[presubmit] Enable readability/namespace linter checking.
[platform/upstream/v8.git] / src / regexp / arm64 / regexp-macro-assembler-arm64.h
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
6 #define V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
7
8 #include "src/arm64/assembler-arm64.h"
9 #include "src/macro-assembler.h"
10 #include "src/regexp/regexp-macro-assembler.h"
11
12 namespace v8 {
13 namespace internal {
14
15
16 #ifndef V8_INTERPRETED_REGEXP
17 class RegExpMacroAssemblerARM64: public NativeRegExpMacroAssembler {
18  public:
19   RegExpMacroAssemblerARM64(Isolate* isolate, Zone* zone, Mode mode,
20                             int registers_to_save);
21   virtual ~RegExpMacroAssemblerARM64();
22   virtual void AbortedCodeGeneration() { masm_->AbortedCodeGeneration(); }
23   virtual int stack_limit_slack();
24   virtual void AdvanceCurrentPosition(int by);
25   virtual void AdvanceRegister(int reg, int by);
26   virtual void Backtrack();
27   virtual void Bind(Label* label);
28   virtual void CheckAtStart(Label* on_at_start);
29   virtual void CheckCharacter(unsigned c, Label* on_equal);
30   virtual void CheckCharacterAfterAnd(unsigned c,
31                                       unsigned mask,
32                                       Label* on_equal);
33   virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
34   virtual void CheckCharacterLT(uc16 limit, Label* on_less);
35   virtual void CheckCharacters(Vector<const uc16> str,
36                                int cp_offset,
37                                Label* on_failure,
38                                bool check_end_of_string);
39   // A "greedy loop" is a loop that is both greedy and with a simple
40   // body. It has a particularly simple implementation.
41   virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
42   virtual void CheckNotAtStart(Label* on_not_at_start);
43   virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
44   virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
45                                                Label* on_no_match);
46   virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
47   virtual void CheckNotCharacterAfterAnd(unsigned c,
48                                          unsigned mask,
49                                          Label* on_not_equal);
50   virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
51                                               uc16 minus,
52                                               uc16 mask,
53                                               Label* on_not_equal);
54   virtual void CheckCharacterInRange(uc16 from,
55                                      uc16 to,
56                                      Label* on_in_range);
57   virtual void CheckCharacterNotInRange(uc16 from,
58                                         uc16 to,
59                                         Label* on_not_in_range);
60   virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
61
62   // Checks whether the given offset from the current position is before
63   // the end of the string.
64   virtual void CheckPosition(int cp_offset, Label* on_outside_input);
65   virtual bool CheckSpecialCharacterClass(uc16 type,
66                                           Label* on_no_match);
67   virtual void Fail();
68   virtual Handle<HeapObject> GetCode(Handle<String> source);
69   virtual void GoTo(Label* label);
70   virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
71   virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
72   virtual void IfRegisterEqPos(int reg, Label* if_eq);
73   virtual IrregexpImplementation Implementation();
74   virtual void LoadCurrentCharacter(int cp_offset,
75                                     Label* on_end_of_input,
76                                     bool check_bounds = true,
77                                     int characters = 1);
78   virtual void PopCurrentPosition();
79   virtual void PopRegister(int register_index);
80   virtual void PushBacktrack(Label* label);
81   virtual void PushCurrentPosition();
82   virtual void PushRegister(int register_index,
83                             StackCheckFlag check_stack_limit);
84   virtual void ReadCurrentPositionFromRegister(int reg);
85   virtual void ReadStackPointerFromRegister(int reg);
86   virtual void SetCurrentPositionFromEnd(int by);
87   virtual void SetRegister(int register_index, int to);
88   virtual bool Succeed();
89   virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
90   virtual void ClearRegisters(int reg_from, int reg_to);
91   virtual void WriteStackPointerToRegister(int reg);
92   virtual bool CanReadUnaligned();
93
94   // Called from RegExp if the stack-guard is triggered.
95   // If the code object is relocated, the return address is fixed before
96   // returning.
97   static int CheckStackGuardState(Address* return_address,
98                                   Code* re_code,
99                                   Address re_frame,
100                                   int start_offset,
101                                   const byte** input_start,
102                                   const byte** input_end);
103
104  private:
105   // Above the frame pointer - Stored registers and stack passed parameters.
106   // Callee-saved registers x19-x29, where x29 is the old frame pointer.
107   static const int kCalleeSavedRegisters = 0;
108   // Return address.
109   // It is placed above the 11 callee-saved registers.
110   static const int kReturnAddress = kCalleeSavedRegisters + 11 * kPointerSize;
111   static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
112   // Stack parameter placed by caller.
113   static const int kIsolate = kSecondaryReturnAddress + kPointerSize;
114
115   // Below the frame pointer.
116   // Register parameters stored by setup code.
117   static const int kDirectCall = kCalleeSavedRegisters - kPointerSize;
118   static const int kStackBase = kDirectCall - kPointerSize;
119   static const int kOutputSize = kStackBase - kPointerSize;
120   static const int kInput = kOutputSize - kPointerSize;
121   // When adding local variables remember to push space for them in
122   // the frame in GetCode.
123   static const int kSuccessCounter = kInput - kPointerSize;
124   // First position register address on the stack. Following positions are
125   // below it. A position is a 32 bit value.
126   static const int kFirstRegisterOnStack = kSuccessCounter - kWRegSize;
127   // A capture is a 64 bit value holding two position.
128   static const int kFirstCaptureOnStack = kSuccessCounter - kXRegSize;
129
130   // Initial size of code buffer.
131   static const size_t kRegExpCodeSize = 1024;
132
133   // When initializing registers to a non-position value we can unroll
134   // the loop. Set the limit of registers to unroll.
135   static const int kNumRegistersToUnroll = 16;
136
137   // We are using x0 to x7 as a register cache. Each hardware register must
138   // contain one capture, that is two 32 bit registers. We can cache at most
139   // 16 registers.
140   static const int kNumCachedRegisters = 16;
141
142   // Load a number of characters at the given offset from the
143   // current position, into the current-character register.
144   void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
145
146   // Check whether preemption has been requested.
147   void CheckPreemption();
148
149   // Check whether we are exceeding the stack limit on the backtrack stack.
150   void CheckStackLimit();
151
152   // Generate a call to CheckStackGuardState.
153   void CallCheckStackGuardState(Register scratch);
154
155   // Location of a 32 bit position register.
156   MemOperand register_location(int register_index);
157
158   // Location of a 64 bit capture, combining two position registers.
159   MemOperand capture_location(int register_index, Register scratch);
160
161   // Register holding the current input position as negative offset from
162   // the end of the string.
163   Register current_input_offset() { return w21; }
164
165   // The register containing the current character after LoadCurrentCharacter.
166   Register current_character() { return w22; }
167
168   // Register holding address of the end of the input string.
169   Register input_end() { return x25; }
170
171   // Register holding address of the start of the input string.
172   Register input_start() { return x26; }
173
174   // Register holding the offset from the start of the string where we should
175   // start matching.
176   Register start_offset() { return w27; }
177
178   // Pointer to the output array's first element.
179   Register output_array() { return x28; }
180
181   // Register holding the frame address. Local variables, parameters and
182   // regexp registers are addressed relative to this.
183   Register frame_pointer() { return fp; }
184
185   // The register containing the backtrack stack top. Provides a meaningful
186   // name to the register.
187   Register backtrack_stackpointer() { return x23; }
188
189   // Register holding pointer to the current code object.
190   Register code_pointer() { return x20; }
191
192   // Register holding the value used for clearing capture registers.
193   Register non_position_value() { return w24; }
194   // The top 32 bit of this register is used to store this value
195   // twice. This is used for clearing more than one register at a time.
196   Register twice_non_position_value() { return x24; }
197
198   // Byte size of chars in the string to match (decided by the Mode argument)
199   int char_size() { return static_cast<int>(mode_); }
200
201   // Equivalent to a conditional branch to the label, unless the label
202   // is NULL, in which case it is a conditional Backtrack.
203   void BranchOrBacktrack(Condition condition, Label* to);
204
205   // Compares reg against immmediate before calling BranchOrBacktrack.
206   // It makes use of the Cbz and Cbnz instructions.
207   void CompareAndBranchOrBacktrack(Register reg,
208                                    int immediate,
209                                    Condition condition,
210                                    Label* to);
211
212   inline void CallIf(Label* to, Condition condition);
213
214   // Save and restore the link register on the stack in a way that
215   // is GC-safe.
216   inline void SaveLinkRegister();
217   inline void RestoreLinkRegister();
218
219   // Pushes the value of a register on the backtrack stack. Decrements the
220   // stack pointer by a word size and stores the register's value there.
221   inline void Push(Register source);
222
223   // Pops a value from the backtrack stack. Reads the word at the stack pointer
224   // and increments it by a word size.
225   inline void Pop(Register target);
226
227   // This state indicates where the register actually is.
228   enum RegisterState {
229     STACKED,     // Resides in memory.
230     CACHED_LSW,  // Least Significant Word of a 64 bit hardware register.
231     CACHED_MSW   // Most Significant Word of a 64 bit hardware register.
232   };
233
234   RegisterState GetRegisterState(int register_index) {
235     DCHECK(register_index >= 0);
236     if (register_index >= kNumCachedRegisters) {
237       return STACKED;
238     } else {
239       if ((register_index % 2) == 0) {
240         return CACHED_LSW;
241       } else {
242         return CACHED_MSW;
243       }
244     }
245   }
246
247   // Store helper that takes the state of the register into account.
248   inline void StoreRegister(int register_index, Register source);
249
250   // Returns a hardware W register that holds the value of the capture
251   // register.
252   //
253   // This function will try to use an existing cache register (w0-w7) for the
254   // result. Otherwise, it will load the value into maybe_result.
255   //
256   // If the returned register is anything other than maybe_result, calling code
257   // must not write to it.
258   inline Register GetRegister(int register_index, Register maybe_result);
259
260   // Returns the harware register (x0-x7) holding the value of the capture
261   // register.
262   // This assumes that the state of the register is not STACKED.
263   inline Register GetCachedRegister(int register_index);
264
265   Isolate* isolate() const { return masm_->isolate(); }
266
267   MacroAssembler* masm_;
268
269   // Which mode to generate code for (LATIN1 or UC16).
270   Mode mode_;
271
272   // One greater than maximal register index actually used.
273   int num_registers_;
274
275   // Number of registers to output at the end (the saved registers
276   // are always 0..num_saved_registers_-1)
277   int num_saved_registers_;
278
279   // Labels used internally.
280   Label entry_label_;
281   Label start_label_;
282   Label success_label_;
283   Label backtrack_label_;
284   Label exit_label_;
285   Label check_preempt_label_;
286   Label stack_overflow_label_;
287 };
288
289 #endif  // V8_INTERPRETED_REGEXP
290
291
292 }  // namespace internal
293 }  // namespace v8
294
295 #endif  // V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_