (unrolled): */
405 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
406 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
407 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
408 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
409 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
410 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
411 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
412 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
415 /* Now for the remaining rounds to 64: */
417 ROUND256(a,b,c,d,e,f,g,h);
418 ROUND256(h,a,b,c,d,e,f,g);
419 ROUND256(g,h,a,b,c,d,e,f);
420 ROUND256(f,g,h,a,b,c,d,e);
421 ROUND256(e,f,g,h,a,b,c,d);
422 ROUND256(d,e,f,g,h,a,b,c);
423 ROUND256(c,d,e,f,g,h,a,b);
424 ROUND256(b,c,d,e,f,g,h,a);
427 /* Compute the current intermediate hash value */
428 context->state[0] += a;
429 context->state[1] += b;
430 context->state[2] += c;
431 context->state[3] += d;
432 context->state[4] += e;
433 context->state[5] += f;
434 context->state[6] += g;
435 context->state[7] += h;
438 a = b = c = d = e = f = g = h = T1 = 0;
441 #else /* SHA2_UNROLL_TRANSFORM */
443 static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
444 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
445 sha2_word32 T1, T2, *W256;
448 W256 = context->buffer;
450 /* Initialize registers with the prev. intermediate value */
451 a = context->state[0];
452 b = context->state[1];
453 c = context->state[2];
454 d = context->state[3];
455 e = context->state[4];
456 f = context->state[5];
457 g = context->state[6];
458 h = context->state[7];
462 #ifndef WORDS_BIGENDIAN
463 /* Copy data while converting to host byte order */
464 REVERSE32(*data++,W256[j]);
465 /* Apply the SHA-256 compression function to update a..h */
466 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
467 #else /* !WORDS_BIGENDIAN */
468 /* Apply the SHA-256 compression function to update a..h with copy */
469 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
470 #endif /* !WORDS_BIGENDIAN */
471 T2 = Sigma0_256(a) + Maj(a, b, c);
485 /* Part of the message block expansion: */
486 s0 = W256[(j+1)&0x0f];
488 s1 = W256[(j+14)&0x0f];
491 /* Apply the SHA-256 compression function to update a..h */
492 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
493 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
494 T2 = Sigma0_256(a) + Maj(a, b, c);
507 /* Compute the current intermediate hash value */
508 context->state[0] += a;
509 context->state[1] += b;
510 context->state[2] += c;
511 context->state[3] += d;
512 context->state[4] += e;
513 context->state[5] += f;
514 context->state[6] += g;
515 context->state[7] += h;
518 a = b = c = d = e = f = g = h = T1 = T2 = 0;
521 #endif /* SHA2_UNROLL_TRANSFORM */
523 void solv_SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
524 unsigned int freespace, usedspace;
527 /* Calling with no data is valid - we do nothing */
532 /* assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0); */
534 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
536 /* Calculate how much free space is available in the buffer */
537 freespace = SHA256_BLOCK_LENGTH - usedspace;
539 if (len >= freespace) {
540 /* Fill the buffer completely and process it */
541 MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, freespace);
542 context->bitcount += freespace << 3;
545 SHA256_Transform(context, context->buffer);
547 /* The buffer is not yet full */
548 MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, len);
549 context->bitcount += len << 3;
551 usedspace = freespace = 0;
555 while (len >= SHA256_BLOCK_LENGTH) {
556 /* Process as many complete blocks as we can */
557 SHA256_Transform(context, (sha2_word32*)data);
558 context->bitcount += SHA256_BLOCK_LENGTH << 3;
559 len -= SHA256_BLOCK_LENGTH;
560 data += SHA256_BLOCK_LENGTH;
563 /* There's left-overs, so save 'em */
564 MEMCPY_BCOPY((char *)context->buffer, data, len);
565 context->bitcount += len << 3;
568 usedspace = freespace = 0;
571 static void SHA256_Last(SHA256_CTX* context) {
572 unsigned int usedspace;
574 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
575 #ifndef WORDS_BIGENDIAN
576 /* Convert FROM host byte order */
577 REVERSE64(context->bitcount,context->bitcount);
580 /* Begin padding with a 1 bit: */
581 ((char *)context->buffer)[usedspace++] = 0x80;
583 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
584 /* Set-up for the last transform: */
585 MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
587 if (usedspace < SHA256_BLOCK_LENGTH) {
588 MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA256_BLOCK_LENGTH - usedspace);
590 /* Do second-to-last transform: */
591 SHA256_Transform(context, context->buffer);
593 /* And set-up for the last transform: */
594 MEMSET_BZERO((char *)context->buffer, SHA256_SHORT_BLOCK_LENGTH);
597 /* Set-up for the last transform: */
598 MEMSET_BZERO((char *)context->buffer, SHA256_SHORT_BLOCK_LENGTH);
600 /* Begin padding with a 1 bit: */
601 *((char *)context->buffer) = 0x80;
603 /* Set the bit count: */
604 MEMCPY_BCOPY(&((char *)context->buffer)[SHA256_SHORT_BLOCK_LENGTH], (char *)(&context->bitcount), 8);
606 /* Final transform: */
607 SHA256_Transform(context, context->buffer);
610 void solv_SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
611 sha2_word32 *d = (sha2_word32*)digest;
614 /* assert(context != (SHA256_CTX*)0); */
616 /* If no digest buffer is passed, we don't bother doing this: */
617 if (digest != (sha2_byte*)0) {
618 SHA256_Last(context);
620 #ifndef WORDS_BIGENDIAN
622 /* Convert TO host byte order */
624 for (j = 0; j < 8; j++) {
625 REVERSE32(context->state[j],context->state[j]);
626 *d++ = context->state[j];
630 MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
634 /* Clean up state data: */
635 MEMSET_BZERO(context, sizeof(*context));
639 /*** SHA-512: *********************************************************/
640 void solv_SHA512_Init(SHA512_CTX* context) {
641 if (context == (SHA512_CTX*)0) {
644 MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
645 MEMSET_BZERO((char *)context->buffer, SHA512_BLOCK_LENGTH);
646 context->bitcount[0] = context->bitcount[1] = 0;
649 #ifdef SHA2_UNROLL_TRANSFORM
651 /* Unrolled SHA-512 round macros: */
652 #ifndef WORDS_BIGENDIAN
654 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
655 REVERSE64(*data++, W512[j]); \
656 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
659 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
663 #else /* !WORDS_BIGENDIAN */
665 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
666 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
667 K512[j] + (W512[j] = *data++); \
669 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
672 #endif /* !WORDS_BIGENDIAN */
674 #define ROUND512(a,b,c,d,e,f,g,h) \
675 s0 = W512[(j+1)&0x0f]; \
676 s0 = sigma0_512(s0); \
677 s1 = W512[(j+14)&0x0f]; \
678 s1 = sigma1_512(s1); \
679 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
680 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
682 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
685 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
686 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
687 sha2_word64 T1, *W512 = context->buffer;
690 /* Initialize registers with the prev. intermediate value */
691 a = context->state[0];
692 b = context->state[1];
693 c = context->state[2];
694 d = context->state[3];
695 e = context->state[4];
696 f = context->state[5];
697 g = context->state[6];
698 h = context->state[7];
702 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
703 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
704 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
705 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
706 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
707 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
708 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
709 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
712 /* Now for the remaining rounds up to 79: */
714 ROUND512(a,b,c,d,e,f,g,h);
715 ROUND512(h,a,b,c,d,e,f,g);
716 ROUND512(g,h,a,b,c,d,e,f);
717 ROUND512(f,g,h,a,b,c,d,e);
718 ROUND512(e,f,g,h,a,b,c,d);
719 ROUND512(d,e,f,g,h,a,b,c);
720 ROUND512(c,d,e,f,g,h,a,b);
721 ROUND512(b,c,d,e,f,g,h,a);
724 /* Compute the current intermediate hash value */
725 context->state[0] += a;
726 context->state[1] += b;
727 context->state[2] += c;
728 context->state[3] += d;
729 context->state[4] += e;
730 context->state[5] += f;
731 context->state[6] += g;
732 context->state[7] += h;
735 a = b = c = d = e = f = g = h = T1 = 0;
738 #else /* SHA2_UNROLL_TRANSFORM */
740 static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
741 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
742 sha2_word64 T1, T2, *W512 = context->buffer;
745 /* Initialize registers with the prev. intermediate value */
746 a = context->state[0];
747 b = context->state[1];
748 c = context->state[2];
749 d = context->state[3];
750 e = context->state[4];
751 f = context->state[5];
752 g = context->state[6];
753 h = context->state[7];
757 #ifndef WORDS_BIGENDIAN
758 /* Convert TO host byte order */
759 REVERSE64(*data++, W512[j]);
760 /* Apply the SHA-512 compression function to update a..h */
761 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
762 #else /* !WORDS_BIGENDIAN */
763 /* Apply the SHA-512 compression function to update a..h with copy */
764 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
765 #endif /* !WORDS_BIGENDIAN */
766 T2 = Sigma0_512(a) + Maj(a, b, c);
780 /* Part of the message block expansion: */
781 s0 = W512[(j+1)&0x0f];
783 s1 = W512[(j+14)&0x0f];
786 /* Apply the SHA-512 compression function to update a..h */
787 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
788 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
789 T2 = Sigma0_512(a) + Maj(a, b, c);
802 /* Compute the current intermediate hash value */
803 context->state[0] += a;
804 context->state[1] += b;
805 context->state[2] += c;
806 context->state[3] += d;
807 context->state[4] += e;
808 context->state[5] += f;
809 context->state[6] += g;
810 context->state[7] += h;
813 a = b = c = d = e = f = g = h = T1 = T2 = 0;
816 #endif /* SHA2_UNROLL_TRANSFORM */
818 void solv_SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
819 unsigned int freespace, usedspace;
822 /* Calling with no data is valid - we do nothing */
827 /* assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0); */
829 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
831 /* Calculate how much free space is available in the buffer */
832 freespace = SHA512_BLOCK_LENGTH - usedspace;
834 if (len >= freespace) {
835 /* Fill the buffer completely and process it */
836 MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, freespace);
837 ADDINC128(context->bitcount, freespace << 3);
840 SHA512_Transform(context, context->buffer);
842 /* The buffer is not yet full */
843 MEMCPY_BCOPY(&((char *)context->buffer)[usedspace], data, len);
844 ADDINC128(context->bitcount, len << 3);
846 usedspace = freespace = 0;
850 while (len >= SHA512_BLOCK_LENGTH) {
851 /* Process as many complete blocks as we can */
852 SHA512_Transform(context, (sha2_word64*)data);
853 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
854 len -= SHA512_BLOCK_LENGTH;
855 data += SHA512_BLOCK_LENGTH;
858 /* There's left-overs, so save 'em */
859 MEMCPY_BCOPY((char *)context->buffer, data, len);
860 ADDINC128(context->bitcount, len << 3);
863 usedspace = freespace = 0;
866 static void SHA512_Last(SHA512_CTX* context) {
867 unsigned int usedspace;
869 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
870 #ifndef WORDS_BIGENDIAN
871 /* Convert FROM host byte order */
872 REVERSE64(context->bitcount[0],context->bitcount[0]);
873 REVERSE64(context->bitcount[1],context->bitcount[1]);
876 /* Begin padding with a 1 bit: */
877 ((char *)context->buffer)[usedspace++] = 0x80;
879 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
880 /* Set-up for the last transform: */
881 MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
883 if (usedspace < SHA512_BLOCK_LENGTH) {
884 MEMSET_BZERO(&((char *)context->buffer)[usedspace], SHA512_BLOCK_LENGTH - usedspace);
886 /* Do second-to-last transform: */
887 SHA512_Transform(context, context->buffer);
889 /* And set-up for the last transform: */
890 MEMSET_BZERO((char *)context->buffer, SHA512_BLOCK_LENGTH - 2);
893 /* Prepare for final transform: */
894 MEMSET_BZERO((char *)context->buffer, SHA512_SHORT_BLOCK_LENGTH);
896 /* Begin padding with a 1 bit: */
897 *((char *)context->buffer) = 0x80;
899 /* Store the length of input data (in bits): */
900 MEMCPY_BCOPY(&((char *)context->buffer)[SHA512_SHORT_BLOCK_LENGTH], (char *)(&context->bitcount[1]), 8);
901 MEMCPY_BCOPY(&((char *)context->buffer)[SHA512_SHORT_BLOCK_LENGTH + 8], (char *)(&context->bitcount[0]), 8);
903 /* Final transform: */
904 SHA512_Transform(context, context->buffer);
907 void solv_SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
908 sha2_word64 *d = (sha2_word64*)digest;
911 /* assert(context != (SHA512_CTX*)0); */
913 /* If no digest buffer is passed, we don't bother doing this: */
914 if (digest != (sha2_byte*)0) {
915 SHA512_Last(context);
917 /* Save the hash data for output: */
918 #ifndef WORDS_BIGENDIAN
920 /* Convert TO host byte order */
922 for (j = 0; j < 8; j++) {
923 REVERSE64(context->state[j],context->state[j]);
924 *d++ = context->state[j];
928 MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
932 /* Zero out state data */
933 MEMSET_BZERO(context, sizeof(*context));
937 /*** SHA-384: *********************************************************/
938 void solv_SHA384_Init(SHA384_CTX* context) {
939 if (context == (SHA384_CTX*)0) {
942 MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
943 MEMSET_BZERO((char *)context->buffer, SHA384_BLOCK_LENGTH);
944 context->bitcount[0] = context->bitcount[1] = 0;
947 void solv_SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
948 solv_SHA512_Update((SHA512_CTX*)context, data, len);
951 void solv_SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
952 sha2_word64 *d = (sha2_word64*)digest;
955 /* assert(context != (SHA384_CTX*)0); */
957 /* If no digest buffer is passed, we don't bother doing this: */
958 if (digest != (sha2_byte*)0) {
959 SHA512_Last((SHA512_CTX*)context);
961 /* Save the hash data for output: */
962 #ifndef WORDS_BIGENDIAN
964 /* Convert TO host byte order */
966 for (j = 0; j < 6; j++) {
967 REVERSE64(context->state[j],context->state[j]);
968 *d++ = context->state[j];
972 MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
976 /* Zero out state data */
977 MEMSET_BZERO(context, sizeof(*context));
981 /*** SHA-224: *********************************************************/
983 void solv_SHA224_Init(SHA224_CTX* context) {
984 if (context == (SHA224_CTX*)0) {
987 MEMCPY_BCOPY(context->state, sha224_initial_hash_value, SHA256_DIGEST_LENGTH);
988 MEMSET_BZERO((char *)context->buffer, SHA224_BLOCK_LENGTH);
989 context->bitcount = 0;
992 void solv_SHA224_Update(SHA224_CTX* context, const sha2_byte* data, size_t len) {
993 solv_SHA256_Update((SHA256_CTX*)context, data, len);
996 void solv_SHA224_Final(sha2_byte digest[], SHA224_CTX* context) {
997 sha2_word32 *d = (sha2_word32*)digest;
1000 /* assert(context != (SHA224_CTX*)0); */
1002 /* If no digest buffer is passed, we don't bother doing this: */
1003 if (digest != (sha2_byte*)0) {
1004 SHA256_Last(context);
1006 #ifndef WORDS_BIGENDIAN
1008 /* Convert TO host byte order */
1010 for (j = 0; j < 7; j++) {
1011 REVERSE32(context->state[j],context->state[j]);
1012 *d++ = context->state[j];
1016 MEMCPY_BCOPY(d, context->state, SHA224_DIGEST_LENGTH);
1020 /* Clean up state data: */
1021 MEMSET_BZERO(context, sizeof(*context));