1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
10 #include "src/allocation.h"
11 #include "src/assert-scope.h"
12 #include "src/bailout-reason.h"
13 #include "src/base/bits.h"
14 #include "src/base/smart-pointers.h"
15 #include "src/builtins.h"
16 #include "src/checks.h"
17 #include "src/elements-kind.h"
18 #include "src/field-index.h"
19 #include "src/flags.h"
21 #include "src/property-details.h"
22 #include "src/unicode-inl.h"
23 #include "src/unicode-decoder.h"
26 #if V8_TARGET_ARCH_ARM
27 #include "src/arm/constants-arm.h" // NOLINT
28 #elif V8_TARGET_ARCH_ARM64
29 #include "src/arm64/constants-arm64.h" // NOLINT
30 #elif V8_TARGET_ARCH_MIPS
31 #include "src/mips/constants-mips.h" // NOLINT
32 #elif V8_TARGET_ARCH_MIPS64
33 #include "src/mips64/constants-mips64.h" // NOLINT
34 #elif V8_TARGET_ARCH_PPC
35 #include "src/ppc/constants-ppc.h" // NOLINT
40 // Most object types in the V8 JavaScript are described in this file.
42 // Inheritance hierarchy:
44 // - Smi (immediate small integer)
45 // - HeapObject (superclass for everything allocated in the heap)
46 // - JSReceiver (suitable for property access)
50 // - JSArrayBufferView
63 // - JSGeneratorObject
82 // - CompilationCacheTable
83 // - CodeCacheHashTable
89 // - TypeFeedbackVector
92 // - ScriptContextTable
103 // - ExternalOneByteString
104 // - ExternalTwoByteString
105 // - InternalizedString
106 // - SeqInternalizedString
107 // - SeqOneByteInternalizedString
108 // - SeqTwoByteInternalizedString
109 // - ConsInternalizedString
110 // - ExternalInternalizedString
111 // - ExternalOneByteInternalizedString
112 // - ExternalTwoByteInternalizedString
129 // - SharedFunctionInfo
133 // - ExecutableAccessorInfo
139 // - FunctionTemplateInfo
140 // - ObjectTemplateInfo
149 // Formats of Object*:
150 // Smi: [31 bit signed int] 0
151 // HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
156 enum KeyedAccessStoreMode {
158 STORE_TRANSITION_SMI_TO_OBJECT,
159 STORE_TRANSITION_SMI_TO_DOUBLE,
160 STORE_TRANSITION_DOUBLE_TO_OBJECT,
161 STORE_TRANSITION_HOLEY_SMI_TO_OBJECT,
162 STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE,
163 STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT,
164 STORE_AND_GROW_NO_TRANSITION,
165 STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT,
166 STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE,
167 STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT,
168 STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT,
169 STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE,
170 STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT,
171 STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS,
172 STORE_NO_TRANSITION_HANDLE_COW
176 enum TypeofMode { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
185 enum ExternalArrayType {
186 kExternalInt8Array = 1,
189 kExternalUint16Array,
191 kExternalUint32Array,
192 kExternalFloat32Array,
193 kExternalFloat64Array,
194 kExternalUint8ClampedArray,
198 static const int kGrowICDelta = STORE_AND_GROW_NO_TRANSITION -
200 STATIC_ASSERT(STANDARD_STORE == 0);
201 STATIC_ASSERT(kGrowICDelta ==
202 STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT -
203 STORE_TRANSITION_SMI_TO_OBJECT);
204 STATIC_ASSERT(kGrowICDelta ==
205 STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE -
206 STORE_TRANSITION_SMI_TO_DOUBLE);
207 STATIC_ASSERT(kGrowICDelta ==
208 STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT -
209 STORE_TRANSITION_DOUBLE_TO_OBJECT);
212 static inline KeyedAccessStoreMode GetGrowStoreMode(
213 KeyedAccessStoreMode store_mode) {
214 if (store_mode < STORE_AND_GROW_NO_TRANSITION) {
215 store_mode = static_cast<KeyedAccessStoreMode>(
216 static_cast<int>(store_mode) + kGrowICDelta);
222 static inline bool IsTransitionStoreMode(KeyedAccessStoreMode store_mode) {
223 return store_mode > STANDARD_STORE &&
224 store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT &&
225 store_mode != STORE_AND_GROW_NO_TRANSITION;
229 static inline KeyedAccessStoreMode GetNonTransitioningStoreMode(
230 KeyedAccessStoreMode store_mode) {
231 if (store_mode >= STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
234 if (store_mode >= STORE_AND_GROW_NO_TRANSITION) {
235 return STORE_AND_GROW_NO_TRANSITION;
237 return STANDARD_STORE;
241 static inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) {
242 return store_mode >= STORE_AND_GROW_NO_TRANSITION &&
243 store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
247 enum IcCheckType { ELEMENT, PROPERTY };
250 // SKIP_WRITE_BARRIER skips the write barrier.
251 // UPDATE_WEAK_WRITE_BARRIER skips the marking part of the write barrier and
252 // only performs the generational part.
253 // UPDATE_WRITE_BARRIER is doing the full barrier, marking and generational.
254 enum WriteBarrierMode {
256 UPDATE_WEAK_WRITE_BARRIER,
261 // Indicates whether a value can be loaded as a constant.
262 enum StoreMode { ALLOW_IN_DESCRIPTOR, FORCE_FIELD };
265 // PropertyNormalizationMode is used to specify whether to keep
266 // inobject properties when normalizing properties of a JSObject.
267 enum PropertyNormalizationMode {
268 CLEAR_INOBJECT_PROPERTIES,
269 KEEP_INOBJECT_PROPERTIES
273 // Indicates how aggressively the prototype should be optimized. FAST_PROTOTYPE
274 // will give the fastest result by tailoring the map to the prototype, but that
275 // will cause polymorphism with other objects. REGULAR_PROTOTYPE is to be used
276 // (at least for now) when dynamically modifying the prototype chain of an
277 // object using __proto__ or Object.setPrototypeOf.
278 enum PrototypeOptimizationMode { REGULAR_PROTOTYPE, FAST_PROTOTYPE };
281 // Indicates whether transitions can be added to a source map or not.
282 enum TransitionFlag {
288 // Indicates whether the transition is simple: the target map of the transition
289 // either extends the current map with a new property, or it modifies the
290 // property that was added last to the current map.
291 enum SimpleTransitionFlag {
292 SIMPLE_PROPERTY_TRANSITION,
298 // Indicates whether we are only interested in the descriptors of a particular
299 // map, or in all descriptors in the descriptor array.
300 enum DescriptorFlag {
305 // The GC maintains a bit of information, the MarkingParity, which toggles
306 // from odd to even and back every time marking is completed. Incremental
307 // marking can visit an object twice during a marking phase, so algorithms that
308 // that piggy-back on marking can use the parity to ensure that they only
309 // perform an operation on an object once per marking phase: they record the
310 // MarkingParity when they visit an object, and only re-visit the object when it
311 // is marked again and the MarkingParity changes.
318 // ICs store extra state in a Code object. The default extra state is
320 typedef int ExtraICState;
321 static const ExtraICState kNoExtraICState = 0;
323 // Instance size sentinel for objects of variable size.
324 const int kVariableSizeSentinel = 0;
326 // We may store the unsigned bit field as signed Smi value and do not
328 const int kStubMajorKeyBits = 7;
329 const int kStubMinorKeyBits = kSmiValueSize - kStubMajorKeyBits - 1;
331 // All Maps have a field instance_type containing a InstanceType.
332 // It describes the type of the instances.
334 // As an example, a JavaScript object is a heap object and its map
335 // instance_type is JS_OBJECT_TYPE.
337 // The names of the string instance types are intended to systematically
338 // mirror their encoding in the instance_type field of the map. The default
339 // encoding is considered TWO_BYTE. It is not mentioned in the name. ONE_BYTE
340 // encoding is mentioned explicitly in the name. Likewise, the default
341 // representation is considered sequential. It is not mentioned in the
342 // name. The other representations (e.g. CONS, EXTERNAL) are explicitly
343 // mentioned. Finally, the string is either a STRING_TYPE (if it is a normal
344 // string) or a INTERNALIZED_STRING_TYPE (if it is a internalized string).
346 // NOTE: The following things are some that depend on the string types having
347 // instance_types that are less than those of all other types:
348 // HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
351 // NOTE: Everything following JS_VALUE_TYPE is considered a
352 // JSObject for GC purposes. The first four entries here have typeof
353 // 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
354 #define INSTANCE_TYPE_LIST(V) \
356 V(ONE_BYTE_STRING_TYPE) \
357 V(CONS_STRING_TYPE) \
358 V(CONS_ONE_BYTE_STRING_TYPE) \
359 V(SLICED_STRING_TYPE) \
360 V(SLICED_ONE_BYTE_STRING_TYPE) \
361 V(EXTERNAL_STRING_TYPE) \
362 V(EXTERNAL_ONE_BYTE_STRING_TYPE) \
363 V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
364 V(SHORT_EXTERNAL_STRING_TYPE) \
365 V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE) \
366 V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
368 V(INTERNALIZED_STRING_TYPE) \
369 V(ONE_BYTE_INTERNALIZED_STRING_TYPE) \
370 V(EXTERNAL_INTERNALIZED_STRING_TYPE) \
371 V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
372 V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
373 V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE) \
374 V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
375 V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
378 V(SIMD128_VALUE_TYPE) \
384 V(PROPERTY_CELL_TYPE) \
386 V(HEAP_NUMBER_TYPE) \
387 V(MUTABLE_HEAP_NUMBER_TYPE) \
390 V(BYTECODE_ARRAY_TYPE) \
393 V(FIXED_INT8_ARRAY_TYPE) \
394 V(FIXED_UINT8_ARRAY_TYPE) \
395 V(FIXED_INT16_ARRAY_TYPE) \
396 V(FIXED_UINT16_ARRAY_TYPE) \
397 V(FIXED_INT32_ARRAY_TYPE) \
398 V(FIXED_UINT32_ARRAY_TYPE) \
399 V(FIXED_FLOAT32_ARRAY_TYPE) \
400 V(FIXED_FLOAT64_ARRAY_TYPE) \
401 V(FIXED_UINT8_CLAMPED_ARRAY_TYPE) \
405 V(DECLARED_ACCESSOR_DESCRIPTOR_TYPE) \
406 V(DECLARED_ACCESSOR_INFO_TYPE) \
407 V(EXECUTABLE_ACCESSOR_INFO_TYPE) \
408 V(ACCESSOR_PAIR_TYPE) \
409 V(ACCESS_CHECK_INFO_TYPE) \
410 V(INTERCEPTOR_INFO_TYPE) \
411 V(CALL_HANDLER_INFO_TYPE) \
412 V(FUNCTION_TEMPLATE_INFO_TYPE) \
413 V(OBJECT_TEMPLATE_INFO_TYPE) \
414 V(SIGNATURE_INFO_TYPE) \
415 V(TYPE_SWITCH_INFO_TYPE) \
416 V(ALLOCATION_MEMENTO_TYPE) \
417 V(ALLOCATION_SITE_TYPE) \
420 V(POLYMORPHIC_CODE_CACHE_TYPE) \
421 V(TYPE_FEEDBACK_INFO_TYPE) \
422 V(ALIASED_ARGUMENTS_ENTRY_TYPE) \
424 V(PROTOTYPE_INFO_TYPE) \
426 V(FIXED_ARRAY_TYPE) \
427 V(FIXED_DOUBLE_ARRAY_TYPE) \
428 V(SHARED_FUNCTION_INFO_TYPE) \
431 V(JS_MESSAGE_OBJECT_TYPE) \
436 V(JS_CONTEXT_EXTENSION_OBJECT_TYPE) \
437 V(JS_GENERATOR_OBJECT_TYPE) \
439 V(JS_GLOBAL_OBJECT_TYPE) \
440 V(JS_BUILTINS_OBJECT_TYPE) \
441 V(JS_GLOBAL_PROXY_TYPE) \
443 V(JS_ARRAY_BUFFER_TYPE) \
444 V(JS_TYPED_ARRAY_TYPE) \
445 V(JS_DATA_VIEW_TYPE) \
449 V(JS_SET_ITERATOR_TYPE) \
450 V(JS_MAP_ITERATOR_TYPE) \
451 V(JS_WEAK_MAP_TYPE) \
452 V(JS_WEAK_SET_TYPE) \
455 V(JS_FUNCTION_TYPE) \
456 V(JS_FUNCTION_PROXY_TYPE) \
458 V(BREAK_POINT_INFO_TYPE)
461 // Since string types are not consecutive, this macro is used to
462 // iterate over them.
463 #define STRING_TYPE_LIST(V) \
464 V(STRING_TYPE, kVariableSizeSentinel, string, String) \
465 V(ONE_BYTE_STRING_TYPE, kVariableSizeSentinel, one_byte_string, \
467 V(CONS_STRING_TYPE, ConsString::kSize, cons_string, ConsString) \
468 V(CONS_ONE_BYTE_STRING_TYPE, ConsString::kSize, cons_one_byte_string, \
470 V(SLICED_STRING_TYPE, SlicedString::kSize, sliced_string, SlicedString) \
471 V(SLICED_ONE_BYTE_STRING_TYPE, SlicedString::kSize, sliced_one_byte_string, \
472 SlicedOneByteString) \
473 V(EXTERNAL_STRING_TYPE, ExternalTwoByteString::kSize, external_string, \
475 V(EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kSize, \
476 external_one_byte_string, ExternalOneByteString) \
477 V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, ExternalTwoByteString::kSize, \
478 external_string_with_one_byte_data, ExternalStringWithOneByteData) \
479 V(SHORT_EXTERNAL_STRING_TYPE, ExternalTwoByteString::kShortSize, \
480 short_external_string, ShortExternalString) \
481 V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kShortSize, \
482 short_external_one_byte_string, ShortExternalOneByteString) \
483 V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, \
484 ExternalTwoByteString::kShortSize, \
485 short_external_string_with_one_byte_data, \
486 ShortExternalStringWithOneByteData) \
488 V(INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, internalized_string, \
489 InternalizedString) \
490 V(ONE_BYTE_INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, \
491 one_byte_internalized_string, OneByteInternalizedString) \
492 V(EXTERNAL_INTERNALIZED_STRING_TYPE, ExternalTwoByteString::kSize, \
493 external_internalized_string, ExternalInternalizedString) \
494 V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, ExternalOneByteString::kSize, \
495 external_one_byte_internalized_string, ExternalOneByteInternalizedString) \
496 V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
497 ExternalTwoByteString::kSize, \
498 external_internalized_string_with_one_byte_data, \
499 ExternalInternalizedStringWithOneByteData) \
500 V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE, \
501 ExternalTwoByteString::kShortSize, short_external_internalized_string, \
502 ShortExternalInternalizedString) \
503 V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, \
504 ExternalOneByteString::kShortSize, \
505 short_external_one_byte_internalized_string, \
506 ShortExternalOneByteInternalizedString) \
507 V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
508 ExternalTwoByteString::kShortSize, \
509 short_external_internalized_string_with_one_byte_data, \
510 ShortExternalInternalizedStringWithOneByteData)
512 // A struct is a simple object a set of object-valued fields. Including an
513 // object type in this causes the compiler to generate most of the boilerplate
514 // code for the class including allocation and garbage collection routines,
515 // casts and predicates. All you need to define is the class, methods and
516 // object verification routines. Easy, no?
518 // Note that for subtle reasons related to the ordering or numerical values of
519 // type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
521 #define STRUCT_LIST(V) \
523 V(EXECUTABLE_ACCESSOR_INFO, ExecutableAccessorInfo, \
524 executable_accessor_info) \
525 V(ACCESSOR_PAIR, AccessorPair, accessor_pair) \
526 V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \
527 V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \
528 V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info) \
529 V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \
530 V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \
531 V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info) \
532 V(SCRIPT, Script, script) \
533 V(ALLOCATION_SITE, AllocationSite, allocation_site) \
534 V(ALLOCATION_MEMENTO, AllocationMemento, allocation_memento) \
535 V(CODE_CACHE, CodeCache, code_cache) \
536 V(POLYMORPHIC_CODE_CACHE, PolymorphicCodeCache, polymorphic_code_cache) \
537 V(TYPE_FEEDBACK_INFO, TypeFeedbackInfo, type_feedback_info) \
538 V(ALIASED_ARGUMENTS_ENTRY, AliasedArgumentsEntry, aliased_arguments_entry) \
539 V(DEBUG_INFO, DebugInfo, debug_info) \
540 V(BREAK_POINT_INFO, BreakPointInfo, break_point_info) \
541 V(PROTOTYPE_INFO, PrototypeInfo, prototype_info)
543 // We use the full 8 bits of the instance_type field to encode heap object
544 // instance types. The high-order bit (bit 7) is set if the object is not a
545 // string, and cleared if it is a string.
546 const uint32_t kIsNotStringMask = 0x80;
547 const uint32_t kStringTag = 0x0;
548 const uint32_t kNotStringTag = 0x80;
550 // Bit 6 indicates that the object is an internalized string (if set) or not.
551 // Bit 7 has to be clear as well.
552 const uint32_t kIsNotInternalizedMask = 0x40;
553 const uint32_t kNotInternalizedTag = 0x40;
554 const uint32_t kInternalizedTag = 0x0;
556 // If bit 7 is clear then bit 2 indicates whether the string consists of
557 // two-byte characters or one-byte characters.
558 const uint32_t kStringEncodingMask = 0x4;
559 const uint32_t kTwoByteStringTag = 0x0;
560 const uint32_t kOneByteStringTag = 0x4;
562 // If bit 7 is clear, the low-order 2 bits indicate the representation
564 const uint32_t kStringRepresentationMask = 0x03;
565 enum StringRepresentationTag {
567 kConsStringTag = 0x1,
568 kExternalStringTag = 0x2,
569 kSlicedStringTag = 0x3
571 const uint32_t kIsIndirectStringMask = 0x1;
572 const uint32_t kIsIndirectStringTag = 0x1;
573 STATIC_ASSERT((kSeqStringTag & kIsIndirectStringMask) == 0); // NOLINT
574 STATIC_ASSERT((kExternalStringTag & kIsIndirectStringMask) == 0); // NOLINT
575 STATIC_ASSERT((kConsStringTag &
576 kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
577 STATIC_ASSERT((kSlicedStringTag &
578 kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
580 // Use this mask to distinguish between cons and slice only after making
581 // sure that the string is one of the two (an indirect string).
582 const uint32_t kSlicedNotConsMask = kSlicedStringTag & ~kConsStringTag;
583 STATIC_ASSERT(IS_POWER_OF_TWO(kSlicedNotConsMask));
585 // If bit 7 is clear, then bit 3 indicates whether this two-byte
586 // string actually contains one byte data.
587 const uint32_t kOneByteDataHintMask = 0x08;
588 const uint32_t kOneByteDataHintTag = 0x08;
590 // If bit 7 is clear and string representation indicates an external string,
591 // then bit 4 indicates whether the data pointer is cached.
592 const uint32_t kShortExternalStringMask = 0x10;
593 const uint32_t kShortExternalStringTag = 0x10;
596 // A ConsString with an empty string as the right side is a candidate
597 // for being shortcut by the garbage collector. We don't allocate any
598 // non-flat internalized strings, so we do not shortcut them thereby
599 // avoiding turning internalized strings into strings. The bit-masks
600 // below contain the internalized bit as additional safety.
601 // See heap.cc, mark-compact.cc and objects-visiting.cc.
602 const uint32_t kShortcutTypeMask =
604 kIsNotInternalizedMask |
605 kStringRepresentationMask;
606 const uint32_t kShortcutTypeTag = kConsStringTag | kNotInternalizedTag;
608 static inline bool IsShortcutCandidate(int type) {
609 return ((type & kShortcutTypeMask) == kShortcutTypeTag);
615 INTERNALIZED_STRING_TYPE = kTwoByteStringTag | kSeqStringTag |
616 kInternalizedTag, // FIRST_PRIMITIVE_TYPE
617 ONE_BYTE_INTERNALIZED_STRING_TYPE =
618 kOneByteStringTag | kSeqStringTag | kInternalizedTag,
619 EXTERNAL_INTERNALIZED_STRING_TYPE =
620 kTwoByteStringTag | kExternalStringTag | kInternalizedTag,
621 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
622 kOneByteStringTag | kExternalStringTag | kInternalizedTag,
623 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
624 EXTERNAL_INTERNALIZED_STRING_TYPE | kOneByteDataHintTag |
626 SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE = EXTERNAL_INTERNALIZED_STRING_TYPE |
627 kShortExternalStringTag |
629 SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
630 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kShortExternalStringTag |
632 SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
633 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
634 kShortExternalStringTag | kInternalizedTag,
635 STRING_TYPE = INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
636 ONE_BYTE_STRING_TYPE =
637 ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
638 CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag | kNotInternalizedTag,
639 CONS_ONE_BYTE_STRING_TYPE =
640 kOneByteStringTag | kConsStringTag | kNotInternalizedTag,
642 kTwoByteStringTag | kSlicedStringTag | kNotInternalizedTag,
643 SLICED_ONE_BYTE_STRING_TYPE =
644 kOneByteStringTag | kSlicedStringTag | kNotInternalizedTag,
645 EXTERNAL_STRING_TYPE =
646 EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
647 EXTERNAL_ONE_BYTE_STRING_TYPE =
648 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
649 EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
650 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
652 SHORT_EXTERNAL_STRING_TYPE =
653 SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
654 SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE =
655 SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
656 SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
657 SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
661 SYMBOL_TYPE = kNotStringTag, // FIRST_NONSTRING_TYPE, LAST_NAME_TYPE
663 // Other primitives (cannot contain non-map-word pointers to heap objects).
666 ODDBALL_TYPE, // LAST_PRIMITIVE_TYPE
668 // Objects allocated in their own spaces (never in new space).
672 // "Data", objects that cannot contain non-map-word pointers to heap
674 MUTABLE_HEAP_NUMBER_TYPE,
679 FIXED_INT8_ARRAY_TYPE, // FIRST_FIXED_TYPED_ARRAY_TYPE
680 FIXED_UINT8_ARRAY_TYPE,
681 FIXED_INT16_ARRAY_TYPE,
682 FIXED_UINT16_ARRAY_TYPE,
683 FIXED_INT32_ARRAY_TYPE,
684 FIXED_UINT32_ARRAY_TYPE,
685 FIXED_FLOAT32_ARRAY_TYPE,
686 FIXED_FLOAT64_ARRAY_TYPE,
687 FIXED_UINT8_CLAMPED_ARRAY_TYPE, // LAST_FIXED_TYPED_ARRAY_TYPE
688 FIXED_DOUBLE_ARRAY_TYPE,
689 FILLER_TYPE, // LAST_DATA_TYPE
692 DECLARED_ACCESSOR_DESCRIPTOR_TYPE,
693 DECLARED_ACCESSOR_INFO_TYPE,
694 EXECUTABLE_ACCESSOR_INFO_TYPE,
696 ACCESS_CHECK_INFO_TYPE,
697 INTERCEPTOR_INFO_TYPE,
698 CALL_HANDLER_INFO_TYPE,
699 FUNCTION_TEMPLATE_INFO_TYPE,
700 OBJECT_TEMPLATE_INFO_TYPE,
702 TYPE_SWITCH_INFO_TYPE,
703 ALLOCATION_SITE_TYPE,
704 ALLOCATION_MEMENTO_TYPE,
707 POLYMORPHIC_CODE_CACHE_TYPE,
708 TYPE_FEEDBACK_INFO_TYPE,
709 ALIASED_ARGUMENTS_ENTRY_TYPE,
712 BREAK_POINT_INFO_TYPE,
714 SHARED_FUNCTION_INFO_TYPE,
720 // All the following types are subtypes of JSReceiver, which corresponds to
721 // objects in the JS sense. The first and the last type in this range are
722 // the two forms of function. This organization enables using the same
723 // compares for checking the JS_RECEIVER/SPEC_OBJECT range and the
724 // NONCALLABLE_JS_OBJECT range.
725 JS_FUNCTION_PROXY_TYPE, // FIRST_JS_RECEIVER_TYPE, FIRST_JS_PROXY_TYPE
726 JS_PROXY_TYPE, // LAST_JS_PROXY_TYPE
727 JS_VALUE_TYPE, // FIRST_JS_OBJECT_TYPE
728 JS_MESSAGE_OBJECT_TYPE,
731 JS_CONTEXT_EXTENSION_OBJECT_TYPE,
732 JS_GENERATOR_OBJECT_TYPE,
734 JS_GLOBAL_OBJECT_TYPE,
735 JS_BUILTINS_OBJECT_TYPE,
736 JS_GLOBAL_PROXY_TYPE,
738 JS_ARRAY_BUFFER_TYPE,
743 JS_SET_ITERATOR_TYPE,
744 JS_MAP_ITERATOR_TYPE,
748 JS_FUNCTION_TYPE, // LAST_JS_OBJECT_TYPE, LAST_JS_RECEIVER_TYPE
752 LAST_TYPE = JS_FUNCTION_TYPE,
753 FIRST_NAME_TYPE = FIRST_TYPE,
754 LAST_NAME_TYPE = SYMBOL_TYPE,
755 FIRST_UNIQUE_NAME_TYPE = INTERNALIZED_STRING_TYPE,
756 LAST_UNIQUE_NAME_TYPE = SYMBOL_TYPE,
757 FIRST_NONSTRING_TYPE = SYMBOL_TYPE,
758 FIRST_PRIMITIVE_TYPE = FIRST_NAME_TYPE,
759 LAST_PRIMITIVE_TYPE = ODDBALL_TYPE,
760 // Boundaries for testing for a fixed typed array.
761 FIRST_FIXED_TYPED_ARRAY_TYPE = FIXED_INT8_ARRAY_TYPE,
762 LAST_FIXED_TYPED_ARRAY_TYPE = FIXED_UINT8_CLAMPED_ARRAY_TYPE,
763 // Boundary for promotion to old space.
764 LAST_DATA_TYPE = FILLER_TYPE,
765 // Boundary for objects represented as JSReceiver (i.e. JSObject or JSProxy).
766 // Note that there is no range for JSObject or JSProxy, since their subtypes
767 // are not continuous in this enum! The enum ranges instead reflect the
768 // external class names, where proxies are treated as either ordinary objects,
770 FIRST_JS_RECEIVER_TYPE = JS_FUNCTION_PROXY_TYPE,
771 LAST_JS_RECEIVER_TYPE = LAST_TYPE,
772 // Boundaries for testing the types represented as JSObject
773 FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
774 LAST_JS_OBJECT_TYPE = LAST_TYPE,
775 // Boundaries for testing the types represented as JSProxy
776 FIRST_JS_PROXY_TYPE = JS_FUNCTION_PROXY_TYPE,
777 LAST_JS_PROXY_TYPE = JS_PROXY_TYPE,
778 // Boundaries for testing whether the type is a JavaScript object.
779 FIRST_SPEC_OBJECT_TYPE = FIRST_JS_RECEIVER_TYPE,
780 LAST_SPEC_OBJECT_TYPE = LAST_JS_RECEIVER_TYPE,
781 // Boundaries for testing the types for which typeof is "object".
782 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_PROXY_TYPE,
783 LAST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_REGEXP_TYPE,
784 // Note that the types for which typeof is "function" are not continuous.
785 // Define this so that we can put assertions on discrete checks.
786 NUM_OF_CALLABLE_SPEC_OBJECT_TYPES = 2
789 STATIC_ASSERT(JS_OBJECT_TYPE == Internals::kJSObjectType);
790 STATIC_ASSERT(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
791 STATIC_ASSERT(ODDBALL_TYPE == Internals::kOddballType);
792 STATIC_ASSERT(FOREIGN_TYPE == Internals::kForeignType);
795 #define FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(V) \
796 V(FAST_ELEMENTS_SUB_TYPE) \
797 V(DICTIONARY_ELEMENTS_SUB_TYPE) \
798 V(FAST_PROPERTIES_SUB_TYPE) \
799 V(DICTIONARY_PROPERTIES_SUB_TYPE) \
800 V(MAP_CODE_CACHE_SUB_TYPE) \
801 V(SCOPE_INFO_SUB_TYPE) \
802 V(STRING_TABLE_SUB_TYPE) \
803 V(DESCRIPTOR_ARRAY_SUB_TYPE) \
804 V(TRANSITION_ARRAY_SUB_TYPE)
806 enum FixedArraySubInstanceType {
807 #define DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE(name) name,
808 FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE)
809 #undef DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE
810 LAST_FIXED_ARRAY_SUB_TYPE = TRANSITION_ARRAY_SUB_TYPE
823 #define DECL_BOOLEAN_ACCESSORS(name) \
824 inline bool name() const; \
825 inline void set_##name(bool value); \
828 #define DECL_ACCESSORS(name, type) \
829 inline type* name() const; \
830 inline void set_##name(type* value, \
831 WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
834 #define DECLARE_CAST(type) \
835 INLINE(static type* cast(Object* object)); \
836 INLINE(static const type* cast(const Object* object));
840 class AllocationSite;
841 class AllocationSiteCreationContext;
842 class AllocationSiteUsageContext;
845 class ElementsAccessor;
846 class FixedArrayBase;
847 class FunctionLiteral;
849 class JSBuiltinsObject;
850 class LayoutDescriptor;
851 class LookupIterator;
852 class ObjectHashTable;
855 class SafepointEntry;
856 class SharedFunctionInfo;
858 class TypeFeedbackInfo;
859 class TypeFeedbackVector;
862 // We cannot just say "class HeapType;" if it is created from a template... =8-?
863 template<class> class TypeImpl;
864 struct HeapTypeConfig;
865 typedef TypeImpl<HeapTypeConfig> HeapType;
868 // A template-ized version of the IsXXX functions.
869 template <class C> inline bool Is(Object* obj);
872 #define DECLARE_VERIFIER(Name) void Name##Verify();
874 #define DECLARE_VERIFIER(Name)
878 #define DECLARE_PRINTER(Name) void Name##Print(std::ostream& os); // NOLINT
880 #define DECLARE_PRINTER(Name)
884 #define OBJECT_TYPE_LIST(V) \
889 #define HEAP_OBJECT_TYPE_LIST(V) \
891 V(MutableHeapNumber) \
907 V(ExternalTwoByteString) \
908 V(ExternalOneByteString) \
909 V(SeqTwoByteString) \
910 V(SeqOneByteString) \
911 V(InternalizedString) \
914 V(FixedTypedArrayBase) \
917 V(FixedUint16Array) \
919 V(FixedUint32Array) \
921 V(FixedFloat32Array) \
922 V(FixedFloat64Array) \
923 V(FixedUint8ClampedArray) \
929 V(JSContextExtensionObject) \
930 V(JSGeneratorObject) \
932 V(LayoutDescriptor) \
936 V(TypeFeedbackVector) \
937 V(DeoptimizationInputData) \
938 V(DeoptimizationOutputData) \
942 V(FixedDoubleArray) \
946 V(ScriptContextTable) \
952 V(SharedFunctionInfo) \
961 V(JSArrayBufferView) \
970 V(JSWeakCollection) \
977 V(NormalizedMapCache) \
978 V(CompilationCacheTable) \
979 V(CodeCacheHashTable) \
980 V(PolymorphicCodeCacheHashTable) \
985 V(JSBuiltinsObject) \
987 V(UndetectableObject) \
988 V(AccessCheckNeeded) \
994 V(WeakValueHashTable) \
997 // Object is the abstract superclass for all classes in the
999 // Object does not use any virtual functions to avoid the
1000 // allocation of the C++ vtable.
1001 // Since both Smi and HeapObject are subclasses of Object no
1002 // data members can be present in Object.
1006 bool IsObject() const { return true; }
1008 #define IS_TYPE_FUNCTION_DECL(type_) INLINE(bool Is##type_() const);
1009 OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
1010 HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
1011 #undef IS_TYPE_FUNCTION_DECL
1013 // A non-keyed store is of the form a.x = foo or a["x"] = foo whereas
1014 // a keyed store is of the form a[expression] = foo.
1015 enum StoreFromKeyed {
1016 MAY_BE_STORE_FROM_KEYED,
1017 CERTAINLY_NOT_STORE_FROM_KEYED
1020 INLINE(bool IsFixedArrayBase() const);
1021 INLINE(bool IsExternal() const);
1022 INLINE(bool IsAccessorInfo() const);
1024 INLINE(bool IsStruct() const);
1025 #define DECLARE_STRUCT_PREDICATE(NAME, Name, name) \
1026 INLINE(bool Is##Name() const);
1027 STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
1028 #undef DECLARE_STRUCT_PREDICATE
1030 INLINE(bool IsSpecObject()) const;
1031 INLINE(bool IsSpecFunction()) const;
1032 INLINE(bool IsTemplateInfo()) const;
1033 INLINE(bool IsNameDictionary() const);
1034 INLINE(bool IsGlobalDictionary() const);
1035 INLINE(bool IsSeededNumberDictionary() const);
1036 INLINE(bool IsUnseededNumberDictionary() const);
1037 INLINE(bool IsOrderedHashSet() const);
1038 INLINE(bool IsOrderedHashMap() const);
1039 bool IsCallable() const;
1040 static bool IsPromise(Handle<Object> object);
1043 INLINE(bool IsUndefined() const);
1044 INLINE(bool IsNull() const);
1045 INLINE(bool IsTheHole() const);
1046 INLINE(bool IsException() const);
1047 INLINE(bool IsUninitialized() const);
1048 INLINE(bool IsTrue() const);
1049 INLINE(bool IsFalse() const);
1050 INLINE(bool IsArgumentsMarker() const);
1052 // Filler objects (fillers and free space objects).
1053 INLINE(bool IsFiller() const);
1055 // Extract the number.
1056 inline double Number();
1057 INLINE(bool IsNaN() const);
1058 INLINE(bool IsMinusZero() const);
1059 bool ToInt32(int32_t* value);
1060 bool ToUint32(uint32_t* value);
1062 inline Representation OptimalRepresentation();
1064 inline ElementsKind OptimalElementsKind();
1066 inline bool FitsRepresentation(Representation representation);
1068 // Checks whether two valid primitive encodings of a property name resolve to
1069 // the same logical property. E.g., the smi 1, the string "1" and the double
1070 // 1 all refer to the same property, so this helper will return true.
1071 inline bool KeyEquals(Object* other);
1073 Handle<HeapType> OptimalType(Isolate* isolate, Representation representation);
1075 inline static Handle<Object> NewStorageFor(Isolate* isolate,
1076 Handle<Object> object,
1077 Representation representation);
1079 inline static Handle<Object> WrapForRead(Isolate* isolate,
1080 Handle<Object> object,
1081 Representation representation);
1083 // Returns true if the object is of the correct type to be used as a
1084 // implementation of a JSObject's elements.
1085 inline bool HasValidElements();
1087 inline bool HasSpecificClassOf(String* name);
1089 bool BooleanValue(); // ECMA-262 9.2.
1091 // Convert to a JSObject if needed.
1092 // native_context is used when creating wrapper object.
1093 static inline MaybeHandle<JSReceiver> ToObject(Isolate* isolate,
1094 Handle<Object> object);
1095 static MaybeHandle<JSReceiver> ToObject(Isolate* isolate,
1096 Handle<Object> object,
1097 Handle<Context> context);
1099 MUST_USE_RESULT static MaybeHandle<Object> GetProperty(
1100 LookupIterator* it, LanguageMode language_mode = SLOPPY);
1102 // Implementation of [[Put]], ECMA-262 5th edition, section 8.12.5.
1103 MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
1104 Handle<Object> object, Handle<Name> name, Handle<Object> value,
1105 LanguageMode language_mode,
1106 StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED);
1108 MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
1109 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1110 StoreFromKeyed store_mode);
1112 MUST_USE_RESULT static MaybeHandle<Object> SetSuperProperty(
1113 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1114 StoreFromKeyed store_mode);
1116 MUST_USE_RESULT static MaybeHandle<Object> ReadAbsentProperty(
1117 LookupIterator* it, LanguageMode language_mode);
1118 MUST_USE_RESULT static MaybeHandle<Object> ReadAbsentProperty(
1119 Isolate* isolate, Handle<Object> receiver, Handle<Object> name,
1120 LanguageMode language_mode);
1121 MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyProperty(
1122 LookupIterator* it, Handle<Object> value, LanguageMode language_mode);
1123 MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyProperty(
1124 Isolate* isolate, Handle<Object> receiver, Handle<Object> name,
1125 Handle<Object> value, LanguageMode language_mode);
1126 MUST_USE_RESULT static MaybeHandle<Object> RedefineNonconfigurableProperty(
1127 Isolate* isolate, Handle<Object> name, Handle<Object> value,
1128 LanguageMode language_mode);
1129 MUST_USE_RESULT static MaybeHandle<Object> SetDataProperty(
1130 LookupIterator* it, Handle<Object> value);
1131 MUST_USE_RESULT static MaybeHandle<Object> AddDataProperty(
1132 LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
1133 LanguageMode language_mode, StoreFromKeyed store_mode);
1134 MUST_USE_RESULT static inline MaybeHandle<Object> GetPropertyOrElement(
1135 Handle<Object> object, Handle<Name> name,
1136 LanguageMode language_mode = SLOPPY);
1137 MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
1138 Isolate* isolate, Handle<Object> object, const char* key,
1139 LanguageMode language_mode = SLOPPY);
1140 MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
1141 Handle<Object> object, Handle<Name> name,
1142 LanguageMode language_mode = SLOPPY);
1144 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithAccessor(
1145 LookupIterator* it, LanguageMode language_mode);
1146 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithAccessor(
1147 LookupIterator* it, Handle<Object> value, LanguageMode language_mode);
1149 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithDefinedGetter(
1150 Handle<Object> receiver,
1151 Handle<JSReceiver> getter);
1152 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithDefinedSetter(
1153 Handle<Object> receiver,
1154 Handle<JSReceiver> setter,
1155 Handle<Object> value);
1157 MUST_USE_RESULT static inline MaybeHandle<Object> GetElement(
1158 Isolate* isolate, Handle<Object> object, uint32_t index,
1159 LanguageMode language_mode = SLOPPY);
1161 MUST_USE_RESULT static inline MaybeHandle<Object> SetElement(
1162 Isolate* isolate, Handle<Object> object, uint32_t index,
1163 Handle<Object> value, LanguageMode language_mode);
1165 static inline Handle<Object> GetPrototypeSkipHiddenPrototypes(
1166 Isolate* isolate, Handle<Object> receiver);
1168 bool HasInPrototypeChain(Isolate* isolate, Object* object);
1170 // Returns the permanent hash code associated with this object. May return
1171 // undefined if not yet created.
1174 // Returns undefined for JSObjects, but returns the hash code for simple
1175 // objects. This avoids a double lookup in the cases where we know we will
1176 // add the hash to the JSObject if it does not already exist.
1177 Object* GetSimpleHash();
1179 // Returns the permanent hash code associated with this object depending on
1180 // the actual object type. May create and store a hash code if needed and none
1182 static Handle<Smi> GetOrCreateHash(Isolate* isolate, Handle<Object> object);
1184 // Checks whether this object has the same value as the given one. This
1185 // function is implemented according to ES5, section 9.12 and can be used
1186 // to implement the Harmony "egal" function.
1187 bool SameValue(Object* other);
1189 // Checks whether this object has the same value as the given one.
1190 // +0 and -0 are treated equal. Everything else is the same as SameValue.
1191 // This function is implemented according to ES6, section 7.2.4 and is used
1192 // by ES6 Map and Set.
1193 bool SameValueZero(Object* other);
1195 // Tries to convert an object to an array length. Returns true and sets the
1196 // output parameter if it succeeds.
1197 inline bool ToArrayLength(uint32_t* index);
1199 // Tries to convert an object to an array index. Returns true and sets the
1200 // output parameter if it succeeds. Equivalent to ToArrayLength, but does not
1201 // allow kMaxUInt32.
1202 inline bool ToArrayIndex(uint32_t* index);
1204 // Returns true if this is a JSValue containing a string and the index is
1205 // < the length of the string. Used to implement [] on strings.
1206 inline bool IsStringObjectWithCharacterAt(uint32_t index);
1208 DECLARE_VERIFIER(Object)
1210 // Verify a pointer is a valid object pointer.
1211 static void VerifyPointer(Object* p);
1214 inline void VerifyApiCallResultType();
1216 // Prints this object without details.
1217 void ShortPrint(FILE* out = stdout);
1219 // Prints this object without details to a message accumulator.
1220 void ShortPrint(StringStream* accumulator);
1222 void ShortPrint(std::ostream& os); // NOLINT
1224 DECLARE_CAST(Object)
1226 // Layout description.
1227 static const int kHeaderSize = 0; // Object does not take up any space.
1230 // For our gdb macros, we should perhaps change these in the future.
1233 // Prints this object with details.
1234 void Print(std::ostream& os); // NOLINT
1236 void Print() { ShortPrint(); }
1237 void Print(std::ostream& os) { ShortPrint(os); } // NOLINT
1241 friend class LookupIterator;
1242 friend class PrototypeIterator;
1244 // Return the map of the root of object's prototype chain.
1245 Map* GetRootMap(Isolate* isolate);
1247 // Helper for SetProperty and SetSuperProperty.
1248 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyInternal(
1249 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1250 StoreFromKeyed store_mode, bool* found);
1252 DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
1257 explicit Brief(const Object* const v) : value(v) {}
1258 const Object* value;
1262 std::ostream& operator<<(std::ostream& os, const Brief& v);
1265 // Smi represents integer Numbers that can be stored in 31 bits.
1266 // Smis are immediate which means they are NOT allocated in the heap.
1267 // The this pointer has the following format: [31 bit signed int] 0
1268 // For long smis it has the following format:
1269 // [32 bit signed int] [31 bits zero padding] 0
1270 // Smi stands for small integer.
1271 class Smi: public Object {
1273 // Returns the integer value.
1274 inline int value() const { return Internals::SmiValue(this); }
1276 // Convert a value to a Smi object.
1277 static inline Smi* FromInt(int value) {
1278 DCHECK(Smi::IsValid(value));
1279 return reinterpret_cast<Smi*>(Internals::IntToSmi(value));
1282 static inline Smi* FromIntptr(intptr_t value) {
1283 DCHECK(Smi::IsValid(value));
1284 int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
1285 return reinterpret_cast<Smi*>((value << smi_shift_bits) | kSmiTag);
1288 // Returns whether value can be represented in a Smi.
1289 static inline bool IsValid(intptr_t value) {
1290 bool result = Internals::IsValidSmi(value);
1291 DCHECK_EQ(result, value >= kMinValue && value <= kMaxValue);
1297 // Dispatched behavior.
1298 void SmiPrint(std::ostream& os) const; // NOLINT
1299 DECLARE_VERIFIER(Smi)
1301 static const int kMinValue =
1302 (static_cast<unsigned int>(-1)) << (kSmiValueSize - 1);
1303 static const int kMaxValue = -(kMinValue + 1);
1306 DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
1310 // Heap objects typically have a map pointer in their first word. However,
1311 // during GC other data (e.g. mark bits, forwarding addresses) is sometimes
1312 // encoded in the first word. The class MapWord is an abstraction of the
1313 // value in a heap object's first word.
1314 class MapWord BASE_EMBEDDED {
1316 // Normal state: the map word contains a map pointer.
1318 // Create a map word from a map pointer.
1319 static inline MapWord FromMap(const Map* map);
1321 // View this map word as a map pointer.
1322 inline Map* ToMap();
1325 // Scavenge collection: the map word of live objects in the from space
1326 // contains a forwarding address (a heap object pointer in the to space).
1328 // True if this map word is a forwarding address for a scavenge
1329 // collection. Only valid during a scavenge collection (specifically,
1330 // when all map words are heap object pointers, i.e. not during a full GC).
1331 inline bool IsForwardingAddress();
1333 // Create a map word from a forwarding address.
1334 static inline MapWord FromForwardingAddress(HeapObject* object);
1336 // View this map word as a forwarding address.
1337 inline HeapObject* ToForwardingAddress();
1339 static inline MapWord FromRawValue(uintptr_t value) {
1340 return MapWord(value);
1343 inline uintptr_t ToRawValue() {
1348 // HeapObject calls the private constructor and directly reads the value.
1349 friend class HeapObject;
1351 explicit MapWord(uintptr_t value) : value_(value) {}
1357 // The content of an heap object (except for the map pointer). kTaggedValues
1358 // objects can contain both heap pointers and Smis, kMixedValues can contain
1359 // heap pointers, Smis, and raw values (e.g. doubles or strings), and kRawValues
1360 // objects can contain raw values and Smis.
1361 enum class HeapObjectContents { kTaggedValues, kMixedValues, kRawValues };
1364 // HeapObject is the superclass for all classes describing heap allocated
1366 class HeapObject: public Object {
1368 // [map]: Contains a map which contains the object's reflective
1370 inline Map* map() const;
1371 inline void set_map(Map* value);
1372 // The no-write-barrier version. This is OK if the object is white and in
1373 // new space, or if the value is an immortal immutable object, like the maps
1374 // of primitive (non-JS) objects like strings, heap numbers etc.
1375 inline void set_map_no_write_barrier(Map* value);
1377 // Get the map using acquire load.
1378 inline Map* synchronized_map();
1379 inline MapWord synchronized_map_word() const;
1381 // Set the map using release store
1382 inline void synchronized_set_map(Map* value);
1383 inline void synchronized_set_map_no_write_barrier(Map* value);
1384 inline void synchronized_set_map_word(MapWord map_word);
1386 // During garbage collection, the map word of a heap object does not
1387 // necessarily contain a map pointer.
1388 inline MapWord map_word() const;
1389 inline void set_map_word(MapWord map_word);
1391 // The Heap the object was allocated in. Used also to access Isolate.
1392 inline Heap* GetHeap() const;
1394 // Convenience method to get current isolate.
1395 inline Isolate* GetIsolate() const;
1397 // Converts an address to a HeapObject pointer.
1398 static inline HeapObject* FromAddress(Address address) {
1399 DCHECK_TAG_ALIGNED(address);
1400 return reinterpret_cast<HeapObject*>(address + kHeapObjectTag);
1403 // Returns the address of this HeapObject.
1404 inline Address address() {
1405 return reinterpret_cast<Address>(this) - kHeapObjectTag;
1408 // Iterates over pointers contained in the object (including the Map)
1409 void Iterate(ObjectVisitor* v);
1411 // Iterates over all pointers contained in the object except the
1412 // first map pointer. The object type is given in the first
1413 // parameter. This function does not access the map pointer in the
1414 // object, and so is safe to call while the map pointer is modified.
1415 void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
1417 // Returns the heap object's size in bytes
1420 // Indicates what type of values this heap object may contain.
1421 inline HeapObjectContents ContentType();
1423 // Given a heap object's map pointer, returns the heap size in bytes
1424 // Useful when the map pointer field is used for other purposes.
1426 inline int SizeFromMap(Map* map);
1428 // Returns the field at offset in obj, as a read/write Object* reference.
1429 // Does no checking, and is safe to use during GC, while maps are invalid.
1430 // Does not invoke write barrier, so should only be assigned to
1431 // during marking GC.
1432 static inline Object** RawField(HeapObject* obj, int offset);
1434 // Adds the |code| object related to |name| to the code cache of this map. If
1435 // this map is a dictionary map that is shared, the map copied and installed
1437 static void UpdateMapCodeCache(Handle<HeapObject> object,
1441 DECLARE_CAST(HeapObject)
1443 // Return the write barrier mode for this. Callers of this function
1444 // must be able to present a reference to an DisallowHeapAllocation
1445 // object as a sign that they are not going to use this function
1446 // from code that allocates and thus invalidates the returned write
1448 inline WriteBarrierMode GetWriteBarrierMode(
1449 const DisallowHeapAllocation& promise);
1451 // Dispatched behavior.
1452 void HeapObjectShortPrint(std::ostream& os); // NOLINT
1454 void PrintHeader(std::ostream& os, const char* id); // NOLINT
1456 DECLARE_PRINTER(HeapObject)
1457 DECLARE_VERIFIER(HeapObject)
1459 inline void VerifyObjectField(int offset);
1460 inline void VerifySmiField(int offset);
1462 // Verify a pointer is a valid HeapObject pointer that points to object
1463 // areas in the heap.
1464 static void VerifyHeapPointer(Object* p);
1467 inline AllocationAlignment RequiredAlignment();
1469 // Layout description.
1470 // First field in a heap object is map.
1471 static const int kMapOffset = Object::kHeaderSize;
1472 static const int kHeaderSize = kMapOffset + kPointerSize;
1474 STATIC_ASSERT(kMapOffset == Internals::kHeapObjectMapOffset);
1477 // helpers for calling an ObjectVisitor to iterate over pointers in the
1478 // half-open range [start, end) specified as integer offsets
1479 inline void IteratePointers(ObjectVisitor* v, int start, int end);
1480 // as above, for the single element at "offset"
1481 inline void IteratePointer(ObjectVisitor* v, int offset);
1482 // as above, for the next code link of a code object.
1483 inline void IterateNextCodeLink(ObjectVisitor* v, int offset);
1486 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1490 // This class describes a body of an object of a fixed size
1491 // in which all pointer fields are located in the [start_offset, end_offset)
1493 template<int start_offset, int end_offset, int size>
1494 class FixedBodyDescriptor {
1496 static const int kStartOffset = start_offset;
1497 static const int kEndOffset = end_offset;
1498 static const int kSize = size;
1500 static inline void IterateBody(HeapObject* obj, ObjectVisitor* v);
1502 template<typename StaticVisitor>
1503 static inline void IterateBody(HeapObject* obj) {
1504 StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
1505 HeapObject::RawField(obj, end_offset));
1510 // This class describes a body of an object of a variable size
1511 // in which all pointer fields are located in the [start_offset, object_size)
1513 template<int start_offset>
1514 class FlexibleBodyDescriptor {
1516 static const int kStartOffset = start_offset;
1518 static inline void IterateBody(HeapObject* obj,
1522 template<typename StaticVisitor>
1523 static inline void IterateBody(HeapObject* obj, int object_size) {
1524 StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
1525 HeapObject::RawField(obj, object_size));
1530 // The HeapNumber class describes heap allocated numbers that cannot be
1531 // represented in a Smi (small integer)
1532 class HeapNumber: public HeapObject {
1534 // [value]: number value.
1535 inline double value() const;
1536 inline void set_value(double value);
1538 DECLARE_CAST(HeapNumber)
1540 // Dispatched behavior.
1541 bool HeapNumberBooleanValue();
1543 void HeapNumberPrint(std::ostream& os); // NOLINT
1544 DECLARE_VERIFIER(HeapNumber)
1546 inline int get_exponent();
1547 inline int get_sign();
1549 // Layout description.
1550 static const int kValueOffset = HeapObject::kHeaderSize;
1551 // IEEE doubles are two 32 bit words. The first is just mantissa, the second
1552 // is a mixture of sign, exponent and mantissa. The offsets of two 32 bit
1553 // words within double numbers are endian dependent and they are set
1555 #if defined(V8_TARGET_LITTLE_ENDIAN)
1556 static const int kMantissaOffset = kValueOffset;
1557 static const int kExponentOffset = kValueOffset + 4;
1558 #elif defined(V8_TARGET_BIG_ENDIAN)
1559 static const int kMantissaOffset = kValueOffset + 4;
1560 static const int kExponentOffset = kValueOffset;
1562 #error Unknown byte ordering
1565 static const int kSize = kValueOffset + kDoubleSize;
1566 static const uint32_t kSignMask = 0x80000000u;
1567 static const uint32_t kExponentMask = 0x7ff00000u;
1568 static const uint32_t kMantissaMask = 0xfffffu;
1569 static const int kMantissaBits = 52;
1570 static const int kExponentBits = 11;
1571 static const int kExponentBias = 1023;
1572 static const int kExponentShift = 20;
1573 static const int kInfinityOrNanExponent =
1574 (kExponentMask >> kExponentShift) - kExponentBias;
1575 static const int kMantissaBitsInTopWord = 20;
1576 static const int kNonMantissaBitsInTopWord = 12;
1579 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1583 // The Simd128Value class describes heap allocated 128 bit SIMD values.
1584 class Simd128Value : public HeapObject {
1586 DECLARE_CAST(Simd128Value)
1588 DECLARE_PRINTER(Simd128Value)
1589 DECLARE_VERIFIER(Simd128Value)
1591 // Checks that another instance is bit-wise equal.
1592 bool BitwiseEquals(const Simd128Value* other) const;
1593 // Computes a hash from the 128 bit value, viewed as 4 32-bit integers.
1594 uint32_t Hash() const;
1595 // Copies the 16 bytes of SIMD data to the destination address.
1596 void CopyBits(void* destination) const;
1598 // Layout description.
1599 static const int kValueOffset = HeapObject::kHeaderSize;
1600 static const int kSize = kValueOffset + kSimd128Size;
1603 DISALLOW_IMPLICIT_CONSTRUCTORS(Simd128Value);
1607 // V has parameters (TYPE, Type, type, lane count, lane type)
1608 #define SIMD128_TYPES(V) \
1609 V(FLOAT32X4, Float32x4, float32x4, 4, float) \
1610 V(INT32X4, Int32x4, int32x4, 4, int32_t) \
1611 V(BOOL32X4, Bool32x4, bool32x4, 4, bool) \
1612 V(INT16X8, Int16x8, int16x8, 8, int16_t) \
1613 V(BOOL16X8, Bool16x8, bool16x8, 8, bool) \
1614 V(INT8X16, Int8x16, int8x16, 16, int8_t) \
1615 V(BOOL8X16, Bool8x16, bool8x16, 16, bool)
1617 #define SIMD128_VALUE_CLASS(TYPE, Type, type, lane_count, lane_type) \
1618 class Type final : public Simd128Value { \
1620 inline lane_type get_lane(int lane) const; \
1621 inline void set_lane(int lane, lane_type value); \
1623 DECLARE_CAST(Type) \
1625 DECLARE_PRINTER(Type) \
1628 DISALLOW_IMPLICIT_CONSTRUCTORS(Type); \
1630 SIMD128_TYPES(SIMD128_VALUE_CLASS)
1631 #undef SIMD128_VALUE_CLASS
1634 enum EnsureElementsMode {
1635 DONT_ALLOW_DOUBLE_ELEMENTS,
1636 ALLOW_COPIED_DOUBLE_ELEMENTS,
1637 ALLOW_CONVERTED_DOUBLE_ELEMENTS
1641 // Indicator for one component of an AccessorPair.
1642 enum AccessorComponent {
1648 // JSReceiver includes types on which properties can be defined, i.e.,
1649 // JSObject and JSProxy.
1650 class JSReceiver: public HeapObject {
1652 DECLARE_CAST(JSReceiver)
1654 // Implementation of [[HasProperty]], ECMA-262 5th edition, section 8.12.6.
1655 MUST_USE_RESULT static inline Maybe<bool> HasProperty(
1656 Handle<JSReceiver> object, Handle<Name> name);
1657 MUST_USE_RESULT static inline Maybe<bool> HasOwnProperty(Handle<JSReceiver>,
1659 MUST_USE_RESULT static inline Maybe<bool> HasElement(
1660 Handle<JSReceiver> object, uint32_t index);
1661 MUST_USE_RESULT static inline Maybe<bool> HasOwnElement(
1662 Handle<JSReceiver> object, uint32_t index);
1664 // Implementation of [[Delete]], ECMA-262 5th edition, section 8.12.7.
1665 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyOrElement(
1666 Handle<JSReceiver> object, Handle<Name> name,
1667 LanguageMode language_mode = SLOPPY);
1668 MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
1669 Handle<JSReceiver> object, Handle<Name> name,
1670 LanguageMode language_mode = SLOPPY);
1671 MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
1672 LookupIterator* it, LanguageMode language_mode);
1673 MUST_USE_RESULT static MaybeHandle<Object> DeleteElement(
1674 Handle<JSReceiver> object, uint32_t index,
1675 LanguageMode language_mode = SLOPPY);
1677 // Tests for the fast common case for property enumeration.
1678 bool IsSimpleEnum();
1680 // Returns the class name ([[Class]] property in the specification).
1681 String* class_name();
1683 // Returns the constructor name (the name (possibly, inferred name) of the
1684 // function that was used to instantiate the object).
1685 String* constructor_name();
1687 MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetPropertyAttributes(
1688 Handle<JSReceiver> object, Handle<Name> name);
1689 MUST_USE_RESULT static inline Maybe<PropertyAttributes>
1690 GetOwnPropertyAttributes(Handle<JSReceiver> object, Handle<Name> name);
1692 MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetElementAttributes(
1693 Handle<JSReceiver> object, uint32_t index);
1694 MUST_USE_RESULT static inline Maybe<PropertyAttributes>
1695 GetOwnElementAttributes(Handle<JSReceiver> object, uint32_t index);
1697 MUST_USE_RESULT static Maybe<PropertyAttributes> GetPropertyAttributes(
1698 LookupIterator* it);
1701 static Handle<Object> GetDataProperty(Handle<JSReceiver> object,
1703 static Handle<Object> GetDataProperty(LookupIterator* it);
1706 // Retrieves a permanent object identity hash code. The undefined value might
1707 // be returned in case no hash was created yet.
1708 inline Object* GetIdentityHash();
1710 // Retrieves a permanent object identity hash code. May create and store a
1711 // hash code if needed and none exists.
1712 inline static Handle<Smi> GetOrCreateIdentityHash(
1713 Handle<JSReceiver> object);
1715 enum KeyCollectionType { OWN_ONLY, INCLUDE_PROTOS };
1717 // Computes the enumerable keys for a JSObject. Used for implementing
1718 // "for (n in object) { }".
1719 MUST_USE_RESULT static MaybeHandle<FixedArray> GetKeys(
1720 Handle<JSReceiver> object,
1721 KeyCollectionType type);
1724 DISALLOW_IMPLICIT_CONSTRUCTORS(JSReceiver);
1728 // The JSObject describes real heap allocated JavaScript objects with
1730 // Note that the map of JSObject changes during execution to enable inline
1732 class JSObject: public JSReceiver {
1734 // [properties]: Backing storage for properties.
1735 // properties is a FixedArray in the fast case and a Dictionary in the
1737 DECL_ACCESSORS(properties, FixedArray) // Get and set fast properties.
1738 inline void initialize_properties();
1739 inline bool HasFastProperties();
1740 // Gets slow properties for non-global objects.
1741 inline NameDictionary* property_dictionary();
1742 // Gets global object properties.
1743 inline GlobalDictionary* global_dictionary();
1745 // [elements]: The elements (properties with names that are integers).
1747 // Elements can be in two general modes: fast and slow. Each mode
1748 // corrensponds to a set of object representations of elements that
1749 // have something in common.
1751 // In the fast mode elements is a FixedArray and so each element can
1752 // be quickly accessed. This fact is used in the generated code. The
1753 // elements array can have one of three maps in this mode:
1754 // fixed_array_map, sloppy_arguments_elements_map or
1755 // fixed_cow_array_map (for copy-on-write arrays). In the latter case
1756 // the elements array may be shared by a few objects and so before
1757 // writing to any element the array must be copied. Use
1758 // EnsureWritableFastElements in this case.
1760 // In the slow mode the elements is either a NumberDictionary, a
1761 // FixedArray parameter map for a (sloppy) arguments object.
1762 DECL_ACCESSORS(elements, FixedArrayBase)
1763 inline void initialize_elements();
1764 static void ResetElements(Handle<JSObject> object);
1765 static inline void SetMapAndElements(Handle<JSObject> object,
1767 Handle<FixedArrayBase> elements);
1768 inline ElementsKind GetElementsKind();
1769 ElementsAccessor* GetElementsAccessor();
1770 // Returns true if an object has elements of FAST_SMI_ELEMENTS ElementsKind.
1771 inline bool HasFastSmiElements();
1772 // Returns true if an object has elements of FAST_ELEMENTS ElementsKind.
1773 inline bool HasFastObjectElements();
1774 // Returns true if an object has elements of FAST_ELEMENTS or
1775 // FAST_SMI_ONLY_ELEMENTS.
1776 inline bool HasFastSmiOrObjectElements();
1777 // Returns true if an object has any of the fast elements kinds.
1778 inline bool HasFastElements();
1779 // Returns true if an object has elements of FAST_DOUBLE_ELEMENTS
1781 inline bool HasFastDoubleElements();
1782 // Returns true if an object has elements of FAST_HOLEY_*_ELEMENTS
1784 inline bool HasFastHoleyElements();
1785 inline bool HasSloppyArgumentsElements();
1786 inline bool HasDictionaryElements();
1788 inline bool HasFixedTypedArrayElements();
1790 inline bool HasFixedUint8ClampedElements();
1791 inline bool HasFixedArrayElements();
1792 inline bool HasFixedInt8Elements();
1793 inline bool HasFixedUint8Elements();
1794 inline bool HasFixedInt16Elements();
1795 inline bool HasFixedUint16Elements();
1796 inline bool HasFixedInt32Elements();
1797 inline bool HasFixedUint32Elements();
1798 inline bool HasFixedFloat32Elements();
1799 inline bool HasFixedFloat64Elements();
1801 inline bool HasFastArgumentsElements();
1802 inline bool HasSlowArgumentsElements();
1803 inline SeededNumberDictionary* element_dictionary(); // Gets slow elements.
1805 // Requires: HasFastElements().
1806 static Handle<FixedArray> EnsureWritableFastElements(
1807 Handle<JSObject> object);
1809 // Collects elements starting at index 0.
1810 // Undefined values are placed after non-undefined values.
1811 // Returns the number of non-undefined values.
1812 static Handle<Object> PrepareElementsForSort(Handle<JSObject> object,
1814 // As PrepareElementsForSort, but only on objects where elements is
1815 // a dictionary, and it will stay a dictionary. Collates undefined and
1816 // unexisting elements below limit from position zero of the elements.
1817 static Handle<Object> PrepareSlowElementsForSort(Handle<JSObject> object,
1820 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithInterceptor(
1821 LookupIterator* it, Handle<Object> value);
1823 // SetLocalPropertyIgnoreAttributes converts callbacks to fields. We need to
1824 // grant an exemption to ExecutableAccessor callbacks in some cases.
1825 enum ExecutableAccessorInfoHandling { DEFAULT_HANDLING, DONT_FORCE_FIELD };
1827 MUST_USE_RESULT static MaybeHandle<Object> DefineOwnPropertyIgnoreAttributes(
1828 LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
1829 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1831 MUST_USE_RESULT static MaybeHandle<Object> SetOwnPropertyIgnoreAttributes(
1832 Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
1833 PropertyAttributes attributes,
1834 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1836 MUST_USE_RESULT static MaybeHandle<Object> SetOwnElementIgnoreAttributes(
1837 Handle<JSObject> object, uint32_t index, Handle<Object> value,
1838 PropertyAttributes attributes,
1839 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1841 // Equivalent to one of the above depending on whether |name| can be converted
1842 // to an array index.
1843 MUST_USE_RESULT static MaybeHandle<Object>
1844 DefinePropertyOrElementIgnoreAttributes(
1845 Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
1846 PropertyAttributes attributes = NONE,
1847 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1849 // Adds or reconfigures a property to attributes NONE. It will fail when it
1851 MUST_USE_RESULT static Maybe<bool> CreateDataProperty(LookupIterator* it,
1852 Handle<Object> value);
1854 static void AddProperty(Handle<JSObject> object, Handle<Name> name,
1855 Handle<Object> value, PropertyAttributes attributes);
1857 MUST_USE_RESULT static MaybeHandle<Object> AddDataElement(
1858 Handle<JSObject> receiver, uint32_t index, Handle<Object> value,
1859 PropertyAttributes attributes);
1861 // Extend the receiver with a single fast property appeared first in the
1862 // passed map. This also extends the property backing store if necessary.
1863 static void AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map);
1865 // Migrates the given object to a map whose field representations are the
1866 // lowest upper bound of all known representations for that field.
1867 static void MigrateInstance(Handle<JSObject> instance);
1869 // Migrates the given object only if the target map is already available,
1870 // or returns false if such a map is not yet available.
1871 static bool TryMigrateInstance(Handle<JSObject> instance);
1873 // Sets the property value in a normalized object given (key, value, details).
1874 // Handles the special representation of JS global objects.
1875 static void SetNormalizedProperty(Handle<JSObject> object, Handle<Name> name,
1876 Handle<Object> value,
1877 PropertyDetails details);
1878 static void SetDictionaryElement(Handle<JSObject> object, uint32_t index,
1879 Handle<Object> value,
1880 PropertyAttributes attributes);
1881 static void SetDictionaryArgumentsElement(Handle<JSObject> object,
1883 Handle<Object> value,
1884 PropertyAttributes attributes);
1886 static void OptimizeAsPrototype(Handle<JSObject> object,
1887 PrototypeOptimizationMode mode);
1888 static void ReoptimizeIfPrototype(Handle<JSObject> object);
1889 static void LazyRegisterPrototypeUser(Handle<Map> user, Isolate* isolate);
1890 static bool UnregisterPrototypeUser(Handle<Map> user, Isolate* isolate);
1891 static void InvalidatePrototypeChains(Map* map);
1893 // Alternative implementation of WeakFixedArray::NullCallback.
1894 class PrototypeRegistryCompactionCallback {
1896 static void Callback(Object* value, int old_index, int new_index);
1899 // Retrieve interceptors.
1900 InterceptorInfo* GetNamedInterceptor();
1901 InterceptorInfo* GetIndexedInterceptor();
1903 // Used from JSReceiver.
1904 MUST_USE_RESULT static Maybe<PropertyAttributes>
1905 GetPropertyAttributesWithInterceptor(LookupIterator* it);
1906 MUST_USE_RESULT static Maybe<PropertyAttributes>
1907 GetPropertyAttributesWithFailedAccessCheck(LookupIterator* it);
1909 // Retrieves an AccessorPair property from the given object. Might return
1910 // undefined if the property doesn't exist or is of a different kind.
1911 MUST_USE_RESULT static MaybeHandle<Object> GetAccessor(
1912 Handle<JSObject> object,
1914 AccessorComponent component);
1916 // Defines an AccessorPair property on the given object.
1917 // TODO(mstarzinger): Rename to SetAccessor().
1918 static MaybeHandle<Object> DefineAccessor(Handle<JSObject> object,
1920 Handle<Object> getter,
1921 Handle<Object> setter,
1922 PropertyAttributes attributes);
1924 // Defines an AccessorInfo property on the given object.
1925 MUST_USE_RESULT static MaybeHandle<Object> SetAccessor(
1926 Handle<JSObject> object,
1927 Handle<AccessorInfo> info);
1929 // The result must be checked first for exceptions. If there's no exception,
1930 // the output parameter |done| indicates whether the interceptor has a result
1932 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithInterceptor(
1933 LookupIterator* it, bool* done);
1935 // Accessors for hidden properties object.
1937 // Hidden properties are not own properties of the object itself.
1938 // Instead they are stored in an auxiliary structure kept as an own
1939 // property with a special name Heap::hidden_string(). But if the
1940 // receiver is a JSGlobalProxy then the auxiliary object is a property
1941 // of its prototype, and if it's a detached proxy, then you can't have
1942 // hidden properties.
1944 // Sets a hidden property on this object. Returns this object if successful,
1945 // undefined if called on a detached proxy.
1946 static Handle<Object> SetHiddenProperty(Handle<JSObject> object,
1948 Handle<Object> value);
1949 // Gets the value of a hidden property with the given key. Returns the hole
1950 // if the property doesn't exist (or if called on a detached proxy),
1951 // otherwise returns the value set for the key.
1952 Object* GetHiddenProperty(Handle<Name> key);
1953 // Deletes a hidden property. Deleting a non-existing property is
1954 // considered successful.
1955 static void DeleteHiddenProperty(Handle<JSObject> object,
1957 // Returns true if the object has a property with the hidden string as name.
1958 static bool HasHiddenProperties(Handle<JSObject> object);
1960 static void SetIdentityHash(Handle<JSObject> object, Handle<Smi> hash);
1962 static void ValidateElements(Handle<JSObject> object);
1964 // Makes sure that this object can contain HeapObject as elements.
1965 static inline void EnsureCanContainHeapObjectElements(Handle<JSObject> obj);
1967 // Makes sure that this object can contain the specified elements.
1968 static inline void EnsureCanContainElements(
1969 Handle<JSObject> object,
1972 EnsureElementsMode mode);
1973 static inline void EnsureCanContainElements(
1974 Handle<JSObject> object,
1975 Handle<FixedArrayBase> elements,
1977 EnsureElementsMode mode);
1978 static void EnsureCanContainElements(
1979 Handle<JSObject> object,
1980 Arguments* arguments,
1983 EnsureElementsMode mode);
1985 // Would we convert a fast elements array to dictionary mode given
1986 // an access at key?
1987 bool WouldConvertToSlowElements(uint32_t index);
1989 // Computes the new capacity when expanding the elements of a JSObject.
1990 static uint32_t NewElementsCapacity(uint32_t old_capacity) {
1991 // (old_capacity + 50%) + 16
1992 return old_capacity + (old_capacity >> 1) + 16;
1995 // These methods do not perform access checks!
1996 static void UpdateAllocationSite(Handle<JSObject> object,
1997 ElementsKind to_kind);
1999 // Lookup interceptors are used for handling properties controlled by host
2001 inline bool HasNamedInterceptor();
2002 inline bool HasIndexedInterceptor();
2004 // Computes the enumerable keys from interceptors. Used for debug mirrors and
2005 // by JSReceiver::GetKeys.
2006 MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForNamedInterceptor(
2007 Handle<JSObject> object,
2008 Handle<JSReceiver> receiver);
2009 MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForIndexedInterceptor(
2010 Handle<JSObject> object,
2011 Handle<JSReceiver> receiver);
2013 // Support functions for v8 api (needed for correct interceptor behavior).
2014 MUST_USE_RESULT static Maybe<bool> HasRealNamedProperty(
2015 Handle<JSObject> object, Handle<Name> name);
2016 MUST_USE_RESULT static Maybe<bool> HasRealElementProperty(
2017 Handle<JSObject> object, uint32_t index);
2018 MUST_USE_RESULT static Maybe<bool> HasRealNamedCallbackProperty(
2019 Handle<JSObject> object, Handle<Name> name);
2021 // Get the header size for a JSObject. Used to compute the index of
2022 // internal fields as well as the number of internal fields.
2023 inline int GetHeaderSize();
2025 inline int GetInternalFieldCount();
2026 inline int GetInternalFieldOffset(int index);
2027 inline Object* GetInternalField(int index);
2028 inline void SetInternalField(int index, Object* value);
2029 inline void SetInternalField(int index, Smi* value);
2031 // Returns the number of properties on this object filtering out properties
2032 // with the specified attributes (ignoring interceptors).
2033 int NumberOfOwnProperties(PropertyAttributes filter = NONE);
2034 // Fill in details for properties into storage starting at the specified
2035 // index. Returns the number of properties added.
2036 int GetOwnPropertyNames(FixedArray* storage, int index,
2037 PropertyAttributes filter = NONE);
2039 // Returns the number of properties on this object filtering out properties
2040 // with the specified attributes (ignoring interceptors).
2041 int NumberOfOwnElements(PropertyAttributes filter);
2042 // Returns the number of enumerable elements (ignoring interceptors).
2043 int NumberOfEnumElements();
2044 // Returns the number of elements on this object filtering out elements
2045 // with the specified attributes (ignoring interceptors).
2046 int GetOwnElementKeys(FixedArray* storage, PropertyAttributes filter);
2047 // Count and fill in the enumerable elements into storage.
2048 // (storage->length() == NumberOfEnumElements()).
2049 // If storage is NULL, will count the elements without adding
2050 // them to any storage.
2051 // Returns the number of enumerable elements.
2052 int GetEnumElementKeys(FixedArray* storage);
2054 static Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
2057 // Returns a new map with all transitions dropped from the object's current
2058 // map and the ElementsKind set.
2059 static Handle<Map> GetElementsTransitionMap(Handle<JSObject> object,
2060 ElementsKind to_kind);
2061 static void TransitionElementsKind(Handle<JSObject> object,
2062 ElementsKind to_kind);
2064 // Always use this to migrate an object to a new map.
2065 // |expected_additional_properties| is only used for fast-to-slow transitions
2066 // and ignored otherwise.
2067 static void MigrateToMap(Handle<JSObject> object, Handle<Map> new_map,
2068 int expected_additional_properties = 0);
2070 // Convert the object to use the canonical dictionary
2071 // representation. If the object is expected to have additional properties
2072 // added this number can be indicated to have the backing store allocated to
2073 // an initial capacity for holding these properties.
2074 static void NormalizeProperties(Handle<JSObject> object,
2075 PropertyNormalizationMode mode,
2076 int expected_additional_properties,
2077 const char* reason);
2079 // Convert and update the elements backing store to be a
2080 // SeededNumberDictionary dictionary. Returns the backing after conversion.
2081 static Handle<SeededNumberDictionary> NormalizeElements(
2082 Handle<JSObject> object);
2084 void RequireSlowElements(SeededNumberDictionary* dictionary);
2086 // Transform slow named properties to fast variants.
2087 static void MigrateSlowToFast(Handle<JSObject> object,
2088 int unused_property_fields, const char* reason);
2090 inline bool IsUnboxedDoubleField(FieldIndex index);
2092 // Access fast-case object properties at index.
2093 static Handle<Object> FastPropertyAt(Handle<JSObject> object,
2094 Representation representation,
2096 inline Object* RawFastPropertyAt(FieldIndex index);
2097 inline double RawFastDoublePropertyAt(FieldIndex index);
2099 inline void FastPropertyAtPut(FieldIndex index, Object* value);
2100 inline void RawFastPropertyAtPut(FieldIndex index, Object* value);
2101 inline void RawFastDoublePropertyAtPut(FieldIndex index, double value);
2102 inline void WriteToField(int descriptor, Object* value);
2104 // Access to in object properties.
2105 inline int GetInObjectPropertyOffset(int index);
2106 inline Object* InObjectPropertyAt(int index);
2107 inline Object* InObjectPropertyAtPut(int index,
2109 WriteBarrierMode mode
2110 = UPDATE_WRITE_BARRIER);
2112 // Set the object's prototype (only JSReceiver and null are allowed values).
2113 MUST_USE_RESULT static MaybeHandle<Object> SetPrototype(
2114 Handle<JSObject> object, Handle<Object> value, bool from_javascript);
2116 // Initializes the body after properties slot, properties slot is
2117 // initialized by set_properties. Fill the pre-allocated fields with
2118 // pre_allocated_value and the rest with filler_value.
2119 // Note: this call does not update write barrier, the caller is responsible
2120 // to ensure that |filler_value| can be collected without WB here.
2121 inline void InitializeBody(Map* map,
2122 Object* pre_allocated_value,
2123 Object* filler_value);
2125 // Check whether this object references another object
2126 bool ReferencesObject(Object* obj);
2128 // Disalow further properties to be added to the oject.
2129 MUST_USE_RESULT static MaybeHandle<Object> PreventExtensions(
2130 Handle<JSObject> object);
2132 bool IsExtensible();
2135 MUST_USE_RESULT static MaybeHandle<Object> Seal(Handle<JSObject> object);
2137 // ES5 Object.freeze
2138 MUST_USE_RESULT static MaybeHandle<Object> Freeze(Handle<JSObject> object);
2140 // Called the first time an object is observed with ES7 Object.observe.
2141 static void SetObserved(Handle<JSObject> object);
2144 enum DeepCopyHints { kNoHints = 0, kObjectIsShallow = 1 };
2146 MUST_USE_RESULT static MaybeHandle<JSObject> DeepCopy(
2147 Handle<JSObject> object,
2148 AllocationSiteUsageContext* site_context,
2149 DeepCopyHints hints = kNoHints);
2150 MUST_USE_RESULT static MaybeHandle<JSObject> DeepWalk(
2151 Handle<JSObject> object,
2152 AllocationSiteCreationContext* site_context);
2154 DECLARE_CAST(JSObject)
2156 // Dispatched behavior.
2157 void JSObjectShortPrint(StringStream* accumulator);
2158 DECLARE_PRINTER(JSObject)
2159 DECLARE_VERIFIER(JSObject)
2161 void PrintProperties(std::ostream& os); // NOLINT
2162 void PrintElements(std::ostream& os); // NOLINT
2164 #if defined(DEBUG) || defined(OBJECT_PRINT)
2165 void PrintTransitions(std::ostream& os); // NOLINT
2168 static void PrintElementsTransition(
2169 FILE* file, Handle<JSObject> object,
2170 ElementsKind from_kind, Handle<FixedArrayBase> from_elements,
2171 ElementsKind to_kind, Handle<FixedArrayBase> to_elements);
2173 void PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map);
2176 // Structure for collecting spill information about JSObjects.
2177 class SpillInformation {
2181 int number_of_objects_;
2182 int number_of_objects_with_fast_properties_;
2183 int number_of_objects_with_fast_elements_;
2184 int number_of_fast_used_fields_;
2185 int number_of_fast_unused_fields_;
2186 int number_of_slow_used_properties_;
2187 int number_of_slow_unused_properties_;
2188 int number_of_fast_used_elements_;
2189 int number_of_fast_unused_elements_;
2190 int number_of_slow_used_elements_;
2191 int number_of_slow_unused_elements_;
2194 void IncrementSpillStatistics(SpillInformation* info);
2198 // If a GC was caused while constructing this object, the elements pointer
2199 // may point to a one pointer filler map. The object won't be rooted, but
2200 // our heap verification code could stumble across it.
2201 bool ElementsAreSafeToExamine();
2204 Object* SlowReverseLookup(Object* value);
2206 // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
2207 // Also maximal value of JSArray's length property.
2208 static const uint32_t kMaxElementCount = 0xffffffffu;
2210 // Constants for heuristics controlling conversion of fast elements
2211 // to slow elements.
2213 // Maximal gap that can be introduced by adding an element beyond
2214 // the current elements length.
2215 static const uint32_t kMaxGap = 1024;
2217 // Maximal length of fast elements array that won't be checked for
2218 // being dense enough on expansion.
2219 static const int kMaxUncheckedFastElementsLength = 5000;
2221 // Same as above but for old arrays. This limit is more strict. We
2222 // don't want to be wasteful with long lived objects.
2223 static const int kMaxUncheckedOldFastElementsLength = 500;
2225 // Note that Page::kMaxRegularHeapObjectSize puts a limit on
2226 // permissible values (see the DCHECK in heap.cc).
2227 static const int kInitialMaxFastElementArray = 100000;
2229 // This constant applies only to the initial map of "global.Object" and
2230 // not to arbitrary other JSObject maps.
2231 static const int kInitialGlobalObjectUnusedPropertiesCount = 4;
2233 static const int kMaxInstanceSize = 255 * kPointerSize;
2234 // When extending the backing storage for property values, we increase
2235 // its size by more than the 1 entry necessary, so sequentially adding fields
2236 // to the same object requires fewer allocations and copies.
2237 static const int kFieldsAdded = 3;
2239 // Layout description.
2240 static const int kPropertiesOffset = HeapObject::kHeaderSize;
2241 static const int kElementsOffset = kPropertiesOffset + kPointerSize;
2242 static const int kHeaderSize = kElementsOffset + kPointerSize;
2244 STATIC_ASSERT(kHeaderSize == Internals::kJSObjectHeaderSize);
2246 class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> {
2248 static inline int SizeOf(Map* map, HeapObject* object);
2251 Context* GetCreationContext();
2253 // Enqueue change record for Object.observe. May cause GC.
2254 MUST_USE_RESULT static MaybeHandle<Object> EnqueueChangeRecord(
2255 Handle<JSObject> object, const char* type, Handle<Name> name,
2256 Handle<Object> old_value);
2258 // Gets the number of currently used elements.
2259 int GetFastElementsUsage();
2261 // Deletes an existing named property in a normalized object.
2262 static void DeleteNormalizedProperty(Handle<JSObject> object,
2263 Handle<Name> name, int entry);
2265 static bool AllCanRead(LookupIterator* it);
2266 static bool AllCanWrite(LookupIterator* it);
2269 friend class JSReceiver;
2270 friend class Object;
2272 static void MigrateFastToFast(Handle<JSObject> object, Handle<Map> new_map);
2273 static void MigrateFastToSlow(Handle<JSObject> object,
2274 Handle<Map> new_map,
2275 int expected_additional_properties);
2277 // Used from Object::GetProperty().
2278 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithFailedAccessCheck(
2279 LookupIterator* it);
2281 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithFailedAccessCheck(
2282 LookupIterator* it, Handle<Object> value);
2284 // Add a property to a slow-case object.
2285 static void AddSlowProperty(Handle<JSObject> object,
2287 Handle<Object> value,
2288 PropertyAttributes attributes);
2290 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithInterceptor(
2291 LookupIterator* it);
2293 bool ReferencesObjectFromElements(FixedArray* elements,
2297 // Return the hash table backing store or the inline stored identity hash,
2298 // whatever is found.
2299 MUST_USE_RESULT Object* GetHiddenPropertiesHashTable();
2301 // Return the hash table backing store for hidden properties. If there is no
2302 // backing store, allocate one.
2303 static Handle<ObjectHashTable> GetOrCreateHiddenPropertiesHashtable(
2304 Handle<JSObject> object);
2306 // Set the hidden property backing store to either a hash table or
2307 // the inline-stored identity hash.
2308 static Handle<Object> SetHiddenPropertiesHashTable(
2309 Handle<JSObject> object,
2310 Handle<Object> value);
2312 MUST_USE_RESULT Object* GetIdentityHash();
2314 static Handle<Smi> GetOrCreateIdentityHash(Handle<JSObject> object);
2316 static Handle<SeededNumberDictionary> GetNormalizedElementDictionary(
2317 Handle<JSObject> object, Handle<FixedArrayBase> elements);
2319 // Helper for fast versions of preventExtensions, seal, and freeze.
2320 // attrs is one of NONE, SEALED, or FROZEN (depending on the operation).
2321 template <PropertyAttributes attrs>
2322 MUST_USE_RESULT static MaybeHandle<Object> PreventExtensionsWithTransition(
2323 Handle<JSObject> object);
2325 DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
2329 // Common superclass for FixedArrays that allow implementations to share
2330 // common accessors and some code paths.
2331 class FixedArrayBase: public HeapObject {
2333 // [length]: length of the array.
2334 inline int length() const;
2335 inline void set_length(int value);
2337 // Get and set the length using acquire loads and release stores.
2338 inline int synchronized_length() const;
2339 inline void synchronized_set_length(int value);
2341 DECLARE_CAST(FixedArrayBase)
2343 // Layout description.
2344 // Length is smi tagged when it is stored.
2345 static const int kLengthOffset = HeapObject::kHeaderSize;
2346 static const int kHeaderSize = kLengthOffset + kPointerSize;
2350 class FixedDoubleArray;
2351 class IncrementalMarking;
2354 // FixedArray describes fixed-sized arrays with element type Object*.
2355 class FixedArray: public FixedArrayBase {
2357 // Setter and getter for elements.
2358 inline Object* get(int index) const;
2359 void SetValue(uint32_t index, Object* value);
2360 static inline Handle<Object> get(Handle<FixedArray> array, int index);
2361 // Setter that uses write barrier.
2362 inline void set(int index, Object* value);
2363 inline bool is_the_hole(int index);
2365 // Setter that doesn't need write barrier.
2366 inline void set(int index, Smi* value);
2367 // Setter with explicit barrier mode.
2368 inline void set(int index, Object* value, WriteBarrierMode mode);
2370 // Setters for frequently used oddballs located in old space.
2371 inline void set_undefined(int index);
2372 inline void set_null(int index);
2373 inline void set_the_hole(int index);
2375 inline Object** GetFirstElementAddress();
2376 inline bool ContainsOnlySmisOrHoles();
2378 // Gives access to raw memory which stores the array's data.
2379 inline Object** data_start();
2381 inline void FillWithHoles(int from, int to);
2383 // Shrink length and insert filler objects.
2384 void Shrink(int length);
2386 enum KeyFilter { ALL_KEYS, NON_SYMBOL_KEYS };
2388 // Add the elements of a JSArray to this FixedArray.
2389 MUST_USE_RESULT static MaybeHandle<FixedArray> AddKeysFromArrayLike(
2390 Handle<FixedArray> content, Handle<JSObject> array,
2391 KeyFilter filter = ALL_KEYS);
2393 // Computes the union of keys and return the result.
2394 // Used for implementing "for (n in object) { }"
2395 MUST_USE_RESULT static MaybeHandle<FixedArray> UnionOfKeys(
2396 Handle<FixedArray> first,
2397 Handle<FixedArray> second);
2399 // Copy a sub array from the receiver to dest.
2400 void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
2402 // Garbage collection support.
2403 static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
2405 // Code Generation support.
2406 static int OffsetOfElementAt(int index) { return SizeFor(index); }
2408 // Garbage collection support.
2409 inline Object** RawFieldOfElementAt(int index);
2411 DECLARE_CAST(FixedArray)
2413 // Maximal allowed size, in bytes, of a single FixedArray.
2414 // Prevents overflowing size computations, as well as extreme memory
2416 static const int kMaxSize = 128 * MB * kPointerSize;
2417 // Maximally allowed length of a FixedArray.
2418 static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
2420 // Dispatched behavior.
2421 DECLARE_PRINTER(FixedArray)
2422 DECLARE_VERIFIER(FixedArray)
2424 // Checks if two FixedArrays have identical contents.
2425 bool IsEqualTo(FixedArray* other);
2428 // Swap two elements in a pair of arrays. If this array and the
2429 // numbers array are the same object, the elements are only swapped
2431 void SwapPairs(FixedArray* numbers, int i, int j);
2433 // Sort prefix of this array and the numbers array as pairs wrt. the
2434 // numbers. If the numbers array and the this array are the same
2435 // object, the prefix of this array is sorted.
2436 void SortPairs(FixedArray* numbers, uint32_t len);
2438 class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> {
2440 static inline int SizeOf(Map* map, HeapObject* object);
2444 // Set operation on FixedArray without using write barriers. Can
2445 // only be used for storing old space objects or smis.
2446 static inline void NoWriteBarrierSet(FixedArray* array,
2450 // Set operation on FixedArray without incremental write barrier. Can
2451 // only be used if the object is guaranteed to be white (whiteness witness
2453 static inline void NoIncrementalWriteBarrierSet(FixedArray* array,
2458 STATIC_ASSERT(kHeaderSize == Internals::kFixedArrayHeaderSize);
2460 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
2464 // FixedDoubleArray describes fixed-sized arrays with element type double.
2465 class FixedDoubleArray: public FixedArrayBase {
2467 // Setter and getter for elements.
2468 inline double get_scalar(int index);
2469 inline uint64_t get_representation(int index);
2470 static inline Handle<Object> get(Handle<FixedDoubleArray> array, int index);
2471 // This accessor has to get a Number as |value|.
2472 void SetValue(uint32_t index, Object* value);
2473 inline void set(int index, double value);
2474 inline void set_the_hole(int index);
2476 // Checking for the hole.
2477 inline bool is_the_hole(int index);
2479 // Garbage collection support.
2480 inline static int SizeFor(int length) {
2481 return kHeaderSize + length * kDoubleSize;
2484 // Gives access to raw memory which stores the array's data.
2485 inline double* data_start();
2487 inline void FillWithHoles(int from, int to);
2489 // Code Generation support.
2490 static int OffsetOfElementAt(int index) { return SizeFor(index); }
2492 DECLARE_CAST(FixedDoubleArray)
2494 // Maximal allowed size, in bytes, of a single FixedDoubleArray.
2495 // Prevents overflowing size computations, as well as extreme memory
2497 static const int kMaxSize = 512 * MB;
2498 // Maximally allowed length of a FixedArray.
2499 static const int kMaxLength = (kMaxSize - kHeaderSize) / kDoubleSize;
2501 // Dispatched behavior.
2502 DECLARE_PRINTER(FixedDoubleArray)
2503 DECLARE_VERIFIER(FixedDoubleArray)
2506 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedDoubleArray);
2510 class WeakFixedArray : public FixedArray {
2512 // If |maybe_array| is not a WeakFixedArray, a fresh one will be allocated.
2513 // This function does not check if the value exists already, callers must
2514 // ensure this themselves if necessary.
2515 static Handle<WeakFixedArray> Add(Handle<Object> maybe_array,
2516 Handle<HeapObject> value,
2517 int* assigned_index = NULL);
2519 // Returns true if an entry was found and removed.
2520 bool Remove(Handle<HeapObject> value);
2522 class NullCallback {
2524 static void Callback(Object* value, int old_index, int new_index) {}
2527 template <class CompactionCallback>
2530 inline Object* Get(int index) const;
2531 inline void Clear(int index);
2532 inline int Length() const;
2534 inline bool IsEmptySlot(int index) const;
2535 static Object* Empty() { return Smi::FromInt(0); }
2537 DECLARE_CAST(WeakFixedArray)
2540 static const int kLastUsedIndexIndex = 0;
2541 static const int kFirstIndex = 1;
2543 static Handle<WeakFixedArray> Allocate(
2544 Isolate* isolate, int size, Handle<WeakFixedArray> initialize_from);
2546 static void Set(Handle<WeakFixedArray> array, int index,
2547 Handle<HeapObject> value);
2548 inline void clear(int index);
2550 inline int last_used_index() const;
2551 inline void set_last_used_index(int index);
2553 // Disallow inherited setters.
2554 void set(int index, Smi* value);
2555 void set(int index, Object* value);
2556 void set(int index, Object* value, WriteBarrierMode mode);
2557 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakFixedArray);
2561 // Generic array grows dynamically with O(1) amortized insertion.
2562 class ArrayList : public FixedArray {
2566 // Use this if GC can delete elements from the array.
2567 kReloadLengthAfterAllocation,
2569 static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj,
2570 AddMode mode = kNone);
2571 static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj1,
2572 Handle<Object> obj2, AddMode = kNone);
2573 inline int Length();
2574 inline void SetLength(int length);
2575 inline Object* Get(int index);
2576 inline Object** Slot(int index);
2577 inline void Set(int index, Object* obj);
2578 inline void Clear(int index, Object* undefined);
2579 DECLARE_CAST(ArrayList)
2582 static Handle<ArrayList> EnsureSpace(Handle<ArrayList> array, int length);
2583 static const int kLengthIndex = 0;
2584 static const int kFirstIndex = 1;
2585 DISALLOW_IMPLICIT_CONSTRUCTORS(ArrayList);
2589 // DescriptorArrays are fixed arrays used to hold instance descriptors.
2590 // The format of the these objects is:
2591 // [0]: Number of descriptors
2592 // [1]: Either Smi(0) if uninitialized, or a pointer to small fixed array:
2593 // [0]: pointer to fixed array with enum cache
2594 // [1]: either Smi(0) or pointer to fixed array with indices
2596 // [2 + number of descriptors * kDescriptorSize]: start of slack
2597 class DescriptorArray: public FixedArray {
2599 // Returns true for both shared empty_descriptor_array and for smis, which the
2600 // map uses to encode additional bit fields when the descriptor array is not
2602 inline bool IsEmpty();
2604 // Returns the number of descriptors in the array.
2605 inline int number_of_descriptors();
2607 inline int number_of_descriptors_storage();
2609 inline int NumberOfSlackDescriptors();
2611 inline void SetNumberOfDescriptors(int number_of_descriptors);
2612 inline int number_of_entries();
2614 inline bool HasEnumCache();
2616 inline void CopyEnumCacheFrom(DescriptorArray* array);
2618 inline FixedArray* GetEnumCache();
2620 inline bool HasEnumIndicesCache();
2622 inline FixedArray* GetEnumIndicesCache();
2624 inline Object** GetEnumCacheSlot();
2626 void ClearEnumCache();
2628 // Initialize or change the enum cache,
2629 // using the supplied storage for the small "bridge".
2630 void SetEnumCache(FixedArray* bridge_storage,
2631 FixedArray* new_cache,
2632 Object* new_index_cache);
2634 bool CanHoldValue(int descriptor, Object* value);
2636 // Accessors for fetching instance descriptor at descriptor number.
2637 inline Name* GetKey(int descriptor_number);
2638 inline Object** GetKeySlot(int descriptor_number);
2639 inline Object* GetValue(int descriptor_number);
2640 inline void SetValue(int descriptor_number, Object* value);
2641 inline Object** GetValueSlot(int descriptor_number);
2642 static inline int GetValueOffset(int descriptor_number);
2643 inline Object** GetDescriptorStartSlot(int descriptor_number);
2644 inline Object** GetDescriptorEndSlot(int descriptor_number);
2645 inline PropertyDetails GetDetails(int descriptor_number);
2646 inline PropertyType GetType(int descriptor_number);
2647 inline int GetFieldIndex(int descriptor_number);
2648 inline HeapType* GetFieldType(int descriptor_number);
2649 inline Object* GetConstant(int descriptor_number);
2650 inline Object* GetCallbacksObject(int descriptor_number);
2651 inline AccessorDescriptor* GetCallbacks(int descriptor_number);
2653 inline Name* GetSortedKey(int descriptor_number);
2654 inline int GetSortedKeyIndex(int descriptor_number);
2655 inline void SetSortedKey(int pointer, int descriptor_number);
2656 inline void SetRepresentation(int descriptor_number,
2657 Representation representation);
2659 // Accessor for complete descriptor.
2660 inline void Get(int descriptor_number, Descriptor* desc);
2661 inline void Set(int descriptor_number, Descriptor* desc);
2662 void Replace(int descriptor_number, Descriptor* descriptor);
2664 // Append automatically sets the enumeration index. This should only be used
2665 // to add descriptors in bulk at the end, followed by sorting the descriptor
2667 inline void Append(Descriptor* desc);
2669 static Handle<DescriptorArray> CopyUpTo(Handle<DescriptorArray> desc,
2670 int enumeration_index,
2673 static Handle<DescriptorArray> CopyUpToAddAttributes(
2674 Handle<DescriptorArray> desc,
2675 int enumeration_index,
2676 PropertyAttributes attributes,
2679 // Sort the instance descriptors by the hash codes of their keys.
2682 // Search the instance descriptors for given name.
2683 INLINE(int Search(Name* name, int number_of_own_descriptors));
2685 // As the above, but uses DescriptorLookupCache and updates it when
2687 INLINE(int SearchWithCache(Name* name, Map* map));
2689 // Allocates a DescriptorArray, but returns the singleton
2690 // empty descriptor array object if number_of_descriptors is 0.
2691 static Handle<DescriptorArray> Allocate(Isolate* isolate,
2692 int number_of_descriptors,
2695 DECLARE_CAST(DescriptorArray)
2697 // Constant for denoting key was not found.
2698 static const int kNotFound = -1;
2700 static const int kDescriptorLengthIndex = 0;
2701 static const int kEnumCacheIndex = 1;
2702 static const int kFirstIndex = 2;
2704 // The length of the "bridge" to the enum cache.
2705 static const int kEnumCacheBridgeLength = 2;
2706 static const int kEnumCacheBridgeCacheIndex = 0;
2707 static const int kEnumCacheBridgeIndicesCacheIndex = 1;
2709 // Layout description.
2710 static const int kDescriptorLengthOffset = FixedArray::kHeaderSize;
2711 static const int kEnumCacheOffset = kDescriptorLengthOffset + kPointerSize;
2712 static const int kFirstOffset = kEnumCacheOffset + kPointerSize;
2714 // Layout description for the bridge array.
2715 static const int kEnumCacheBridgeCacheOffset = FixedArray::kHeaderSize;
2717 // Layout of descriptor.
2718 static const int kDescriptorKey = 0;
2719 static const int kDescriptorDetails = 1;
2720 static const int kDescriptorValue = 2;
2721 static const int kDescriptorSize = 3;
2723 #if defined(DEBUG) || defined(OBJECT_PRINT)
2724 // For our gdb macros, we should perhaps change these in the future.
2727 // Print all the descriptors.
2728 void PrintDescriptors(std::ostream& os); // NOLINT
2732 // Is the descriptor array sorted and without duplicates?
2733 bool IsSortedNoDuplicates(int valid_descriptors = -1);
2735 // Is the descriptor array consistent with the back pointers in targets?
2736 bool IsConsistentWithBackPointers(Map* current_map);
2738 // Are two DescriptorArrays equal?
2739 bool IsEqualTo(DescriptorArray* other);
2742 // Returns the fixed array length required to hold number_of_descriptors
2744 static int LengthFor(int number_of_descriptors) {
2745 return ToKeyIndex(number_of_descriptors);
2749 // WhitenessWitness is used to prove that a descriptor array is white
2750 // (unmarked), so incremental write barriers can be skipped because the
2751 // marking invariant cannot be broken and slots pointing into evacuation
2752 // candidates will be discovered when the object is scanned. A witness is
2753 // always stack-allocated right after creating an array. By allocating a
2754 // witness, incremental marking is globally disabled. The witness is then
2755 // passed along wherever needed to statically prove that the array is known to
2757 class WhitenessWitness {
2759 inline explicit WhitenessWitness(DescriptorArray* array);
2760 inline ~WhitenessWitness();
2763 IncrementalMarking* marking_;
2766 // An entry in a DescriptorArray, represented as an (array, index) pair.
2769 inline explicit Entry(DescriptorArray* descs, int index) :
2770 descs_(descs), index_(index) { }
2772 inline PropertyType type();
2773 inline Object* GetCallbackObject();
2776 DescriptorArray* descs_;
2780 // Conversion from descriptor number to array indices.
2781 static int ToKeyIndex(int descriptor_number) {
2782 return kFirstIndex +
2783 (descriptor_number * kDescriptorSize) +
2787 static int ToDetailsIndex(int descriptor_number) {
2788 return kFirstIndex +
2789 (descriptor_number * kDescriptorSize) +
2793 static int ToValueIndex(int descriptor_number) {
2794 return kFirstIndex +
2795 (descriptor_number * kDescriptorSize) +
2799 // Transfer a complete descriptor from the src descriptor array to this
2800 // descriptor array.
2801 void CopyFrom(int index, DescriptorArray* src, const WhitenessWitness&);
2803 inline void Set(int descriptor_number,
2805 const WhitenessWitness&);
2807 // Swap first and second descriptor.
2808 inline void SwapSortedKeys(int first, int second);
2810 DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
2814 enum SearchMode { ALL_ENTRIES, VALID_ENTRIES };
2816 template <SearchMode search_mode, typename T>
2817 inline int Search(T* array, Name* name, int valid_entries = 0,
2818 int* out_insertion_index = NULL);
2821 // HashTable is a subclass of FixedArray that implements a hash table
2822 // that uses open addressing and quadratic probing.
2824 // In order for the quadratic probing to work, elements that have not
2825 // yet been used and elements that have been deleted are
2826 // distinguished. Probing continues when deleted elements are
2827 // encountered and stops when unused elements are encountered.
2829 // - Elements with key == undefined have not been used yet.
2830 // - Elements with key == the_hole have been deleted.
2832 // The hash table class is parameterized with a Shape and a Key.
2833 // Shape must be a class with the following interface:
2834 // class ExampleShape {
2836 // // Tells whether key matches other.
2837 // static bool IsMatch(Key key, Object* other);
2838 // // Returns the hash value for key.
2839 // static uint32_t Hash(Key key);
2840 // // Returns the hash value for object.
2841 // static uint32_t HashForObject(Key key, Object* object);
2842 // // Convert key to an object.
2843 // static inline Handle<Object> AsHandle(Isolate* isolate, Key key);
2844 // // The prefix size indicates number of elements in the beginning
2845 // // of the backing storage.
2846 // static const int kPrefixSize = ..;
2847 // // The Element size indicates number of elements per entry.
2848 // static const int kEntrySize = ..;
2850 // The prefix size indicates an amount of memory in the
2851 // beginning of the backing storage that can be used for non-element
2852 // information by subclasses.
2854 template<typename Key>
2857 static const bool UsesSeed = false;
2858 static uint32_t Hash(Key key) { return 0; }
2859 static uint32_t SeededHash(Key key, uint32_t seed) {
2863 static uint32_t HashForObject(Key key, Object* object) { return 0; }
2864 static uint32_t SeededHashForObject(Key key, uint32_t seed, Object* object) {
2866 return HashForObject(key, object);
2871 class HashTableBase : public FixedArray {
2873 // Returns the number of elements in the hash table.
2874 inline int NumberOfElements();
2876 // Returns the number of deleted elements in the hash table.
2877 inline int NumberOfDeletedElements();
2879 // Returns the capacity of the hash table.
2880 inline int Capacity();
2882 // ElementAdded should be called whenever an element is added to a
2884 inline void ElementAdded();
2886 // ElementRemoved should be called whenever an element is removed from
2888 inline void ElementRemoved();
2889 inline void ElementsRemoved(int n);
2891 // Computes the required capacity for a table holding the given
2892 // number of elements. May be more than HashTable::kMaxCapacity.
2893 static inline int ComputeCapacity(int at_least_space_for);
2895 // Tells whether k is a real key. The hole and undefined are not allowed
2896 // as keys and can be used to indicate missing or deleted elements.
2897 inline bool IsKey(Object* k);
2899 // Compute the probe offset (quadratic probing).
2900 INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
2901 return (n + n * n) >> 1;
2904 static const int kNumberOfElementsIndex = 0;
2905 static const int kNumberOfDeletedElementsIndex = 1;
2906 static const int kCapacityIndex = 2;
2907 static const int kPrefixStartIndex = 3;
2909 // Constant used for denoting a absent entry.
2910 static const int kNotFound = -1;
2913 // Update the number of elements in the hash table.
2914 inline void SetNumberOfElements(int nof);
2916 // Update the number of deleted elements in the hash table.
2917 inline void SetNumberOfDeletedElements(int nod);
2919 // Returns probe entry.
2920 static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
2921 DCHECK(base::bits::IsPowerOfTwo32(size));
2922 return (hash + GetProbeOffset(number)) & (size - 1);
2925 inline static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
2926 return hash & (size - 1);
2929 inline static uint32_t NextProbe(
2930 uint32_t last, uint32_t number, uint32_t size) {
2931 return (last + number) & (size - 1);
2936 template <typename Derived, typename Shape, typename Key>
2937 class HashTable : public HashTableBase {
2940 inline uint32_t Hash(Key key) {
2941 if (Shape::UsesSeed) {
2942 return Shape::SeededHash(key, GetHeap()->HashSeed());
2944 return Shape::Hash(key);
2948 inline uint32_t HashForObject(Key key, Object* object) {
2949 if (Shape::UsesSeed) {
2950 return Shape::SeededHashForObject(key, GetHeap()->HashSeed(), object);
2952 return Shape::HashForObject(key, object);
2956 // Returns a new HashTable object.
2957 MUST_USE_RESULT static Handle<Derived> New(
2958 Isolate* isolate, int at_least_space_for,
2959 MinimumCapacity capacity_option = USE_DEFAULT_MINIMUM_CAPACITY,
2960 PretenureFlag pretenure = NOT_TENURED);
2962 DECLARE_CAST(HashTable)
2964 // Garbage collection support.
2965 void IteratePrefix(ObjectVisitor* visitor);
2966 void IterateElements(ObjectVisitor* visitor);
2968 // Find entry for key otherwise return kNotFound.
2969 inline int FindEntry(Key key);
2970 inline int FindEntry(Isolate* isolate, Key key, int32_t hash);
2971 int FindEntry(Isolate* isolate, Key key);
2973 // Rehashes the table in-place.
2974 void Rehash(Key key);
2976 // Returns the key at entry.
2977 Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
2979 static const int kElementsStartIndex = kPrefixStartIndex + Shape::kPrefixSize;
2980 static const int kEntrySize = Shape::kEntrySize;
2981 static const int kElementsStartOffset =
2982 kHeaderSize + kElementsStartIndex * kPointerSize;
2983 static const int kCapacityOffset =
2984 kHeaderSize + kCapacityIndex * kPointerSize;
2986 // Returns the index for an entry (of the key)
2987 static inline int EntryToIndex(int entry) {
2988 return (entry * kEntrySize) + kElementsStartIndex;
2992 friend class ObjectHashTable;
2994 // Find the entry at which to insert element with the given key that
2995 // has the given hash value.
2996 uint32_t FindInsertionEntry(uint32_t hash);
2998 // Attempt to shrink hash table after removal of key.
2999 MUST_USE_RESULT static Handle<Derived> Shrink(Handle<Derived> table, Key key);
3001 // Ensure enough space for n additional elements.
3002 MUST_USE_RESULT static Handle<Derived> EnsureCapacity(
3003 Handle<Derived> table,
3006 PretenureFlag pretenure = NOT_TENURED);
3008 // Sets the capacity of the hash table.
3009 void SetCapacity(int capacity) {
3010 // To scale a computed hash code to fit within the hash table, we
3011 // use bit-wise AND with a mask, so the capacity must be positive
3013 DCHECK(capacity > 0);
3014 DCHECK(capacity <= kMaxCapacity);
3015 set(kCapacityIndex, Smi::FromInt(capacity));
3018 // Maximal capacity of HashTable. Based on maximal length of underlying
3019 // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
3021 static const int kMaxCapacity =
3022 (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
3025 // Returns _expected_ if one of entries given by the first _probe_ probes is
3026 // equal to _expected_. Otherwise, returns the entry given by the probe
3028 uint32_t EntryForProbe(Key key, Object* k, int probe, uint32_t expected);
3030 void Swap(uint32_t entry1, uint32_t entry2, WriteBarrierMode mode);
3032 // Rehashes this hash-table into the new table.
3033 void Rehash(Handle<Derived> new_table, Key key);
3037 // HashTableKey is an abstract superclass for virtual key behavior.
3038 class HashTableKey {
3040 // Returns whether the other object matches this key.
3041 virtual bool IsMatch(Object* other) = 0;
3042 // Returns the hash value for this key.
3043 virtual uint32_t Hash() = 0;
3044 // Returns the hash value for object.
3045 virtual uint32_t HashForObject(Object* key) = 0;
3046 // Returns the key object for storing into the hash table.
3047 MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate) = 0;
3049 virtual ~HashTableKey() {}
3053 class StringTableShape : public BaseShape<HashTableKey*> {
3055 static inline bool IsMatch(HashTableKey* key, Object* value) {
3056 return key->IsMatch(value);
3059 static inline uint32_t Hash(HashTableKey* key) {
3063 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3064 return key->HashForObject(object);
3067 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
3069 static const int kPrefixSize = 0;
3070 static const int kEntrySize = 1;
3073 class SeqOneByteString;
3077 // No special elements in the prefix and the element size is 1
3078 // because only the string itself (the key) needs to be stored.
3079 class StringTable: public HashTable<StringTable,
3083 // Find string in the string table. If it is not there yet, it is
3084 // added. The return value is the string found.
3085 static Handle<String> LookupString(Isolate* isolate, Handle<String> key);
3086 static Handle<String> LookupKey(Isolate* isolate, HashTableKey* key);
3087 static String* LookupKeyIfExists(Isolate* isolate, HashTableKey* key);
3089 // Tries to internalize given string and returns string handle on success
3090 // or an empty handle otherwise.
3091 MUST_USE_RESULT static MaybeHandle<String> InternalizeStringIfExists(
3093 Handle<String> string);
3095 // Looks up a string that is equal to the given string and returns
3096 // string handle if it is found, or an empty handle otherwise.
3097 MUST_USE_RESULT static MaybeHandle<String> LookupStringIfExists(
3099 Handle<String> str);
3100 MUST_USE_RESULT static MaybeHandle<String> LookupTwoCharsStringIfExists(
3105 static void EnsureCapacityForDeserialization(Isolate* isolate, int expected);
3107 DECLARE_CAST(StringTable)
3110 template <bool seq_one_byte>
3111 friend class JsonParser;
3113 DISALLOW_IMPLICIT_CONSTRUCTORS(StringTable);
3117 template <typename Derived, typename Shape, typename Key>
3118 class Dictionary: public HashTable<Derived, Shape, Key> {
3119 typedef HashTable<Derived, Shape, Key> DerivedHashTable;
3122 // Returns the value at entry.
3123 Object* ValueAt(int entry) {
3124 return this->get(Derived::EntryToIndex(entry) + 1);
3127 // Set the value for entry.
3128 void ValueAtPut(int entry, Object* value) {
3129 this->set(Derived::EntryToIndex(entry) + 1, value);
3132 // Returns the property details for the property at entry.
3133 PropertyDetails DetailsAt(int entry) {
3134 return Shape::DetailsAt(static_cast<Derived*>(this), entry);
3137 // Set the details for entry.
3138 void DetailsAtPut(int entry, PropertyDetails value) {
3139 Shape::DetailsAtPut(static_cast<Derived*>(this), entry, value);
3142 // Returns true if property at given entry is deleted.
3143 bool IsDeleted(int entry) {
3144 return Shape::IsDeleted(static_cast<Derived*>(this), entry);
3147 // Delete a property from the dictionary.
3148 static Handle<Object> DeleteProperty(Handle<Derived> dictionary, int entry);
3150 // Attempt to shrink the dictionary after deletion of key.
3151 MUST_USE_RESULT static inline Handle<Derived> Shrink(
3152 Handle<Derived> dictionary,
3154 return DerivedHashTable::Shrink(dictionary, key);
3158 // TODO(dcarney): templatize or move to SeededNumberDictionary
3159 void CopyValuesTo(FixedArray* elements);
3161 // Returns the number of elements in the dictionary filtering out properties
3162 // with the specified attributes.
3163 int NumberOfElementsFilterAttributes(PropertyAttributes filter);
3165 // Returns the number of enumerable elements in the dictionary.
3166 int NumberOfEnumElements() {
3167 return NumberOfElementsFilterAttributes(
3168 static_cast<PropertyAttributes>(DONT_ENUM | SYMBOLIC));
3171 // Returns true if the dictionary contains any elements that are non-writable,
3172 // non-configurable, non-enumerable, or have getters/setters.
3173 bool HasComplexElements();
3175 enum SortMode { UNSORTED, SORTED };
3177 // Fill in details for properties into storage.
3178 // Returns the number of properties added.
3179 int CopyKeysTo(FixedArray* storage, int index, PropertyAttributes filter,
3180 SortMode sort_mode);
3182 // Copies enumerable keys to preallocated fixed array.
3183 void CopyEnumKeysTo(FixedArray* storage);
3185 // Accessors for next enumeration index.
3186 void SetNextEnumerationIndex(int index) {
3188 this->set(kNextEnumerationIndexIndex, Smi::FromInt(index));
3191 int NextEnumerationIndex() {
3192 return Smi::cast(this->get(kNextEnumerationIndexIndex))->value();
3195 // Creates a new dictionary.
3196 MUST_USE_RESULT static Handle<Derived> New(
3198 int at_least_space_for,
3199 PretenureFlag pretenure = NOT_TENURED);
3201 // Ensure enough space for n additional elements.
3202 static Handle<Derived> EnsureCapacity(Handle<Derived> obj, int n, Key key);
3205 void Print(std::ostream& os); // NOLINT
3207 // Returns the key (slow).
3208 Object* SlowReverseLookup(Object* value);
3210 // Sets the entry to (key, value) pair.
3211 inline void SetEntry(int entry,
3213 Handle<Object> value);
3214 inline void SetEntry(int entry,
3216 Handle<Object> value,
3217 PropertyDetails details);
3219 MUST_USE_RESULT static Handle<Derived> Add(
3220 Handle<Derived> dictionary,
3222 Handle<Object> value,
3223 PropertyDetails details);
3225 // Returns iteration indices array for the |dictionary|.
3226 // Values are direct indices in the |HashTable| array.
3227 static Handle<FixedArray> BuildIterationIndicesArray(
3228 Handle<Derived> dictionary);
3231 // Generic at put operation.
3232 MUST_USE_RESULT static Handle<Derived> AtPut(
3233 Handle<Derived> dictionary,
3235 Handle<Object> value);
3237 // Add entry to dictionary.
3238 static void AddEntry(
3239 Handle<Derived> dictionary,
3241 Handle<Object> value,
3242 PropertyDetails details,
3245 // Generate new enumeration indices to avoid enumeration index overflow.
3246 // Returns iteration indices array for the |dictionary|.
3247 static Handle<FixedArray> GenerateNewEnumerationIndices(
3248 Handle<Derived> dictionary);
3249 static const int kMaxNumberKeyIndex = DerivedHashTable::kPrefixStartIndex;
3250 static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
3254 template <typename Derived, typename Shape>
3255 class NameDictionaryBase : public Dictionary<Derived, Shape, Handle<Name> > {
3256 typedef Dictionary<Derived, Shape, Handle<Name> > DerivedDictionary;
3259 // Find entry for key, otherwise return kNotFound. Optimized version of
3260 // HashTable::FindEntry.
3261 int FindEntry(Handle<Name> key);
3265 template <typename Key>
3266 class BaseDictionaryShape : public BaseShape<Key> {
3268 template <typename Dictionary>
3269 static inline PropertyDetails DetailsAt(Dictionary* dict, int entry) {
3270 STATIC_ASSERT(Dictionary::kEntrySize == 3);
3271 DCHECK(entry >= 0); // Not found is -1, which is not caught by get().
3272 return PropertyDetails(
3273 Smi::cast(dict->get(Dictionary::EntryToIndex(entry) + 2)));
3276 template <typename Dictionary>
3277 static inline void DetailsAtPut(Dictionary* dict, int entry,
3278 PropertyDetails value) {
3279 STATIC_ASSERT(Dictionary::kEntrySize == 3);
3280 dict->set(Dictionary::EntryToIndex(entry) + 2, value.AsSmi());
3283 template <typename Dictionary>
3284 static bool IsDeleted(Dictionary* dict, int entry) {
3288 template <typename Dictionary>
3289 static inline void SetEntry(Dictionary* dict, int entry, Handle<Object> key,
3290 Handle<Object> value, PropertyDetails details);
3294 class NameDictionaryShape : public BaseDictionaryShape<Handle<Name> > {
3296 static inline bool IsMatch(Handle<Name> key, Object* other);
3297 static inline uint32_t Hash(Handle<Name> key);
3298 static inline uint32_t HashForObject(Handle<Name> key, Object* object);
3299 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Name> key);
3300 static const int kPrefixSize = 2;
3301 static const int kEntrySize = 3;
3302 static const bool kIsEnumerable = true;
3306 class NameDictionary
3307 : public NameDictionaryBase<NameDictionary, NameDictionaryShape> {
3308 typedef NameDictionaryBase<NameDictionary, NameDictionaryShape>
3312 DECLARE_CAST(NameDictionary)
3314 inline static Handle<FixedArray> DoGenerateNewEnumerationIndices(
3315 Handle<NameDictionary> dictionary);
3319 class GlobalDictionaryShape : public NameDictionaryShape {
3321 static const int kEntrySize = 2; // Overrides NameDictionaryShape::kEntrySize
3323 template <typename Dictionary>
3324 static inline PropertyDetails DetailsAt(Dictionary* dict, int entry);
3326 template <typename Dictionary>
3327 static inline void DetailsAtPut(Dictionary* dict, int entry,
3328 PropertyDetails value);
3330 template <typename Dictionary>
3331 static bool IsDeleted(Dictionary* dict, int entry);
3333 template <typename Dictionary>
3334 static inline void SetEntry(Dictionary* dict, int entry, Handle<Object> key,
3335 Handle<Object> value, PropertyDetails details);
3339 class GlobalDictionary
3340 : public NameDictionaryBase<GlobalDictionary, GlobalDictionaryShape> {
3342 DECLARE_CAST(GlobalDictionary)
3346 class NumberDictionaryShape : public BaseDictionaryShape<uint32_t> {
3348 static inline bool IsMatch(uint32_t key, Object* other);
3349 static inline Handle<Object> AsHandle(Isolate* isolate, uint32_t key);
3350 static const int kEntrySize = 3;
3351 static const bool kIsEnumerable = false;
3355 class SeededNumberDictionaryShape : public NumberDictionaryShape {
3357 static const bool UsesSeed = true;
3358 static const int kPrefixSize = 2;
3360 static inline uint32_t SeededHash(uint32_t key, uint32_t seed);
3361 static inline uint32_t SeededHashForObject(uint32_t key,
3367 class UnseededNumberDictionaryShape : public NumberDictionaryShape {
3369 static const int kPrefixSize = 0;
3371 static inline uint32_t Hash(uint32_t key);
3372 static inline uint32_t HashForObject(uint32_t key, Object* object);
3376 class SeededNumberDictionary
3377 : public Dictionary<SeededNumberDictionary,
3378 SeededNumberDictionaryShape,
3381 DECLARE_CAST(SeededNumberDictionary)
3383 // Type specific at put (default NONE attributes is used when adding).
3384 MUST_USE_RESULT static Handle<SeededNumberDictionary> AtNumberPut(
3385 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3386 Handle<Object> value, bool used_as_prototype);
3387 MUST_USE_RESULT static Handle<SeededNumberDictionary> AddNumberEntry(
3388 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3389 Handle<Object> value, PropertyDetails details, bool used_as_prototype);
3391 // Set an existing entry or add a new one if needed.
3392 // Return the updated dictionary.
3393 MUST_USE_RESULT static Handle<SeededNumberDictionary> Set(
3394 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3395 Handle<Object> value, PropertyDetails details, bool used_as_prototype);
3397 void UpdateMaxNumberKey(uint32_t key, bool used_as_prototype);
3399 // If slow elements are required we will never go back to fast-case
3400 // for the elements kept in this dictionary. We require slow
3401 // elements if an element has been added at an index larger than
3402 // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
3403 // when defining a getter or setter with a number key.
3404 inline bool requires_slow_elements();
3405 inline void set_requires_slow_elements();
3407 // Get the value of the max number key that has been added to this
3408 // dictionary. max_number_key can only be called if
3409 // requires_slow_elements returns false.
3410 inline uint32_t max_number_key();
3413 static const int kRequiresSlowElementsMask = 1;
3414 static const int kRequiresSlowElementsTagSize = 1;
3415 static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
3419 class UnseededNumberDictionary
3420 : public Dictionary<UnseededNumberDictionary,
3421 UnseededNumberDictionaryShape,
3424 DECLARE_CAST(UnseededNumberDictionary)
3426 // Type specific at put (default NONE attributes is used when adding).
3427 MUST_USE_RESULT static Handle<UnseededNumberDictionary> AtNumberPut(
3428 Handle<UnseededNumberDictionary> dictionary,
3430 Handle<Object> value);
3431 MUST_USE_RESULT static Handle<UnseededNumberDictionary> AddNumberEntry(
3432 Handle<UnseededNumberDictionary> dictionary,
3434 Handle<Object> value);
3436 // Set an existing entry or add a new one if needed.
3437 // Return the updated dictionary.
3438 MUST_USE_RESULT static Handle<UnseededNumberDictionary> Set(
3439 Handle<UnseededNumberDictionary> dictionary,
3441 Handle<Object> value);
3445 class ObjectHashTableShape : public BaseShape<Handle<Object> > {
3447 static inline bool IsMatch(Handle<Object> key, Object* other);
3448 static inline uint32_t Hash(Handle<Object> key);
3449 static inline uint32_t HashForObject(Handle<Object> key, Object* object);
3450 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
3451 static const int kPrefixSize = 0;
3452 static const int kEntrySize = 2;
3456 // ObjectHashTable maps keys that are arbitrary objects to object values by
3457 // using the identity hash of the key for hashing purposes.
3458 class ObjectHashTable: public HashTable<ObjectHashTable,
3459 ObjectHashTableShape,
3462 ObjectHashTable, ObjectHashTableShape, Handle<Object> > DerivedHashTable;
3464 DECLARE_CAST(ObjectHashTable)
3466 // Attempt to shrink hash table after removal of key.
3467 MUST_USE_RESULT static inline Handle<ObjectHashTable> Shrink(
3468 Handle<ObjectHashTable> table,
3469 Handle<Object> key);
3471 // Looks up the value associated with the given key. The hole value is
3472 // returned in case the key is not present.
3473 Object* Lookup(Handle<Object> key);
3474 Object* Lookup(Handle<Object> key, int32_t hash);
3475 Object* Lookup(Isolate* isolate, Handle<Object> key, int32_t hash);
3477 // Adds (or overwrites) the value associated with the given key.
3478 static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
3480 Handle<Object> value);
3481 static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
3482 Handle<Object> key, Handle<Object> value,
3485 // Returns an ObjectHashTable (possibly |table|) where |key| has been removed.
3486 static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
3489 static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
3490 Handle<Object> key, bool* was_present,
3494 friend class MarkCompactCollector;
3496 void AddEntry(int entry, Object* key, Object* value);
3497 void RemoveEntry(int entry);
3499 // Returns the index to the value of an entry.
3500 static inline int EntryToValueIndex(int entry) {
3501 return EntryToIndex(entry) + 1;
3506 // OrderedHashTable is a HashTable with Object keys that preserves
3507 // insertion order. There are Map and Set interfaces (OrderedHashMap
3508 // and OrderedHashTable, below). It is meant to be used by JSMap/JSSet.
3510 // Only Object* keys are supported, with Object::SameValueZero() used as the
3511 // equality operator and Object::GetHash() for the hash function.
3513 // Based on the "Deterministic Hash Table" as described by Jason Orendorff at
3514 // https://wiki.mozilla.org/User:Jorend/Deterministic_hash_tables
3515 // Originally attributed to Tyler Close.
3518 // [0]: bucket count
3519 // [1]: element count
3520 // [2]: deleted element count
3521 // [3..(3 + NumberOfBuckets() - 1)]: "hash table", where each item is an
3522 // offset into the data table (see below) where the
3523 // first item in this bucket is stored.
3524 // [3 + NumberOfBuckets()..length]: "data table", an array of length
3525 // Capacity() * kEntrySize, where the first entrysize
3526 // items are handled by the derived class and the
3527 // item at kChainOffset is another entry into the
3528 // data table indicating the next entry in this hash
3531 // When we transition the table to a new version we obsolete it and reuse parts
3532 // of the memory to store information how to transition an iterator to the new
3535 // Memory layout for obsolete table:
3536 // [0]: bucket count
3537 // [1]: Next newer table
3538 // [2]: Number of removed holes or -1 when the table was cleared.
3539 // [3..(3 + NumberOfRemovedHoles() - 1)]: The indexes of the removed holes.
3540 // [3 + NumberOfRemovedHoles()..length]: Not used
3542 template<class Derived, class Iterator, int entrysize>
3543 class OrderedHashTable: public FixedArray {
3545 // Returns an OrderedHashTable with a capacity of at least |capacity|.
3546 static Handle<Derived> Allocate(
3547 Isolate* isolate, int capacity, PretenureFlag pretenure = NOT_TENURED);
3549 // Returns an OrderedHashTable (possibly |table|) with enough space
3550 // to add at least one new element.
3551 static Handle<Derived> EnsureGrowable(Handle<Derived> table);
3553 // Returns an OrderedHashTable (possibly |table|) that's shrunken
3555 static Handle<Derived> Shrink(Handle<Derived> table);
3557 // Returns a new empty OrderedHashTable and records the clearing so that
3558 // exisiting iterators can be updated.
3559 static Handle<Derived> Clear(Handle<Derived> table);
3561 int NumberOfElements() {
3562 return Smi::cast(get(kNumberOfElementsIndex))->value();
3565 int NumberOfDeletedElements() {
3566 return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
3569 int UsedCapacity() { return NumberOfElements() + NumberOfDeletedElements(); }
3571 int NumberOfBuckets() {
3572 return Smi::cast(get(kNumberOfBucketsIndex))->value();
3575 // Returns an index into |this| for the given entry.
3576 int EntryToIndex(int entry) {
3577 return kHashTableStartIndex + NumberOfBuckets() + (entry * kEntrySize);
3580 Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
3583 return !get(kNextTableIndex)->IsSmi();
3586 // The next newer table. This is only valid if the table is obsolete.
3587 Derived* NextTable() {
3588 return Derived::cast(get(kNextTableIndex));
3591 // When the table is obsolete we store the indexes of the removed holes.
3592 int RemovedIndexAt(int index) {
3593 return Smi::cast(get(kRemovedHolesIndex + index))->value();
3596 static const int kNotFound = -1;
3597 static const int kMinCapacity = 4;
3599 static const int kNumberOfBucketsIndex = 0;
3600 static const int kNumberOfElementsIndex = kNumberOfBucketsIndex + 1;
3601 static const int kNumberOfDeletedElementsIndex = kNumberOfElementsIndex + 1;
3602 static const int kHashTableStartIndex = kNumberOfDeletedElementsIndex + 1;
3603 static const int kNextTableIndex = kNumberOfElementsIndex;
3605 static const int kNumberOfBucketsOffset =
3606 kHeaderSize + kNumberOfBucketsIndex * kPointerSize;
3607 static const int kNumberOfElementsOffset =
3608 kHeaderSize + kNumberOfElementsIndex * kPointerSize;
3609 static const int kNumberOfDeletedElementsOffset =
3610 kHeaderSize + kNumberOfDeletedElementsIndex * kPointerSize;
3611 static const int kHashTableStartOffset =
3612 kHeaderSize + kHashTableStartIndex * kPointerSize;
3613 static const int kNextTableOffset =
3614 kHeaderSize + kNextTableIndex * kPointerSize;
3616 static const int kEntrySize = entrysize + 1;
3617 static const int kChainOffset = entrysize;
3619 static const int kLoadFactor = 2;
3621 // NumberOfDeletedElements is set to kClearedTableSentinel when
3622 // the table is cleared, which allows iterator transitions to
3623 // optimize that case.
3624 static const int kClearedTableSentinel = -1;
3627 static Handle<Derived> Rehash(Handle<Derived> table, int new_capacity);
3629 void SetNumberOfBuckets(int num) {
3630 set(kNumberOfBucketsIndex, Smi::FromInt(num));
3633 void SetNumberOfElements(int num) {
3634 set(kNumberOfElementsIndex, Smi::FromInt(num));
3637 void SetNumberOfDeletedElements(int num) {
3638 set(kNumberOfDeletedElementsIndex, Smi::FromInt(num));
3642 return NumberOfBuckets() * kLoadFactor;
3645 void SetNextTable(Derived* next_table) {
3646 set(kNextTableIndex, next_table);
3649 void SetRemovedIndexAt(int index, int removed_index) {
3650 return set(kRemovedHolesIndex + index, Smi::FromInt(removed_index));
3653 static const int kRemovedHolesIndex = kHashTableStartIndex;
3655 static const int kMaxCapacity =
3656 (FixedArray::kMaxLength - kHashTableStartIndex)
3657 / (1 + (kEntrySize * kLoadFactor));
3661 class JSSetIterator;
3664 class OrderedHashSet: public OrderedHashTable<
3665 OrderedHashSet, JSSetIterator, 1> {
3667 DECLARE_CAST(OrderedHashSet)
3671 class JSMapIterator;
3674 class OrderedHashMap
3675 : public OrderedHashTable<OrderedHashMap, JSMapIterator, 2> {
3677 DECLARE_CAST(OrderedHashMap)
3679 inline Object* ValueAt(int entry);
3681 static const int kValueOffset = 1;
3685 template <int entrysize>
3686 class WeakHashTableShape : public BaseShape<Handle<Object> > {
3688 static inline bool IsMatch(Handle<Object> key, Object* other);
3689 static inline uint32_t Hash(Handle<Object> key);
3690 static inline uint32_t HashForObject(Handle<Object> key, Object* object);
3691 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
3692 static const int kPrefixSize = 0;
3693 static const int kEntrySize = entrysize;
3697 // WeakHashTable maps keys that are arbitrary heap objects to heap object
3698 // values. The table wraps the keys in weak cells and store values directly.
3699 // Thus it references keys weakly and values strongly.
3700 class WeakHashTable: public HashTable<WeakHashTable,
3701 WeakHashTableShape<2>,
3704 WeakHashTable, WeakHashTableShape<2>, Handle<Object> > DerivedHashTable;
3706 DECLARE_CAST(WeakHashTable)
3708 // Looks up the value associated with the given key. The hole value is
3709 // returned in case the key is not present.
3710 Object* Lookup(Handle<HeapObject> key);
3712 // Adds (or overwrites) the value associated with the given key. Mapping a
3713 // key to the hole value causes removal of the whole entry.
3714 MUST_USE_RESULT static Handle<WeakHashTable> Put(Handle<WeakHashTable> table,
3715 Handle<HeapObject> key,
3716 Handle<HeapObject> value);
3718 static Handle<FixedArray> GetValues(Handle<WeakHashTable> table);
3721 friend class MarkCompactCollector;
3723 void AddEntry(int entry, Handle<WeakCell> key, Handle<HeapObject> value);
3725 // Returns the index to the value of an entry.
3726 static inline int EntryToValueIndex(int entry) {
3727 return EntryToIndex(entry) + 1;
3732 class WeakValueHashTable : public ObjectHashTable {
3734 DECLARE_CAST(WeakValueHashTable)
3737 // Looks up the value associated with the given key. The hole value is
3738 // returned in case the key is not present.
3739 Object* LookupWeak(Handle<Object> key);
3742 // Adds (or overwrites) the value associated with the given key. Mapping a
3743 // key to the hole value causes removal of the whole entry.
3744 MUST_USE_RESULT static Handle<WeakValueHashTable> PutWeak(
3745 Handle<WeakValueHashTable> table, Handle<Object> key,
3746 Handle<HeapObject> value);
3748 static Handle<FixedArray> GetWeakValues(Handle<WeakValueHashTable> table);
3752 // ScopeInfo represents information about different scopes of a source
3753 // program and the allocation of the scope's variables. Scope information
3754 // is stored in a compressed form in ScopeInfo objects and is used
3755 // at runtime (stack dumps, deoptimization, etc.).
3757 // This object provides quick access to scope info details for runtime
3759 class ScopeInfo : public FixedArray {
3761 DECLARE_CAST(ScopeInfo)
3763 // Return the type of this scope.
3764 ScopeType scope_type();
3766 // Does this scope call eval?
3769 // Return the language mode of this scope.
3770 LanguageMode language_mode();
3772 // Does this scope make a sloppy eval call?
3773 bool CallsSloppyEval() { return CallsEval() && is_sloppy(language_mode()); }
3775 // Return the total number of locals allocated on the stack and in the
3776 // context. This includes the parameters that are allocated in the context.
3779 // Return the number of stack slots for code. This number consists of two
3781 // 1. One stack slot per stack allocated local.
3782 // 2. One stack slot for the function name if it is stack allocated.
3783 int StackSlotCount();
3785 // Return the number of context slots for code if a context is allocated. This
3786 // number consists of three parts:
3787 // 1. Size of fixed header for every context: Context::MIN_CONTEXT_SLOTS
3788 // 2. One context slot per context allocated local.
3789 // 3. One context slot for the function name if it is context allocated.
3790 // Parameters allocated in the context count as context allocated locals. If
3791 // no contexts are allocated for this scope ContextLength returns 0.
3792 int ContextLength();
3794 // Does this scope declare a "this" binding?
3797 // Does this scope declare a "this" binding, and the "this" binding is stack-
3798 // or context-allocated?
3799 bool HasAllocatedReceiver();
3801 // Is this scope the scope of a named function expression?
3802 bool HasFunctionName();
3804 // Return if this has context allocated locals.
3805 bool HasHeapAllocatedLocals();
3807 // Return if contexts are allocated for this scope.
3810 // Return if this is a function scope with "use asm".
3811 inline bool IsAsmModule();
3813 // Return if this is a nested function within an asm module scope.
3814 inline bool IsAsmFunction();
3816 inline bool HasSimpleParameters();
3818 // Return the function_name if present.
3819 String* FunctionName();
3821 // Return the name of the given parameter.
3822 String* ParameterName(int var);
3824 // Return the name of the given local.
3825 String* LocalName(int var);
3827 // Return the name of the given stack local.
3828 String* StackLocalName(int var);
3830 // Return the name of the given stack local.
3831 int StackLocalIndex(int var);
3833 // Return the name of the given context local.
3834 String* ContextLocalName(int var);
3836 // Return the mode of the given context local.
3837 VariableMode ContextLocalMode(int var);
3839 // Return the initialization flag of the given context local.
3840 InitializationFlag ContextLocalInitFlag(int var);
3842 // Return the initialization flag of the given context local.
3843 MaybeAssignedFlag ContextLocalMaybeAssignedFlag(int var);
3845 // Return true if this local was introduced by the compiler, and should not be
3846 // exposed to the user in a debugger.
3847 bool LocalIsSynthetic(int var);
3849 String* StrongModeFreeVariableName(int var);
3850 int StrongModeFreeVariableStartPosition(int var);
3851 int StrongModeFreeVariableEndPosition(int var);
3853 // Lookup support for serialized scope info. Returns the
3854 // the stack slot index for a given slot name if the slot is
3855 // present; otherwise returns a value < 0. The name must be an internalized
3857 int StackSlotIndex(String* name);
3859 // Lookup support for serialized scope info. Returns the
3860 // context slot index for a given slot name if the slot is present; otherwise
3861 // returns a value < 0. The name must be an internalized string.
3862 // If the slot is present and mode != NULL, sets *mode to the corresponding
3863 // mode for that variable.
3864 static int ContextSlotIndex(Handle<ScopeInfo> scope_info, Handle<String> name,
3865 VariableMode* mode, VariableLocation* location,
3866 InitializationFlag* init_flag,
3867 MaybeAssignedFlag* maybe_assigned_flag);
3869 // Lookup the name of a certain context slot by its index.
3870 String* ContextSlotName(int slot_index);
3872 // Lookup support for serialized scope info. Returns the
3873 // parameter index for a given parameter name if the parameter is present;
3874 // otherwise returns a value < 0. The name must be an internalized string.
3875 int ParameterIndex(String* name);
3877 // Lookup support for serialized scope info. Returns the function context
3878 // slot index if the function name is present and context-allocated (named
3879 // function expressions, only), otherwise returns a value < 0. The name
3880 // must be an internalized string.
3881 int FunctionContextSlotIndex(String* name, VariableMode* mode);
3883 // Lookup support for serialized scope info. Returns the receiver context
3884 // slot index if scope has a "this" binding, and the binding is
3885 // context-allocated. Otherwise returns a value < 0.
3886 int ReceiverContextSlotIndex();
3888 FunctionKind function_kind();
3890 static Handle<ScopeInfo> Create(Isolate* isolate, Zone* zone, Scope* scope);
3891 static Handle<ScopeInfo> CreateGlobalThisBinding(Isolate* isolate);
3893 // Serializes empty scope info.
3894 static ScopeInfo* Empty(Isolate* isolate);
3900 // The layout of the static part of a ScopeInfo is as follows. Each entry is
3901 // numeric and occupies one array slot.
3902 // 1. A set of properties of the scope
3903 // 2. The number of parameters. This only applies to function scopes. For
3904 // non-function scopes this is 0.
3905 // 3. The number of non-parameter variables allocated on the stack.
3906 // 4. The number of non-parameter and parameter variables allocated in the
3908 #define FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(V) \
3911 V(StackLocalCount) \
3912 V(ContextLocalCount) \
3913 V(ContextGlobalCount) \
3914 V(StrongModeFreeVariableCount)
3916 #define FIELD_ACCESSORS(name) \
3917 inline void Set##name(int value); \
3919 FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(FIELD_ACCESSORS)
3920 #undef FIELD_ACCESSORS
3924 #define DECL_INDEX(name) k##name,
3925 FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(DECL_INDEX)
3930 // The layout of the variable part of a ScopeInfo is as follows:
3931 // 1. ParameterEntries:
3932 // This part stores the names of the parameters for function scopes. One
3933 // slot is used per parameter, so in total this part occupies
3934 // ParameterCount() slots in the array. For other scopes than function
3935 // scopes ParameterCount() is 0.
3936 // 2. StackLocalFirstSlot:
3937 // Index of a first stack slot for stack local. Stack locals belonging to
3938 // this scope are located on a stack at slots starting from this index.
3939 // 3. StackLocalEntries:
3940 // Contains the names of local variables that are allocated on the stack,
3941 // in increasing order of the stack slot index. First local variable has
3942 // a stack slot index defined in StackLocalFirstSlot (point 2 above).
3943 // One slot is used per stack local, so in total this part occupies
3944 // StackLocalCount() slots in the array.
3945 // 4. ContextLocalNameEntries:
3946 // Contains the names of local variables and parameters that are allocated
3947 // in the context. They are stored in increasing order of the context slot
3948 // index starting with Context::MIN_CONTEXT_SLOTS. One slot is used per
3949 // context local, so in total this part occupies ContextLocalCount() slots
3951 // 5. ContextLocalInfoEntries:
3952 // Contains the variable modes and initialization flags corresponding to
3953 // the context locals in ContextLocalNameEntries. One slot is used per
3954 // context local, so in total this part occupies ContextLocalCount()
3955 // slots in the array.
3956 // 6. StrongModeFreeVariableNameEntries:
3957 // Stores the names of strong mode free variables.
3958 // 7. StrongModeFreeVariablePositionEntries:
3959 // Stores the locations (start and end position) of strong mode free
3961 // 8. RecieverEntryIndex:
3962 // If the scope binds a "this" value, one slot is reserved to hold the
3963 // context or stack slot index for the variable.
3964 // 9. FunctionNameEntryIndex:
3965 // If the scope belongs to a named function expression this part contains
3966 // information about the function variable. It always occupies two array
3967 // slots: a. The name of the function variable.
3968 // b. The context or stack slot index for the variable.
3969 int ParameterEntriesIndex();
3970 int StackLocalFirstSlotIndex();
3971 int StackLocalEntriesIndex();
3972 int ContextLocalNameEntriesIndex();
3973 int ContextGlobalNameEntriesIndex();
3974 int ContextLocalInfoEntriesIndex();
3975 int ContextGlobalInfoEntriesIndex();
3976 int StrongModeFreeVariableNameEntriesIndex();
3977 int StrongModeFreeVariablePositionEntriesIndex();
3978 int ReceiverEntryIndex();
3979 int FunctionNameEntryIndex();
3981 int Lookup(Handle<String> name, int start, int end, VariableMode* mode,
3982 VariableLocation* location, InitializationFlag* init_flag,
3983 MaybeAssignedFlag* maybe_assigned_flag);
3985 // Used for the function name variable for named function expressions, and for
3987 enum VariableAllocationInfo { NONE, STACK, CONTEXT, UNUSED };
3989 // Properties of scopes.
3990 class ScopeTypeField : public BitField<ScopeType, 0, 4> {};
3991 class CallsEvalField : public BitField<bool, ScopeTypeField::kNext, 1> {};
3992 STATIC_ASSERT(LANGUAGE_END == 3);
3993 class LanguageModeField
3994 : public BitField<LanguageMode, CallsEvalField::kNext, 2> {};
3995 class ReceiverVariableField
3996 : public BitField<VariableAllocationInfo, LanguageModeField::kNext, 2> {};
3997 class FunctionVariableField
3998 : public BitField<VariableAllocationInfo, ReceiverVariableField::kNext,
4000 class FunctionVariableMode
4001 : public BitField<VariableMode, FunctionVariableField::kNext, 3> {};
4002 class AsmModuleField : public BitField<bool, FunctionVariableMode::kNext, 1> {
4004 class AsmFunctionField : public BitField<bool, AsmModuleField::kNext, 1> {};
4005 class HasSimpleParametersField
4006 : public BitField<bool, AsmFunctionField::kNext, 1> {};
4007 class FunctionKindField
4008 : public BitField<FunctionKind, HasSimpleParametersField::kNext, 8> {};
4010 // BitFields representing the encoded information for context locals in the
4011 // ContextLocalInfoEntries part.
4012 class ContextLocalMode: public BitField<VariableMode, 0, 3> {};
4013 class ContextLocalInitFlag: public BitField<InitializationFlag, 3, 1> {};
4014 class ContextLocalMaybeAssignedFlag
4015 : public BitField<MaybeAssignedFlag, 4, 1> {};
4017 friend class ScopeIterator;
4021 // The cache for maps used by normalized (dictionary mode) objects.
4022 // Such maps do not have property descriptors, so a typical program
4023 // needs very limited number of distinct normalized maps.
4024 class NormalizedMapCache: public FixedArray {
4026 static Handle<NormalizedMapCache> New(Isolate* isolate);
4028 MUST_USE_RESULT MaybeHandle<Map> Get(Handle<Map> fast_map,
4029 PropertyNormalizationMode mode);
4030 void Set(Handle<Map> fast_map, Handle<Map> normalized_map);
4034 DECLARE_CAST(NormalizedMapCache)
4036 static inline bool IsNormalizedMapCache(const Object* obj);
4038 DECLARE_VERIFIER(NormalizedMapCache)
4040 static const int kEntries = 64;
4042 static inline int GetIndex(Handle<Map> map);
4044 // The following declarations hide base class methods.
4045 Object* get(int index);
4046 void set(int index, Object* value);
4050 // ByteArray represents fixed sized byte arrays. Used for the relocation info
4051 // that is attached to code objects.
4052 class ByteArray: public FixedArrayBase {
4056 // Setter and getter.
4057 inline byte get(int index);
4058 inline void set(int index, byte value);
4060 // Treat contents as an int array.
4061 inline int get_int(int index);
4063 static int SizeFor(int length) {
4064 return OBJECT_POINTER_ALIGN(kHeaderSize + length);
4066 // We use byte arrays for free blocks in the heap. Given a desired size in
4067 // bytes that is a multiple of the word size and big enough to hold a byte
4068 // array, this function returns the number of elements a byte array should
4070 static int LengthFor(int size_in_bytes) {
4071 DCHECK(IsAligned(size_in_bytes, kPointerSize));
4072 DCHECK(size_in_bytes >= kHeaderSize);
4073 return size_in_bytes - kHeaderSize;
4076 // Returns data start address.
4077 inline Address GetDataStartAddress();
4079 // Returns a pointer to the ByteArray object for a given data start address.
4080 static inline ByteArray* FromDataStartAddress(Address address);
4082 DECLARE_CAST(ByteArray)
4084 // Dispatched behavior.
4085 inline int ByteArraySize();
4086 DECLARE_PRINTER(ByteArray)
4087 DECLARE_VERIFIER(ByteArray)
4089 // Layout description.
4090 static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
4092 // Maximal memory consumption for a single ByteArray.
4093 static const int kMaxSize = 512 * MB;
4094 // Maximal length of a single ByteArray.
4095 static const int kMaxLength = kMaxSize - kHeaderSize;
4098 DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
4102 // BytecodeArray represents a sequence of interpreter bytecodes.
4103 class BytecodeArray : public FixedArrayBase {
4105 static int SizeFor(int length) {
4106 return OBJECT_POINTER_ALIGN(kHeaderSize + length);
4109 // Setter and getter
4110 inline byte get(int index);
4111 inline void set(int index, byte value);
4113 // Returns data start address.
4114 inline Address GetFirstBytecodeAddress();
4116 // Accessors for frame size and the number of locals
4117 inline int frame_size() const;
4118 inline void set_frame_size(int value);
4120 DECLARE_CAST(BytecodeArray)
4122 // Dispatched behavior.
4123 inline int BytecodeArraySize();
4125 DECLARE_PRINTER(BytecodeArray)
4126 DECLARE_VERIFIER(BytecodeArray)
4128 void Disassemble(std::ostream& os);
4130 // Layout description.
4131 static const int kFrameSizeOffset = FixedArrayBase::kHeaderSize;
4132 static const int kHeaderSize = kFrameSizeOffset + kIntSize;
4134 static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
4136 // Maximal memory consumption for a single BytecodeArray.
4137 static const int kMaxSize = 512 * MB;
4138 // Maximal length of a single BytecodeArray.
4139 static const int kMaxLength = kMaxSize - kHeaderSize;
4142 DISALLOW_IMPLICIT_CONSTRUCTORS(BytecodeArray);
4146 // FreeSpace are fixed-size free memory blocks used by the heap and GC.
4147 // They look like heap objects (are heap object tagged and have a map) so that
4148 // the heap remains iterable. They have a size and a next pointer.
4149 // The next pointer is the raw address of the next FreeSpace object (or NULL)
4150 // in the free list.
4151 class FreeSpace: public HeapObject {
4153 // [size]: size of the free space including the header.
4154 inline int size() const;
4155 inline void set_size(int value);
4157 inline int nobarrier_size() const;
4158 inline void nobarrier_set_size(int value);
4162 // Accessors for the next field.
4163 inline FreeSpace* next();
4164 inline FreeSpace** next_address();
4165 inline void set_next(FreeSpace* next);
4167 inline static FreeSpace* cast(HeapObject* obj);
4169 // Dispatched behavior.
4170 DECLARE_PRINTER(FreeSpace)
4171 DECLARE_VERIFIER(FreeSpace)
4173 // Layout description.
4174 // Size is smi tagged when it is stored.
4175 static const int kSizeOffset = HeapObject::kHeaderSize;
4176 static const int kNextOffset = POINTER_SIZE_ALIGN(kSizeOffset + kPointerSize);
4179 DISALLOW_IMPLICIT_CONSTRUCTORS(FreeSpace);
4183 // V has parameters (Type, type, TYPE, C type, element_size)
4184 #define TYPED_ARRAYS(V) \
4185 V(Uint8, uint8, UINT8, uint8_t, 1) \
4186 V(Int8, int8, INT8, int8_t, 1) \
4187 V(Uint16, uint16, UINT16, uint16_t, 2) \
4188 V(Int16, int16, INT16, int16_t, 2) \
4189 V(Uint32, uint32, UINT32, uint32_t, 4) \
4190 V(Int32, int32, INT32, int32_t, 4) \
4191 V(Float32, float32, FLOAT32, float, 4) \
4192 V(Float64, float64, FLOAT64, double, 8) \
4193 V(Uint8Clamped, uint8_clamped, UINT8_CLAMPED, uint8_t, 1)
4196 class FixedTypedArrayBase: public FixedArrayBase {
4198 // [base_pointer]: Either points to the FixedTypedArrayBase itself or nullptr.
4199 DECL_ACCESSORS(base_pointer, Object)
4201 // [external_pointer]: Contains the offset between base_pointer and the start
4202 // of the data. If the base_pointer is a nullptr, the external_pointer
4203 // therefore points to the actual backing store.
4204 DECL_ACCESSORS(external_pointer, void)
4206 // Dispatched behavior.
4207 inline void FixedTypedArrayBaseIterateBody(ObjectVisitor* v);
4209 template <typename StaticVisitor>
4210 inline void FixedTypedArrayBaseIterateBody();
4212 DECLARE_CAST(FixedTypedArrayBase)
4214 static const int kBasePointerOffset = FixedArrayBase::kHeaderSize;
4215 static const int kExternalPointerOffset = kBasePointerOffset + kPointerSize;
4216 static const int kHeaderSize =
4217 DOUBLE_POINTER_ALIGN(kExternalPointerOffset + kPointerSize);
4219 static const int kDataOffset = kHeaderSize;
4223 static inline int TypedArraySize(InstanceType type, int length);
4224 inline int TypedArraySize(InstanceType type);
4226 // Use with care: returns raw pointer into heap.
4227 inline void* DataPtr();
4229 inline int DataSize();
4232 static inline int ElementSize(InstanceType type);
4234 inline int DataSize(InstanceType type);
4236 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArrayBase);
4240 template <class Traits>
4241 class FixedTypedArray: public FixedTypedArrayBase {
4243 typedef typename Traits::ElementType ElementType;
4244 static const InstanceType kInstanceType = Traits::kInstanceType;
4246 DECLARE_CAST(FixedTypedArray<Traits>)
4248 inline ElementType get_scalar(int index);
4249 static inline Handle<Object> get(Handle<FixedTypedArray> array, int index);
4250 inline void set(int index, ElementType value);
4252 static inline ElementType from_int(int value);
4253 static inline ElementType from_double(double value);
4255 // This accessor applies the correct conversion from Smi, HeapNumber
4257 void SetValue(uint32_t index, Object* value);
4259 DECLARE_PRINTER(FixedTypedArray)
4260 DECLARE_VERIFIER(FixedTypedArray)
4263 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArray);
4266 #define FIXED_TYPED_ARRAY_TRAITS(Type, type, TYPE, elementType, size) \
4267 class Type##ArrayTraits { \
4268 public: /* NOLINT */ \
4269 typedef elementType ElementType; \
4270 static const InstanceType kInstanceType = FIXED_##TYPE##_ARRAY_TYPE; \
4271 static const char* Designator() { return #type " array"; } \
4272 static inline Handle<Object> ToHandle(Isolate* isolate, \
4273 elementType scalar); \
4274 static inline elementType defaultValue(); \
4277 typedef FixedTypedArray<Type##ArrayTraits> Fixed##Type##Array;
4279 TYPED_ARRAYS(FIXED_TYPED_ARRAY_TRAITS)
4281 #undef FIXED_TYPED_ARRAY_TRAITS
4284 // DeoptimizationInputData is a fixed array used to hold the deoptimization
4285 // data for code generated by the Hydrogen/Lithium compiler. It also
4286 // contains information about functions that were inlined. If N different
4287 // functions were inlined then first N elements of the literal array will
4288 // contain these functions.
4291 class DeoptimizationInputData: public FixedArray {
4293 // Layout description. Indices in the array.
4294 static const int kTranslationByteArrayIndex = 0;
4295 static const int kInlinedFunctionCountIndex = 1;
4296 static const int kLiteralArrayIndex = 2;
4297 static const int kOsrAstIdIndex = 3;
4298 static const int kOsrPcOffsetIndex = 4;
4299 static const int kOptimizationIdIndex = 5;
4300 static const int kSharedFunctionInfoIndex = 6;
4301 static const int kWeakCellCacheIndex = 7;
4302 static const int kFirstDeoptEntryIndex = 8;
4304 // Offsets of deopt entry elements relative to the start of the entry.
4305 static const int kAstIdRawOffset = 0;
4306 static const int kTranslationIndexOffset = 1;
4307 static const int kArgumentsStackHeightOffset = 2;
4308 static const int kPcOffset = 3;
4309 static const int kDeoptEntrySize = 4;
4311 // Simple element accessors.
4312 #define DECLARE_ELEMENT_ACCESSORS(name, type) \
4313 inline type* name(); \
4314 inline void Set##name(type* value);
4316 DECLARE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
4317 DECLARE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
4318 DECLARE_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
4319 DECLARE_ELEMENT_ACCESSORS(OsrAstId, Smi)
4320 DECLARE_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
4321 DECLARE_ELEMENT_ACCESSORS(OptimizationId, Smi)
4322 DECLARE_ELEMENT_ACCESSORS(SharedFunctionInfo, Object)
4323 DECLARE_ELEMENT_ACCESSORS(WeakCellCache, Object)
4325 #undef DECLARE_ELEMENT_ACCESSORS
4327 // Accessors for elements of the ith deoptimization entry.
4328 #define DECLARE_ENTRY_ACCESSORS(name, type) \
4329 inline type* name(int i); \
4330 inline void Set##name(int i, type* value);
4332 DECLARE_ENTRY_ACCESSORS(AstIdRaw, Smi)
4333 DECLARE_ENTRY_ACCESSORS(TranslationIndex, Smi)
4334 DECLARE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi)
4335 DECLARE_ENTRY_ACCESSORS(Pc, Smi)
4337 #undef DECLARE_ENTRY_ACCESSORS
4339 inline BailoutId AstId(int i);
4341 inline void SetAstId(int i, BailoutId value);
4343 inline int DeoptCount();
4345 // Allocates a DeoptimizationInputData.
4346 static Handle<DeoptimizationInputData> New(Isolate* isolate,
4347 int deopt_entry_count,
4348 PretenureFlag pretenure);
4350 DECLARE_CAST(DeoptimizationInputData)
4352 #ifdef ENABLE_DISASSEMBLER
4353 void DeoptimizationInputDataPrint(std::ostream& os); // NOLINT
4357 static int IndexForEntry(int i) {
4358 return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
4362 static int LengthFor(int entry_count) { return IndexForEntry(entry_count); }
4366 // DeoptimizationOutputData is a fixed array used to hold the deoptimization
4367 // data for code generated by the full compiler.
4368 // The format of the these objects is
4369 // [i * 2]: Ast ID for ith deoptimization.
4370 // [i * 2 + 1]: PC and state of ith deoptimization
4371 class DeoptimizationOutputData: public FixedArray {
4373 inline int DeoptPoints();
4375 inline BailoutId AstId(int index);
4377 inline void SetAstId(int index, BailoutId id);
4379 inline Smi* PcAndState(int index);
4380 inline void SetPcAndState(int index, Smi* offset);
4382 static int LengthOfFixedArray(int deopt_points) {
4383 return deopt_points * 2;
4386 // Allocates a DeoptimizationOutputData.
4387 static Handle<DeoptimizationOutputData> New(Isolate* isolate,
4388 int number_of_deopt_points,
4389 PretenureFlag pretenure);
4391 DECLARE_CAST(DeoptimizationOutputData)
4393 #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
4394 void DeoptimizationOutputDataPrint(std::ostream& os); // NOLINT
4399 // HandlerTable is a fixed array containing entries for exception handlers in
4400 // the code object it is associated with. The tables comes in two flavors:
4401 // 1) Based on ranges: Used for unoptimized code. Contains one entry per
4402 // exception handler and a range representing the try-block covered by that
4403 // handler. Layout looks as follows:
4404 // [ range-start , range-end , handler-offset , stack-depth ]
4405 // 2) Based on return addresses: Used for turbofanned code. Contains one entry
4406 // per call-site that could throw an exception. Layout looks as follows:
4407 // [ return-address-offset , handler-offset ]
4408 class HandlerTable : public FixedArray {
4410 // Conservative prediction whether a given handler will locally catch an
4411 // exception or cause a re-throw to outside the code boundary. Since this is
4412 // undecidable it is merely an approximation (e.g. useful for debugger).
4413 enum CatchPrediction { UNCAUGHT, CAUGHT };
4415 // Accessors for handler table based on ranges.
4416 inline void SetRangeStart(int index, int value);
4417 inline void SetRangeEnd(int index, int value);
4418 inline void SetRangeHandler(int index, int offset, CatchPrediction pred);
4419 inline void SetRangeDepth(int index, int value);
4421 // Accessors for handler table based on return addresses.
4422 inline void SetReturnOffset(int index, int value);
4423 inline void SetReturnHandler(int index, int offset, CatchPrediction pred);
4425 // Lookup handler in a table based on ranges.
4426 int LookupRange(int pc_offset, int* stack_depth, CatchPrediction* prediction);
4428 // Lookup handler in a table based on return addresses.
4429 int LookupReturn(int pc_offset, CatchPrediction* prediction);
4431 // Returns the required length of the underlying fixed array.
4432 static int LengthForRange(int entries) { return entries * kRangeEntrySize; }
4433 static int LengthForReturn(int entries) { return entries * kReturnEntrySize; }
4435 DECLARE_CAST(HandlerTable)
4437 #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
4438 void HandlerTableRangePrint(std::ostream& os); // NOLINT
4439 void HandlerTableReturnPrint(std::ostream& os); // NOLINT
4443 // Layout description for handler table based on ranges.
4444 static const int kRangeStartIndex = 0;
4445 static const int kRangeEndIndex = 1;
4446 static const int kRangeHandlerIndex = 2;
4447 static const int kRangeDepthIndex = 3;
4448 static const int kRangeEntrySize = 4;
4450 // Layout description for handler table based on return addresses.
4451 static const int kReturnOffsetIndex = 0;
4452 static const int kReturnHandlerIndex = 1;
4453 static const int kReturnEntrySize = 2;
4455 // Encoding of the {handler} field.
4456 class HandlerPredictionField : public BitField<CatchPrediction, 0, 1> {};
4457 class HandlerOffsetField : public BitField<int, 1, 30> {};
4461 // Code describes objects with on-the-fly generated machine code.
4462 class Code: public HeapObject {
4464 // Opaque data type for encapsulating code flags like kind, inline
4465 // cache state, and arguments count.
4466 typedef uint32_t Flags;
4468 #define NON_IC_KIND_LIST(V) \
4470 V(OPTIMIZED_FUNCTION) \
4476 #define IC_KIND_LIST(V) \
4487 #define CODE_KIND_LIST(V) \
4488 NON_IC_KIND_LIST(V) \
4492 #define DEFINE_CODE_KIND_ENUM(name) name,
4493 CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM)
4494 #undef DEFINE_CODE_KIND_ENUM
4498 // No more than 16 kinds. The value is currently encoded in four bits in
4500 STATIC_ASSERT(NUMBER_OF_KINDS <= 16);
4502 static const char* Kind2String(Kind kind);
4510 static const int kPrologueOffsetNotSet = -1;
4512 #ifdef ENABLE_DISASSEMBLER
4514 static const char* ICState2String(InlineCacheState state);
4515 static const char* StubType2String(StubType type);
4516 static void PrintExtraICState(std::ostream& os, // NOLINT
4517 Kind kind, ExtraICState extra);
4518 void Disassemble(const char* name, std::ostream& os); // NOLINT
4519 #endif // ENABLE_DISASSEMBLER
4521 // [instruction_size]: Size of the native instructions
4522 inline int instruction_size() const;
4523 inline void set_instruction_size(int value);
4525 // [relocation_info]: Code relocation information
4526 DECL_ACCESSORS(relocation_info, ByteArray)
4527 void InvalidateRelocation();
4528 void InvalidateEmbeddedObjects();
4530 // [handler_table]: Fixed array containing offsets of exception handlers.
4531 DECL_ACCESSORS(handler_table, FixedArray)
4533 // [deoptimization_data]: Array containing data for deopt.
4534 DECL_ACCESSORS(deoptimization_data, FixedArray)
4536 // [raw_type_feedback_info]: This field stores various things, depending on
4537 // the kind of the code object.
4538 // FUNCTION => type feedback information.
4539 // STUB and ICs => major/minor key as Smi.
4540 DECL_ACCESSORS(raw_type_feedback_info, Object)
4541 inline Object* type_feedback_info();
4542 inline void set_type_feedback_info(
4543 Object* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4544 inline uint32_t stub_key();
4545 inline void set_stub_key(uint32_t key);
4547 // [next_code_link]: Link for lists of optimized or deoptimized code.
4548 // Note that storage for this field is overlapped with typefeedback_info.
4549 DECL_ACCESSORS(next_code_link, Object)
4551 // [gc_metadata]: Field used to hold GC related metadata. The contents of this
4552 // field does not have to be traced during garbage collection since
4553 // it is only used by the garbage collector itself.
4554 DECL_ACCESSORS(gc_metadata, Object)
4556 // [ic_age]: Inline caching age: the value of the Heap::global_ic_age
4557 // at the moment when this object was created.
4558 inline void set_ic_age(int count);
4559 inline int ic_age() const;
4561 // [prologue_offset]: Offset of the function prologue, used for aging
4562 // FUNCTIONs and OPTIMIZED_FUNCTIONs.
4563 inline int prologue_offset() const;
4564 inline void set_prologue_offset(int offset);
4566 // [constant_pool offset]: Offset of the constant pool.
4567 // Valid for FLAG_enable_embedded_constant_pool only
4568 inline int constant_pool_offset() const;
4569 inline void set_constant_pool_offset(int offset);
4571 // Unchecked accessors to be used during GC.
4572 inline ByteArray* unchecked_relocation_info();
4574 inline int relocation_size();
4576 // [flags]: Various code flags.
4577 inline Flags flags();
4578 inline void set_flags(Flags flags);
4580 // [flags]: Access to specific code flags.
4582 inline InlineCacheState ic_state(); // Only valid for IC stubs.
4583 inline ExtraICState extra_ic_state(); // Only valid for IC stubs.
4585 inline StubType type(); // Only valid for monomorphic IC stubs.
4587 // Testers for IC stub kinds.
4588 inline bool is_inline_cache_stub();
4589 inline bool is_debug_stub();
4590 inline bool is_handler();
4591 inline bool is_load_stub();
4592 inline bool is_keyed_load_stub();
4593 inline bool is_store_stub();
4594 inline bool is_keyed_store_stub();
4595 inline bool is_call_stub();
4596 inline bool is_binary_op_stub();
4597 inline bool is_compare_ic_stub();
4598 inline bool is_compare_nil_ic_stub();
4599 inline bool is_to_boolean_ic_stub();
4600 inline bool is_keyed_stub();
4601 inline bool is_optimized_code();
4602 inline bool embeds_maps_weakly();
4604 inline bool IsCodeStubOrIC();
4606 inline void set_raw_kind_specific_flags1(int value);
4607 inline void set_raw_kind_specific_flags2(int value);
4609 // [is_crankshafted]: For kind STUB or ICs, tells whether or not a code
4610 // object was generated by either the hydrogen or the TurboFan optimizing
4611 // compiler (but it may not be an optimized function).
4612 inline bool is_crankshafted();
4613 inline bool is_hydrogen_stub(); // Crankshafted, but not a function.
4614 inline void set_is_crankshafted(bool value);
4616 // [is_turbofanned]: For kind STUB or OPTIMIZED_FUNCTION, tells whether the
4617 // code object was generated by the TurboFan optimizing compiler.
4618 inline bool is_turbofanned();
4619 inline void set_is_turbofanned(bool value);
4621 // [can_have_weak_objects]: For kind OPTIMIZED_FUNCTION, tells whether the
4622 // embedded objects in code should be treated weakly.
4623 inline bool can_have_weak_objects();
4624 inline void set_can_have_weak_objects(bool value);
4626 // [has_deoptimization_support]: For FUNCTION kind, tells if it has
4627 // deoptimization support.
4628 inline bool has_deoptimization_support();
4629 inline void set_has_deoptimization_support(bool value);
4631 // [has_debug_break_slots]: For FUNCTION kind, tells if it has
4632 // been compiled with debug break slots.
4633 inline bool has_debug_break_slots();
4634 inline void set_has_debug_break_slots(bool value);
4636 // [has_reloc_info_for_serialization]: For FUNCTION kind, tells if its
4637 // reloc info includes runtime and external references to support
4638 // serialization/deserialization.
4639 inline bool has_reloc_info_for_serialization();
4640 inline void set_has_reloc_info_for_serialization(bool value);
4642 // [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for
4643 // how long the function has been marked for OSR and therefore which
4644 // level of loop nesting we are willing to do on-stack replacement
4646 inline void set_allow_osr_at_loop_nesting_level(int level);
4647 inline int allow_osr_at_loop_nesting_level();
4649 // [profiler_ticks]: For FUNCTION kind, tells for how many profiler ticks
4650 // the code object was seen on the stack with no IC patching going on.
4651 inline int profiler_ticks();
4652 inline void set_profiler_ticks(int ticks);
4654 // [builtin_index]: For BUILTIN kind, tells which builtin index it has.
4655 // For builtins, tells which builtin index it has.
4656 // Note that builtins can have a code kind other than BUILTIN, which means
4657 // that for arbitrary code objects, this index value may be random garbage.
4658 // To verify in that case, compare the code object to the indexed builtin.
4659 inline int builtin_index();
4660 inline void set_builtin_index(int id);
4662 // [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots
4663 // reserved in the code prologue.
4664 inline unsigned stack_slots();
4665 inline void set_stack_slots(unsigned slots);
4667 // [safepoint_table_start]: For kind OPTIMIZED_FUNCTION, the offset in
4668 // the instruction stream where the safepoint table starts.
4669 inline unsigned safepoint_table_offset();
4670 inline void set_safepoint_table_offset(unsigned offset);
4672 // [back_edge_table_start]: For kind FUNCTION, the offset in the
4673 // instruction stream where the back edge table starts.
4674 inline unsigned back_edge_table_offset();
4675 inline void set_back_edge_table_offset(unsigned offset);
4677 inline bool back_edges_patched_for_osr();
4679 // [to_boolean_foo]: For kind TO_BOOLEAN_IC tells what state the stub is in.
4680 inline uint16_t to_boolean_state();
4682 // [has_function_cache]: For kind STUB tells whether there is a function
4683 // cache is passed to the stub.
4684 inline bool has_function_cache();
4685 inline void set_has_function_cache(bool flag);
4688 // [marked_for_deoptimization]: For kind OPTIMIZED_FUNCTION tells whether
4689 // the code is going to be deoptimized because of dead embedded maps.
4690 inline bool marked_for_deoptimization();
4691 inline void set_marked_for_deoptimization(bool flag);
4693 // [constant_pool]: The constant pool for this function.
4694 inline Address constant_pool();
4696 // Get the safepoint entry for the given pc.
4697 SafepointEntry GetSafepointEntry(Address pc);
4699 // Find an object in a stub with a specified map
4700 Object* FindNthObject(int n, Map* match_map);
4702 // Find the first allocation site in an IC stub.
4703 AllocationSite* FindFirstAllocationSite();
4705 // Find the first map in an IC stub.
4706 Map* FindFirstMap();
4707 void FindAllMaps(MapHandleList* maps);
4709 // Find the first handler in an IC stub.
4710 Code* FindFirstHandler();
4712 // Find |length| handlers and put them into |code_list|. Returns false if not
4713 // enough handlers can be found.
4714 bool FindHandlers(CodeHandleList* code_list, int length = -1);
4716 // Find the handler for |map|.
4717 MaybeHandle<Code> FindHandlerForMap(Map* map);
4719 // Find the first name in an IC stub.
4720 Name* FindFirstName();
4722 class FindAndReplacePattern;
4723 // For each (map-to-find, object-to-replace) pair in the pattern, this
4724 // function replaces the corresponding placeholder in the code with the
4725 // object-to-replace. The function assumes that pairs in the pattern come in
4726 // the same order as the placeholders in the code.
4727 // If the placeholder is a weak cell, then the value of weak cell is matched
4728 // against the map-to-find.
4729 void FindAndReplace(const FindAndReplacePattern& pattern);
4731 // The entire code object including its header is copied verbatim to the
4732 // snapshot so that it can be written in one, fast, memcpy during
4733 // deserialization. The deserializer will overwrite some pointers, rather
4734 // like a runtime linker, but the random allocation addresses used in the
4735 // mksnapshot process would still be present in the unlinked snapshot data,
4736 // which would make snapshot production non-reproducible. This method wipes
4737 // out the to-be-overwritten header data for reproducible snapshots.
4738 inline void WipeOutHeader();
4740 // Flags operations.
4741 static inline Flags ComputeFlags(
4742 Kind kind, InlineCacheState ic_state = UNINITIALIZED,
4743 ExtraICState extra_ic_state = kNoExtraICState, StubType type = NORMAL,
4744 CacheHolderFlag holder = kCacheOnReceiver);
4746 static inline Flags ComputeMonomorphicFlags(
4747 Kind kind, ExtraICState extra_ic_state = kNoExtraICState,
4748 CacheHolderFlag holder = kCacheOnReceiver, StubType type = NORMAL);
4750 static inline Flags ComputeHandlerFlags(
4751 Kind handler_kind, StubType type = NORMAL,
4752 CacheHolderFlag holder = kCacheOnReceiver);
4754 static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
4755 static inline StubType ExtractTypeFromFlags(Flags flags);
4756 static inline CacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
4757 static inline Kind ExtractKindFromFlags(Flags flags);
4758 static inline ExtraICState ExtractExtraICStateFromFlags(Flags flags);
4760 static inline Flags RemoveTypeFromFlags(Flags flags);
4761 static inline Flags RemoveTypeAndHolderFromFlags(Flags flags);
4763 // Convert a target address into a code object.
4764 static inline Code* GetCodeFromTargetAddress(Address address);
4766 // Convert an entry address into an object.
4767 static inline Object* GetObjectFromEntryAddress(Address location_of_address);
4769 // Returns the address of the first instruction.
4770 inline byte* instruction_start();
4772 // Returns the address right after the last instruction.
4773 inline byte* instruction_end();
4775 // Returns the size of the instructions, padding, and relocation information.
4776 inline int body_size();
4778 // Returns the address of the first relocation info (read backwards!).
4779 inline byte* relocation_start();
4781 // Code entry point.
4782 inline byte* entry();
4784 // Returns true if pc is inside this object's instructions.
4785 inline bool contains(byte* pc);
4787 // Relocate the code by delta bytes. Called to signal that this code
4788 // object has been moved by delta bytes.
4789 void Relocate(intptr_t delta);
4791 // Migrate code described by desc.
4792 void CopyFrom(const CodeDesc& desc);
4794 // Returns the object size for a given body (used for allocation).
4795 static int SizeFor(int body_size) {
4796 DCHECK_SIZE_TAG_ALIGNED(body_size);
4797 return RoundUp(kHeaderSize + body_size, kCodeAlignment);
4800 // Calculate the size of the code object to report for log events. This takes
4801 // the layout of the code object into account.
4802 inline int ExecutableSize();
4804 // Locating source position.
4805 int SourcePosition(Address pc);
4806 int SourceStatementPosition(Address pc);
4810 // Dispatched behavior.
4811 inline int CodeSize();
4812 inline void CodeIterateBody(ObjectVisitor* v);
4814 template<typename StaticVisitor>
4815 inline void CodeIterateBody(Heap* heap);
4817 DECLARE_PRINTER(Code)
4818 DECLARE_VERIFIER(Code)
4820 void ClearInlineCaches();
4821 void ClearInlineCaches(Kind kind);
4823 BailoutId TranslatePcOffsetToAstId(uint32_t pc_offset);
4824 uint32_t TranslateAstIdToPcOffset(BailoutId ast_id);
4826 #define DECLARE_CODE_AGE_ENUM(X) k##X##CodeAge,
4828 kToBeExecutedOnceCodeAge = -3,
4829 kNotExecutedCodeAge = -2,
4830 kExecutedOnceCodeAge = -1,
4832 CODE_AGE_LIST(DECLARE_CODE_AGE_ENUM)
4834 kFirstCodeAge = kToBeExecutedOnceCodeAge,
4835 kLastCodeAge = kAfterLastCodeAge - 1,
4836 kCodeAgeCount = kAfterLastCodeAge - kFirstCodeAge - 1,
4837 kIsOldCodeAge = kSexagenarianCodeAge,
4838 kPreAgedCodeAge = kIsOldCodeAge - 1
4840 #undef DECLARE_CODE_AGE_ENUM
4842 // Code aging. Indicates how many full GCs this code has survived without
4843 // being entered through the prologue. Used to determine when it is
4844 // relatively safe to flush this code object and replace it with the lazy
4845 // compilation stub.
4846 static void MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate);
4847 static void MarkCodeAsExecuted(byte* sequence, Isolate* isolate);
4848 void MakeYoung(Isolate* isolate);
4849 void MarkToBeExecutedOnce(Isolate* isolate);
4850 void MakeOlder(MarkingParity);
4851 static bool IsYoungSequence(Isolate* isolate, byte* sequence);
4854 static inline Code* GetPreAgedCodeAgeStub(Isolate* isolate) {
4855 return GetCodeAgeStub(isolate, kNotExecutedCodeAge, NO_MARKING_PARITY);
4858 void PrintDeoptLocation(FILE* out, Address pc);
4859 bool CanDeoptAt(Address pc);
4862 void VerifyEmbeddedObjectsDependency();
4866 enum VerifyMode { kNoContextSpecificPointers, kNoContextRetainingPointers };
4867 void VerifyEmbeddedObjects(VerifyMode mode = kNoContextRetainingPointers);
4868 static void VerifyRecompiledCode(Code* old_code, Code* new_code);
4871 inline bool CanContainWeakObjects();
4873 inline bool IsWeakObject(Object* object);
4875 static inline bool IsWeakObjectInOptimizedCode(Object* object);
4877 static Handle<WeakCell> WeakCellFor(Handle<Code> code);
4878 WeakCell* CachedWeakCell();
4880 // Max loop nesting marker used to postpose OSR. We don't take loop
4881 // nesting that is deeper than 5 levels into account.
4882 static const int kMaxLoopNestingMarker = 6;
4884 static const int kConstantPoolSize =
4885 FLAG_enable_embedded_constant_pool ? kIntSize : 0;
4887 // Layout description.
4888 static const int kRelocationInfoOffset = HeapObject::kHeaderSize;
4889 static const int kHandlerTableOffset = kRelocationInfoOffset + kPointerSize;
4890 static const int kDeoptimizationDataOffset =
4891 kHandlerTableOffset + kPointerSize;
4892 // For FUNCTION kind, we store the type feedback info here.
4893 static const int kTypeFeedbackInfoOffset =
4894 kDeoptimizationDataOffset + kPointerSize;
4895 static const int kNextCodeLinkOffset = kTypeFeedbackInfoOffset + kPointerSize;
4896 static const int kGCMetadataOffset = kNextCodeLinkOffset + kPointerSize;
4897 static const int kInstructionSizeOffset = kGCMetadataOffset + kPointerSize;
4898 static const int kICAgeOffset = kInstructionSizeOffset + kIntSize;
4899 static const int kFlagsOffset = kICAgeOffset + kIntSize;
4900 static const int kKindSpecificFlags1Offset = kFlagsOffset + kIntSize;
4901 static const int kKindSpecificFlags2Offset =
4902 kKindSpecificFlags1Offset + kIntSize;
4903 // Note: We might be able to squeeze this into the flags above.
4904 static const int kPrologueOffset = kKindSpecificFlags2Offset + kIntSize;
4905 static const int kConstantPoolOffset = kPrologueOffset + kIntSize;
4906 static const int kHeaderPaddingStart =
4907 kConstantPoolOffset + kConstantPoolSize;
4909 // Add padding to align the instruction start following right after
4910 // the Code object header.
4911 static const int kHeaderSize =
4912 (kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;
4914 // Byte offsets within kKindSpecificFlags1Offset.
4915 static const int kFullCodeFlags = kKindSpecificFlags1Offset;
4916 class FullCodeFlagsHasDeoptimizationSupportField:
4917 public BitField<bool, 0, 1> {}; // NOLINT
4918 class FullCodeFlagsHasDebugBreakSlotsField: public BitField<bool, 1, 1> {};
4919 class FullCodeFlagsHasRelocInfoForSerialization
4920 : public BitField<bool, 2, 1> {};
4921 // Bit 3 in this bitfield is unused.
4922 class ProfilerTicksField : public BitField<int, 4, 28> {};
4924 // Flags layout. BitField<type, shift, size>.
4925 class ICStateField : public BitField<InlineCacheState, 0, 4> {};
4926 class TypeField : public BitField<StubType, 4, 1> {};
4927 class CacheHolderField : public BitField<CacheHolderFlag, 5, 2> {};
4928 class KindField : public BitField<Kind, 7, 4> {};
4929 class ExtraICStateField: public BitField<ExtraICState, 11,
4930 PlatformSmiTagging::kSmiValueSize - 11 + 1> {}; // NOLINT
4932 // KindSpecificFlags1 layout (STUB and OPTIMIZED_FUNCTION)
4933 static const int kStackSlotsFirstBit = 0;
4934 static const int kStackSlotsBitCount = 24;
4935 static const int kHasFunctionCacheBit =
4936 kStackSlotsFirstBit + kStackSlotsBitCount;
4937 static const int kMarkedForDeoptimizationBit = kHasFunctionCacheBit + 1;
4938 static const int kIsTurbofannedBit = kMarkedForDeoptimizationBit + 1;
4939 static const int kCanHaveWeakObjects = kIsTurbofannedBit + 1;
4941 STATIC_ASSERT(kStackSlotsFirstBit + kStackSlotsBitCount <= 32);
4942 STATIC_ASSERT(kCanHaveWeakObjects + 1 <= 32);
4944 class StackSlotsField: public BitField<int,
4945 kStackSlotsFirstBit, kStackSlotsBitCount> {}; // NOLINT
4946 class HasFunctionCacheField : public BitField<bool, kHasFunctionCacheBit, 1> {
4948 class MarkedForDeoptimizationField
4949 : public BitField<bool, kMarkedForDeoptimizationBit, 1> {}; // NOLINT
4950 class IsTurbofannedField : public BitField<bool, kIsTurbofannedBit, 1> {
4952 class CanHaveWeakObjectsField
4953 : public BitField<bool, kCanHaveWeakObjects, 1> {}; // NOLINT
4955 // KindSpecificFlags2 layout (ALL)
4956 static const int kIsCrankshaftedBit = 0;
4957 class IsCrankshaftedField: public BitField<bool,
4958 kIsCrankshaftedBit, 1> {}; // NOLINT
4960 // KindSpecificFlags2 layout (STUB and OPTIMIZED_FUNCTION)
4961 static const int kSafepointTableOffsetFirstBit = kIsCrankshaftedBit + 1;
4962 static const int kSafepointTableOffsetBitCount = 30;
4964 STATIC_ASSERT(kSafepointTableOffsetFirstBit +
4965 kSafepointTableOffsetBitCount <= 32);
4966 STATIC_ASSERT(1 + kSafepointTableOffsetBitCount <= 32);
4968 class SafepointTableOffsetField: public BitField<int,
4969 kSafepointTableOffsetFirstBit,
4970 kSafepointTableOffsetBitCount> {}; // NOLINT
4972 // KindSpecificFlags2 layout (FUNCTION)
4973 class BackEdgeTableOffsetField: public BitField<int,
4974 kIsCrankshaftedBit + 1, 27> {}; // NOLINT
4975 class AllowOSRAtLoopNestingLevelField: public BitField<int,
4976 kIsCrankshaftedBit + 1 + 27, 4> {}; // NOLINT
4977 STATIC_ASSERT(AllowOSRAtLoopNestingLevelField::kMax >= kMaxLoopNestingMarker);
4979 static const int kArgumentsBits = 16;
4980 static const int kMaxArguments = (1 << kArgumentsBits) - 1;
4982 // This constant should be encodable in an ARM instruction.
4983 static const int kFlagsNotUsedInLookup =
4984 TypeField::kMask | CacheHolderField::kMask;
4987 friend class RelocIterator;
4988 friend class Deoptimizer; // For FindCodeAgeSequence.
4990 void ClearInlineCaches(Kind* kind);
4993 byte* FindCodeAgeSequence();
4994 static void GetCodeAgeAndParity(Code* code, Age* age,
4995 MarkingParity* parity);
4996 static void GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
4997 MarkingParity* parity);
4998 static Code* GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity);
5000 // Code aging -- platform-specific
5001 static void PatchPlatformCodeAge(Isolate* isolate,
5002 byte* sequence, Age age,
5003 MarkingParity parity);
5005 DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
5009 // This class describes the layout of dependent codes array of a map. The
5010 // array is partitioned into several groups of dependent codes. Each group
5011 // contains codes with the same dependency on the map. The array has the
5012 // following layout for n dependency groups:
5014 // +----+----+-----+----+---------+----------+-----+---------+-----------+
5015 // | C1 | C2 | ... | Cn | group 1 | group 2 | ... | group n | undefined |
5016 // +----+----+-----+----+---------+----------+-----+---------+-----------+
5018 // The first n elements are Smis, each of them specifies the number of codes
5019 // in the corresponding group. The subsequent elements contain grouped code
5020 // objects in weak cells. The suffix of the array can be filled with the
5021 // undefined value if the number of codes is less than the length of the
5022 // array. The order of the code objects within a group is not preserved.
5024 // All code indexes used in the class are counted starting from the first
5025 // code object of the first group. In other words, code index 0 corresponds
5026 // to array index n = kCodesStartIndex.
5028 class DependentCode: public FixedArray {
5030 enum DependencyGroup {
5031 // Group of code that weakly embed this map and depend on being
5032 // deoptimized when the map is garbage collected.
5034 // Group of code that embed a transition to this map, and depend on being
5035 // deoptimized when the transition is replaced by a new version.
5037 // Group of code that omit run-time prototype checks for prototypes
5038 // described by this map. The group is deoptimized whenever an object
5039 // described by this map changes shape (and transitions to a new map),
5040 // possibly invalidating the assumptions embedded in the code.
5041 kPrototypeCheckGroup,
5042 // Group of code that depends on global property values in property cells
5043 // not being changed.
5044 kPropertyCellChangedGroup,
5045 // Group of code that omit run-time type checks for the field(s) introduced
5048 // Group of code that omit run-time type checks for initial maps of
5050 kInitialMapChangedGroup,
5051 // Group of code that depends on tenuring information in AllocationSites
5052 // not being changed.
5053 kAllocationSiteTenuringChangedGroup,
5054 // Group of code that depends on element transition information in
5055 // AllocationSites not being changed.
5056 kAllocationSiteTransitionChangedGroup
5059 static const int kGroupCount = kAllocationSiteTransitionChangedGroup + 1;
5061 // Array for holding the index of the first code object of each group.
5062 // The last element stores the total number of code objects.
5063 class GroupStartIndexes {
5065 explicit GroupStartIndexes(DependentCode* entries);
5066 void Recompute(DependentCode* entries);
5067 int at(int i) { return start_indexes_[i]; }
5068 int number_of_entries() { return start_indexes_[kGroupCount]; }
5070 int start_indexes_[kGroupCount + 1];
5073 bool Contains(DependencyGroup group, WeakCell* code_cell);
5075 static Handle<DependentCode> InsertCompilationDependencies(
5076 Handle<DependentCode> entries, DependencyGroup group,
5077 Handle<Foreign> info);
5079 static Handle<DependentCode> InsertWeakCode(Handle<DependentCode> entries,
5080 DependencyGroup group,
5081 Handle<WeakCell> code_cell);
5083 void UpdateToFinishedCode(DependencyGroup group, Foreign* info,
5084 WeakCell* code_cell);
5086 void RemoveCompilationDependencies(DependentCode::DependencyGroup group,
5089 void DeoptimizeDependentCodeGroup(Isolate* isolate,
5090 DependentCode::DependencyGroup group);
5092 bool MarkCodeForDeoptimization(Isolate* isolate,
5093 DependentCode::DependencyGroup group);
5095 // The following low-level accessors should only be used by this class
5096 // and the mark compact collector.
5097 inline int number_of_entries(DependencyGroup group);
5098 inline void set_number_of_entries(DependencyGroup group, int value);
5099 inline Object* object_at(int i);
5100 inline void set_object_at(int i, Object* object);
5101 inline void clear_at(int i);
5102 inline void copy(int from, int to);
5103 DECLARE_CAST(DependentCode)
5105 static const char* DependencyGroupName(DependencyGroup group);
5106 static void SetMarkedForDeoptimization(Code* code, DependencyGroup group);
5109 static Handle<DependentCode> Insert(Handle<DependentCode> entries,
5110 DependencyGroup group,
5111 Handle<Object> object);
5112 static Handle<DependentCode> EnsureSpace(Handle<DependentCode> entries);
5113 // Make a room at the end of the given group by moving out the first
5114 // code objects of the subsequent groups.
5115 inline void ExtendGroup(DependencyGroup group);
5116 // Compact by removing cleared weak cells and return true if there was
5117 // any cleared weak cell.
5119 static int Grow(int number_of_entries) {
5120 if (number_of_entries < 5) return number_of_entries + 1;
5121 return number_of_entries * 5 / 4;
5123 static const int kCodesStartIndex = kGroupCount;
5127 class PrototypeInfo;
5130 // All heap objects have a Map that describes their structure.
5131 // A Map contains information about:
5132 // - Size information about the object
5133 // - How to iterate over an object (for garbage collection)
5134 class Map: public HeapObject {
5137 // Size in bytes or kVariableSizeSentinel if instances do not have
5139 inline int instance_size();
5140 inline void set_instance_size(int value);
5142 // Only to clear an unused byte, remove once byte is used.
5143 inline void clear_unused();
5145 // [inobject_properties_or_constructor_function_index]: Provides access
5146 // to the inobject properties in case of JSObject maps, or the constructor
5147 // function index in case of primitive maps.
5148 inline int inobject_properties_or_constructor_function_index();
5149 inline void set_inobject_properties_or_constructor_function_index(int value);
5150 // Count of properties allocated in the object (JSObject only).
5151 inline int GetInObjectProperties();
5152 inline void SetInObjectProperties(int value);
5153 // Index of the constructor function in the native context (primitives only),
5154 // or the special sentinel value to indicate that there is no object wrapper
5155 // for the primitive (i.e. in case of null or undefined).
5156 static const int kNoConstructorFunctionIndex = 0;
5157 inline int GetConstructorFunctionIndex();
5158 inline void SetConstructorFunctionIndex(int value);
5161 inline InstanceType instance_type();
5162 inline void set_instance_type(InstanceType value);
5164 // Tells how many unused property fields are available in the
5165 // instance (only used for JSObject in fast mode).
5166 inline int unused_property_fields();
5167 inline void set_unused_property_fields(int value);
5170 inline byte bit_field() const;
5171 inline void set_bit_field(byte value);
5174 inline byte bit_field2() const;
5175 inline void set_bit_field2(byte value);
5178 inline uint32_t bit_field3() const;
5179 inline void set_bit_field3(uint32_t bits);
5181 class EnumLengthBits: public BitField<int,
5182 0, kDescriptorIndexBitCount> {}; // NOLINT
5183 class NumberOfOwnDescriptorsBits: public BitField<int,
5184 kDescriptorIndexBitCount, kDescriptorIndexBitCount> {}; // NOLINT
5185 STATIC_ASSERT(kDescriptorIndexBitCount + kDescriptorIndexBitCount == 20);
5186 class DictionaryMap : public BitField<bool, 20, 1> {};
5187 class OwnsDescriptors : public BitField<bool, 21, 1> {};
5188 class HasInstanceCallHandler : public BitField<bool, 22, 1> {};
5189 class Deprecated : public BitField<bool, 23, 1> {};
5190 class IsUnstable : public BitField<bool, 24, 1> {};
5191 class IsMigrationTarget : public BitField<bool, 25, 1> {};
5192 class IsStrong : public BitField<bool, 26, 1> {};
5195 // Keep this bit field at the very end for better code in
5196 // Builtins::kJSConstructStubGeneric stub.
5197 // This counter is used for in-object slack tracking and for map aging.
5198 // The in-object slack tracking is considered enabled when the counter is
5199 // in the range [kSlackTrackingCounterStart, kSlackTrackingCounterEnd].
5200 class Counter : public BitField<int, 28, 4> {};
5201 static const int kSlackTrackingCounterStart = 14;
5202 static const int kSlackTrackingCounterEnd = 8;
5203 static const int kRetainingCounterStart = kSlackTrackingCounterEnd - 1;
5204 static const int kRetainingCounterEnd = 0;
5206 // Tells whether the object in the prototype property will be used
5207 // for instances created from this function. If the prototype
5208 // property is set to a value that is not a JSObject, the prototype
5209 // property will not be used to create instances of the function.
5210 // See ECMA-262, 13.2.2.
5211 inline void set_non_instance_prototype(bool value);
5212 inline bool has_non_instance_prototype();
5214 // Tells whether function has special prototype property. If not, prototype
5215 // property will not be created when accessed (will return undefined),
5216 // and construction from this function will not be allowed.
5217 inline void set_function_with_prototype(bool value);
5218 inline bool function_with_prototype();
5220 // Tells whether the instance with this map should be ignored by the
5221 // Object.getPrototypeOf() function and the __proto__ accessor.
5222 inline void set_is_hidden_prototype();
5223 inline bool is_hidden_prototype();
5225 // Records and queries whether the instance has a named interceptor.
5226 inline void set_has_named_interceptor();
5227 inline bool has_named_interceptor();
5229 // Records and queries whether the instance has an indexed interceptor.
5230 inline void set_has_indexed_interceptor();
5231 inline bool has_indexed_interceptor();
5233 // Tells whether the instance is undetectable.
5234 // An undetectable object is a special class of JSObject: 'typeof' operator
5235 // returns undefined, ToBoolean returns false. Otherwise it behaves like
5236 // a normal JS object. It is useful for implementing undetectable
5237 // document.all in Firefox & Safari.
5238 // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
5239 inline void set_is_undetectable();
5240 inline bool is_undetectable();
5242 // Tells whether the instance has a call-as-function handler.
5243 inline void set_is_observed();
5244 inline bool is_observed();
5246 inline void set_is_strong();
5247 inline bool is_strong();
5248 inline void set_is_extensible(bool value);
5249 inline bool is_extensible();
5250 inline void set_is_prototype_map(bool value);
5251 inline bool is_prototype_map() const;
5253 inline void set_elements_kind(ElementsKind elements_kind);
5254 inline ElementsKind elements_kind();
5256 // Tells whether the instance has fast elements that are only Smis.
5257 inline bool has_fast_smi_elements();
5259 // Tells whether the instance has fast elements.
5260 inline bool has_fast_object_elements();
5261 inline bool has_fast_smi_or_object_elements();
5262 inline bool has_fast_double_elements();
5263 inline bool has_fast_elements();
5264 inline bool has_sloppy_arguments_elements();
5265 inline bool has_fixed_typed_array_elements();
5266 inline bool has_dictionary_elements();
5268 static bool IsValidElementsTransition(ElementsKind from_kind,
5269 ElementsKind to_kind);
5271 // Returns true if the current map doesn't have DICTIONARY_ELEMENTS but if a
5272 // map with DICTIONARY_ELEMENTS was found in the prototype chain.
5273 bool DictionaryElementsInPrototypeChainOnly();
5275 inline Map* ElementsTransitionMap();
5277 inline FixedArrayBase* GetInitialElements();
5279 // [raw_transitions]: Provides access to the transitions storage field.
5280 // Don't call set_raw_transitions() directly to overwrite transitions, use
5281 // the TransitionArray::ReplaceTransitions() wrapper instead!
5282 DECL_ACCESSORS(raw_transitions, Object)
5283 // [prototype_info]: Per-prototype metadata. Aliased with transitions
5284 // (which prototype maps don't have).
5285 DECL_ACCESSORS(prototype_info, Object)
5286 // PrototypeInfo is created lazily using this helper (which installs it on
5287 // the given prototype's map).
5288 static Handle<PrototypeInfo> GetOrCreatePrototypeInfo(
5289 Handle<JSObject> prototype, Isolate* isolate);
5290 static Handle<PrototypeInfo> GetOrCreatePrototypeInfo(
5291 Handle<Map> prototype_map, Isolate* isolate);
5293 // [prototype chain validity cell]: Associated with a prototype object,
5294 // stored in that object's map's PrototypeInfo, indicates that prototype
5295 // chains through this object are currently valid. The cell will be
5296 // invalidated and replaced when the prototype chain changes.
5297 static Handle<Cell> GetOrCreatePrototypeChainValidityCell(Handle<Map> map,
5299 static const int kPrototypeChainValid = 0;
5300 static const int kPrototypeChainInvalid = 1;
5303 Map* FindFieldOwner(int descriptor);
5305 inline int GetInObjectPropertyOffset(int index);
5307 int NumberOfFields();
5309 // TODO(ishell): candidate with JSObject::MigrateToMap().
5310 bool InstancesNeedRewriting(Map* target, int target_number_of_fields,
5311 int target_inobject, int target_unused,
5312 int* old_number_of_fields);
5313 // TODO(ishell): moveit!
5314 static Handle<Map> GeneralizeAllFieldRepresentations(Handle<Map> map);
5315 MUST_USE_RESULT static Handle<HeapType> GeneralizeFieldType(
5316 Handle<HeapType> type1,
5317 Handle<HeapType> type2,
5319 static void GeneralizeFieldType(Handle<Map> map, int modify_index,
5320 Representation new_representation,
5321 Handle<HeapType> new_field_type);
5322 static Handle<Map> ReconfigureProperty(Handle<Map> map, int modify_index,
5323 PropertyKind new_kind,
5324 PropertyAttributes new_attributes,
5325 Representation new_representation,
5326 Handle<HeapType> new_field_type,
5327 StoreMode store_mode);
5328 static Handle<Map> CopyGeneralizeAllRepresentations(
5329 Handle<Map> map, int modify_index, StoreMode store_mode,
5330 PropertyKind kind, PropertyAttributes attributes, const char* reason);
5332 static Handle<Map> PrepareForDataProperty(Handle<Map> old_map,
5333 int descriptor_number,
5334 Handle<Object> value);
5336 static Handle<Map> Normalize(Handle<Map> map, PropertyNormalizationMode mode,
5337 const char* reason);
5339 // Returns the constructor name (the name (possibly, inferred name) of the
5340 // function that was used to instantiate the object).
5341 String* constructor_name();
5343 // Tells whether the map is used for JSObjects in dictionary mode (ie
5344 // normalized objects, ie objects for which HasFastProperties returns false).
5345 // A map can never be used for both dictionary mode and fast mode JSObjects.
5346 // False by default and for HeapObjects that are not JSObjects.
5347 inline void set_dictionary_map(bool value);
5348 inline bool is_dictionary_map();
5350 // Tells whether the instance needs security checks when accessing its
5352 inline void set_is_access_check_needed(bool access_check_needed);
5353 inline bool is_access_check_needed();
5355 // Returns true if map has a non-empty stub code cache.
5356 inline bool has_code_cache();
5358 // [prototype]: implicit prototype object.
5359 DECL_ACCESSORS(prototype, Object)
5360 // TODO(jkummerow): make set_prototype private.
5361 static void SetPrototype(
5362 Handle<Map> map, Handle<Object> prototype,
5363 PrototypeOptimizationMode proto_mode = FAST_PROTOTYPE);
5365 // [constructor]: points back to the function responsible for this map.
5366 // The field overlaps with the back pointer. All maps in a transition tree
5367 // have the same constructor, so maps with back pointers can walk the
5368 // back pointer chain until they find the map holding their constructor.
5369 DECL_ACCESSORS(constructor_or_backpointer, Object)
5370 inline Object* GetConstructor() const;
5371 inline void SetConstructor(Object* constructor,
5372 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
5373 // [back pointer]: points back to the parent map from which a transition
5374 // leads to this map. The field overlaps with the constructor (see above).
5375 inline Object* GetBackPointer();
5376 inline void SetBackPointer(Object* value,
5377 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
5379 // [instance descriptors]: describes the object.
5380 DECL_ACCESSORS(instance_descriptors, DescriptorArray)
5382 // [layout descriptor]: describes the object layout.
5383 DECL_ACCESSORS(layout_descriptor, LayoutDescriptor)
5384 // |layout descriptor| accessor which can be used from GC.
5385 inline LayoutDescriptor* layout_descriptor_gc_safe();
5386 inline bool HasFastPointerLayout() const;
5388 // |layout descriptor| accessor that is safe to call even when
5389 // FLAG_unbox_double_fields is disabled (in this case Map does not contain
5390 // |layout_descriptor| field at all).
5391 inline LayoutDescriptor* GetLayoutDescriptor();
5393 inline void UpdateDescriptors(DescriptorArray* descriptors,
5394 LayoutDescriptor* layout_descriptor);
5395 inline void InitializeDescriptors(DescriptorArray* descriptors,
5396 LayoutDescriptor* layout_descriptor);
5398 // [stub cache]: contains stubs compiled for this map.
5399 DECL_ACCESSORS(code_cache, Object)
5401 // [dependent code]: list of optimized codes that weakly embed this map.
5402 DECL_ACCESSORS(dependent_code, DependentCode)
5404 // [weak cell cache]: cache that stores a weak cell pointing to this map.
5405 DECL_ACCESSORS(weak_cell_cache, Object)
5407 inline PropertyDetails GetLastDescriptorDetails();
5409 inline int LastAdded();
5411 inline int NumberOfOwnDescriptors();
5412 inline void SetNumberOfOwnDescriptors(int number);
5414 inline Cell* RetrieveDescriptorsPointer();
5416 inline int EnumLength();
5417 inline void SetEnumLength(int length);
5419 inline bool owns_descriptors();
5420 inline void set_owns_descriptors(bool owns_descriptors);
5421 inline bool has_instance_call_handler();
5422 inline void set_has_instance_call_handler();
5423 inline void mark_unstable();
5424 inline bool is_stable();
5425 inline void set_migration_target(bool value);
5426 inline bool is_migration_target();
5427 inline void set_counter(int value);
5428 inline int counter();
5429 inline void deprecate();
5430 inline bool is_deprecated();
5431 inline bool CanBeDeprecated();
5432 // Returns a non-deprecated version of the input. If the input was not
5433 // deprecated, it is directly returned. Otherwise, the non-deprecated version
5434 // is found by re-transitioning from the root of the transition tree using the
5435 // descriptor array of the map. Returns MaybeHandle<Map>() if no updated map
5437 static MaybeHandle<Map> TryUpdate(Handle<Map> map) WARN_UNUSED_RESULT;
5439 // Returns a non-deprecated version of the input. This method may deprecate
5440 // existing maps along the way if encodings conflict. Not for use while
5441 // gathering type feedback. Use TryUpdate in those cases instead.
5442 static Handle<Map> Update(Handle<Map> map);
5444 static Handle<Map> CopyDropDescriptors(Handle<Map> map);
5445 static Handle<Map> CopyInsertDescriptor(Handle<Map> map,
5446 Descriptor* descriptor,
5447 TransitionFlag flag);
5449 MUST_USE_RESULT static MaybeHandle<Map> CopyWithField(
5452 Handle<HeapType> type,
5453 PropertyAttributes attributes,
5454 Representation representation,
5455 TransitionFlag flag);
5457 MUST_USE_RESULT static MaybeHandle<Map> CopyWithConstant(
5460 Handle<Object> constant,
5461 PropertyAttributes attributes,
5462 TransitionFlag flag);
5464 // Returns a new map with all transitions dropped from the given map and
5465 // the ElementsKind set.
5466 static Handle<Map> TransitionElementsTo(Handle<Map> map,
5467 ElementsKind to_kind);
5469 static Handle<Map> AsElementsKind(Handle<Map> map, ElementsKind kind);
5471 static Handle<Map> CopyAsElementsKind(Handle<Map> map,
5473 TransitionFlag flag);
5475 static Handle<Map> CopyForObserved(Handle<Map> map);
5477 static Handle<Map> CopyForPreventExtensions(Handle<Map> map,
5478 PropertyAttributes attrs_to_add,
5479 Handle<Symbol> transition_marker,
5480 const char* reason);
5482 static Handle<Map> FixProxy(Handle<Map> map, InstanceType type, int size);
5485 // Maximal number of fast properties. Used to restrict the number of map
5486 // transitions to avoid an explosion in the number of maps for objects used as
5488 inline bool TooManyFastProperties(StoreFromKeyed store_mode);
5489 static Handle<Map> TransitionToDataProperty(Handle<Map> map,
5491 Handle<Object> value,
5492 PropertyAttributes attributes,
5493 StoreFromKeyed store_mode);
5494 static Handle<Map> TransitionToAccessorProperty(
5495 Handle<Map> map, Handle<Name> name, AccessorComponent component,
5496 Handle<Object> accessor, PropertyAttributes attributes);
5497 static Handle<Map> ReconfigureExistingProperty(Handle<Map> map,
5500 PropertyAttributes attributes);
5502 inline void AppendDescriptor(Descriptor* desc);
5504 // Returns a copy of the map, prepared for inserting into the transition
5505 // tree (if the |map| owns descriptors then the new one will share
5506 // descriptors with |map|).
5507 static Handle<Map> CopyForTransition(Handle<Map> map, const char* reason);
5509 // Returns a copy of the map, with all transitions dropped from the
5510 // instance descriptors.
5511 static Handle<Map> Copy(Handle<Map> map, const char* reason);
5512 static Handle<Map> Create(Isolate* isolate, int inobject_properties);
5514 // Returns the next free property index (only valid for FAST MODE).
5515 int NextFreePropertyIndex();
5517 // Returns the number of properties described in instance_descriptors
5518 // filtering out properties with the specified attributes.
5519 int NumberOfDescribedProperties(DescriptorFlag which = OWN_DESCRIPTORS,
5520 PropertyAttributes filter = NONE);
5524 // Code cache operations.
5526 // Clears the code cache.
5527 inline void ClearCodeCache(Heap* heap);
5529 // Update code cache.
5530 static void UpdateCodeCache(Handle<Map> map,
5534 // Extend the descriptor array of the map with the list of descriptors.
5535 // In case of duplicates, the latest descriptor is used.
5536 static void AppendCallbackDescriptors(Handle<Map> map,
5537 Handle<Object> descriptors);
5539 static inline int SlackForArraySize(int old_size, int size_limit);
5541 static void EnsureDescriptorSlack(Handle<Map> map, int slack);
5543 // Returns the found code or undefined if absent.
5544 Object* FindInCodeCache(Name* name, Code::Flags flags);
5546 // Returns the non-negative index of the code object if it is in the
5547 // cache and -1 otherwise.
5548 int IndexInCodeCache(Object* name, Code* code);
5550 // Removes a code object from the code cache at the given index.
5551 void RemoveFromCodeCache(Name* name, Code* code, int index);
5553 // Computes a hash value for this map, to be used in HashTables and such.
5556 // Returns the map that this map transitions to if its elements_kind
5557 // is changed to |elements_kind|, or NULL if no such map is cached yet.
5558 // |safe_to_add_transitions| is set to false if adding transitions is not
5560 Map* LookupElementsTransitionMap(ElementsKind elements_kind);
5562 // Returns the transitioned map for this map with the most generic
5563 // elements_kind that's found in |candidates|, or null handle if no match is
5565 static Handle<Map> FindTransitionedMap(Handle<Map> map,
5566 MapHandleList* candidates);
5568 inline bool CanTransition();
5570 inline bool IsPrimitiveMap();
5571 inline bool IsJSObjectMap();
5572 inline bool IsJSArrayMap();
5573 inline bool IsStringMap();
5574 inline bool IsJSProxyMap();
5575 inline bool IsJSGlobalProxyMap();
5576 inline bool IsJSGlobalObjectMap();
5577 inline bool IsGlobalObjectMap();
5579 inline bool CanOmitMapChecks();
5581 static void AddDependentCode(Handle<Map> map,
5582 DependentCode::DependencyGroup group,
5585 bool IsMapInArrayPrototypeChain();
5587 static Handle<WeakCell> WeakCellForMap(Handle<Map> map);
5589 // Dispatched behavior.
5590 DECLARE_PRINTER(Map)
5591 DECLARE_VERIFIER(Map)
5594 void DictionaryMapVerify();
5595 void VerifyOmittedMapChecks();
5598 inline int visitor_id();
5599 inline void set_visitor_id(int visitor_id);
5601 static Handle<Map> TransitionToPrototype(Handle<Map> map,
5602 Handle<Object> prototype,
5603 PrototypeOptimizationMode mode);
5605 static const int kMaxPreAllocatedPropertyFields = 255;
5607 // Layout description.
5608 static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
5609 static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
5610 static const int kBitField3Offset = kInstanceAttributesOffset + kIntSize;
5611 static const int kPrototypeOffset = kBitField3Offset + kPointerSize;
5612 static const int kConstructorOrBackPointerOffset =
5613 kPrototypeOffset + kPointerSize;
5614 // When there is only one transition, it is stored directly in this field;
5615 // otherwise a transition array is used.
5616 // For prototype maps, this slot is used to store this map's PrototypeInfo
5618 static const int kTransitionsOrPrototypeInfoOffset =
5619 kConstructorOrBackPointerOffset + kPointerSize;
5620 static const int kDescriptorsOffset =
5621 kTransitionsOrPrototypeInfoOffset + kPointerSize;
5622 #if V8_DOUBLE_FIELDS_UNBOXING
5623 static const int kLayoutDecriptorOffset = kDescriptorsOffset + kPointerSize;
5624 static const int kCodeCacheOffset = kLayoutDecriptorOffset + kPointerSize;
5626 static const int kLayoutDecriptorOffset = 1; // Must not be ever accessed.
5627 static const int kCodeCacheOffset = kDescriptorsOffset + kPointerSize;
5629 static const int kDependentCodeOffset = kCodeCacheOffset + kPointerSize;
5630 static const int kWeakCellCacheOffset = kDependentCodeOffset + kPointerSize;
5631 static const int kSize = kWeakCellCacheOffset + kPointerSize;
5633 // Layout of pointer fields. Heap iteration code relies on them
5634 // being continuously allocated.
5635 static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
5636 static const int kPointerFieldsEndOffset = kSize;
5638 // Byte offsets within kInstanceSizesOffset.
5639 static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
5640 static const int kInObjectPropertiesOrConstructorFunctionIndexByte = 1;
5641 static const int kInObjectPropertiesOrConstructorFunctionIndexOffset =
5642 kInstanceSizesOffset + kInObjectPropertiesOrConstructorFunctionIndexByte;
5643 // Note there is one byte available for use here.
5644 static const int kUnusedByte = 2;
5645 static const int kUnusedOffset = kInstanceSizesOffset + kUnusedByte;
5646 static const int kVisitorIdByte = 3;
5647 static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte;
5649 // Byte offsets within kInstanceAttributesOffset attributes.
5650 #if V8_TARGET_LITTLE_ENDIAN
5651 // Order instance type and bit field together such that they can be loaded
5652 // together as a 16-bit word with instance type in the lower 8 bits regardless
5653 // of endianess. Also provide endian-independent offset to that 16-bit word.
5654 static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
5655 static const int kBitFieldOffset = kInstanceAttributesOffset + 1;
5657 static const int kBitFieldOffset = kInstanceAttributesOffset + 0;
5658 static const int kInstanceTypeOffset = kInstanceAttributesOffset + 1;
5660 static const int kInstanceTypeAndBitFieldOffset =
5661 kInstanceAttributesOffset + 0;
5662 static const int kBitField2Offset = kInstanceAttributesOffset + 2;
5663 static const int kUnusedPropertyFieldsByte = 3;
5664 static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 3;
5666 STATIC_ASSERT(kInstanceTypeAndBitFieldOffset ==
5667 Internals::kMapInstanceTypeAndBitFieldOffset);
5669 // Bit positions for bit field.
5670 static const int kHasNonInstancePrototype = 0;
5671 static const int kIsHiddenPrototype = 1;
5672 static const int kHasNamedInterceptor = 2;
5673 static const int kHasIndexedInterceptor = 3;
5674 static const int kIsUndetectable = 4;
5675 static const int kIsObserved = 5;
5676 static const int kIsAccessCheckNeeded = 6;
5677 class FunctionWithPrototype: public BitField<bool, 7, 1> {};
5679 // Bit positions for bit field 2
5680 static const int kIsExtensible = 0;
5681 static const int kStringWrapperSafeForDefaultValueOf = 1;
5682 class IsPrototypeMapBits : public BitField<bool, 2, 1> {};
5683 class ElementsKindBits: public BitField<ElementsKind, 3, 5> {};
5685 // Derived values from bit field 2
5686 static const int8_t kMaximumBitField2FastElementValue = static_cast<int8_t>(
5687 (FAST_ELEMENTS + 1) << Map::ElementsKindBits::kShift) - 1;
5688 static const int8_t kMaximumBitField2FastSmiElementValue =
5689 static_cast<int8_t>((FAST_SMI_ELEMENTS + 1) <<
5690 Map::ElementsKindBits::kShift) - 1;
5691 static const int8_t kMaximumBitField2FastHoleyElementValue =
5692 static_cast<int8_t>((FAST_HOLEY_ELEMENTS + 1) <<
5693 Map::ElementsKindBits::kShift) - 1;
5694 static const int8_t kMaximumBitField2FastHoleySmiElementValue =
5695 static_cast<int8_t>((FAST_HOLEY_SMI_ELEMENTS + 1) <<
5696 Map::ElementsKindBits::kShift) - 1;
5698 typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
5699 kPointerFieldsEndOffset,
5700 kSize> BodyDescriptor;
5702 // Compares this map to another to see if they describe equivalent objects.
5703 // If |mode| is set to CLEAR_INOBJECT_PROPERTIES, |other| is treated as if
5704 // it had exactly zero inobject properties.
5705 // The "shared" flags of both this map and |other| are ignored.
5706 bool EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode);
5708 // Returns true if given field is unboxed double.
5709 inline bool IsUnboxedDoubleField(FieldIndex index);
5712 static void TraceTransition(const char* what, Map* from, Map* to, Name* name);
5713 static void TraceAllTransitions(Map* map);
5716 static inline Handle<Map> CopyInstallDescriptorsForTesting(
5717 Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
5718 Handle<LayoutDescriptor> layout_descriptor);
5721 static void ConnectTransition(Handle<Map> parent, Handle<Map> child,
5722 Handle<Name> name, SimpleTransitionFlag flag);
5724 bool EquivalentToForTransition(Map* other);
5725 static Handle<Map> RawCopy(Handle<Map> map, int instance_size);
5726 static Handle<Map> ShareDescriptor(Handle<Map> map,
5727 Handle<DescriptorArray> descriptors,
5728 Descriptor* descriptor);
5729 static Handle<Map> CopyInstallDescriptors(
5730 Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
5731 Handle<LayoutDescriptor> layout_descriptor);
5732 static Handle<Map> CopyAddDescriptor(Handle<Map> map,
5733 Descriptor* descriptor,
5734 TransitionFlag flag);
5735 static Handle<Map> CopyReplaceDescriptors(
5736 Handle<Map> map, Handle<DescriptorArray> descriptors,
5737 Handle<LayoutDescriptor> layout_descriptor, TransitionFlag flag,
5738 MaybeHandle<Name> maybe_name, const char* reason,
5739 SimpleTransitionFlag simple_flag);
5741 static Handle<Map> CopyReplaceDescriptor(Handle<Map> map,
5742 Handle<DescriptorArray> descriptors,
5743 Descriptor* descriptor,
5745 TransitionFlag flag);
5746 static MUST_USE_RESULT MaybeHandle<Map> TryReconfigureExistingProperty(
5747 Handle<Map> map, int descriptor, PropertyKind kind,
5748 PropertyAttributes attributes, const char** reason);
5750 static Handle<Map> CopyNormalized(Handle<Map> map,
5751 PropertyNormalizationMode mode);
5753 // Fires when the layout of an object with a leaf map changes.
5754 // This includes adding transitions to the leaf map or changing
5755 // the descriptor array.
5756 inline void NotifyLeafMapLayoutChange();
5758 void DeprecateTransitionTree();
5759 bool DeprecateTarget(PropertyKind kind, Name* key,
5760 PropertyAttributes attributes,
5761 DescriptorArray* new_descriptors,
5762 LayoutDescriptor* new_layout_descriptor);
5764 Map* FindLastMatchMap(int verbatim, int length, DescriptorArray* descriptors);
5766 // Update field type of the given descriptor to new representation and new
5767 // type. The type must be prepared for storing in descriptor array:
5768 // it must be either a simple type or a map wrapped in a weak cell.
5769 void UpdateFieldType(int descriptor_number, Handle<Name> name,
5770 Representation new_representation,
5771 Handle<Object> new_wrapped_type);
5773 void PrintReconfiguration(FILE* file, int modify_index, PropertyKind kind,
5774 PropertyAttributes attributes);
5775 void PrintGeneralization(FILE* file,
5780 bool constant_to_field,
5781 Representation old_representation,
5782 Representation new_representation,
5783 HeapType* old_field_type,
5784 HeapType* new_field_type);
5786 static const int kFastPropertiesSoftLimit = 12;
5787 static const int kMaxFastProperties = 128;
5789 DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
5793 // An abstract superclass, a marker class really, for simple structure classes.
5794 // It doesn't carry much functionality but allows struct classes to be
5795 // identified in the type system.
5796 class Struct: public HeapObject {
5798 inline void InitializeBody(int object_size);
5799 DECLARE_CAST(Struct)
5803 // A simple one-element struct, useful where smis need to be boxed.
5804 class Box : public Struct {
5806 // [value]: the boxed contents.
5807 DECL_ACCESSORS(value, Object)
5811 // Dispatched behavior.
5812 DECLARE_PRINTER(Box)
5813 DECLARE_VERIFIER(Box)
5815 static const int kValueOffset = HeapObject::kHeaderSize;
5816 static const int kSize = kValueOffset + kPointerSize;
5819 DISALLOW_IMPLICIT_CONSTRUCTORS(Box);
5823 // Container for metadata stored on each prototype map.
5824 class PrototypeInfo : public Struct {
5826 static const int UNREGISTERED = -1;
5828 // [prototype_users]: WeakFixedArray containing maps using this prototype,
5829 // or Smi(0) if uninitialized.
5830 DECL_ACCESSORS(prototype_users, Object)
5831 // [registry_slot]: Slot in prototype's user registry where this user
5832 // is stored. Returns UNREGISTERED if this prototype has not been registered.
5833 inline int registry_slot() const;
5834 inline void set_registry_slot(int slot);
5835 // [validity_cell]: Cell containing the validity bit for prototype chains
5836 // going through this object, or Smi(0) if uninitialized.
5837 DECL_ACCESSORS(validity_cell, Object)
5838 // [constructor_name]: User-friendly name of the original constructor.
5839 DECL_ACCESSORS(constructor_name, Object)
5841 DECLARE_CAST(PrototypeInfo)
5843 // Dispatched behavior.
5844 DECLARE_PRINTER(PrototypeInfo)
5845 DECLARE_VERIFIER(PrototypeInfo)
5847 static const int kPrototypeUsersOffset = HeapObject::kHeaderSize;
5848 static const int kRegistrySlotOffset = kPrototypeUsersOffset + kPointerSize;
5849 static const int kValidityCellOffset = kRegistrySlotOffset + kPointerSize;
5850 static const int kConstructorNameOffset = kValidityCellOffset + kPointerSize;
5851 static const int kSize = kConstructorNameOffset + kPointerSize;
5854 DISALLOW_IMPLICIT_CONSTRUCTORS(PrototypeInfo);
5858 // Script describes a script which has been added to the VM.
5859 class Script: public Struct {
5868 // Script compilation types.
5869 enum CompilationType {
5870 COMPILATION_TYPE_HOST = 0,
5871 COMPILATION_TYPE_EVAL = 1
5874 // Script compilation state.
5875 enum CompilationState {
5876 COMPILATION_STATE_INITIAL = 0,
5877 COMPILATION_STATE_COMPILED = 1
5880 // [source]: the script source.
5881 DECL_ACCESSORS(source, Object)
5883 // [name]: the script name.
5884 DECL_ACCESSORS(name, Object)
5886 // [id]: the script id.
5887 DECL_ACCESSORS(id, Smi)
5889 // [line_offset]: script line offset in resource from where it was extracted.
5890 DECL_ACCESSORS(line_offset, Smi)
5892 // [column_offset]: script column offset in resource from where it was
5894 DECL_ACCESSORS(column_offset, Smi)
5896 // [context_data]: context data for the context this script was compiled in.
5897 DECL_ACCESSORS(context_data, Object)
5899 // [wrapper]: the wrapper cache. This is either undefined or a WeakCell.
5900 DECL_ACCESSORS(wrapper, HeapObject)
5902 // [type]: the script type.
5903 DECL_ACCESSORS(type, Smi)
5905 // [line_ends]: FixedArray of line ends positions.
5906 DECL_ACCESSORS(line_ends, Object)
5908 // [eval_from_shared]: for eval scripts the shared funcion info for the
5909 // function from which eval was called.
5910 DECL_ACCESSORS(eval_from_shared, Object)
5912 // [eval_from_instructions_offset]: the instruction offset in the code for the
5913 // function from which eval was called where eval was called.
5914 DECL_ACCESSORS(eval_from_instructions_offset, Smi)
5916 // [shared_function_infos]: weak fixed array containing all shared
5917 // function infos created from this script.
5918 DECL_ACCESSORS(shared_function_infos, Object)
5920 // [flags]: Holds an exciting bitfield.
5921 DECL_ACCESSORS(flags, Smi)
5923 // [source_url]: sourceURL from magic comment
5924 DECL_ACCESSORS(source_url, Object)
5926 // [source_url]: sourceMappingURL magic comment
5927 DECL_ACCESSORS(source_mapping_url, Object)
5929 // [compilation_type]: how the the script was compiled. Encoded in the
5931 inline CompilationType compilation_type();
5932 inline void set_compilation_type(CompilationType type);
5934 // [compilation_state]: determines whether the script has already been
5935 // compiled. Encoded in the 'flags' field.
5936 inline CompilationState compilation_state();
5937 inline void set_compilation_state(CompilationState state);
5939 // [origin_options]: optional attributes set by the embedder via ScriptOrigin,
5940 // and used by the embedder to make decisions about the script. V8 just passes
5941 // this through. Encoded in the 'flags' field.
5942 inline v8::ScriptOriginOptions origin_options();
5943 inline void set_origin_options(ScriptOriginOptions origin_options);
5945 DECLARE_CAST(Script)
5947 // If script source is an external string, check that the underlying
5948 // resource is accessible. Otherwise, always return true.
5949 inline bool HasValidSource();
5951 // Convert code position into column number.
5952 static int GetColumnNumber(Handle<Script> script, int code_pos);
5954 // Convert code position into (zero-based) line number.
5955 // The non-handlified version does not allocate, but may be much slower.
5956 static int GetLineNumber(Handle<Script> script, int code_pos);
5957 int GetLineNumber(int code_pos);
5959 static Handle<Object> GetNameOrSourceURL(Handle<Script> script);
5961 // Init line_ends array with code positions of line ends inside script source.
5962 static void InitLineEnds(Handle<Script> script);
5964 // Get the JS object wrapping the given script; create it if none exists.
5965 static Handle<JSObject> GetWrapper(Handle<Script> script);
5967 // Look through the list of existing shared function infos to find one
5968 // that matches the function literal. Return empty handle if not found.
5969 MaybeHandle<SharedFunctionInfo> FindSharedFunctionInfo(FunctionLiteral* fun);
5971 // Dispatched behavior.
5972 DECLARE_PRINTER(Script)
5973 DECLARE_VERIFIER(Script)
5975 static const int kSourceOffset = HeapObject::kHeaderSize;
5976 static const int kNameOffset = kSourceOffset + kPointerSize;
5977 static const int kLineOffsetOffset = kNameOffset + kPointerSize;
5978 static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
5979 static const int kContextOffset = kColumnOffsetOffset + kPointerSize;
5980 static const int kWrapperOffset = kContextOffset + kPointerSize;
5981 static const int kTypeOffset = kWrapperOffset + kPointerSize;
5982 static const int kLineEndsOffset = kTypeOffset + kPointerSize;
5983 static const int kIdOffset = kLineEndsOffset + kPointerSize;
5984 static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
5985 static const int kEvalFrominstructionsOffsetOffset =
5986 kEvalFromSharedOffset + kPointerSize;
5987 static const int kSharedFunctionInfosOffset =
5988 kEvalFrominstructionsOffsetOffset + kPointerSize;
5989 static const int kFlagsOffset = kSharedFunctionInfosOffset + kPointerSize;
5990 static const int kSourceUrlOffset = kFlagsOffset + kPointerSize;
5991 static const int kSourceMappingUrlOffset = kSourceUrlOffset + kPointerSize;
5992 static const int kSize = kSourceMappingUrlOffset + kPointerSize;
5995 int GetLineNumberWithArray(int code_pos);
5997 // Bit positions in the flags field.
5998 static const int kCompilationTypeBit = 0;
5999 static const int kCompilationStateBit = 1;
6000 static const int kOriginOptionsShift = 2;
6001 static const int kOriginOptionsSize = 3;
6002 static const int kOriginOptionsMask = ((1 << kOriginOptionsSize) - 1)
6003 << kOriginOptionsShift;
6005 DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
6009 // List of builtin functions we want to identify to improve code
6012 // Each entry has a name of a global object property holding an object
6013 // optionally followed by ".prototype", a name of a builtin function
6014 // on the object (the one the id is set for), and a label.
6016 // Installation of ids for the selected builtin functions is handled
6017 // by the bootstrapper.
6018 #define FUNCTIONS_WITH_ID_LIST(V) \
6019 V(Array.prototype, indexOf, ArrayIndexOf) \
6020 V(Array.prototype, lastIndexOf, ArrayLastIndexOf) \
6021 V(Array.prototype, push, ArrayPush) \
6022 V(Array.prototype, pop, ArrayPop) \
6023 V(Array.prototype, shift, ArrayShift) \
6024 V(Function.prototype, apply, FunctionApply) \
6025 V(Function.prototype, call, FunctionCall) \
6026 V(String.prototype, charCodeAt, StringCharCodeAt) \
6027 V(String.prototype, charAt, StringCharAt) \
6028 V(String, fromCharCode, StringFromCharCode) \
6029 V(Math, random, MathRandom) \
6030 V(Math, floor, MathFloor) \
6031 V(Math, round, MathRound) \
6032 V(Math, ceil, MathCeil) \
6033 V(Math, abs, MathAbs) \
6034 V(Math, log, MathLog) \
6035 V(Math, exp, MathExp) \
6036 V(Math, sqrt, MathSqrt) \
6037 V(Math, pow, MathPow) \
6038 V(Math, max, MathMax) \
6039 V(Math, min, MathMin) \
6040 V(Math, cos, MathCos) \
6041 V(Math, sin, MathSin) \
6042 V(Math, tan, MathTan) \
6043 V(Math, acos, MathAcos) \
6044 V(Math, asin, MathAsin) \
6045 V(Math, atan, MathAtan) \
6046 V(Math, atan2, MathAtan2) \
6047 V(Math, imul, MathImul) \
6048 V(Math, clz32, MathClz32) \
6049 V(Math, fround, MathFround)
6051 #define ATOMIC_FUNCTIONS_WITH_ID_LIST(V) \
6052 V(Atomics, load, AtomicsLoad) \
6053 V(Atomics, store, AtomicsStore)
6055 enum BuiltinFunctionId {
6057 #define DECLARE_FUNCTION_ID(ignored1, ignore2, name) \
6059 FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
6060 ATOMIC_FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
6061 #undef DECLARE_FUNCTION_ID
6062 // Fake id for a special case of Math.pow. Note, it continues the
6063 // list of math functions.
6068 // Result of searching in an optimized code map of a SharedFunctionInfo. Note
6069 // that both {code} and {literals} can be NULL to pass search result status.
6070 struct CodeAndLiterals {
6071 Code* code; // Cached optimized code.
6072 FixedArray* literals; // Cached literals array.
6076 // SharedFunctionInfo describes the JSFunction information that can be
6077 // shared by multiple instances of the function.
6078 class SharedFunctionInfo: public HeapObject {
6080 // [name]: Function name.
6081 DECL_ACCESSORS(name, Object)
6083 // [code]: Function code.
6084 DECL_ACCESSORS(code, Code)
6085 inline void ReplaceCode(Code* code);
6087 // [optimized_code_map]: Map from native context to optimized code
6088 // and a shared literals array or Smi(0) if none.
6089 DECL_ACCESSORS(optimized_code_map, Object)
6091 // Returns entry from optimized code map for specified context and OSR entry.
6092 // Note that {code == nullptr} indicates no matching entry has been found,
6093 // whereas {literals == nullptr} indicates the code is context-independent.
6094 CodeAndLiterals SearchOptimizedCodeMap(Context* native_context,
6095 BailoutId osr_ast_id);
6097 // Clear optimized code map.
6098 void ClearOptimizedCodeMap();
6100 // Removed a specific optimized code object from the optimized code map.
6101 void EvictFromOptimizedCodeMap(Code* optimized_code, const char* reason);
6103 // Trims the optimized code map after entries have been removed.
6104 void TrimOptimizedCodeMap(int shrink_by);
6106 // Add a new entry to the optimized code map for context-independent code.
6107 static void AddSharedCodeToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
6110 // Add a new entry to the optimized code map for context-dependent code.
6111 static void AddToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
6112 Handle<Context> native_context,
6114 Handle<FixedArray> literals,
6115 BailoutId osr_ast_id);
6117 // Set up the link between shared function info and the script. The shared
6118 // function info is added to the list on the script.
6119 static void SetScript(Handle<SharedFunctionInfo> shared,
6120 Handle<Object> script_object);
6122 // Layout description of the optimized code map.
6123 static const int kNextMapIndex = 0;
6124 static const int kSharedCodeIndex = 1;
6125 static const int kEntriesStart = 2;
6126 static const int kContextOffset = 0;
6127 static const int kCachedCodeOffset = 1;
6128 static const int kLiteralsOffset = 2;
6129 static const int kOsrAstIdOffset = 3;
6130 static const int kEntryLength = 4;
6131 static const int kInitialLength = kEntriesStart + kEntryLength;
6133 // [scope_info]: Scope info.
6134 DECL_ACCESSORS(scope_info, ScopeInfo)
6136 // [construct stub]: Code stub for constructing instances of this function.
6137 DECL_ACCESSORS(construct_stub, Code)
6139 // Returns if this function has been compiled to native code yet.
6140 inline bool is_compiled();
6142 // [length]: The function length - usually the number of declared parameters.
6143 // Use up to 2^30 parameters.
6144 inline int length() const;
6145 inline void set_length(int value);
6147 // [internal formal parameter count]: The declared number of parameters.
6148 // For subclass constructors, also includes new.target.
6149 // The size of function's frame is internal_formal_parameter_count + 1.
6150 inline int internal_formal_parameter_count() const;
6151 inline void set_internal_formal_parameter_count(int value);
6153 // Set the formal parameter count so the function code will be
6154 // called without using argument adaptor frames.
6155 inline void DontAdaptArguments();
6157 // [expected_nof_properties]: Expected number of properties for the function.
6158 inline int expected_nof_properties() const;
6159 inline void set_expected_nof_properties(int value);
6161 // [feedback_vector] - accumulates ast node feedback from full-codegen and
6162 // (increasingly) from crankshafted code where sufficient feedback isn't
6164 DECL_ACCESSORS(feedback_vector, TypeFeedbackVector)
6166 // Unconditionally clear the type feedback vector (including vector ICs).
6167 void ClearTypeFeedbackInfo();
6169 // Clear the type feedback vector with a more subtle policy at GC time.
6170 void ClearTypeFeedbackInfoAtGCTime();
6173 // [unique_id] - For --trace-maps purposes, an identifier that's persistent
6174 // even if the GC moves this SharedFunctionInfo.
6175 inline int unique_id() const;
6176 inline void set_unique_id(int value);
6179 // [instance class name]: class name for instances.
6180 DECL_ACCESSORS(instance_class_name, Object)
6182 // [function data]: This field holds some additional data for function.
6183 // Currently it has one of:
6184 // - a FunctionTemplateInfo to make benefit the API [IsApiFunction()].
6185 // - a Smi identifying a builtin function [HasBuiltinFunctionId()].
6186 // - a BytecodeArray for the interpreter [HasBytecodeArray()].
6187 // In the long run we don't want all functions to have this field but
6188 // we can fix that when we have a better model for storing hidden data
6190 DECL_ACCESSORS(function_data, Object)
6192 inline bool IsApiFunction();
6193 inline FunctionTemplateInfo* get_api_func_data();
6194 inline bool HasBuiltinFunctionId();
6195 inline BuiltinFunctionId builtin_function_id();
6196 inline bool HasBytecodeArray();
6197 inline BytecodeArray* bytecode_array();
6199 // [script info]: Script from which the function originates.
6200 DECL_ACCESSORS(script, Object)
6202 // [num_literals]: Number of literals used by this function.
6203 inline int num_literals() const;
6204 inline void set_num_literals(int value);
6206 // [start_position_and_type]: Field used to store both the source code
6207 // position, whether or not the function is a function expression,
6208 // and whether or not the function is a toplevel function. The two
6209 // least significants bit indicates whether the function is an
6210 // expression and the rest contains the source code position.
6211 inline int start_position_and_type() const;
6212 inline void set_start_position_and_type(int value);
6214 // The function is subject to debugging if a debug info is attached.
6215 inline bool HasDebugInfo();
6216 inline DebugInfo* GetDebugInfo();
6218 // A function has debug code if the compiled code has debug break slots.
6219 inline bool HasDebugCode();
6221 // [debug info]: Debug information.
6222 DECL_ACCESSORS(debug_info, Object)
6224 // [inferred name]: Name inferred from variable or property
6225 // assignment of this function. Used to facilitate debugging and
6226 // profiling of JavaScript code written in OO style, where almost
6227 // all functions are anonymous but are assigned to object
6229 DECL_ACCESSORS(inferred_name, String)
6231 // The function's name if it is non-empty, otherwise the inferred name.
6232 String* DebugName();
6234 // Position of the 'function' token in the script source.
6235 inline int function_token_position() const;
6236 inline void set_function_token_position(int function_token_position);
6238 // Position of this function in the script source.
6239 inline int start_position() const;
6240 inline void set_start_position(int start_position);
6242 // End position of this function in the script source.
6243 inline int end_position() const;
6244 inline void set_end_position(int end_position);
6246 // Is this function a function expression in the source code.
6247 DECL_BOOLEAN_ACCESSORS(is_expression)
6249 // Is this function a top-level function (scripts, evals).
6250 DECL_BOOLEAN_ACCESSORS(is_toplevel)
6252 // Bit field containing various information collected by the compiler to
6253 // drive optimization.
6254 inline int compiler_hints() const;
6255 inline void set_compiler_hints(int value);
6257 inline int ast_node_count() const;
6258 inline void set_ast_node_count(int count);
6260 inline int profiler_ticks() const;
6261 inline void set_profiler_ticks(int ticks);
6263 // Inline cache age is used to infer whether the function survived a context
6264 // disposal or not. In the former case we reset the opt_count.
6265 inline int ic_age();
6266 inline void set_ic_age(int age);
6268 // Indicates if this function can be lazy compiled.
6269 // This is used to determine if we can safely flush code from a function
6270 // when doing GC if we expect that the function will no longer be used.
6271 DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation)
6273 // Indicates if this function can be lazy compiled without a context.
6274 // This is used to determine if we can force compilation without reaching
6275 // the function through program execution but through other means (e.g. heap
6276 // iteration by the debugger).
6277 DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation_without_context)
6279 // Indicates whether optimizations have been disabled for this
6280 // shared function info. If a function is repeatedly optimized or if
6281 // we cannot optimize the function we disable optimization to avoid
6282 // spending time attempting to optimize it again.
6283 DECL_BOOLEAN_ACCESSORS(optimization_disabled)
6285 // Indicates the language mode.
6286 inline LanguageMode language_mode();
6287 inline void set_language_mode(LanguageMode language_mode);
6289 // False if the function definitely does not allocate an arguments object.
6290 DECL_BOOLEAN_ACCESSORS(uses_arguments)
6292 // Indicates that this function uses a super property (or an eval that may
6293 // use a super property).
6294 // This is needed to set up the [[HomeObject]] on the function instance.
6295 DECL_BOOLEAN_ACCESSORS(needs_home_object)
6297 // True if the function has any duplicated parameter names.
6298 DECL_BOOLEAN_ACCESSORS(has_duplicate_parameters)
6300 // Indicates whether the function is a native function.
6301 // These needs special treatment in .call and .apply since
6302 // null passed as the receiver should not be translated to the
6304 DECL_BOOLEAN_ACCESSORS(native)
6306 // Indicate that this function should always be inlined in optimized code.
6307 DECL_BOOLEAN_ACCESSORS(force_inline)
6309 // Indicates that the function was created by the Function function.
6310 // Though it's anonymous, toString should treat it as if it had the name
6311 // "anonymous". We don't set the name itself so that the system does not
6312 // see a binding for it.
6313 DECL_BOOLEAN_ACCESSORS(name_should_print_as_anonymous)
6315 // Indicates whether the function is a bound function created using
6316 // the bind function.
6317 DECL_BOOLEAN_ACCESSORS(bound)
6319 // Indicates that the function is anonymous (the name field can be set
6320 // through the API, which does not change this flag).
6321 DECL_BOOLEAN_ACCESSORS(is_anonymous)
6323 // Is this a function or top-level/eval code.
6324 DECL_BOOLEAN_ACCESSORS(is_function)
6326 // Indicates that code for this function cannot be compiled with Crankshaft.
6327 DECL_BOOLEAN_ACCESSORS(dont_crankshaft)
6329 // Indicates that code for this function cannot be flushed.
6330 DECL_BOOLEAN_ACCESSORS(dont_flush)
6332 // Indicates that this function is a generator.
6333 DECL_BOOLEAN_ACCESSORS(is_generator)
6335 // Indicates that this function is an arrow function.
6336 DECL_BOOLEAN_ACCESSORS(is_arrow)
6338 // Indicates that this function is a concise method.
6339 DECL_BOOLEAN_ACCESSORS(is_concise_method)
6341 // Indicates that this function is an accessor (getter or setter).
6342 DECL_BOOLEAN_ACCESSORS(is_accessor_function)
6344 // Indicates that this function is a default constructor.
6345 DECL_BOOLEAN_ACCESSORS(is_default_constructor)
6347 // Indicates that this function is an asm function.
6348 DECL_BOOLEAN_ACCESSORS(asm_function)
6350 // Indicates that the the shared function info is deserialized from cache.
6351 DECL_BOOLEAN_ACCESSORS(deserialized)
6353 // Indicates that the the shared function info has never been compiled before.
6354 DECL_BOOLEAN_ACCESSORS(never_compiled)
6356 inline FunctionKind kind();
6357 inline void set_kind(FunctionKind kind);
6359 // Indicates whether or not the code in the shared function support
6361 inline bool has_deoptimization_support();
6363 // Enable deoptimization support through recompiled code.
6364 void EnableDeoptimizationSupport(Code* recompiled);
6366 // Disable (further) attempted optimization of all functions sharing this
6367 // shared function info.
6368 void DisableOptimization(BailoutReason reason);
6370 inline BailoutReason disable_optimization_reason();
6372 // Lookup the bailout ID and DCHECK that it exists in the non-optimized
6373 // code, returns whether it asserted (i.e., always true if assertions are
6375 bool VerifyBailoutId(BailoutId id);
6377 // [source code]: Source code for the function.
6378 bool HasSourceCode() const;
6379 Handle<Object> GetSourceCode();
6381 // Number of times the function was optimized.
6382 inline int opt_count();
6383 inline void set_opt_count(int opt_count);
6385 // Number of times the function was deoptimized.
6386 inline void set_deopt_count(int value);
6387 inline int deopt_count();
6388 inline void increment_deopt_count();
6390 // Number of time we tried to re-enable optimization after it
6391 // was disabled due to high number of deoptimizations.
6392 inline void set_opt_reenable_tries(int value);
6393 inline int opt_reenable_tries();
6395 inline void TryReenableOptimization();
6397 // Stores deopt_count, opt_reenable_tries and ic_age as bit-fields.
6398 inline void set_counters(int value);
6399 inline int counters() const;
6401 // Stores opt_count and bailout_reason as bit-fields.
6402 inline void set_opt_count_and_bailout_reason(int value);
6403 inline int opt_count_and_bailout_reason() const;
6405 inline void set_disable_optimization_reason(BailoutReason reason);
6407 // Tells whether this function should be subject to debugging.
6408 inline bool IsSubjectToDebugging();
6410 // Check whether or not this function is inlineable.
6411 bool IsInlineable();
6413 // Source size of this function.
6416 // Calculate the instance size.
6417 int CalculateInstanceSize();
6419 // Calculate the number of in-object properties.
6420 int CalculateInObjectProperties();
6422 inline bool has_simple_parameters();
6424 // Initialize a SharedFunctionInfo from a parsed function literal.
6425 static void InitFromFunctionLiteral(Handle<SharedFunctionInfo> shared_info,
6426 FunctionLiteral* lit);
6428 // Dispatched behavior.
6429 DECLARE_PRINTER(SharedFunctionInfo)
6430 DECLARE_VERIFIER(SharedFunctionInfo)
6432 void ResetForNewContext(int new_ic_age);
6434 DECLARE_CAST(SharedFunctionInfo)
6437 static const int kDontAdaptArgumentsSentinel = -1;
6439 // Layout description.
6441 static const int kNameOffset = HeapObject::kHeaderSize;
6442 static const int kCodeOffset = kNameOffset + kPointerSize;
6443 static const int kOptimizedCodeMapOffset = kCodeOffset + kPointerSize;
6444 static const int kScopeInfoOffset = kOptimizedCodeMapOffset + kPointerSize;
6445 static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize;
6446 static const int kInstanceClassNameOffset =
6447 kConstructStubOffset + kPointerSize;
6448 static const int kFunctionDataOffset =
6449 kInstanceClassNameOffset + kPointerSize;
6450 static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
6451 static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
6452 static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
6453 static const int kFeedbackVectorOffset =
6454 kInferredNameOffset + kPointerSize;
6456 static const int kUniqueIdOffset = kFeedbackVectorOffset + kPointerSize;
6457 static const int kLastPointerFieldOffset = kUniqueIdOffset;
6459 // Just to not break the postmortrem support with conditional offsets
6460 static const int kUniqueIdOffset = kFeedbackVectorOffset;
6461 static const int kLastPointerFieldOffset = kFeedbackVectorOffset;
6464 #if V8_HOST_ARCH_32_BIT
6466 static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
6467 static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
6468 static const int kExpectedNofPropertiesOffset =
6469 kFormalParameterCountOffset + kPointerSize;
6470 static const int kNumLiteralsOffset =
6471 kExpectedNofPropertiesOffset + kPointerSize;
6472 static const int kStartPositionAndTypeOffset =
6473 kNumLiteralsOffset + kPointerSize;
6474 static const int kEndPositionOffset =
6475 kStartPositionAndTypeOffset + kPointerSize;
6476 static const int kFunctionTokenPositionOffset =
6477 kEndPositionOffset + kPointerSize;
6478 static const int kCompilerHintsOffset =
6479 kFunctionTokenPositionOffset + kPointerSize;
6480 static const int kOptCountAndBailoutReasonOffset =
6481 kCompilerHintsOffset + kPointerSize;
6482 static const int kCountersOffset =
6483 kOptCountAndBailoutReasonOffset + kPointerSize;
6484 static const int kAstNodeCountOffset =
6485 kCountersOffset + kPointerSize;
6486 static const int kProfilerTicksOffset =
6487 kAstNodeCountOffset + kPointerSize;
6490 static const int kSize = kProfilerTicksOffset + kPointerSize;
6492 // The only reason to use smi fields instead of int fields
6493 // is to allow iteration without maps decoding during
6494 // garbage collections.
6495 // To avoid wasting space on 64-bit architectures we use
6496 // the following trick: we group integer fields into pairs
6497 // The least significant integer in each pair is shifted left by 1.
6498 // By doing this we guarantee that LSB of each kPointerSize aligned
6499 // word is not set and thus this word cannot be treated as pointer
6500 // to HeapObject during old space traversal.
6501 #if V8_TARGET_LITTLE_ENDIAN
6502 static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
6503 static const int kFormalParameterCountOffset =
6504 kLengthOffset + kIntSize;
6506 static const int kExpectedNofPropertiesOffset =
6507 kFormalParameterCountOffset + kIntSize;
6508 static const int kNumLiteralsOffset =
6509 kExpectedNofPropertiesOffset + kIntSize;
6511 static const int kEndPositionOffset =
6512 kNumLiteralsOffset + kIntSize;
6513 static const int kStartPositionAndTypeOffset =
6514 kEndPositionOffset + kIntSize;
6516 static const int kFunctionTokenPositionOffset =
6517 kStartPositionAndTypeOffset + kIntSize;
6518 static const int kCompilerHintsOffset =
6519 kFunctionTokenPositionOffset + kIntSize;
6521 static const int kOptCountAndBailoutReasonOffset =
6522 kCompilerHintsOffset + kIntSize;
6523 static const int kCountersOffset =
6524 kOptCountAndBailoutReasonOffset + kIntSize;
6526 static const int kAstNodeCountOffset =
6527 kCountersOffset + kIntSize;
6528 static const int kProfilerTicksOffset =
6529 kAstNodeCountOffset + kIntSize;
6532 static const int kSize = kProfilerTicksOffset + kIntSize;
6534 #elif V8_TARGET_BIG_ENDIAN
6535 static const int kFormalParameterCountOffset =
6536 kLastPointerFieldOffset + kPointerSize;
6537 static const int kLengthOffset = kFormalParameterCountOffset + kIntSize;
6539 static const int kNumLiteralsOffset = kLengthOffset + kIntSize;
6540 static const int kExpectedNofPropertiesOffset = kNumLiteralsOffset + kIntSize;
6542 static const int kStartPositionAndTypeOffset =
6543 kExpectedNofPropertiesOffset + kIntSize;
6544 static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;
6546 static const int kCompilerHintsOffset = kEndPositionOffset + kIntSize;
6547 static const int kFunctionTokenPositionOffset =
6548 kCompilerHintsOffset + kIntSize;
6550 static const int kCountersOffset = kFunctionTokenPositionOffset + kIntSize;
6551 static const int kOptCountAndBailoutReasonOffset = kCountersOffset + kIntSize;
6553 static const int kProfilerTicksOffset =
6554 kOptCountAndBailoutReasonOffset + kIntSize;
6555 static const int kAstNodeCountOffset = kProfilerTicksOffset + kIntSize;
6558 static const int kSize = kAstNodeCountOffset + kIntSize;
6561 #error Unknown byte ordering
6562 #endif // Big endian
6566 static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
6568 typedef FixedBodyDescriptor<kNameOffset,
6569 kLastPointerFieldOffset + kPointerSize,
6570 kSize> BodyDescriptor;
6572 // Bit positions in start_position_and_type.
6573 // The source code start position is in the 30 most significant bits of
6574 // the start_position_and_type field.
6575 static const int kIsExpressionBit = 0;
6576 static const int kIsTopLevelBit = 1;
6577 static const int kStartPositionShift = 2;
6578 static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
6580 // Bit positions in compiler_hints.
6581 enum CompilerHints {
6582 kAllowLazyCompilation,
6583 kAllowLazyCompilationWithoutContext,
6584 kOptimizationDisabled,
6585 kStrictModeFunction,
6586 kStrongModeFunction,
6589 kHasDuplicateParameters,
6594 kNameShouldPrintAsAnonymous,
6601 kIsAccessorFunction,
6602 kIsDefaultConstructor,
6603 kIsSubclassConstructor,
6609 kCompilerHintsCount // Pseudo entry
6611 // Add hints for other modes when they're added.
6612 STATIC_ASSERT(LANGUAGE_END == 3);
6614 class FunctionKindBits : public BitField<FunctionKind, kIsArrow, 8> {};
6616 class DeoptCountBits : public BitField<int, 0, 4> {};
6617 class OptReenableTriesBits : public BitField<int, 4, 18> {};
6618 class ICAgeBits : public BitField<int, 22, 8> {};
6620 class OptCountBits : public BitField<int, 0, 22> {};
6621 class DisabledOptimizationReasonBits : public BitField<int, 22, 8> {};
6624 #if V8_HOST_ARCH_32_BIT
6625 // On 32 bit platforms, compiler hints is a smi.
6626 static const int kCompilerHintsSmiTagSize = kSmiTagSize;
6627 static const int kCompilerHintsSize = kPointerSize;
6629 // On 64 bit platforms, compiler hints is not a smi, see comment above.
6630 static const int kCompilerHintsSmiTagSize = 0;
6631 static const int kCompilerHintsSize = kIntSize;
6634 STATIC_ASSERT(SharedFunctionInfo::kCompilerHintsCount <=
6635 SharedFunctionInfo::kCompilerHintsSize * kBitsPerByte);
6638 // Constants for optimizing codegen for strict mode function and
6640 // Allows to use byte-width instructions.
6641 static const int kStrictModeBitWithinByte =
6642 (kStrictModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
6643 static const int kStrongModeBitWithinByte =
6644 (kStrongModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
6646 static const int kNativeBitWithinByte =
6647 (kNative + kCompilerHintsSmiTagSize) % kBitsPerByte;
6649 #if defined(V8_TARGET_LITTLE_ENDIAN)
6650 static const int kStrictModeByteOffset = kCompilerHintsOffset +
6651 (kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
6652 static const int kStrongModeByteOffset =
6653 kCompilerHintsOffset +
6654 (kStrongModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
6655 static const int kNativeByteOffset = kCompilerHintsOffset +
6656 (kNative + kCompilerHintsSmiTagSize) / kBitsPerByte;
6657 #elif defined(V8_TARGET_BIG_ENDIAN)
6658 static const int kStrictModeByteOffset = kCompilerHintsOffset +
6659 (kCompilerHintsSize - 1) -
6660 ((kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
6661 static const int kStrongModeByteOffset =
6662 kCompilerHintsOffset + (kCompilerHintsSize - 1) -
6663 ((kStrongModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
6664 static const int kNativeByteOffset = kCompilerHintsOffset +
6665 (kCompilerHintsSize - 1) -
6666 ((kNative + kCompilerHintsSmiTagSize) / kBitsPerByte);
6668 #error Unknown byte ordering
6672 DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
6676 // Printing support.
6677 struct SourceCodeOf {
6678 explicit SourceCodeOf(SharedFunctionInfo* v, int max = -1)
6679 : value(v), max_length(max) {}
6680 const SharedFunctionInfo* value;
6685 std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v);
6688 class JSGeneratorObject: public JSObject {
6690 // [function]: The function corresponding to this generator object.
6691 DECL_ACCESSORS(function, JSFunction)
6693 // [context]: The context of the suspended computation.
6694 DECL_ACCESSORS(context, Context)
6696 // [receiver]: The receiver of the suspended computation.
6697 DECL_ACCESSORS(receiver, Object)
6699 // [continuation]: Offset into code of continuation.
6701 // A positive offset indicates a suspended generator. The special
6702 // kGeneratorExecuting and kGeneratorClosed values indicate that a generator
6703 // cannot be resumed.
6704 inline int continuation() const;
6705 inline void set_continuation(int continuation);
6706 inline bool is_closed();
6707 inline bool is_executing();
6708 inline bool is_suspended();
6710 // [operand_stack]: Saved operand stack.
6711 DECL_ACCESSORS(operand_stack, FixedArray)
6713 DECLARE_CAST(JSGeneratorObject)
6715 // Dispatched behavior.
6716 DECLARE_PRINTER(JSGeneratorObject)
6717 DECLARE_VERIFIER(JSGeneratorObject)
6719 // Magic sentinel values for the continuation.
6720 static const int kGeneratorExecuting = -1;
6721 static const int kGeneratorClosed = 0;
6723 // Layout description.
6724 static const int kFunctionOffset = JSObject::kHeaderSize;
6725 static const int kContextOffset = kFunctionOffset + kPointerSize;
6726 static const int kReceiverOffset = kContextOffset + kPointerSize;
6727 static const int kContinuationOffset = kReceiverOffset + kPointerSize;
6728 static const int kOperandStackOffset = kContinuationOffset + kPointerSize;
6729 static const int kSize = kOperandStackOffset + kPointerSize;
6731 // Resume mode, for use by runtime functions.
6732 enum ResumeMode { NEXT, THROW };
6734 // Yielding from a generator returns an object with the following inobject
6735 // properties. See Context::iterator_result_map() for the map.
6736 static const int kResultValuePropertyIndex = 0;
6737 static const int kResultDonePropertyIndex = 1;
6738 static const int kResultPropertyCount = 2;
6740 static const int kResultValuePropertyOffset = JSObject::kHeaderSize;
6741 static const int kResultDonePropertyOffset =
6742 kResultValuePropertyOffset + kPointerSize;
6743 static const int kResultSize = kResultDonePropertyOffset + kPointerSize;
6746 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGeneratorObject);
6750 // Representation for module instance objects.
6751 class JSModule: public JSObject {
6753 // [context]: the context holding the module's locals, or undefined if none.
6754 DECL_ACCESSORS(context, Object)
6756 // [scope_info]: Scope info.
6757 DECL_ACCESSORS(scope_info, ScopeInfo)
6759 DECLARE_CAST(JSModule)
6761 // Dispatched behavior.
6762 DECLARE_PRINTER(JSModule)
6763 DECLARE_VERIFIER(JSModule)
6765 // Layout description.
6766 static const int kContextOffset = JSObject::kHeaderSize;
6767 static const int kScopeInfoOffset = kContextOffset + kPointerSize;
6768 static const int kSize = kScopeInfoOffset + kPointerSize;
6771 DISALLOW_IMPLICIT_CONSTRUCTORS(JSModule);
6775 // JSFunction describes JavaScript functions.
6776 class JSFunction: public JSObject {
6778 // [prototype_or_initial_map]:
6779 DECL_ACCESSORS(prototype_or_initial_map, Object)
6781 // [shared]: The information about the function that
6782 // can be shared by instances.
6783 DECL_ACCESSORS(shared, SharedFunctionInfo)
6785 // [context]: The context for this function.
6786 inline Context* context();
6787 inline void set_context(Object* context);
6788 inline JSObject* global_proxy();
6790 // [code]: The generated code object for this function. Executed
6791 // when the function is invoked, e.g. foo() or new foo(). See
6792 // [[Call]] and [[Construct]] description in ECMA-262, section
6794 inline Code* code();
6795 inline void set_code(Code* code);
6796 inline void set_code_no_write_barrier(Code* code);
6797 inline void ReplaceCode(Code* code);
6799 // Tells whether this function is builtin.
6800 inline bool IsBuiltin();
6802 // Tells whether this function inlines the given shared function info.
6803 bool Inlines(SharedFunctionInfo* candidate);
6805 // Tells whether this function should be subject to debugging.
6806 inline bool IsSubjectToDebugging();
6808 // Tells whether or not the function needs arguments adaption.
6809 inline bool NeedsArgumentsAdaption();
6811 // Tells whether or not this function has been optimized.
6812 inline bool IsOptimized();
6814 // Mark this function for lazy recompilation. The function will be
6815 // recompiled the next time it is executed.
6816 void MarkForOptimization();
6817 void AttemptConcurrentOptimization();
6819 // Tells whether or not the function is already marked for lazy
6821 inline bool IsMarkedForOptimization();
6822 inline bool IsMarkedForConcurrentOptimization();
6824 // Tells whether or not the function is on the concurrent recompilation queue.
6825 inline bool IsInOptimizationQueue();
6827 // Inobject slack tracking is the way to reclaim unused inobject space.
6829 // The instance size is initially determined by adding some slack to
6830 // expected_nof_properties (to allow for a few extra properties added
6831 // after the constructor). There is no guarantee that the extra space
6832 // will not be wasted.
6834 // Here is the algorithm to reclaim the unused inobject space:
6835 // - Detect the first constructor call for this JSFunction.
6836 // When it happens enter the "in progress" state: initialize construction
6837 // counter in the initial_map.
6838 // - While the tracking is in progress create objects filled with
6839 // one_pointer_filler_map instead of undefined_value. This way they can be
6840 // resized quickly and safely.
6841 // - Once enough objects have been created compute the 'slack'
6842 // (traverse the map transition tree starting from the
6843 // initial_map and find the lowest value of unused_property_fields).
6844 // - Traverse the transition tree again and decrease the instance size
6845 // of every map. Existing objects will resize automatically (they are
6846 // filled with one_pointer_filler_map). All further allocations will
6847 // use the adjusted instance size.
6848 // - SharedFunctionInfo's expected_nof_properties left unmodified since
6849 // allocations made using different closures could actually create different
6850 // kind of objects (see prototype inheritance pattern).
6852 // Important: inobject slack tracking is not attempted during the snapshot
6855 // True if the initial_map is set and the object constructions countdown
6856 // counter is not zero.
6857 static const int kGenerousAllocationCount =
6858 Map::kSlackTrackingCounterStart - Map::kSlackTrackingCounterEnd + 1;
6859 inline bool IsInobjectSlackTrackingInProgress();
6861 // Starts the tracking.
6862 // Initializes object constructions countdown counter in the initial map.
6863 void StartInobjectSlackTracking();
6865 // Completes the tracking.
6866 void CompleteInobjectSlackTracking();
6868 // [literals_or_bindings]: Fixed array holding either
6869 // the materialized literals or the bindings of a bound function.
6871 // If the function contains object, regexp or array literals, the
6872 // literals array prefix contains the object, regexp, and array
6873 // function to be used when creating these literals. This is
6874 // necessary so that we do not dynamically lookup the object, regexp
6875 // or array functions. Performing a dynamic lookup, we might end up
6876 // using the functions from a new context that we should not have
6879 // On bound functions, the array is a (copy-on-write) fixed-array containing
6880 // the function that was bound, bound this-value and any bound
6881 // arguments. Bound functions never contain literals.
6882 DECL_ACCESSORS(literals_or_bindings, FixedArray)
6884 inline FixedArray* literals();
6885 inline void set_literals(FixedArray* literals);
6887 inline FixedArray* function_bindings();
6888 inline void set_function_bindings(FixedArray* bindings);
6890 // The initial map for an object created by this constructor.
6891 inline Map* initial_map();
6892 static void SetInitialMap(Handle<JSFunction> function, Handle<Map> map,
6893 Handle<Object> prototype);
6894 inline bool has_initial_map();
6895 static void EnsureHasInitialMap(Handle<JSFunction> function);
6897 // Get and set the prototype property on a JSFunction. If the
6898 // function has an initial map the prototype is set on the initial
6899 // map. Otherwise, the prototype is put in the initial map field
6900 // until an initial map is needed.
6901 inline bool has_prototype();
6902 inline bool has_instance_prototype();
6903 inline Object* prototype();
6904 inline Object* instance_prototype();
6905 static void SetPrototype(Handle<JSFunction> function,
6906 Handle<Object> value);
6907 static void SetInstancePrototype(Handle<JSFunction> function,
6908 Handle<Object> value);
6910 // Creates a new closure for the fucntion with the same bindings,
6911 // bound values, and prototype. An equivalent of spec operations
6912 // ``CloneMethod`` and ``CloneBoundFunction``.
6913 static Handle<JSFunction> CloneClosure(Handle<JSFunction> function);
6915 // After prototype is removed, it will not be created when accessed, and
6916 // [[Construct]] from this function will not be allowed.
6917 bool RemovePrototype();
6918 inline bool should_have_prototype();
6920 // Accessor for this function's initial map's [[class]]
6921 // property. This is primarily used by ECMA native functions. This
6922 // method sets the class_name field of this function's initial map
6923 // to a given value. It creates an initial map if this function does
6924 // not have one. Note that this method does not copy the initial map
6925 // if it has one already, but simply replaces it with the new value.
6926 // Instances created afterwards will have a map whose [[class]] is
6927 // set to 'value', but there is no guarantees on instances created
6929 void SetInstanceClassName(String* name);
6931 // Returns if this function has been compiled to native code yet.
6932 inline bool is_compiled();
6934 // Returns `false` if formal parameters include rest parameters, optional
6935 // parameters, or destructuring parameters.
6936 // TODO(caitp): make this a flag set during parsing
6937 inline bool has_simple_parameters();
6939 // [next_function_link]: Links functions into various lists, e.g. the list
6940 // of optimized functions hanging off the native_context. The CodeFlusher
6941 // uses this link to chain together flushing candidates. Treated weakly
6942 // by the garbage collector.
6943 DECL_ACCESSORS(next_function_link, Object)
6945 // Prints the name of the function using PrintF.
6946 void PrintName(FILE* out = stdout);
6948 DECLARE_CAST(JSFunction)
6950 // Iterates the objects, including code objects indirectly referenced
6951 // through pointers to the first instruction in the code object.
6952 void JSFunctionIterateBody(int object_size, ObjectVisitor* v);
6954 // Dispatched behavior.
6955 DECLARE_PRINTER(JSFunction)
6956 DECLARE_VERIFIER(JSFunction)
6958 // Returns the number of allocated literals.
6959 inline int NumberOfLiterals();
6961 // Used for flags such as --hydrogen-filter.
6962 bool PassesFilter(const char* raw_filter);
6964 // The function's name if it is configured, otherwise shared function info
6966 static Handle<String> GetDebugName(Handle<JSFunction> function);
6968 // Layout descriptors. The last property (from kNonWeakFieldsEndOffset to
6969 // kSize) is weak and has special handling during garbage collection.
6970 static const int kCodeEntryOffset = JSObject::kHeaderSize;
6971 static const int kPrototypeOrInitialMapOffset =
6972 kCodeEntryOffset + kPointerSize;
6973 static const int kSharedFunctionInfoOffset =
6974 kPrototypeOrInitialMapOffset + kPointerSize;
6975 static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
6976 static const int kLiteralsOffset = kContextOffset + kPointerSize;
6977 static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize;
6978 static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset;
6979 static const int kSize = kNextFunctionLinkOffset + kPointerSize;
6981 // Layout of the bound-function binding array.
6982 static const int kBoundFunctionIndex = 0;
6983 static const int kBoundThisIndex = 1;
6984 static const int kBoundArgumentsStartIndex = 2;
6987 DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
6991 // JSGlobalProxy's prototype must be a JSGlobalObject or null,
6992 // and the prototype is hidden. JSGlobalProxy always delegates
6993 // property accesses to its prototype if the prototype is not null.
6995 // A JSGlobalProxy can be reinitialized which will preserve its identity.
6997 // Accessing a JSGlobalProxy requires security check.
6999 class JSGlobalProxy : public JSObject {
7001 // [native_context]: the owner native context of this global proxy object.
7002 // It is null value if this object is not used by any context.
7003 DECL_ACCESSORS(native_context, Object)
7005 // [hash]: The hash code property (undefined if not initialized yet).
7006 DECL_ACCESSORS(hash, Object)
7008 DECLARE_CAST(JSGlobalProxy)
7010 inline bool IsDetachedFrom(GlobalObject* global) const;
7012 // Dispatched behavior.
7013 DECLARE_PRINTER(JSGlobalProxy)
7014 DECLARE_VERIFIER(JSGlobalProxy)
7016 // Layout description.
7017 static const int kNativeContextOffset = JSObject::kHeaderSize;
7018 static const int kHashOffset = kNativeContextOffset + kPointerSize;
7019 static const int kSize = kHashOffset + kPointerSize;
7022 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
7026 // Common super class for JavaScript global objects and the special
7027 // builtins global objects.
7028 class GlobalObject: public JSObject {
7030 // [builtins]: the object holding the runtime routines written in JS.
7031 DECL_ACCESSORS(builtins, JSBuiltinsObject)
7033 // [native context]: the natives corresponding to this global object.
7034 DECL_ACCESSORS(native_context, Context)
7036 // [global proxy]: the global proxy object of the context
7037 DECL_ACCESSORS(global_proxy, JSObject)
7039 DECLARE_CAST(GlobalObject)
7041 static void InvalidatePropertyCell(Handle<GlobalObject> object,
7043 // Ensure that the global object has a cell for the given property name.
7044 static Handle<PropertyCell> EnsurePropertyCell(Handle<GlobalObject> global,
7047 // Layout description.
7048 static const int kBuiltinsOffset = JSObject::kHeaderSize;
7049 static const int kNativeContextOffset = kBuiltinsOffset + kPointerSize;
7050 static const int kGlobalProxyOffset = kNativeContextOffset + kPointerSize;
7051 static const int kHeaderSize = kGlobalProxyOffset + kPointerSize;
7054 DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
7058 // JavaScript global object.
7059 class JSGlobalObject: public GlobalObject {
7061 DECLARE_CAST(JSGlobalObject)
7063 inline bool IsDetached();
7065 // Dispatched behavior.
7066 DECLARE_PRINTER(JSGlobalObject)
7067 DECLARE_VERIFIER(JSGlobalObject)
7069 // Layout description.
7070 static const int kSize = GlobalObject::kHeaderSize;
7073 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
7077 // Builtins global object which holds the runtime routines written in
7079 class JSBuiltinsObject: public GlobalObject {
7081 // Accessors for the runtime routines written in JavaScript.
7082 inline Object* javascript_builtin(Builtins::JavaScript id);
7083 inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
7085 DECLARE_CAST(JSBuiltinsObject)
7087 // Dispatched behavior.
7088 DECLARE_PRINTER(JSBuiltinsObject)
7089 DECLARE_VERIFIER(JSBuiltinsObject)
7091 // Layout description. The size of the builtins object includes
7092 // room for two pointers per runtime routine written in javascript
7093 // (function and code object).
7094 static const int kJSBuiltinsCount = Builtins::id_count;
7095 static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
7096 static const int kSize =
7097 GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize);
7099 static int OffsetOfFunctionWithId(Builtins::JavaScript id) {
7100 return kJSBuiltinsOffset + id * kPointerSize;
7104 DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
7108 // Representation for JS Wrapper objects, String, Number, Boolean, etc.
7109 class JSValue: public JSObject {
7111 // [value]: the object being wrapped.
7112 DECL_ACCESSORS(value, Object)
7114 DECLARE_CAST(JSValue)
7116 // Dispatched behavior.
7117 DECLARE_PRINTER(JSValue)
7118 DECLARE_VERIFIER(JSValue)
7120 // Layout description.
7121 static const int kValueOffset = JSObject::kHeaderSize;
7122 static const int kSize = kValueOffset + kPointerSize;
7125 DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
7131 // Representation for JS date objects.
7132 class JSDate: public JSObject {
7134 // If one component is NaN, all of them are, indicating a NaN time value.
7135 // [value]: the time value.
7136 DECL_ACCESSORS(value, Object)
7137 // [year]: caches year. Either undefined, smi, or NaN.
7138 DECL_ACCESSORS(year, Object)
7139 // [month]: caches month. Either undefined, smi, or NaN.
7140 DECL_ACCESSORS(month, Object)
7141 // [day]: caches day. Either undefined, smi, or NaN.
7142 DECL_ACCESSORS(day, Object)
7143 // [weekday]: caches day of week. Either undefined, smi, or NaN.
7144 DECL_ACCESSORS(weekday, Object)
7145 // [hour]: caches hours. Either undefined, smi, or NaN.
7146 DECL_ACCESSORS(hour, Object)
7147 // [min]: caches minutes. Either undefined, smi, or NaN.
7148 DECL_ACCESSORS(min, Object)
7149 // [sec]: caches seconds. Either undefined, smi, or NaN.
7150 DECL_ACCESSORS(sec, Object)
7151 // [cache stamp]: sample of the date cache stamp at the
7152 // moment when chached fields were cached.
7153 DECL_ACCESSORS(cache_stamp, Object)
7155 DECLARE_CAST(JSDate)
7157 // Returns the date field with the specified index.
7158 // See FieldIndex for the list of date fields.
7159 static Object* GetField(Object* date, Smi* index);
7161 void SetValue(Object* value, bool is_value_nan);
7164 // Dispatched behavior.
7165 DECLARE_PRINTER(JSDate)
7166 DECLARE_VERIFIER(JSDate)
7168 // The order is important. It must be kept in sync with date macros
7179 kFirstUncachedField,
7180 kMillisecond = kFirstUncachedField,
7184 kYearUTC = kFirstUTCField,
7197 // Layout description.
7198 static const int kValueOffset = JSObject::kHeaderSize;
7199 static const int kYearOffset = kValueOffset + kPointerSize;
7200 static const int kMonthOffset = kYearOffset + kPointerSize;
7201 static const int kDayOffset = kMonthOffset + kPointerSize;
7202 static const int kWeekdayOffset = kDayOffset + kPointerSize;
7203 static const int kHourOffset = kWeekdayOffset + kPointerSize;
7204 static const int kMinOffset = kHourOffset + kPointerSize;
7205 static const int kSecOffset = kMinOffset + kPointerSize;
7206 static const int kCacheStampOffset = kSecOffset + kPointerSize;
7207 static const int kSize = kCacheStampOffset + kPointerSize;
7210 inline Object* DoGetField(FieldIndex index);
7212 Object* GetUTCField(FieldIndex index, double value, DateCache* date_cache);
7214 // Computes and caches the cacheable fields of the date.
7215 inline void SetCachedFields(int64_t local_time_ms, DateCache* date_cache);
7218 DISALLOW_IMPLICIT_CONSTRUCTORS(JSDate);
7222 // Representation of message objects used for error reporting through
7223 // the API. The messages are formatted in JavaScript so this object is
7224 // a real JavaScript object. The information used for formatting the
7225 // error messages are not directly accessible from JavaScript to
7226 // prevent leaking information to user code called during error
7228 class JSMessageObject: public JSObject {
7230 // [type]: the type of error message.
7231 inline int type() const;
7232 inline void set_type(int value);
7234 // [arguments]: the arguments for formatting the error message.
7235 DECL_ACCESSORS(argument, Object)
7237 // [script]: the script from which the error message originated.
7238 DECL_ACCESSORS(script, Object)
7240 // [stack_frames]: an array of stack frames for this error object.
7241 DECL_ACCESSORS(stack_frames, Object)
7243 // [start_position]: the start position in the script for the error message.
7244 inline int start_position() const;
7245 inline void set_start_position(int value);
7247 // [end_position]: the end position in the script for the error message.
7248 inline int end_position() const;
7249 inline void set_end_position(int value);
7251 DECLARE_CAST(JSMessageObject)
7253 // Dispatched behavior.
7254 DECLARE_PRINTER(JSMessageObject)
7255 DECLARE_VERIFIER(JSMessageObject)
7257 // Layout description.
7258 static const int kTypeOffset = JSObject::kHeaderSize;
7259 static const int kArgumentsOffset = kTypeOffset + kPointerSize;
7260 static const int kScriptOffset = kArgumentsOffset + kPointerSize;
7261 static const int kStackFramesOffset = kScriptOffset + kPointerSize;
7262 static const int kStartPositionOffset = kStackFramesOffset + kPointerSize;
7263 static const int kEndPositionOffset = kStartPositionOffset + kPointerSize;
7264 static const int kSize = kEndPositionOffset + kPointerSize;
7266 typedef FixedBodyDescriptor<HeapObject::kMapOffset,
7267 kStackFramesOffset + kPointerSize,
7268 kSize> BodyDescriptor;
7272 // Regular expressions
7273 // The regular expression holds a single reference to a FixedArray in
7274 // the kDataOffset field.
7275 // The FixedArray contains the following data:
7276 // - tag : type of regexp implementation (not compiled yet, atom or irregexp)
7277 // - reference to the original source string
7278 // - reference to the original flag string
7279 // If it is an atom regexp
7280 // - a reference to a literal string to search for
7281 // If it is an irregexp regexp:
7282 // - a reference to code for Latin1 inputs (bytecode or compiled), or a smi
7283 // used for tracking the last usage (used for code flushing).
7284 // - a reference to code for UC16 inputs (bytecode or compiled), or a smi
7285 // used for tracking the last usage (used for code flushing)..
7286 // - max number of registers used by irregexp implementations.
7287 // - number of capture registers (output values) of the regexp.
7288 class JSRegExp: public JSObject {
7291 // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
7292 // ATOM: A simple string to match against using an indexOf operation.
7293 // IRREGEXP: Compiled with Irregexp.
7294 // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
7295 enum Type { NOT_COMPILED, ATOM, IRREGEXP };
7302 UNICODE_ESCAPES = 16
7307 explicit Flags(uint32_t value) : value_(value) { }
7308 bool is_global() { return (value_ & GLOBAL) != 0; }
7309 bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
7310 bool is_multiline() { return (value_ & MULTILINE) != 0; }
7311 bool is_sticky() { return (value_ & STICKY) != 0; }
7312 bool is_unicode() { return (value_ & UNICODE_ESCAPES) != 0; }
7313 uint32_t value() { return value_; }
7318 DECL_ACCESSORS(data, Object)
7320 inline Type TypeTag();
7321 inline int CaptureCount();
7322 inline Flags GetFlags();
7323 inline String* Pattern();
7324 inline Object* DataAt(int index);
7325 // Set implementation data after the object has been prepared.
7326 inline void SetDataAt(int index, Object* value);
7328 static int code_index(bool is_latin1) {
7330 return kIrregexpLatin1CodeIndex;
7332 return kIrregexpUC16CodeIndex;
7336 static int saved_code_index(bool is_latin1) {
7338 return kIrregexpLatin1CodeSavedIndex;
7340 return kIrregexpUC16CodeSavedIndex;
7344 DECLARE_CAST(JSRegExp)
7346 // Dispatched behavior.
7347 DECLARE_VERIFIER(JSRegExp)
7349 static const int kDataOffset = JSObject::kHeaderSize;
7350 static const int kSize = kDataOffset + kPointerSize;
7352 // Indices in the data array.
7353 static const int kTagIndex = 0;
7354 static const int kSourceIndex = kTagIndex + 1;
7355 static const int kFlagsIndex = kSourceIndex + 1;
7356 static const int kDataIndex = kFlagsIndex + 1;
7357 // The data fields are used in different ways depending on the
7358 // value of the tag.
7359 // Atom regexps (literal strings).
7360 static const int kAtomPatternIndex = kDataIndex;
7362 static const int kAtomDataSize = kAtomPatternIndex + 1;
7364 // Irregexp compiled code or bytecode for Latin1. If compilation
7365 // fails, this fields hold an exception object that should be
7366 // thrown if the regexp is used again.
7367 static const int kIrregexpLatin1CodeIndex = kDataIndex;
7368 // Irregexp compiled code or bytecode for UC16. If compilation
7369 // fails, this fields hold an exception object that should be
7370 // thrown if the regexp is used again.
7371 static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
7373 // Saved instance of Irregexp compiled code or bytecode for Latin1 that
7374 // is a potential candidate for flushing.
7375 static const int kIrregexpLatin1CodeSavedIndex = kDataIndex + 2;
7376 // Saved instance of Irregexp compiled code or bytecode for UC16 that is
7377 // a potential candidate for flushing.
7378 static const int kIrregexpUC16CodeSavedIndex = kDataIndex + 3;
7380 // Maximal number of registers used by either Latin1 or UC16.
7381 // Only used to check that there is enough stack space
7382 static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 4;
7383 // Number of captures in the compiled regexp.
7384 static const int kIrregexpCaptureCountIndex = kDataIndex + 5;
7386 static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
7388 // Offsets directly into the data fixed array.
7389 static const int kDataTagOffset =
7390 FixedArray::kHeaderSize + kTagIndex * kPointerSize;
7391 static const int kDataOneByteCodeOffset =
7392 FixedArray::kHeaderSize + kIrregexpLatin1CodeIndex * kPointerSize;
7393 static const int kDataUC16CodeOffset =
7394 FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
7395 static const int kIrregexpCaptureCountOffset =
7396 FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
7398 // In-object fields.
7399 static const int kSourceFieldIndex = 0;
7400 static const int kGlobalFieldIndex = 1;
7401 static const int kIgnoreCaseFieldIndex = 2;
7402 static const int kMultilineFieldIndex = 3;
7403 static const int kLastIndexFieldIndex = 4;
7404 static const int kInObjectFieldCount = 5;
7406 // The uninitialized value for a regexp code object.
7407 static const int kUninitializedValue = -1;
7409 // The compilation error value for the regexp code object. The real error
7410 // object is in the saved code field.
7411 static const int kCompilationErrorValue = -2;
7413 // When we store the sweep generation at which we moved the code from the
7414 // code index to the saved code index we mask it of to be in the [0:255]
7416 static const int kCodeAgeMask = 0xff;
7420 class CompilationCacheShape : public BaseShape<HashTableKey*> {
7422 static inline bool IsMatch(HashTableKey* key, Object* value) {
7423 return key->IsMatch(value);
7426 static inline uint32_t Hash(HashTableKey* key) {
7430 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
7431 return key->HashForObject(object);
7434 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
7436 static const int kPrefixSize = 0;
7437 static const int kEntrySize = 2;
7441 // This cache is used in two different variants. For regexp caching, it simply
7442 // maps identifying info of the regexp to the cached regexp object. Scripts and
7443 // eval code only gets cached after a second probe for the code object. To do
7444 // so, on first "put" only a hash identifying the source is entered into the
7445 // cache, mapping it to a lifetime count of the hash. On each call to Age all
7446 // such lifetimes get reduced, and removed once they reach zero. If a second put
7447 // is called while such a hash is live in the cache, the hash gets replaced by
7448 // an actual cache entry. Age also removes stale live entries from the cache.
7449 // Such entries are identified by SharedFunctionInfos pointing to either the
7450 // recompilation stub, or to "old" code. This avoids memory leaks due to
7451 // premature caching of scripts and eval strings that are never needed later.
7452 class CompilationCacheTable: public HashTable<CompilationCacheTable,
7453 CompilationCacheShape,
7456 // Find cached value for a string key, otherwise return null.
7457 Handle<Object> Lookup(
7458 Handle<String> src, Handle<Context> context, LanguageMode language_mode);
7459 Handle<Object> LookupEval(
7460 Handle<String> src, Handle<SharedFunctionInfo> shared,
7461 LanguageMode language_mode, int scope_position);
7462 Handle<Object> LookupRegExp(Handle<String> source, JSRegExp::Flags flags);
7463 static Handle<CompilationCacheTable> Put(
7464 Handle<CompilationCacheTable> cache, Handle<String> src,
7465 Handle<Context> context, LanguageMode language_mode,
7466 Handle<Object> value);
7467 static Handle<CompilationCacheTable> PutEval(
7468 Handle<CompilationCacheTable> cache, Handle<String> src,
7469 Handle<SharedFunctionInfo> context, Handle<SharedFunctionInfo> value,
7470 int scope_position);
7471 static Handle<CompilationCacheTable> PutRegExp(
7472 Handle<CompilationCacheTable> cache, Handle<String> src,
7473 JSRegExp::Flags flags, Handle<FixedArray> value);
7474 void Remove(Object* value);
7476 static const int kHashGenerations = 10;
7478 DECLARE_CAST(CompilationCacheTable)
7481 DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
7485 class CodeCache: public Struct {
7487 DECL_ACCESSORS(default_cache, FixedArray)
7488 DECL_ACCESSORS(normal_type_cache, Object)
7490 // Add the code object to the cache.
7492 Handle<CodeCache> cache, Handle<Name> name, Handle<Code> code);
7494 // Lookup code object in the cache. Returns code object if found and undefined
7496 Object* Lookup(Name* name, Code::Flags flags);
7498 // Get the internal index of a code object in the cache. Returns -1 if the
7499 // code object is not in that cache. This index can be used to later call
7500 // RemoveByIndex. The cache cannot be modified between a call to GetIndex and
7502 int GetIndex(Object* name, Code* code);
7504 // Remove an object from the cache with the provided internal index.
7505 void RemoveByIndex(Object* name, Code* code, int index);
7507 DECLARE_CAST(CodeCache)
7509 // Dispatched behavior.
7510 DECLARE_PRINTER(CodeCache)
7511 DECLARE_VERIFIER(CodeCache)
7513 static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
7514 static const int kNormalTypeCacheOffset =
7515 kDefaultCacheOffset + kPointerSize;
7516 static const int kSize = kNormalTypeCacheOffset + kPointerSize;
7519 static void UpdateDefaultCache(
7520 Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
7521 static void UpdateNormalTypeCache(
7522 Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
7523 Object* LookupDefaultCache(Name* name, Code::Flags flags);
7524 Object* LookupNormalTypeCache(Name* name, Code::Flags flags);
7526 // Code cache layout of the default cache. Elements are alternating name and
7527 // code objects for non normal load/store/call IC's.
7528 static const int kCodeCacheEntrySize = 2;
7529 static const int kCodeCacheEntryNameOffset = 0;
7530 static const int kCodeCacheEntryCodeOffset = 1;
7532 DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
7536 class CodeCacheHashTableShape : public BaseShape<HashTableKey*> {
7538 static inline bool IsMatch(HashTableKey* key, Object* value) {
7539 return key->IsMatch(value);
7542 static inline uint32_t Hash(HashTableKey* key) {
7546 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
7547 return key->HashForObject(object);
7550 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
7552 static const int kPrefixSize = 0;
7553 static const int kEntrySize = 2;
7557 class CodeCacheHashTable: public HashTable<CodeCacheHashTable,
7558 CodeCacheHashTableShape,
7561 Object* Lookup(Name* name, Code::Flags flags);
7562 static Handle<CodeCacheHashTable> Put(
7563 Handle<CodeCacheHashTable> table,
7567 int GetIndex(Name* name, Code::Flags flags);
7568 void RemoveByIndex(int index);
7570 DECLARE_CAST(CodeCacheHashTable)
7572 // Initial size of the fixed array backing the hash table.
7573 static const int kInitialSize = 64;
7576 DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
7580 class PolymorphicCodeCache: public Struct {
7582 DECL_ACCESSORS(cache, Object)
7584 static void Update(Handle<PolymorphicCodeCache> cache,
7585 MapHandleList* maps,
7590 // Returns an undefined value if the entry is not found.
7591 Handle<Object> Lookup(MapHandleList* maps, Code::Flags flags);
7593 DECLARE_CAST(PolymorphicCodeCache)
7595 // Dispatched behavior.
7596 DECLARE_PRINTER(PolymorphicCodeCache)
7597 DECLARE_VERIFIER(PolymorphicCodeCache)
7599 static const int kCacheOffset = HeapObject::kHeaderSize;
7600 static const int kSize = kCacheOffset + kPointerSize;
7603 DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCache);
7607 class PolymorphicCodeCacheHashTable
7608 : public HashTable<PolymorphicCodeCacheHashTable,
7609 CodeCacheHashTableShape,
7612 Object* Lookup(MapHandleList* maps, int code_kind);
7614 static Handle<PolymorphicCodeCacheHashTable> Put(
7615 Handle<PolymorphicCodeCacheHashTable> hash_table,
7616 MapHandleList* maps,
7620 DECLARE_CAST(PolymorphicCodeCacheHashTable)
7622 static const int kInitialSize = 64;
7624 DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCacheHashTable);
7628 class TypeFeedbackInfo: public Struct {
7630 inline int ic_total_count();
7631 inline void set_ic_total_count(int count);
7633 inline int ic_with_type_info_count();
7634 inline void change_ic_with_type_info_count(int delta);
7636 inline int ic_generic_count();
7637 inline void change_ic_generic_count(int delta);
7639 inline void initialize_storage();
7641 inline void change_own_type_change_checksum();
7642 inline int own_type_change_checksum();
7644 inline void set_inlined_type_change_checksum(int checksum);
7645 inline bool matches_inlined_type_change_checksum(int checksum);
7647 DECLARE_CAST(TypeFeedbackInfo)
7649 // Dispatched behavior.
7650 DECLARE_PRINTER(TypeFeedbackInfo)
7651 DECLARE_VERIFIER(TypeFeedbackInfo)
7653 static const int kStorage1Offset = HeapObject::kHeaderSize;
7654 static const int kStorage2Offset = kStorage1Offset + kPointerSize;
7655 static const int kStorage3Offset = kStorage2Offset + kPointerSize;
7656 static const int kSize = kStorage3Offset + kPointerSize;
7659 static const int kTypeChangeChecksumBits = 7;
7661 class ICTotalCountField: public BitField<int, 0,
7662 kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
7663 class OwnTypeChangeChecksum: public BitField<int,
7664 kSmiValueSize - kTypeChangeChecksumBits,
7665 kTypeChangeChecksumBits> {}; // NOLINT
7666 class ICsWithTypeInfoCountField: public BitField<int, 0,
7667 kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
7668 class InlinedTypeChangeChecksum: public BitField<int,
7669 kSmiValueSize - kTypeChangeChecksumBits,
7670 kTypeChangeChecksumBits> {}; // NOLINT
7672 DISALLOW_IMPLICIT_CONSTRUCTORS(TypeFeedbackInfo);
7676 enum AllocationSiteMode {
7677 DONT_TRACK_ALLOCATION_SITE,
7678 TRACK_ALLOCATION_SITE,
7679 LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
7683 class AllocationSite: public Struct {
7685 static const uint32_t kMaximumArrayBytesToPretransition = 8 * 1024;
7686 static const double kPretenureRatio;
7687 static const int kPretenureMinimumCreated = 100;
7689 // Values for pretenure decision field.
7690 enum PretenureDecision {
7696 kLastPretenureDecisionValue = kZombie
7699 const char* PretenureDecisionName(PretenureDecision decision);
7701 DECL_ACCESSORS(transition_info, Object)
7702 // nested_site threads a list of sites that represent nested literals
7703 // walked in a particular order. So [[1, 2], 1, 2] will have one
7704 // nested_site, but [[1, 2], 3, [4]] will have a list of two.
7705 DECL_ACCESSORS(nested_site, Object)
7706 DECL_ACCESSORS(pretenure_data, Smi)
7707 DECL_ACCESSORS(pretenure_create_count, Smi)
7708 DECL_ACCESSORS(dependent_code, DependentCode)
7709 DECL_ACCESSORS(weak_next, Object)
7711 inline void Initialize();
7713 // This method is expensive, it should only be called for reporting.
7714 bool IsNestedSite();
7716 // transition_info bitfields, for constructed array transition info.
7717 class ElementsKindBits: public BitField<ElementsKind, 0, 15> {};
7718 class UnusedBits: public BitField<int, 15, 14> {};
7719 class DoNotInlineBit: public BitField<bool, 29, 1> {};
7721 // Bitfields for pretenure_data
7722 class MementoFoundCountBits: public BitField<int, 0, 26> {};
7723 class PretenureDecisionBits: public BitField<PretenureDecision, 26, 3> {};
7724 class DeoptDependentCodeBit: public BitField<bool, 29, 1> {};
7725 STATIC_ASSERT(PretenureDecisionBits::kMax >= kLastPretenureDecisionValue);
7727 // Increments the mementos found counter and returns true when the first
7728 // memento was found for a given allocation site.
7729 inline bool IncrementMementoFoundCount();
7731 inline void IncrementMementoCreateCount();
7733 PretenureFlag GetPretenureMode();
7735 void ResetPretenureDecision();
7737 inline PretenureDecision pretenure_decision();
7738 inline void set_pretenure_decision(PretenureDecision decision);
7740 inline bool deopt_dependent_code();
7741 inline void set_deopt_dependent_code(bool deopt);
7743 inline int memento_found_count();
7744 inline void set_memento_found_count(int count);
7746 inline int memento_create_count();
7747 inline void set_memento_create_count(int count);
7749 // The pretenuring decision is made during gc, and the zombie state allows
7750 // us to recognize when an allocation site is just being kept alive because
7751 // a later traversal of new space may discover AllocationMementos that point
7752 // to this AllocationSite.
7753 inline bool IsZombie();
7755 inline bool IsMaybeTenure();
7757 inline void MarkZombie();
7759 inline bool MakePretenureDecision(PretenureDecision current_decision,
7761 bool maximum_size_scavenge);
7763 inline bool DigestPretenuringFeedback(bool maximum_size_scavenge);
7765 inline ElementsKind GetElementsKind();
7766 inline void SetElementsKind(ElementsKind kind);
7768 inline bool CanInlineCall();
7769 inline void SetDoNotInlineCall();
7771 inline bool SitePointsToLiteral();
7773 static void DigestTransitionFeedback(Handle<AllocationSite> site,
7774 ElementsKind to_kind);
7776 DECLARE_PRINTER(AllocationSite)
7777 DECLARE_VERIFIER(AllocationSite)
7779 DECLARE_CAST(AllocationSite)
7780 static inline AllocationSiteMode GetMode(
7781 ElementsKind boilerplate_elements_kind);
7782 static inline AllocationSiteMode GetMode(ElementsKind from, ElementsKind to);
7783 static inline bool CanTrack(InstanceType type);
7785 static const int kTransitionInfoOffset = HeapObject::kHeaderSize;
7786 static const int kNestedSiteOffset = kTransitionInfoOffset + kPointerSize;
7787 static const int kPretenureDataOffset = kNestedSiteOffset + kPointerSize;
7788 static const int kPretenureCreateCountOffset =
7789 kPretenureDataOffset + kPointerSize;
7790 static const int kDependentCodeOffset =
7791 kPretenureCreateCountOffset + kPointerSize;
7792 static const int kWeakNextOffset = kDependentCodeOffset + kPointerSize;
7793 static const int kSize = kWeakNextOffset + kPointerSize;
7795 // During mark compact we need to take special care for the dependent code
7797 static const int kPointerFieldsBeginOffset = kTransitionInfoOffset;
7798 static const int kPointerFieldsEndOffset = kWeakNextOffset;
7800 // For other visitors, use the fixed body descriptor below.
7801 typedef FixedBodyDescriptor<HeapObject::kHeaderSize,
7802 kDependentCodeOffset + kPointerSize,
7803 kSize> BodyDescriptor;
7806 inline bool PretenuringDecisionMade();
7808 DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationSite);
7812 class AllocationMemento: public Struct {
7814 static const int kAllocationSiteOffset = HeapObject::kHeaderSize;
7815 static const int kSize = kAllocationSiteOffset + kPointerSize;
7817 DECL_ACCESSORS(allocation_site, Object)
7819 inline bool IsValid();
7820 inline AllocationSite* GetAllocationSite();
7822 DECLARE_PRINTER(AllocationMemento)
7823 DECLARE_VERIFIER(AllocationMemento)
7825 DECLARE_CAST(AllocationMemento)
7828 DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationMemento);
7832 // Representation of a slow alias as part of a sloppy arguments objects.
7833 // For fast aliases (if HasSloppyArgumentsElements()):
7834 // - the parameter map contains an index into the context
7835 // - all attributes of the element have default values
7836 // For slow aliases (if HasDictionaryArgumentsElements()):
7837 // - the parameter map contains no fast alias mapping (i.e. the hole)
7838 // - this struct (in the slow backing store) contains an index into the context
7839 // - all attributes are available as part if the property details
7840 class AliasedArgumentsEntry: public Struct {
7842 inline int aliased_context_slot() const;
7843 inline void set_aliased_context_slot(int count);
7845 DECLARE_CAST(AliasedArgumentsEntry)
7847 // Dispatched behavior.
7848 DECLARE_PRINTER(AliasedArgumentsEntry)
7849 DECLARE_VERIFIER(AliasedArgumentsEntry)
7851 static const int kAliasedContextSlot = HeapObject::kHeaderSize;
7852 static const int kSize = kAliasedContextSlot + kPointerSize;
7855 DISALLOW_IMPLICIT_CONSTRUCTORS(AliasedArgumentsEntry);
7859 enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
7860 enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
7863 class StringHasher {
7865 explicit inline StringHasher(int length, uint32_t seed);
7867 template <typename schar>
7868 static inline uint32_t HashSequentialString(const schar* chars,
7872 // Reads all the data, even for long strings and computes the utf16 length.
7873 static uint32_t ComputeUtf8Hash(Vector<const char> chars,
7875 int* utf16_length_out);
7877 // Calculated hash value for a string consisting of 1 to
7878 // String::kMaxArrayIndexSize digits with no leading zeros (except "0").
7879 // value is represented decimal value.
7880 static uint32_t MakeArrayIndexHash(uint32_t value, int length);
7882 // No string is allowed to have a hash of zero. That value is reserved
7883 // for internal properties. If the hash calculation yields zero then we
7885 static const int kZeroHash = 27;
7887 // Reusable parts of the hashing algorithm.
7888 INLINE(static uint32_t AddCharacterCore(uint32_t running_hash, uint16_t c));
7889 INLINE(static uint32_t GetHashCore(uint32_t running_hash));
7890 INLINE(static uint32_t ComputeRunningHash(uint32_t running_hash,
7891 const uc16* chars, int length));
7892 INLINE(static uint32_t ComputeRunningHashOneByte(uint32_t running_hash,
7897 // Returns the value to store in the hash field of a string with
7898 // the given length and contents.
7899 uint32_t GetHashField();
7900 // Returns true if the hash of this string can be computed without
7901 // looking at the contents.
7902 inline bool has_trivial_hash();
7903 // Adds a block of characters to the hash.
7904 template<typename Char>
7905 inline void AddCharacters(const Char* chars, int len);
7908 // Add a character to the hash.
7909 inline void AddCharacter(uint16_t c);
7910 // Update index. Returns true if string is still an index.
7911 inline bool UpdateIndex(uint16_t c);
7914 uint32_t raw_running_hash_;
7915 uint32_t array_index_;
7916 bool is_array_index_;
7917 bool is_first_char_;
7918 DISALLOW_COPY_AND_ASSIGN(StringHasher);
7922 class IteratingStringHasher : public StringHasher {
7924 static inline uint32_t Hash(String* string, uint32_t seed);
7925 inline void VisitOneByteString(const uint8_t* chars, int length);
7926 inline void VisitTwoByteString(const uint16_t* chars, int length);
7929 inline IteratingStringHasher(int len, uint32_t seed);
7930 void VisitConsString(ConsString* cons_string);
7931 DISALLOW_COPY_AND_ASSIGN(IteratingStringHasher);
7935 // The characteristics of a string are stored in its map. Retrieving these
7936 // few bits of information is moderately expensive, involving two memory
7937 // loads where the second is dependent on the first. To improve efficiency
7938 // the shape of the string is given its own class so that it can be retrieved
7939 // once and used for several string operations. A StringShape is small enough
7940 // to be passed by value and is immutable, but be aware that flattening a
7941 // string can potentially alter its shape. Also be aware that a GC caused by
7942 // something else can alter the shape of a string due to ConsString
7943 // shortcutting. Keeping these restrictions in mind has proven to be error-
7944 // prone and so we no longer put StringShapes in variables unless there is a
7945 // concrete performance benefit at that particular point in the code.
7946 class StringShape BASE_EMBEDDED {
7948 inline explicit StringShape(const String* s);
7949 inline explicit StringShape(Map* s);
7950 inline explicit StringShape(InstanceType t);
7951 inline bool IsSequential();
7952 inline bool IsExternal();
7953 inline bool IsCons();
7954 inline bool IsSliced();
7955 inline bool IsIndirect();
7956 inline bool IsExternalOneByte();
7957 inline bool IsExternalTwoByte();
7958 inline bool IsSequentialOneByte();
7959 inline bool IsSequentialTwoByte();
7960 inline bool IsInternalized();
7961 inline StringRepresentationTag representation_tag();
7962 inline uint32_t encoding_tag();
7963 inline uint32_t full_representation_tag();
7964 inline uint32_t size_tag();
7966 inline uint32_t type() { return type_; }
7967 inline void invalidate() { valid_ = false; }
7968 inline bool valid() { return valid_; }
7970 inline void invalidate() { }
7976 inline void set_valid() { valid_ = true; }
7979 inline void set_valid() { }
7984 // The Name abstract class captures anything that can be used as a property
7985 // name, i.e., strings and symbols. All names store a hash value.
7986 class Name: public HeapObject {
7988 // Get and set the hash field of the name.
7989 inline uint32_t hash_field();
7990 inline void set_hash_field(uint32_t value);
7992 // Tells whether the hash code has been computed.
7993 inline bool HasHashCode();
7995 // Returns a hash value used for the property table
7996 inline uint32_t Hash();
7998 // Equality operations.
7999 inline bool Equals(Name* other);
8000 inline static bool Equals(Handle<Name> one, Handle<Name> two);
8003 inline bool AsArrayIndex(uint32_t* index);
8005 // If the name is private, it can only name own properties.
8006 inline bool IsPrivate();
8008 // If the name is a non-flat string, this method returns a flat version of the
8009 // string. Otherwise it'll just return the input.
8010 static inline Handle<Name> Flatten(Handle<Name> name,
8011 PretenureFlag pretenure = NOT_TENURED);
8015 DECLARE_PRINTER(Name)
8017 void NameShortPrint();
8018 int NameShortPrint(Vector<char> str);
8021 // Layout description.
8022 static const int kHashFieldSlot = HeapObject::kHeaderSize;
8023 #if V8_TARGET_LITTLE_ENDIAN || !V8_HOST_ARCH_64_BIT
8024 static const int kHashFieldOffset = kHashFieldSlot;
8026 static const int kHashFieldOffset = kHashFieldSlot + kIntSize;
8028 static const int kSize = kHashFieldSlot + kPointerSize;
8030 // Mask constant for checking if a name has a computed hash code
8031 // and if it is a string that is an array index. The least significant bit
8032 // indicates whether a hash code has been computed. If the hash code has
8033 // been computed the 2nd bit tells whether the string can be used as an
8035 static const int kHashNotComputedMask = 1;
8036 static const int kIsNotArrayIndexMask = 1 << 1;
8037 static const int kNofHashBitFields = 2;
8039 // Shift constant retrieving hash code from hash field.
8040 static const int kHashShift = kNofHashBitFields;
8042 // Only these bits are relevant in the hash, since the top two are shifted
8044 static const uint32_t kHashBitMask = 0xffffffffu >> kHashShift;
8046 // Array index strings this short can keep their index in the hash field.
8047 static const int kMaxCachedArrayIndexLength = 7;
8049 // For strings which are array indexes the hash value has the string length
8050 // mixed into the hash, mainly to avoid a hash value of zero which would be
8051 // the case for the string '0'. 24 bits are used for the array index value.
8052 static const int kArrayIndexValueBits = 24;
8053 static const int kArrayIndexLengthBits =
8054 kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
8056 STATIC_ASSERT((kArrayIndexLengthBits > 0));
8058 class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
8059 kArrayIndexValueBits> {}; // NOLINT
8060 class ArrayIndexLengthBits : public BitField<unsigned int,
8061 kNofHashBitFields + kArrayIndexValueBits,
8062 kArrayIndexLengthBits> {}; // NOLINT
8064 // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
8065 // could use a mask to test if the length of string is less than or equal to
8066 // kMaxCachedArrayIndexLength.
8067 STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
8069 static const unsigned int kContainsCachedArrayIndexMask =
8070 (~static_cast<unsigned>(kMaxCachedArrayIndexLength)
8071 << ArrayIndexLengthBits::kShift) |
8072 kIsNotArrayIndexMask;
8074 // Value of empty hash field indicating that the hash is not computed.
8075 static const int kEmptyHashField =
8076 kIsNotArrayIndexMask | kHashNotComputedMask;
8079 static inline bool IsHashFieldComputed(uint32_t field);
8082 DISALLOW_IMPLICIT_CONSTRUCTORS(Name);
8087 class Symbol: public Name {
8089 // [name]: The print name of a symbol, or undefined if none.
8090 DECL_ACCESSORS(name, Object)
8092 DECL_ACCESSORS(flags, Smi)
8094 // [is_private]: Whether this is a private symbol. Private symbols can only
8095 // be used to designate own properties of objects.
8096 DECL_BOOLEAN_ACCESSORS(is_private)
8098 DECLARE_CAST(Symbol)
8100 // Dispatched behavior.
8101 DECLARE_PRINTER(Symbol)
8102 DECLARE_VERIFIER(Symbol)
8104 // Layout description.
8105 static const int kNameOffset = Name::kSize;
8106 static const int kFlagsOffset = kNameOffset + kPointerSize;
8107 static const int kSize = kFlagsOffset + kPointerSize;
8109 typedef FixedBodyDescriptor<kNameOffset, kFlagsOffset, kSize> BodyDescriptor;
8111 void SymbolShortPrint(std::ostream& os);
8114 static const int kPrivateBit = 0;
8116 const char* PrivateSymbolToName() const;
8119 friend class Name; // For PrivateSymbolToName.
8122 DISALLOW_IMPLICIT_CONSTRUCTORS(Symbol);
8128 // The String abstract class captures JavaScript string values:
8131 // 4.3.16 String Value
8132 // A string value is a member of the type String and is a finite
8133 // ordered sequence of zero or more 16-bit unsigned integer values.
8135 // All string values have a length field.
8136 class String: public Name {
8138 enum Encoding { ONE_BYTE_ENCODING, TWO_BYTE_ENCODING };
8140 // Array index strings this short can keep their index in the hash field.
8141 static const int kMaxCachedArrayIndexLength = 7;
8143 // For strings which are array indexes the hash value has the string length
8144 // mixed into the hash, mainly to avoid a hash value of zero which would be
8145 // the case for the string '0'. 24 bits are used for the array index value.
8146 static const int kArrayIndexValueBits = 24;
8147 static const int kArrayIndexLengthBits =
8148 kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
8150 STATIC_ASSERT((kArrayIndexLengthBits > 0));
8152 class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
8153 kArrayIndexValueBits> {}; // NOLINT
8154 class ArrayIndexLengthBits : public BitField<unsigned int,
8155 kNofHashBitFields + kArrayIndexValueBits,
8156 kArrayIndexLengthBits> {}; // NOLINT
8158 // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
8159 // could use a mask to test if the length of string is less than or equal to
8160 // kMaxCachedArrayIndexLength.
8161 STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
8163 static const unsigned int kContainsCachedArrayIndexMask =
8164 (~static_cast<unsigned>(kMaxCachedArrayIndexLength)
8165 << ArrayIndexLengthBits::kShift) |
8166 kIsNotArrayIndexMask;
8168 class SubStringRange {
8170 explicit inline SubStringRange(String* string, int first = 0,
8173 inline iterator begin();
8174 inline iterator end();
8182 // Representation of the flat content of a String.
8183 // A non-flat string doesn't have flat content.
8184 // A flat string has content that's encoded as a sequence of either
8185 // one-byte chars or two-byte UC16.
8186 // Returned by String::GetFlatContent().
8189 // Returns true if the string is flat and this structure contains content.
8190 bool IsFlat() { return state_ != NON_FLAT; }
8191 // Returns true if the structure contains one-byte content.
8192 bool IsOneByte() { return state_ == ONE_BYTE; }
8193 // Returns true if the structure contains two-byte content.
8194 bool IsTwoByte() { return state_ == TWO_BYTE; }
8196 // Return the one byte content of the string. Only use if IsOneByte()
8198 Vector<const uint8_t> ToOneByteVector() {
8199 DCHECK_EQ(ONE_BYTE, state_);
8200 return Vector<const uint8_t>(onebyte_start, length_);
8202 // Return the two-byte content of the string. Only use if IsTwoByte()
8204 Vector<const uc16> ToUC16Vector() {
8205 DCHECK_EQ(TWO_BYTE, state_);
8206 return Vector<const uc16>(twobyte_start, length_);
8210 DCHECK(i < length_);
8211 DCHECK(state_ != NON_FLAT);
8212 if (state_ == ONE_BYTE) return onebyte_start[i];
8213 return twobyte_start[i];
8216 bool UsesSameString(const FlatContent& other) const {
8217 return onebyte_start == other.onebyte_start;
8221 enum State { NON_FLAT, ONE_BYTE, TWO_BYTE };
8223 // Constructors only used by String::GetFlatContent().
8224 explicit FlatContent(const uint8_t* start, int length)
8225 : onebyte_start(start), length_(length), state_(ONE_BYTE) {}
8226 explicit FlatContent(const uc16* start, int length)
8227 : twobyte_start(start), length_(length), state_(TWO_BYTE) { }
8228 FlatContent() : onebyte_start(NULL), length_(0), state_(NON_FLAT) { }
8231 const uint8_t* onebyte_start;
8232 const uc16* twobyte_start;
8237 friend class String;
8238 friend class IterableSubString;
8241 template <typename Char>
8242 INLINE(Vector<const Char> GetCharVector());
8244 // Get and set the length of the string.
8245 inline int length() const;
8246 inline void set_length(int value);
8248 // Get and set the length of the string using acquire loads and release
8250 inline int synchronized_length() const;
8251 inline void synchronized_set_length(int value);
8253 // Returns whether this string has only one-byte chars, i.e. all of them can
8254 // be one-byte encoded. This might be the case even if the string is
8255 // two-byte. Such strings may appear when the embedder prefers
8256 // two-byte external representations even for one-byte data.
8257 inline bool IsOneByteRepresentation() const;
8258 inline bool IsTwoByteRepresentation() const;
8260 // Cons and slices have an encoding flag that may not represent the actual
8261 // encoding of the underlying string. This is taken into account here.
8262 // Requires: this->IsFlat()
8263 inline bool IsOneByteRepresentationUnderneath();
8264 inline bool IsTwoByteRepresentationUnderneath();
8266 // NOTE: this should be considered only a hint. False negatives are
8268 inline bool HasOnlyOneByteChars();
8270 // Get and set individual two byte chars in the string.
8271 inline void Set(int index, uint16_t value);
8272 // Get individual two byte char in the string. Repeated calls
8273 // to this method are not efficient unless the string is flat.
8274 INLINE(uint16_t Get(int index));
8276 // Flattens the string. Checks first inline to see if it is
8277 // necessary. Does nothing if the string is not a cons string.
8278 // Flattening allocates a sequential string with the same data as
8279 // the given string and mutates the cons string to a degenerate
8280 // form, where the first component is the new sequential string and
8281 // the second component is the empty string. If allocation fails,
8282 // this function returns a failure. If flattening succeeds, this
8283 // function returns the sequential string that is now the first
8284 // component of the cons string.
8286 // Degenerate cons strings are handled specially by the garbage
8287 // collector (see IsShortcutCandidate).
8289 static inline Handle<String> Flatten(Handle<String> string,
8290 PretenureFlag pretenure = NOT_TENURED);
8292 // Tries to return the content of a flat string as a structure holding either
8293 // a flat vector of char or of uc16.
8294 // If the string isn't flat, and therefore doesn't have flat content, the
8295 // returned structure will report so, and can't provide a vector of either
8297 FlatContent GetFlatContent();
8299 // Returns the parent of a sliced string or first part of a flat cons string.
8300 // Requires: StringShape(this).IsIndirect() && this->IsFlat()
8301 inline String* GetUnderlying();
8303 // String equality operations.
8304 inline bool Equals(String* other);
8305 inline static bool Equals(Handle<String> one, Handle<String> two);
8306 bool IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match = false);
8307 bool IsOneByteEqualTo(Vector<const uint8_t> str);
8308 bool IsTwoByteEqualTo(Vector<const uc16> str);
8310 // Return a UTF8 representation of the string. The string is null
8311 // terminated but may optionally contain nulls. Length is returned
8312 // in length_output if length_output is not a null pointer The string
8313 // should be nearly flat, otherwise the performance of this method may
8314 // be very slow (quadratic in the length). Setting robustness_flag to
8315 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
8316 // handles unexpected data without causing assert failures and it does not
8317 // do any heap allocations. This is useful when printing stack traces.
8318 base::SmartArrayPointer<char> ToCString(AllowNullsFlag allow_nulls,
8319 RobustnessFlag robustness_flag,
8320 int offset, int length,
8321 int* length_output = 0);
8322 base::SmartArrayPointer<char> ToCString(
8323 AllowNullsFlag allow_nulls = DISALLOW_NULLS,
8324 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
8325 int* length_output = 0);
8327 // Return a 16 bit Unicode representation of the string.
8328 // The string should be nearly flat, otherwise the performance of
8329 // of this method may be very bad. Setting robustness_flag to
8330 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
8331 // handles unexpected data without causing assert failures and it does not
8332 // do any heap allocations. This is useful when printing stack traces.
8333 base::SmartArrayPointer<uc16> ToWideCString(
8334 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
8336 bool ComputeArrayIndex(uint32_t* index);
8339 bool MakeExternal(v8::String::ExternalStringResource* resource);
8340 bool MakeExternal(v8::String::ExternalOneByteStringResource* resource);
8343 inline bool AsArrayIndex(uint32_t* index);
8345 DECLARE_CAST(String)
8347 void PrintOn(FILE* out);
8349 // For use during stack traces. Performs rudimentary sanity check.
8352 // Dispatched behavior.
8353 void StringShortPrint(StringStream* accumulator);
8354 void PrintUC16(std::ostream& os, int start = 0, int end = -1); // NOLINT
8355 #if defined(DEBUG) || defined(OBJECT_PRINT)
8356 char* ToAsciiArray();
8358 DECLARE_PRINTER(String)
8359 DECLARE_VERIFIER(String)
8361 inline bool IsFlat();
8363 // Layout description.
8364 static const int kLengthOffset = Name::kSize;
8365 static const int kSize = kLengthOffset + kPointerSize;
8367 // Maximum number of characters to consider when trying to convert a string
8368 // value into an array index.
8369 static const int kMaxArrayIndexSize = 10;
8370 STATIC_ASSERT(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits));
8373 static const int32_t kMaxOneByteCharCode = unibrow::Latin1::kMaxChar;
8374 static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar;
8375 static const int kMaxUtf16CodeUnit = 0xffff;
8376 static const uint32_t kMaxUtf16CodeUnitU = kMaxUtf16CodeUnit;
8378 // Value of hash field containing computed hash equal to zero.
8379 static const int kEmptyStringHash = kIsNotArrayIndexMask;
8381 // Maximal string length.
8382 static const int kMaxLength = (1 << 28) - 16;
8384 // Max length for computing hash. For strings longer than this limit the
8385 // string length is used as the hash value.
8386 static const int kMaxHashCalcLength = 16383;
8388 // Limit for truncation in short printing.
8389 static const int kMaxShortPrintLength = 1024;
8391 // Support for regular expressions.
8392 const uc16* GetTwoByteData(unsigned start);
8394 // Helper function for flattening strings.
8395 template <typename sinkchar>
8396 static void WriteToFlat(String* source,
8401 // The return value may point to the first aligned word containing the first
8402 // non-one-byte character, rather than directly to the non-one-byte character.
8403 // If the return value is >= the passed length, the entire string was
8405 static inline int NonAsciiStart(const char* chars, int length) {
8406 const char* start = chars;
8407 const char* limit = chars + length;
8409 if (length >= kIntptrSize) {
8410 // Check unaligned bytes.
8411 while (!IsAligned(reinterpret_cast<intptr_t>(chars), sizeof(uintptr_t))) {
8412 if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
8413 return static_cast<int>(chars - start);
8417 // Check aligned words.
8418 DCHECK(unibrow::Utf8::kMaxOneByteChar == 0x7F);
8419 const uintptr_t non_one_byte_mask = kUintptrAllBitsSet / 0xFF * 0x80;
8420 while (chars + sizeof(uintptr_t) <= limit) {
8421 if (*reinterpret_cast<const uintptr_t*>(chars) & non_one_byte_mask) {
8422 return static_cast<int>(chars - start);
8424 chars += sizeof(uintptr_t);
8427 // Check remaining unaligned bytes.
8428 while (chars < limit) {
8429 if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
8430 return static_cast<int>(chars - start);
8435 return static_cast<int>(chars - start);
8438 static inline bool IsAscii(const char* chars, int length) {
8439 return NonAsciiStart(chars, length) >= length;
8442 static inline bool IsAscii(const uint8_t* chars, int length) {
8444 NonAsciiStart(reinterpret_cast<const char*>(chars), length) >= length;
8447 static inline int NonOneByteStart(const uc16* chars, int length) {
8448 const uc16* limit = chars + length;
8449 const uc16* start = chars;
8450 while (chars < limit) {
8451 if (*chars > kMaxOneByteCharCodeU) return static_cast<int>(chars - start);
8454 return static_cast<int>(chars - start);
8457 static inline bool IsOneByte(const uc16* chars, int length) {
8458 return NonOneByteStart(chars, length) >= length;
8461 template<class Visitor>
8462 static inline ConsString* VisitFlat(Visitor* visitor,
8466 static Handle<FixedArray> CalculateLineEnds(Handle<String> string,
8467 bool include_ending_line);
8469 // Use the hash field to forward to the canonical internalized string
8470 // when deserializing an internalized string.
8471 inline void SetForwardedInternalizedString(String* string);
8472 inline String* GetForwardedInternalizedString();
8476 friend class StringTableInsertionKey;
8478 static Handle<String> SlowFlatten(Handle<ConsString> cons,
8479 PretenureFlag tenure);
8481 // Slow case of String::Equals. This implementation works on any strings
8482 // but it is most efficient on strings that are almost flat.
8483 bool SlowEquals(String* other);
8485 static bool SlowEquals(Handle<String> one, Handle<String> two);
8487 // Slow case of AsArrayIndex.
8488 bool SlowAsArrayIndex(uint32_t* index);
8490 // Compute and set the hash code.
8491 uint32_t ComputeAndSetHash();
8493 DISALLOW_IMPLICIT_CONSTRUCTORS(String);
8497 // The SeqString abstract class captures sequential string values.
8498 class SeqString: public String {
8500 DECLARE_CAST(SeqString)
8502 // Layout description.
8503 static const int kHeaderSize = String::kSize;
8505 // Truncate the string in-place if possible and return the result.
8506 // In case of new_length == 0, the empty string is returned without
8507 // truncating the original string.
8508 MUST_USE_RESULT static Handle<String> Truncate(Handle<SeqString> string,
8511 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
8515 // The OneByteString class captures sequential one-byte string objects.
8516 // Each character in the OneByteString is an one-byte character.
8517 class SeqOneByteString: public SeqString {
8519 static const bool kHasOneByteEncoding = true;
8521 // Dispatched behavior.
8522 inline uint16_t SeqOneByteStringGet(int index);
8523 inline void SeqOneByteStringSet(int index, uint16_t value);
8525 // Get the address of the characters in this string.
8526 inline Address GetCharsAddress();
8528 inline uint8_t* GetChars();
8530 DECLARE_CAST(SeqOneByteString)
8532 // Garbage collection support. This method is called by the
8533 // garbage collector to compute the actual size of an OneByteString
8535 inline int SeqOneByteStringSize(InstanceType instance_type);
8537 // Computes the size for an OneByteString instance of a given length.
8538 static int SizeFor(int length) {
8539 return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
8542 // Maximal memory usage for a single sequential one-byte string.
8543 static const int kMaxSize = 512 * MB - 1;
8544 STATIC_ASSERT((kMaxSize - kHeaderSize) >= String::kMaxLength);
8547 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqOneByteString);
8551 // The TwoByteString class captures sequential unicode string objects.
8552 // Each character in the TwoByteString is a two-byte uint16_t.
8553 class SeqTwoByteString: public SeqString {
8555 static const bool kHasOneByteEncoding = false;
8557 // Dispatched behavior.
8558 inline uint16_t SeqTwoByteStringGet(int index);
8559 inline void SeqTwoByteStringSet(int index, uint16_t value);
8561 // Get the address of the characters in this string.
8562 inline Address GetCharsAddress();
8564 inline uc16* GetChars();
8567 const uint16_t* SeqTwoByteStringGetData(unsigned start);
8569 DECLARE_CAST(SeqTwoByteString)
8571 // Garbage collection support. This method is called by the
8572 // garbage collector to compute the actual size of a TwoByteString
8574 inline int SeqTwoByteStringSize(InstanceType instance_type);
8576 // Computes the size for a TwoByteString instance of a given length.
8577 static int SizeFor(int length) {
8578 return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
8581 // Maximal memory usage for a single sequential two-byte string.
8582 static const int kMaxSize = 512 * MB - 1;
8583 STATIC_ASSERT(static_cast<int>((kMaxSize - kHeaderSize)/sizeof(uint16_t)) >=
8584 String::kMaxLength);
8587 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
8591 // The ConsString class describes string values built by using the
8592 // addition operator on strings. A ConsString is a pair where the
8593 // first and second components are pointers to other string values.
8594 // One or both components of a ConsString can be pointers to other
8595 // ConsStrings, creating a binary tree of ConsStrings where the leaves
8596 // are non-ConsString string values. The string value represented by
8597 // a ConsString can be obtained by concatenating the leaf string
8598 // values in a left-to-right depth-first traversal of the tree.
8599 class ConsString: public String {
8601 // First string of the cons cell.
8602 inline String* first();
8603 // Doesn't check that the result is a string, even in debug mode. This is
8604 // useful during GC where the mark bits confuse the checks.
8605 inline Object* unchecked_first();
8606 inline void set_first(String* first,
8607 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8609 // Second string of the cons cell.
8610 inline String* second();
8611 // Doesn't check that the result is a string, even in debug mode. This is
8612 // useful during GC where the mark bits confuse the checks.
8613 inline Object* unchecked_second();
8614 inline void set_second(String* second,
8615 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8617 // Dispatched behavior.
8618 uint16_t ConsStringGet(int index);
8620 DECLARE_CAST(ConsString)
8622 // Layout description.
8623 static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
8624 static const int kSecondOffset = kFirstOffset + kPointerSize;
8625 static const int kSize = kSecondOffset + kPointerSize;
8627 // Minimum length for a cons string.
8628 static const int kMinLength = 13;
8630 typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize>
8633 DECLARE_VERIFIER(ConsString)
8636 DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
8640 // The Sliced String class describes strings that are substrings of another
8641 // sequential string. The motivation is to save time and memory when creating
8642 // a substring. A Sliced String is described as a pointer to the parent,
8643 // the offset from the start of the parent string and the length. Using
8644 // a Sliced String therefore requires unpacking of the parent string and
8645 // adding the offset to the start address. A substring of a Sliced String
8646 // are not nested since the double indirection is simplified when creating
8647 // such a substring.
8648 // Currently missing features are:
8649 // - handling externalized parent strings
8650 // - external strings as parent
8651 // - truncating sliced string to enable otherwise unneeded parent to be GC'ed.
8652 class SlicedString: public String {
8654 inline String* parent();
8655 inline void set_parent(String* parent,
8656 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8657 inline int offset() const;
8658 inline void set_offset(int offset);
8660 // Dispatched behavior.
8661 uint16_t SlicedStringGet(int index);
8663 DECLARE_CAST(SlicedString)
8665 // Layout description.
8666 static const int kParentOffset = POINTER_SIZE_ALIGN(String::kSize);
8667 static const int kOffsetOffset = kParentOffset + kPointerSize;
8668 static const int kSize = kOffsetOffset + kPointerSize;
8670 // Minimum length for a sliced string.
8671 static const int kMinLength = 13;
8673 typedef FixedBodyDescriptor<kParentOffset,
8674 kOffsetOffset + kPointerSize, kSize>
8677 DECLARE_VERIFIER(SlicedString)
8680 DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString);
8684 // The ExternalString class describes string values that are backed by
8685 // a string resource that lies outside the V8 heap. ExternalStrings
8686 // consist of the length field common to all strings, a pointer to the
8687 // external resource. It is important to ensure (externally) that the
8688 // resource is not deallocated while the ExternalString is live in the
8691 // The API expects that all ExternalStrings are created through the
8692 // API. Therefore, ExternalStrings should not be used internally.
8693 class ExternalString: public String {
8695 DECLARE_CAST(ExternalString)
8697 // Layout description.
8698 static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
8699 static const int kShortSize = kResourceOffset + kPointerSize;
8700 static const int kResourceDataOffset = kResourceOffset + kPointerSize;
8701 static const int kSize = kResourceDataOffset + kPointerSize;
8703 static const int kMaxShortLength =
8704 (kShortSize - SeqString::kHeaderSize) / kCharSize;
8706 // Return whether external string is short (data pointer is not cached).
8707 inline bool is_short();
8709 STATIC_ASSERT(kResourceOffset == Internals::kStringResourceOffset);
8712 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
8716 // The ExternalOneByteString class is an external string backed by an
8718 class ExternalOneByteString : public ExternalString {
8720 static const bool kHasOneByteEncoding = true;
8722 typedef v8::String::ExternalOneByteStringResource Resource;
8724 // The underlying resource.
8725 inline const Resource* resource();
8726 inline void set_resource(const Resource* buffer);
8728 // Update the pointer cache to the external character array.
8729 // The cached pointer is always valid, as the external character array does =
8730 // not move during lifetime. Deserialization is the only exception, after
8731 // which the pointer cache has to be refreshed.
8732 inline void update_data_cache();
8734 inline const uint8_t* GetChars();
8736 // Dispatched behavior.
8737 inline uint16_t ExternalOneByteStringGet(int index);
8739 DECLARE_CAST(ExternalOneByteString)
8741 // Garbage collection support.
8742 inline void ExternalOneByteStringIterateBody(ObjectVisitor* v);
8744 template <typename StaticVisitor>
8745 inline void ExternalOneByteStringIterateBody();
8748 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalOneByteString);
8752 // The ExternalTwoByteString class is an external string backed by a UTF-16
8754 class ExternalTwoByteString: public ExternalString {
8756 static const bool kHasOneByteEncoding = false;
8758 typedef v8::String::ExternalStringResource Resource;
8760 // The underlying string resource.
8761 inline const Resource* resource();
8762 inline void set_resource(const Resource* buffer);
8764 // Update the pointer cache to the external character array.
8765 // The cached pointer is always valid, as the external character array does =
8766 // not move during lifetime. Deserialization is the only exception, after
8767 // which the pointer cache has to be refreshed.
8768 inline void update_data_cache();
8770 inline const uint16_t* GetChars();
8772 // Dispatched behavior.
8773 inline uint16_t ExternalTwoByteStringGet(int index);
8776 inline const uint16_t* ExternalTwoByteStringGetData(unsigned start);
8778 DECLARE_CAST(ExternalTwoByteString)
8780 // Garbage collection support.
8781 inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
8783 template<typename StaticVisitor>
8784 inline void ExternalTwoByteStringIterateBody();
8787 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
8791 // Utility superclass for stack-allocated objects that must be updated
8792 // on gc. It provides two ways for the gc to update instances, either
8793 // iterating or updating after gc.
8794 class Relocatable BASE_EMBEDDED {
8796 explicit inline Relocatable(Isolate* isolate);
8797 inline virtual ~Relocatable();
8798 virtual void IterateInstance(ObjectVisitor* v) { }
8799 virtual void PostGarbageCollection() { }
8801 static void PostGarbageCollectionProcessing(Isolate* isolate);
8802 static int ArchiveSpacePerThread();
8803 static char* ArchiveState(Isolate* isolate, char* to);
8804 static char* RestoreState(Isolate* isolate, char* from);
8805 static void Iterate(Isolate* isolate, ObjectVisitor* v);
8806 static void Iterate(ObjectVisitor* v, Relocatable* top);
8807 static char* Iterate(ObjectVisitor* v, char* t);
8815 // A flat string reader provides random access to the contents of a
8816 // string independent of the character width of the string. The handle
8817 // must be valid as long as the reader is being used.
8818 class FlatStringReader : public Relocatable {
8820 FlatStringReader(Isolate* isolate, Handle<String> str);
8821 FlatStringReader(Isolate* isolate, Vector<const char> input);
8822 void PostGarbageCollection();
8823 inline uc32 Get(int index);
8824 template <typename Char>
8825 inline Char Get(int index);
8826 int length() { return length_; }
8835 // This maintains an off-stack representation of the stack frames required
8836 // to traverse a ConsString, allowing an entirely iterative and restartable
8837 // traversal of the entire string
8838 class ConsStringIterator {
8840 inline ConsStringIterator() {}
8841 inline explicit ConsStringIterator(ConsString* cons_string, int offset = 0) {
8842 Reset(cons_string, offset);
8844 inline void Reset(ConsString* cons_string, int offset = 0) {
8846 // Next will always return NULL.
8847 if (cons_string == NULL) return;
8848 Initialize(cons_string, offset);
8850 // Returns NULL when complete.
8851 inline String* Next(int* offset_out) {
8853 if (depth_ == 0) return NULL;
8854 return Continue(offset_out);
8858 static const int kStackSize = 32;
8859 // Use a mask instead of doing modulo operations for stack wrapping.
8860 static const int kDepthMask = kStackSize-1;
8861 STATIC_ASSERT(IS_POWER_OF_TWO(kStackSize));
8862 static inline int OffsetForDepth(int depth);
8864 inline void PushLeft(ConsString* string);
8865 inline void PushRight(ConsString* string);
8866 inline void AdjustMaximumDepth();
8868 inline bool StackBlown() { return maximum_depth_ - depth_ == kStackSize; }
8869 void Initialize(ConsString* cons_string, int offset);
8870 String* Continue(int* offset_out);
8871 String* NextLeaf(bool* blew_stack);
8872 String* Search(int* offset_out);
8874 // Stack must always contain only frames for which right traversal
8875 // has not yet been performed.
8876 ConsString* frames_[kStackSize];
8881 DISALLOW_COPY_AND_ASSIGN(ConsStringIterator);
8885 class StringCharacterStream {
8887 inline StringCharacterStream(String* string,
8889 inline uint16_t GetNext();
8890 inline bool HasMore();
8891 inline void Reset(String* string, int offset = 0);
8892 inline void VisitOneByteString(const uint8_t* chars, int length);
8893 inline void VisitTwoByteString(const uint16_t* chars, int length);
8896 ConsStringIterator iter_;
8899 const uint8_t* buffer8_;
8900 const uint16_t* buffer16_;
8902 const uint8_t* end_;
8903 DISALLOW_COPY_AND_ASSIGN(StringCharacterStream);
8907 template <typename T>
8908 class VectorIterator {
8910 VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
8911 explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
8912 T GetNext() { return data_[index_++]; }
8913 bool has_more() { return index_ < data_.length(); }
8915 Vector<const T> data_;
8920 // The Oddball describes objects null, undefined, true, and false.
8921 class Oddball: public HeapObject {
8923 // [to_string]: Cached to_string computed at startup.
8924 DECL_ACCESSORS(to_string, String)
8926 // [to_number]: Cached to_number computed at startup.
8927 DECL_ACCESSORS(to_number, Object)
8929 // [typeof]: Cached type_of computed at startup.
8930 DECL_ACCESSORS(type_of, String)
8932 inline byte kind() const;
8933 inline void set_kind(byte kind);
8935 DECLARE_CAST(Oddball)
8937 // Dispatched behavior.
8938 DECLARE_VERIFIER(Oddball)
8940 // Initialize the fields.
8941 static void Initialize(Isolate* isolate, Handle<Oddball> oddball,
8942 const char* to_string, Handle<Object> to_number,
8943 const char* type_of, byte kind);
8945 // Layout description.
8946 static const int kToStringOffset = HeapObject::kHeaderSize;
8947 static const int kToNumberOffset = kToStringOffset + kPointerSize;
8948 static const int kTypeOfOffset = kToNumberOffset + kPointerSize;
8949 static const int kKindOffset = kTypeOfOffset + kPointerSize;
8950 static const int kSize = kKindOffset + kPointerSize;
8952 static const byte kFalse = 0;
8953 static const byte kTrue = 1;
8954 static const byte kNotBooleanMask = ~1;
8955 static const byte kTheHole = 2;
8956 static const byte kNull = 3;
8957 static const byte kArgumentMarker = 4;
8958 static const byte kUndefined = 5;
8959 static const byte kUninitialized = 6;
8960 static const byte kOther = 7;
8961 static const byte kException = 8;
8963 typedef FixedBodyDescriptor<kToStringOffset, kTypeOfOffset + kPointerSize,
8964 kSize> BodyDescriptor;
8966 STATIC_ASSERT(kKindOffset == Internals::kOddballKindOffset);
8967 STATIC_ASSERT(kNull == Internals::kNullOddballKind);
8968 STATIC_ASSERT(kUndefined == Internals::kUndefinedOddballKind);
8971 DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
8975 class Cell: public HeapObject {
8977 // [value]: value of the cell.
8978 DECL_ACCESSORS(value, Object)
8982 static inline Cell* FromValueAddress(Address value) {
8983 Object* result = FromAddress(value - kValueOffset);
8984 return static_cast<Cell*>(result);
8987 inline Address ValueAddress() {
8988 return address() + kValueOffset;
8991 // Dispatched behavior.
8992 DECLARE_PRINTER(Cell)
8993 DECLARE_VERIFIER(Cell)
8995 // Layout description.
8996 static const int kValueOffset = HeapObject::kHeaderSize;
8997 static const int kSize = kValueOffset + kPointerSize;
8999 typedef FixedBodyDescriptor<kValueOffset,
9000 kValueOffset + kPointerSize,
9001 kSize> BodyDescriptor;
9004 DISALLOW_IMPLICIT_CONSTRUCTORS(Cell);
9008 class PropertyCell : public HeapObject {
9010 // [property_details]: details of the global property.
9011 DECL_ACCESSORS(property_details_raw, Object)
9012 // [value]: value of the global property.
9013 DECL_ACCESSORS(value, Object)
9014 // [dependent_code]: dependent code that depends on the type of the global
9016 DECL_ACCESSORS(dependent_code, DependentCode)
9018 inline PropertyDetails property_details();
9019 inline void set_property_details(PropertyDetails details);
9021 PropertyCellConstantType GetConstantType();
9023 // Computes the new type of the cell's contents for the given value, but
9024 // without actually modifying the details.
9025 static PropertyCellType UpdatedType(Handle<PropertyCell> cell,
9026 Handle<Object> value,
9027 PropertyDetails details);
9028 static void UpdateCell(Handle<GlobalDictionary> dictionary, int entry,
9029 Handle<Object> value, PropertyDetails details);
9031 static Handle<PropertyCell> InvalidateEntry(
9032 Handle<GlobalDictionary> dictionary, int entry);
9034 static void SetValueWithInvalidation(Handle<PropertyCell> cell,
9035 Handle<Object> new_value);
9037 DECLARE_CAST(PropertyCell)
9039 // Dispatched behavior.
9040 DECLARE_PRINTER(PropertyCell)
9041 DECLARE_VERIFIER(PropertyCell)
9043 // Layout description.
9044 static const int kDetailsOffset = HeapObject::kHeaderSize;
9045 static const int kValueOffset = kDetailsOffset + kPointerSize;
9046 static const int kDependentCodeOffset = kValueOffset + kPointerSize;
9047 static const int kSize = kDependentCodeOffset + kPointerSize;
9049 static const int kPointerFieldsBeginOffset = kValueOffset;
9050 static const int kPointerFieldsEndOffset = kSize;
9052 typedef FixedBodyDescriptor<kValueOffset,
9054 kSize> BodyDescriptor;
9057 DISALLOW_IMPLICIT_CONSTRUCTORS(PropertyCell);
9061 class WeakCell : public HeapObject {
9063 inline Object* value() const;
9065 // This should not be called by anyone except GC.
9066 inline void clear();
9068 // This should not be called by anyone except allocator.
9069 inline void initialize(HeapObject* value);
9071 inline bool cleared() const;
9073 DECL_ACCESSORS(next, Object)
9075 inline void clear_next(Heap* heap);
9077 inline bool next_cleared();
9079 DECLARE_CAST(WeakCell)
9081 DECLARE_PRINTER(WeakCell)
9082 DECLARE_VERIFIER(WeakCell)
9084 // Layout description.
9085 static const int kValueOffset = HeapObject::kHeaderSize;
9086 static const int kNextOffset = kValueOffset + kPointerSize;
9087 static const int kSize = kNextOffset + kPointerSize;
9089 typedef FixedBodyDescriptor<kValueOffset, kSize, kSize> BodyDescriptor;
9092 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakCell);
9096 // The JSProxy describes EcmaScript Harmony proxies
9097 class JSProxy: public JSReceiver {
9099 // [handler]: The handler property.
9100 DECL_ACCESSORS(handler, Object)
9102 // [hash]: The hash code property (undefined if not initialized yet).
9103 DECL_ACCESSORS(hash, Object)
9105 DECLARE_CAST(JSProxy)
9107 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithHandler(
9108 Handle<JSProxy> proxy,
9109 Handle<Object> receiver,
9112 // If the handler defines an accessor property with a setter, invoke it.
9113 // If it defines an accessor property without a setter, or a data property
9114 // that is read-only, throw. In all these cases set '*done' to true,
9115 // otherwise set it to false.
9117 static MaybeHandle<Object> SetPropertyViaPrototypesWithHandler(
9118 Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
9119 Handle<Object> value, LanguageMode language_mode, bool* done);
9121 MUST_USE_RESULT static Maybe<PropertyAttributes>
9122 GetPropertyAttributesWithHandler(Handle<JSProxy> proxy,
9123 Handle<Object> receiver,
9125 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithHandler(
9126 Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
9127 Handle<Object> value, LanguageMode language_mode);
9129 // Turn the proxy into an (empty) JSObject.
9130 static void Fix(Handle<JSProxy> proxy);
9132 // Initializes the body after the handler slot.
9133 inline void InitializeBody(int object_size, Object* value);
9135 // Invoke a trap by name. If the trap does not exist on this's handler,
9136 // but derived_trap is non-NULL, invoke that instead. May cause GC.
9137 MUST_USE_RESULT static MaybeHandle<Object> CallTrap(
9138 Handle<JSProxy> proxy,
9140 Handle<Object> derived_trap,
9142 Handle<Object> args[]);
9144 // Dispatched behavior.
9145 DECLARE_PRINTER(JSProxy)
9146 DECLARE_VERIFIER(JSProxy)
9148 // Layout description. We add padding so that a proxy has the same
9149 // size as a virgin JSObject. This is essential for becoming a JSObject
9151 static const int kHandlerOffset = HeapObject::kHeaderSize;
9152 static const int kHashOffset = kHandlerOffset + kPointerSize;
9153 static const int kPaddingOffset = kHashOffset + kPointerSize;
9154 static const int kSize = JSObject::kHeaderSize;
9155 static const int kHeaderSize = kPaddingOffset;
9156 static const int kPaddingSize = kSize - kPaddingOffset;
9158 STATIC_ASSERT(kPaddingSize >= 0);
9160 typedef FixedBodyDescriptor<kHandlerOffset,
9162 kSize> BodyDescriptor;
9165 friend class JSReceiver;
9167 MUST_USE_RESULT static Maybe<bool> HasPropertyWithHandler(
9168 Handle<JSProxy> proxy, Handle<Name> name);
9170 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithHandler(
9171 Handle<JSProxy> proxy, Handle<Name> name, LanguageMode language_mode);
9173 MUST_USE_RESULT Object* GetIdentityHash();
9175 static Handle<Smi> GetOrCreateIdentityHash(Handle<JSProxy> proxy);
9177 DISALLOW_IMPLICIT_CONSTRUCTORS(JSProxy);
9181 class JSFunctionProxy: public JSProxy {
9183 // [call_trap]: The call trap.
9184 DECL_ACCESSORS(call_trap, Object)
9186 // [construct_trap]: The construct trap.
9187 DECL_ACCESSORS(construct_trap, Object)
9189 DECLARE_CAST(JSFunctionProxy)
9191 // Dispatched behavior.
9192 DECLARE_PRINTER(JSFunctionProxy)
9193 DECLARE_VERIFIER(JSFunctionProxy)
9195 // Layout description.
9196 static const int kCallTrapOffset = JSProxy::kPaddingOffset;
9197 static const int kConstructTrapOffset = kCallTrapOffset + kPointerSize;
9198 static const int kPaddingOffset = kConstructTrapOffset + kPointerSize;
9199 static const int kSize = JSFunction::kSize;
9200 static const int kPaddingSize = kSize - kPaddingOffset;
9202 STATIC_ASSERT(kPaddingSize >= 0);
9204 typedef FixedBodyDescriptor<kHandlerOffset,
9205 kConstructTrapOffset + kPointerSize,
9206 kSize> BodyDescriptor;
9209 DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunctionProxy);
9213 class JSCollection : public JSObject {
9215 // [table]: the backing hash table
9216 DECL_ACCESSORS(table, Object)
9218 static const int kTableOffset = JSObject::kHeaderSize;
9219 static const int kSize = kTableOffset + kPointerSize;
9222 DISALLOW_IMPLICIT_CONSTRUCTORS(JSCollection);
9226 // The JSSet describes EcmaScript Harmony sets
9227 class JSSet : public JSCollection {
9231 // Dispatched behavior.
9232 DECLARE_PRINTER(JSSet)
9233 DECLARE_VERIFIER(JSSet)
9236 DISALLOW_IMPLICIT_CONSTRUCTORS(JSSet);
9240 // The JSMap describes EcmaScript Harmony maps
9241 class JSMap : public JSCollection {
9245 // Dispatched behavior.
9246 DECLARE_PRINTER(JSMap)
9247 DECLARE_VERIFIER(JSMap)
9250 DISALLOW_IMPLICIT_CONSTRUCTORS(JSMap);
9254 // OrderedHashTableIterator is an iterator that iterates over the keys and
9255 // values of an OrderedHashTable.
9257 // The iterator has a reference to the underlying OrderedHashTable data,
9258 // [table], as well as the current [index] the iterator is at.
9260 // When the OrderedHashTable is rehashed it adds a reference from the old table
9261 // to the new table as well as storing enough data about the changes so that the
9262 // iterator [index] can be adjusted accordingly.
9264 // When the [Next] result from the iterator is requested, the iterator checks if
9265 // there is a newer table that it needs to transition to.
9266 template<class Derived, class TableType>
9267 class OrderedHashTableIterator: public JSObject {
9269 // [table]: the backing hash table mapping keys to values.
9270 DECL_ACCESSORS(table, Object)
9272 // [index]: The index into the data table.
9273 DECL_ACCESSORS(index, Object)
9275 // [kind]: The kind of iteration this is. One of the [Kind] enum values.
9276 DECL_ACCESSORS(kind, Object)
9279 void OrderedHashTableIteratorPrint(std::ostream& os); // NOLINT
9282 static const int kTableOffset = JSObject::kHeaderSize;
9283 static const int kIndexOffset = kTableOffset + kPointerSize;
9284 static const int kKindOffset = kIndexOffset + kPointerSize;
9285 static const int kSize = kKindOffset + kPointerSize;
9293 // Whether the iterator has more elements. This needs to be called before
9294 // calling |CurrentKey| and/or |CurrentValue|.
9297 // Move the index forward one.
9299 set_index(Smi::FromInt(Smi::cast(index())->value() + 1));
9302 // Populates the array with the next key and value and then moves the iterator
9304 // This returns the |kind| or 0 if the iterator is already at the end.
9305 Smi* Next(JSArray* value_array);
9307 // Returns the current key of the iterator. This should only be called when
9308 // |HasMore| returns true.
9309 inline Object* CurrentKey();
9312 // Transitions the iterator to the non obsolete backing store. This is a NOP
9313 // if the [table] is not obsolete.
9316 DISALLOW_IMPLICIT_CONSTRUCTORS(OrderedHashTableIterator);
9320 class JSSetIterator: public OrderedHashTableIterator<JSSetIterator,
9323 // Dispatched behavior.
9324 DECLARE_PRINTER(JSSetIterator)
9325 DECLARE_VERIFIER(JSSetIterator)
9327 DECLARE_CAST(JSSetIterator)
9329 // Called by |Next| to populate the array. This allows the subclasses to
9330 // populate the array differently.
9331 inline void PopulateValueArray(FixedArray* array);
9334 DISALLOW_IMPLICIT_CONSTRUCTORS(JSSetIterator);
9338 class JSMapIterator: public OrderedHashTableIterator<JSMapIterator,
9341 // Dispatched behavior.
9342 DECLARE_PRINTER(JSMapIterator)
9343 DECLARE_VERIFIER(JSMapIterator)
9345 DECLARE_CAST(JSMapIterator)
9347 // Called by |Next| to populate the array. This allows the subclasses to
9348 // populate the array differently.
9349 inline void PopulateValueArray(FixedArray* array);
9352 // Returns the current value of the iterator. This should only be called when
9353 // |HasMore| returns true.
9354 inline Object* CurrentValue();
9356 DISALLOW_IMPLICIT_CONSTRUCTORS(JSMapIterator);
9360 // Base class for both JSWeakMap and JSWeakSet
9361 class JSWeakCollection: public JSObject {
9363 // [table]: the backing hash table mapping keys to values.
9364 DECL_ACCESSORS(table, Object)
9366 // [next]: linked list of encountered weak maps during GC.
9367 DECL_ACCESSORS(next, Object)
9369 static const int kTableOffset = JSObject::kHeaderSize;
9370 static const int kNextOffset = kTableOffset + kPointerSize;
9371 static const int kSize = kNextOffset + kPointerSize;
9374 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakCollection);
9378 // The JSWeakMap describes EcmaScript Harmony weak maps
9379 class JSWeakMap: public JSWeakCollection {
9381 DECLARE_CAST(JSWeakMap)
9383 // Dispatched behavior.
9384 DECLARE_PRINTER(JSWeakMap)
9385 DECLARE_VERIFIER(JSWeakMap)
9388 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakMap);
9392 // The JSWeakSet describes EcmaScript Harmony weak sets
9393 class JSWeakSet: public JSWeakCollection {
9395 DECLARE_CAST(JSWeakSet)
9397 // Dispatched behavior.
9398 DECLARE_PRINTER(JSWeakSet)
9399 DECLARE_VERIFIER(JSWeakSet)
9402 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakSet);
9406 // Whether a JSArrayBuffer is a SharedArrayBuffer or not.
9407 enum class SharedFlag { kNotShared, kShared };
9410 class JSArrayBuffer: public JSObject {
9412 // [backing_store]: backing memory for this array
9413 DECL_ACCESSORS(backing_store, void)
9415 // [byte_length]: length in bytes
9416 DECL_ACCESSORS(byte_length, Object)
9418 inline uint32_t bit_field() const;
9419 inline void set_bit_field(uint32_t bits);
9421 inline bool is_external();
9422 inline void set_is_external(bool value);
9424 inline bool is_neuterable();
9425 inline void set_is_neuterable(bool value);
9427 inline bool was_neutered();
9428 inline void set_was_neutered(bool value);
9430 inline bool is_shared();
9431 inline void set_is_shared(bool value);
9433 DECLARE_CAST(JSArrayBuffer)
9437 // Dispatched behavior.
9438 DECLARE_PRINTER(JSArrayBuffer)
9439 DECLARE_VERIFIER(JSArrayBuffer)
9441 static const int kBackingStoreOffset = JSObject::kHeaderSize;
9442 static const int kByteLengthOffset = kBackingStoreOffset + kPointerSize;
9443 static const int kBitFieldSlot = kByteLengthOffset + kPointerSize;
9444 #if V8_TARGET_LITTLE_ENDIAN || !V8_HOST_ARCH_64_BIT
9445 static const int kBitFieldOffset = kBitFieldSlot;
9447 static const int kBitFieldOffset = kBitFieldSlot + kIntSize;
9449 static const int kSize = kBitFieldSlot + kPointerSize;
9451 static const int kSizeWithInternalFields =
9452 kSize + v8::ArrayBuffer::kInternalFieldCount * kPointerSize;
9454 class IsExternal : public BitField<bool, 1, 1> {};
9455 class IsNeuterable : public BitField<bool, 2, 1> {};
9456 class WasNeutered : public BitField<bool, 3, 1> {};
9457 class IsShared : public BitField<bool, 4, 1> {};
9460 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBuffer);
9464 class JSArrayBufferView: public JSObject {
9466 // [buffer]: ArrayBuffer that this typed array views.
9467 DECL_ACCESSORS(buffer, Object)
9469 // [byte_offset]: offset of typed array in bytes.
9470 DECL_ACCESSORS(byte_offset, Object)
9472 // [byte_length]: length of typed array in bytes.
9473 DECL_ACCESSORS(byte_length, Object)
9475 DECLARE_CAST(JSArrayBufferView)
9477 DECLARE_VERIFIER(JSArrayBufferView)
9479 inline bool WasNeutered() const;
9481 static const int kBufferOffset = JSObject::kHeaderSize;
9482 static const int kByteOffsetOffset = kBufferOffset + kPointerSize;
9483 static const int kByteLengthOffset = kByteOffsetOffset + kPointerSize;
9484 static const int kViewSize = kByteLengthOffset + kPointerSize;
9488 DECL_ACCESSORS(raw_byte_offset, Object)
9489 DECL_ACCESSORS(raw_byte_length, Object)
9492 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBufferView);
9496 class JSTypedArray: public JSArrayBufferView {
9498 // [length]: length of typed array in elements.
9499 DECL_ACCESSORS(length, Object)
9500 inline uint32_t length_value() const;
9502 DECLARE_CAST(JSTypedArray)
9504 ExternalArrayType type();
9505 size_t element_size();
9507 Handle<JSArrayBuffer> GetBuffer();
9509 // Dispatched behavior.
9510 DECLARE_PRINTER(JSTypedArray)
9511 DECLARE_VERIFIER(JSTypedArray)
9513 static const int kLengthOffset = kViewSize + kPointerSize;
9514 static const int kSize = kLengthOffset + kPointerSize;
9516 static const int kSizeWithInternalFields =
9517 kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
9520 static Handle<JSArrayBuffer> MaterializeArrayBuffer(
9521 Handle<JSTypedArray> typed_array);
9523 DECL_ACCESSORS(raw_length, Object)
9526 DISALLOW_IMPLICIT_CONSTRUCTORS(JSTypedArray);
9530 class JSDataView: public JSArrayBufferView {
9532 DECLARE_CAST(JSDataView)
9534 // Dispatched behavior.
9535 DECLARE_PRINTER(JSDataView)
9536 DECLARE_VERIFIER(JSDataView)
9538 static const int kSize = kViewSize;
9540 static const int kSizeWithInternalFields =
9541 kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
9544 DISALLOW_IMPLICIT_CONSTRUCTORS(JSDataView);
9548 // Foreign describes objects pointing from JavaScript to C structures.
9549 class Foreign: public HeapObject {
9551 // [address]: field containing the address.
9552 inline Address foreign_address();
9553 inline void set_foreign_address(Address value);
9555 DECLARE_CAST(Foreign)
9557 // Dispatched behavior.
9558 inline void ForeignIterateBody(ObjectVisitor* v);
9560 template<typename StaticVisitor>
9561 inline void ForeignIterateBody();
9563 // Dispatched behavior.
9564 DECLARE_PRINTER(Foreign)
9565 DECLARE_VERIFIER(Foreign)
9567 // Layout description.
9569 static const int kForeignAddressOffset = HeapObject::kHeaderSize;
9570 static const int kSize = kForeignAddressOffset + kPointerSize;
9572 STATIC_ASSERT(kForeignAddressOffset == Internals::kForeignAddressOffset);
9575 DISALLOW_IMPLICIT_CONSTRUCTORS(Foreign);
9579 // The JSArray describes JavaScript Arrays
9580 // Such an array can be in one of two modes:
9581 // - fast, backing storage is a FixedArray and length <= elements.length();
9582 // Please note: push and pop can be used to grow and shrink the array.
9583 // - slow, backing storage is a HashTable with numbers as keys.
9584 class JSArray: public JSObject {
9586 // [length]: The length property.
9587 DECL_ACCESSORS(length, Object)
9589 // Overload the length setter to skip write barrier when the length
9590 // is set to a smi. This matches the set function on FixedArray.
9591 inline void set_length(Smi* length);
9593 static bool HasReadOnlyLength(Handle<JSArray> array);
9594 static bool WouldChangeReadOnlyLength(Handle<JSArray> array, uint32_t index);
9595 static MaybeHandle<Object> ReadOnlyLengthError(Handle<JSArray> array);
9597 // Initialize the array with the given capacity. The function may
9598 // fail due to out-of-memory situations, but only if the requested
9599 // capacity is non-zero.
9600 static void Initialize(Handle<JSArray> array, int capacity, int length = 0);
9602 // If the JSArray has fast elements, and new_length would result in
9603 // normalization, returns true.
9604 bool SetLengthWouldNormalize(uint32_t new_length);
9605 static inline bool SetLengthWouldNormalize(Heap* heap, uint32_t new_length);
9607 // Initializes the array to a certain length.
9608 inline bool AllowsSetLength();
9610 static void SetLength(Handle<JSArray> array, uint32_t length);
9611 // Same as above but will also queue splice records if |array| is observed.
9612 static MaybeHandle<Object> ObservableSetLength(Handle<JSArray> array,
9615 // Set the content of the array to the content of storage.
9616 static inline void SetContent(Handle<JSArray> array,
9617 Handle<FixedArrayBase> storage);
9619 DECLARE_CAST(JSArray)
9621 // Dispatched behavior.
9622 DECLARE_PRINTER(JSArray)
9623 DECLARE_VERIFIER(JSArray)
9625 // Number of element slots to pre-allocate for an empty array.
9626 static const int kPreallocatedArrayElements = 4;
9628 // Layout description.
9629 static const int kLengthOffset = JSObject::kHeaderSize;
9630 static const int kSize = kLengthOffset + kPointerSize;
9633 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
9637 Handle<Object> CacheInitialJSArrayMaps(Handle<Context> native_context,
9638 Handle<Map> initial_map);
9641 // JSRegExpResult is just a JSArray with a specific initial map.
9642 // This initial map adds in-object properties for "index" and "input"
9643 // properties, as assigned by RegExp.prototype.exec, which allows
9644 // faster creation of RegExp exec results.
9645 // This class just holds constants used when creating the result.
9646 // After creation the result must be treated as a JSArray in all regards.
9647 class JSRegExpResult: public JSArray {
9649 // Offsets of object fields.
9650 static const int kIndexOffset = JSArray::kSize;
9651 static const int kInputOffset = kIndexOffset + kPointerSize;
9652 static const int kSize = kInputOffset + kPointerSize;
9653 // Indices of in-object properties.
9654 static const int kIndexIndex = 0;
9655 static const int kInputIndex = 1;
9657 DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
9661 class AccessorInfo: public Struct {
9663 DECL_ACCESSORS(name, Object)
9664 DECL_ACCESSORS(flag, Smi)
9665 DECL_ACCESSORS(expected_receiver_type, Object)
9667 inline bool all_can_read();
9668 inline void set_all_can_read(bool value);
9670 inline bool all_can_write();
9671 inline void set_all_can_write(bool value);
9673 inline bool is_special_data_property();
9674 inline void set_is_special_data_property(bool value);
9676 inline PropertyAttributes property_attributes();
9677 inline void set_property_attributes(PropertyAttributes attributes);
9679 // Checks whether the given receiver is compatible with this accessor.
9680 static bool IsCompatibleReceiverMap(Isolate* isolate,
9681 Handle<AccessorInfo> info,
9683 inline bool IsCompatibleReceiver(Object* receiver);
9685 DECLARE_CAST(AccessorInfo)
9687 // Dispatched behavior.
9688 DECLARE_VERIFIER(AccessorInfo)
9690 // Append all descriptors to the array that are not already there.
9691 // Return number added.
9692 static int AppendUnique(Handle<Object> descriptors,
9693 Handle<FixedArray> array,
9694 int valid_descriptors);
9696 static const int kNameOffset = HeapObject::kHeaderSize;
9697 static const int kFlagOffset = kNameOffset + kPointerSize;
9698 static const int kExpectedReceiverTypeOffset = kFlagOffset + kPointerSize;
9699 static const int kSize = kExpectedReceiverTypeOffset + kPointerSize;
9702 inline bool HasExpectedReceiverType();
9704 // Bit positions in flag.
9705 static const int kAllCanReadBit = 0;
9706 static const int kAllCanWriteBit = 1;
9707 static const int kSpecialDataProperty = 2;
9708 class AttributesField : public BitField<PropertyAttributes, 3, 3> {};
9710 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
9714 // An accessor must have a getter, but can have no setter.
9716 // When setting a property, V8 searches accessors in prototypes.
9717 // If an accessor was found and it does not have a setter,
9718 // the request is ignored.
9720 // If the accessor in the prototype has the READ_ONLY property attribute, then
9721 // a new value is added to the derived object when the property is set.
9722 // This shadows the accessor in the prototype.
9723 class ExecutableAccessorInfo: public AccessorInfo {
9725 DECL_ACCESSORS(getter, Object)
9726 DECL_ACCESSORS(setter, Object)
9727 DECL_ACCESSORS(data, Object)
9729 DECLARE_CAST(ExecutableAccessorInfo)
9731 // Dispatched behavior.
9732 DECLARE_PRINTER(ExecutableAccessorInfo)
9733 DECLARE_VERIFIER(ExecutableAccessorInfo)
9735 static const int kGetterOffset = AccessorInfo::kSize;
9736 static const int kSetterOffset = kGetterOffset + kPointerSize;
9737 static const int kDataOffset = kSetterOffset + kPointerSize;
9738 static const int kSize = kDataOffset + kPointerSize;
9740 static void ClearSetter(Handle<ExecutableAccessorInfo> info);
9743 DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutableAccessorInfo);
9747 // Support for JavaScript accessors: A pair of a getter and a setter. Each
9748 // accessor can either be
9749 // * a pointer to a JavaScript function or proxy: a real accessor
9750 // * undefined: considered an accessor by the spec, too, strangely enough
9751 // * the hole: an accessor which has not been set
9752 // * a pointer to a map: a transition used to ensure map sharing
9753 class AccessorPair: public Struct {
9755 DECL_ACCESSORS(getter, Object)
9756 DECL_ACCESSORS(setter, Object)
9758 DECLARE_CAST(AccessorPair)
9760 static Handle<AccessorPair> Copy(Handle<AccessorPair> pair);
9762 inline Object* get(AccessorComponent component);
9763 inline void set(AccessorComponent component, Object* value);
9765 // Note: Returns undefined instead in case of a hole.
9766 Object* GetComponent(AccessorComponent component);
9768 // Set both components, skipping arguments which are a JavaScript null.
9769 inline void SetComponents(Object* getter, Object* setter);
9771 inline bool Equals(AccessorPair* pair);
9772 inline bool Equals(Object* getter_value, Object* setter_value);
9774 inline bool ContainsAccessor();
9776 // Dispatched behavior.
9777 DECLARE_PRINTER(AccessorPair)
9778 DECLARE_VERIFIER(AccessorPair)
9780 static const int kGetterOffset = HeapObject::kHeaderSize;
9781 static const int kSetterOffset = kGetterOffset + kPointerSize;
9782 static const int kSize = kSetterOffset + kPointerSize;
9785 // Strangely enough, in addition to functions and harmony proxies, the spec
9786 // requires us to consider undefined as a kind of accessor, too:
9788 // Object.defineProperty(obj, "foo", {get: undefined});
9789 // assertTrue("foo" in obj);
9790 inline bool IsJSAccessor(Object* obj);
9792 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorPair);
9796 class AccessCheckInfo: public Struct {
9798 DECL_ACCESSORS(named_callback, Object)
9799 DECL_ACCESSORS(indexed_callback, Object)
9800 DECL_ACCESSORS(data, Object)
9802 DECLARE_CAST(AccessCheckInfo)
9804 // Dispatched behavior.
9805 DECLARE_PRINTER(AccessCheckInfo)
9806 DECLARE_VERIFIER(AccessCheckInfo)
9808 static const int kNamedCallbackOffset = HeapObject::kHeaderSize;
9809 static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
9810 static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
9811 static const int kSize = kDataOffset + kPointerSize;
9814 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
9818 class InterceptorInfo: public Struct {
9820 DECL_ACCESSORS(getter, Object)
9821 DECL_ACCESSORS(setter, Object)
9822 DECL_ACCESSORS(query, Object)
9823 DECL_ACCESSORS(deleter, Object)
9824 DECL_ACCESSORS(enumerator, Object)
9825 DECL_ACCESSORS(data, Object)
9826 DECL_BOOLEAN_ACCESSORS(can_intercept_symbols)
9827 DECL_BOOLEAN_ACCESSORS(all_can_read)
9828 DECL_BOOLEAN_ACCESSORS(non_masking)
9830 inline int flags() const;
9831 inline void set_flags(int flags);
9833 DECLARE_CAST(InterceptorInfo)
9835 // Dispatched behavior.
9836 DECLARE_PRINTER(InterceptorInfo)
9837 DECLARE_VERIFIER(InterceptorInfo)
9839 static const int kGetterOffset = HeapObject::kHeaderSize;
9840 static const int kSetterOffset = kGetterOffset + kPointerSize;
9841 static const int kQueryOffset = kSetterOffset + kPointerSize;
9842 static const int kDeleterOffset = kQueryOffset + kPointerSize;
9843 static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
9844 static const int kDataOffset = kEnumeratorOffset + kPointerSize;
9845 static const int kFlagsOffset = kDataOffset + kPointerSize;
9846 static const int kSize = kFlagsOffset + kPointerSize;
9848 static const int kCanInterceptSymbolsBit = 0;
9849 static const int kAllCanReadBit = 1;
9850 static const int kNonMasking = 2;
9853 DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
9857 class CallHandlerInfo: public Struct {
9859 DECL_ACCESSORS(callback, Object)
9860 DECL_ACCESSORS(data, Object)
9862 DECLARE_CAST(CallHandlerInfo)
9864 // Dispatched behavior.
9865 DECLARE_PRINTER(CallHandlerInfo)
9866 DECLARE_VERIFIER(CallHandlerInfo)
9868 static const int kCallbackOffset = HeapObject::kHeaderSize;
9869 static const int kDataOffset = kCallbackOffset + kPointerSize;
9870 static const int kSize = kDataOffset + kPointerSize;
9873 DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
9877 class TemplateInfo: public Struct {
9879 DECL_ACCESSORS(tag, Object)
9880 inline int number_of_properties() const;
9881 inline void set_number_of_properties(int value);
9882 DECL_ACCESSORS(property_list, Object)
9883 DECL_ACCESSORS(property_accessors, Object)
9885 DECLARE_VERIFIER(TemplateInfo)
9887 static const int kTagOffset = HeapObject::kHeaderSize;
9888 static const int kNumberOfProperties = kTagOffset + kPointerSize;
9889 static const int kPropertyListOffset = kNumberOfProperties + kPointerSize;
9890 static const int kPropertyAccessorsOffset =
9891 kPropertyListOffset + kPointerSize;
9892 static const int kHeaderSize = kPropertyAccessorsOffset + kPointerSize;
9895 DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
9899 class FunctionTemplateInfo: public TemplateInfo {
9901 DECL_ACCESSORS(serial_number, Object)
9902 DECL_ACCESSORS(call_code, Object)
9903 DECL_ACCESSORS(prototype_template, Object)
9904 DECL_ACCESSORS(parent_template, Object)
9905 DECL_ACCESSORS(named_property_handler, Object)
9906 DECL_ACCESSORS(indexed_property_handler, Object)
9907 DECL_ACCESSORS(instance_template, Object)
9908 DECL_ACCESSORS(class_name, Object)
9909 DECL_ACCESSORS(signature, Object)
9910 DECL_ACCESSORS(instance_call_handler, Object)
9911 DECL_ACCESSORS(access_check_info, Object)
9912 DECL_ACCESSORS(flag, Smi)
9914 inline int length() const;
9915 inline void set_length(int value);
9917 // Following properties use flag bits.
9918 DECL_BOOLEAN_ACCESSORS(hidden_prototype)
9919 DECL_BOOLEAN_ACCESSORS(undetectable)
9920 // If the bit is set, object instances created by this function
9921 // requires access check.
9922 DECL_BOOLEAN_ACCESSORS(needs_access_check)
9923 DECL_BOOLEAN_ACCESSORS(read_only_prototype)
9924 DECL_BOOLEAN_ACCESSORS(remove_prototype)
9925 DECL_BOOLEAN_ACCESSORS(do_not_cache)
9926 DECL_BOOLEAN_ACCESSORS(instantiated)
9927 DECL_BOOLEAN_ACCESSORS(accept_any_receiver)
9929 DECLARE_CAST(FunctionTemplateInfo)
9931 // Dispatched behavior.
9932 DECLARE_PRINTER(FunctionTemplateInfo)
9933 DECLARE_VERIFIER(FunctionTemplateInfo)
9935 static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
9936 static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
9937 static const int kPrototypeTemplateOffset =
9938 kCallCodeOffset + kPointerSize;
9939 static const int kParentTemplateOffset =
9940 kPrototypeTemplateOffset + kPointerSize;
9941 static const int kNamedPropertyHandlerOffset =
9942 kParentTemplateOffset + kPointerSize;
9943 static const int kIndexedPropertyHandlerOffset =
9944 kNamedPropertyHandlerOffset + kPointerSize;
9945 static const int kInstanceTemplateOffset =
9946 kIndexedPropertyHandlerOffset + kPointerSize;
9947 static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
9948 static const int kSignatureOffset = kClassNameOffset + kPointerSize;
9949 static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
9950 static const int kAccessCheckInfoOffset =
9951 kInstanceCallHandlerOffset + kPointerSize;
9952 static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
9953 static const int kLengthOffset = kFlagOffset + kPointerSize;
9954 static const int kSize = kLengthOffset + kPointerSize;
9956 // Returns true if |object| is an instance of this function template.
9957 bool IsTemplateFor(Object* object);
9958 bool IsTemplateFor(Map* map);
9960 // Returns the holder JSObject if the function can legally be called with this
9961 // receiver. Returns Heap::null_value() if the call is illegal.
9962 Object* GetCompatibleReceiver(Isolate* isolate, Object* receiver);
9965 // Bit position in the flag, from least significant bit position.
9966 static const int kHiddenPrototypeBit = 0;
9967 static const int kUndetectableBit = 1;
9968 static const int kNeedsAccessCheckBit = 2;
9969 static const int kReadOnlyPrototypeBit = 3;
9970 static const int kRemovePrototypeBit = 4;
9971 static const int kDoNotCacheBit = 5;
9972 static const int kInstantiatedBit = 6;
9973 static const int kAcceptAnyReceiver = 7;
9975 DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
9979 class ObjectTemplateInfo: public TemplateInfo {
9981 DECL_ACCESSORS(constructor, Object)
9982 DECL_ACCESSORS(internal_field_count, Object)
9984 DECLARE_CAST(ObjectTemplateInfo)
9986 // Dispatched behavior.
9987 DECLARE_PRINTER(ObjectTemplateInfo)
9988 DECLARE_VERIFIER(ObjectTemplateInfo)
9990 static const int kConstructorOffset = TemplateInfo::kHeaderSize;
9991 static const int kInternalFieldCountOffset =
9992 kConstructorOffset + kPointerSize;
9993 static const int kSize = kInternalFieldCountOffset + kPointerSize;
9997 class TypeSwitchInfo: public Struct {
9999 DECL_ACCESSORS(types, Object)
10001 DECLARE_CAST(TypeSwitchInfo)
10003 // Dispatched behavior.
10004 DECLARE_PRINTER(TypeSwitchInfo)
10005 DECLARE_VERIFIER(TypeSwitchInfo)
10007 static const int kTypesOffset = Struct::kHeaderSize;
10008 static const int kSize = kTypesOffset + kPointerSize;
10012 // The DebugInfo class holds additional information for a function being
10014 class DebugInfo: public Struct {
10016 // The shared function info for the source being debugged.
10017 DECL_ACCESSORS(shared, SharedFunctionInfo)
10018 // Code object for the patched code. This code object is the code object
10019 // currently active for the function.
10020 DECL_ACCESSORS(code, Code)
10021 // Fixed array holding status information for each active break point.
10022 DECL_ACCESSORS(break_points, FixedArray)
10024 // Check if there is a break point at a code position.
10025 bool HasBreakPoint(int code_position);
10026 // Get the break point info object for a code position.
10027 Object* GetBreakPointInfo(int code_position);
10028 // Clear a break point.
10029 static void ClearBreakPoint(Handle<DebugInfo> debug_info,
10031 Handle<Object> break_point_object);
10032 // Set a break point.
10033 static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
10034 int source_position, int statement_position,
10035 Handle<Object> break_point_object);
10036 // Get the break point objects for a code position.
10037 Handle<Object> GetBreakPointObjects(int code_position);
10038 // Find the break point info holding this break point object.
10039 static Handle<Object> FindBreakPointInfo(Handle<DebugInfo> debug_info,
10040 Handle<Object> break_point_object);
10041 // Get the number of break points for this function.
10042 int GetBreakPointCount();
10044 DECLARE_CAST(DebugInfo)
10046 // Dispatched behavior.
10047 DECLARE_PRINTER(DebugInfo)
10048 DECLARE_VERIFIER(DebugInfo)
10050 static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
10051 static const int kCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
10052 static const int kBreakPointsStateIndex = kCodeIndex + kPointerSize;
10053 static const int kSize = kBreakPointsStateIndex + kPointerSize;
10055 static const int kEstimatedNofBreakPointsInFunction = 16;
10058 static const int kNoBreakPointInfo = -1;
10060 // Lookup the index in the break_points array for a code position.
10061 int GetBreakPointInfoIndex(int code_position);
10063 DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
10067 // The BreakPointInfo class holds information for break points set in a
10068 // function. The DebugInfo object holds a BreakPointInfo object for each code
10069 // position with one or more break points.
10070 class BreakPointInfo: public Struct {
10072 // The position in the code for the break point.
10073 DECL_ACCESSORS(code_position, Smi)
10074 // The position in the source for the break position.
10075 DECL_ACCESSORS(source_position, Smi)
10076 // The position in the source for the last statement before this break
10078 DECL_ACCESSORS(statement_position, Smi)
10079 // List of related JavaScript break points.
10080 DECL_ACCESSORS(break_point_objects, Object)
10082 // Removes a break point.
10083 static void ClearBreakPoint(Handle<BreakPointInfo> info,
10084 Handle<Object> break_point_object);
10085 // Set a break point.
10086 static void SetBreakPoint(Handle<BreakPointInfo> info,
10087 Handle<Object> break_point_object);
10088 // Check if break point info has this break point object.
10089 static bool HasBreakPointObject(Handle<BreakPointInfo> info,
10090 Handle<Object> break_point_object);
10091 // Get the number of break points for this code position.
10092 int GetBreakPointCount();
10094 DECLARE_CAST(BreakPointInfo)
10096 // Dispatched behavior.
10097 DECLARE_PRINTER(BreakPointInfo)
10098 DECLARE_VERIFIER(BreakPointInfo)
10100 static const int kCodePositionIndex = Struct::kHeaderSize;
10101 static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
10102 static const int kStatementPositionIndex =
10103 kSourcePositionIndex + kPointerSize;
10104 static const int kBreakPointObjectsIndex =
10105 kStatementPositionIndex + kPointerSize;
10106 static const int kSize = kBreakPointObjectsIndex + kPointerSize;
10109 DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
10113 #undef DECL_BOOLEAN_ACCESSORS
10114 #undef DECL_ACCESSORS
10115 #undef DECLARE_CAST
10116 #undef DECLARE_VERIFIER
10118 #define VISITOR_SYNCHRONIZATION_TAGS_LIST(V) \
10119 V(kStringTable, "string_table", "(Internalized strings)") \
10120 V(kExternalStringsTable, "external_strings_table", "(External strings)") \
10121 V(kStrongRootList, "strong_root_list", "(Strong roots)") \
10122 V(kSmiRootList, "smi_root_list", "(Smi roots)") \
10123 V(kInternalizedString, "internalized_string", "(Internal string)") \
10124 V(kBootstrapper, "bootstrapper", "(Bootstrapper)") \
10125 V(kTop, "top", "(Isolate)") \
10126 V(kRelocatable, "relocatable", "(Relocatable)") \
10127 V(kDebug, "debug", "(Debugger)") \
10128 V(kCompilationCache, "compilationcache", "(Compilation cache)") \
10129 V(kHandleScope, "handlescope", "(Handle scope)") \
10130 V(kBuiltins, "builtins", "(Builtins)") \
10131 V(kGlobalHandles, "globalhandles", "(Global handles)") \
10132 V(kEternalHandles, "eternalhandles", "(Eternal handles)") \
10133 V(kThreadManager, "threadmanager", "(Thread manager)") \
10134 V(kStrongRoots, "strong roots", "(Strong roots)") \
10135 V(kExtensions, "Extensions", "(Extensions)")
10137 class VisitorSynchronization : public AllStatic {
10139 #define DECLARE_ENUM(enum_item, ignore1, ignore2) enum_item,
10141 VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_ENUM)
10144 #undef DECLARE_ENUM
10146 static const char* const kTags[kNumberOfSyncTags];
10147 static const char* const kTagNames[kNumberOfSyncTags];
10150 // Abstract base class for visiting, and optionally modifying, the
10151 // pointers contained in Objects. Used in GC and serialization/deserialization.
10152 class ObjectVisitor BASE_EMBEDDED {
10154 virtual ~ObjectVisitor() {}
10156 // Visits a contiguous arrays of pointers in the half-open range
10157 // [start, end). Any or all of the values may be modified on return.
10158 virtual void VisitPointers(Object** start, Object** end) = 0;
10160 // Handy shorthand for visiting a single pointer.
10161 virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
10163 // Visit weak next_code_link in Code object.
10164 virtual void VisitNextCodeLink(Object** p) { VisitPointers(p, p + 1); }
10166 // To allow lazy clearing of inline caches the visitor has
10167 // a rich interface for iterating over Code objects..
10169 // Visits a code target in the instruction stream.
10170 virtual void VisitCodeTarget(RelocInfo* rinfo);
10172 // Visits a code entry in a JS function.
10173 virtual void VisitCodeEntry(Address entry_address);
10175 // Visits a global property cell reference in the instruction stream.
10176 virtual void VisitCell(RelocInfo* rinfo);
10178 // Visits a runtime entry in the instruction stream.
10179 virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
10181 // Visits the resource of an one-byte or two-byte string.
10182 virtual void VisitExternalOneByteString(
10183 v8::String::ExternalOneByteStringResource** resource) {}
10184 virtual void VisitExternalTwoByteString(
10185 v8::String::ExternalStringResource** resource) {}
10187 // Visits a debug call target in the instruction stream.
10188 virtual void VisitDebugTarget(RelocInfo* rinfo);
10190 // Visits the byte sequence in a function's prologue that contains information
10191 // about the code's age.
10192 virtual void VisitCodeAgeSequence(RelocInfo* rinfo);
10194 // Visit pointer embedded into a code object.
10195 virtual void VisitEmbeddedPointer(RelocInfo* rinfo);
10197 // Visits an external reference embedded into a code object.
10198 virtual void VisitExternalReference(RelocInfo* rinfo);
10200 // Visits an external reference.
10201 virtual void VisitExternalReference(Address* p) {}
10203 // Visits an (encoded) internal reference.
10204 virtual void VisitInternalReference(RelocInfo* rinfo) {}
10206 // Visits a handle that has an embedder-assigned class ID.
10207 virtual void VisitEmbedderReference(Object** p, uint16_t class_id) {}
10209 // Intended for serialization/deserialization checking: insert, or
10210 // check for the presence of, a tag at this position in the stream.
10211 // Also used for marking up GC roots in heap snapshots.
10212 virtual void Synchronize(VisitorSynchronization::SyncTag tag) {}
10216 class StructBodyDescriptor : public
10217 FlexibleBodyDescriptor<HeapObject::kHeaderSize> {
10219 static inline int SizeOf(Map* map, HeapObject* object);
10223 // BooleanBit is a helper class for setting and getting a bit in an
10225 class BooleanBit : public AllStatic {
10227 static inline bool get(Smi* smi, int bit_position) {
10228 return get(smi->value(), bit_position);
10231 static inline bool get(int value, int bit_position) {
10232 return (value & (1 << bit_position)) != 0;
10235 static inline Smi* set(Smi* smi, int bit_position, bool v) {
10236 return Smi::FromInt(set(smi->value(), bit_position, v));
10239 static inline int set(int value, int bit_position, bool v) {
10241 value |= (1 << bit_position);
10243 value &= ~(1 << bit_position);
10249 } } // namespace v8::internal
10251 #endif // V8_OBJECTS_H_