1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
10 #include "src/allocation.h"
11 #include "src/assert-scope.h"
12 #include "src/bailout-reason.h"
13 #include "src/base/bits.h"
14 #include "src/base/smart-pointers.h"
15 #include "src/builtins.h"
16 #include "src/checks.h"
17 #include "src/elements-kind.h"
18 #include "src/field-index.h"
19 #include "src/flags.h"
21 #include "src/property-details.h"
22 #include "src/unicode.h"
23 #include "src/unicode-decoder.h"
26 #if V8_TARGET_ARCH_ARM
27 #include "src/arm/constants-arm.h" // NOLINT
28 #elif V8_TARGET_ARCH_ARM64
29 #include "src/arm64/constants-arm64.h" // NOLINT
30 #elif V8_TARGET_ARCH_MIPS
31 #include "src/mips/constants-mips.h" // NOLINT
32 #elif V8_TARGET_ARCH_MIPS64
33 #include "src/mips64/constants-mips64.h" // NOLINT
34 #elif V8_TARGET_ARCH_PPC
35 #include "src/ppc/constants-ppc.h" // NOLINT
40 // Most object types in the V8 JavaScript are described in this file.
42 // Inheritance hierarchy:
44 // - Smi (immediate small integer)
45 // - HeapObject (superclass for everything allocated in the heap)
46 // - JSReceiver (suitable for property access)
50 // - JSArrayBufferView
63 // - JSGeneratorObject
82 // - CompilationCacheTable
83 // - CodeCacheHashTable
89 // - TypeFeedbackVector
92 // - ScriptContextTable
103 // - ExternalOneByteString
104 // - ExternalTwoByteString
105 // - InternalizedString
106 // - SeqInternalizedString
107 // - SeqOneByteInternalizedString
108 // - SeqTwoByteInternalizedString
109 // - ConsInternalizedString
110 // - ExternalInternalizedString
111 // - ExternalOneByteInternalizedString
112 // - ExternalTwoByteInternalizedString
132 // - SharedFunctionInfo
136 // - ExecutableAccessorInfo
142 // - FunctionTemplateInfo
143 // - ObjectTemplateInfo
152 // Formats of Object*:
153 // Smi: [31 bit signed int] 0
154 // HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
159 enum KeyedAccessStoreMode {
161 STORE_TRANSITION_TO_OBJECT,
162 STORE_TRANSITION_TO_DOUBLE,
163 STORE_AND_GROW_NO_TRANSITION,
164 STORE_AND_GROW_TRANSITION_TO_OBJECT,
165 STORE_AND_GROW_TRANSITION_TO_DOUBLE,
166 STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS,
167 STORE_NO_TRANSITION_HANDLE_COW
171 // Valid hints for the abstract operation ToPrimitive,
172 // implemented according to ES6, section 7.1.1.
173 enum class ToPrimitiveHint { kDefault, kNumber, kString };
176 // Valid hints for the abstract operation OrdinaryToPrimitive,
177 // implemented according to ES6, section 7.1.1.
178 enum class OrdinaryToPrimitiveHint { kNumber, kString };
181 enum TypeofMode { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
190 enum ExternalArrayType {
191 kExternalInt8Array = 1,
194 kExternalUint16Array,
196 kExternalUint32Array,
197 kExternalFloat32Array,
198 kExternalFloat64Array,
199 kExternalUint8ClampedArray,
203 static inline bool IsTransitionStoreMode(KeyedAccessStoreMode store_mode) {
204 return store_mode == STORE_TRANSITION_TO_OBJECT ||
205 store_mode == STORE_TRANSITION_TO_DOUBLE ||
206 store_mode == STORE_AND_GROW_TRANSITION_TO_OBJECT ||
207 store_mode == STORE_AND_GROW_TRANSITION_TO_DOUBLE;
211 static inline KeyedAccessStoreMode GetNonTransitioningStoreMode(
212 KeyedAccessStoreMode store_mode) {
213 if (store_mode >= STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
216 if (store_mode >= STORE_AND_GROW_NO_TRANSITION) {
217 return STORE_AND_GROW_NO_TRANSITION;
219 return STANDARD_STORE;
223 static inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) {
224 return store_mode >= STORE_AND_GROW_NO_TRANSITION &&
225 store_mode <= STORE_AND_GROW_TRANSITION_TO_DOUBLE;
229 enum IcCheckType { ELEMENT, PROPERTY };
232 // SKIP_WRITE_BARRIER skips the write barrier.
233 // UPDATE_WEAK_WRITE_BARRIER skips the marking part of the write barrier and
234 // only performs the generational part.
235 // UPDATE_WRITE_BARRIER is doing the full barrier, marking and generational.
236 enum WriteBarrierMode {
238 UPDATE_WEAK_WRITE_BARRIER,
243 // Indicates whether a value can be loaded as a constant.
244 enum StoreMode { ALLOW_IN_DESCRIPTOR, FORCE_FIELD };
247 // PropertyNormalizationMode is used to specify whether to keep
248 // inobject properties when normalizing properties of a JSObject.
249 enum PropertyNormalizationMode {
250 CLEAR_INOBJECT_PROPERTIES,
251 KEEP_INOBJECT_PROPERTIES
255 // Indicates how aggressively the prototype should be optimized. FAST_PROTOTYPE
256 // will give the fastest result by tailoring the map to the prototype, but that
257 // will cause polymorphism with other objects. REGULAR_PROTOTYPE is to be used
258 // (at least for now) when dynamically modifying the prototype chain of an
259 // object using __proto__ or Object.setPrototypeOf.
260 enum PrototypeOptimizationMode { REGULAR_PROTOTYPE, FAST_PROTOTYPE };
263 // Indicates whether transitions can be added to a source map or not.
264 enum TransitionFlag {
270 // Indicates whether the transition is simple: the target map of the transition
271 // either extends the current map with a new property, or it modifies the
272 // property that was added last to the current map.
273 enum SimpleTransitionFlag {
274 SIMPLE_PROPERTY_TRANSITION,
280 // Indicates whether we are only interested in the descriptors of a particular
281 // map, or in all descriptors in the descriptor array.
282 enum DescriptorFlag {
287 // The GC maintains a bit of information, the MarkingParity, which toggles
288 // from odd to even and back every time marking is completed. Incremental
289 // marking can visit an object twice during a marking phase, so algorithms that
290 // that piggy-back on marking can use the parity to ensure that they only
291 // perform an operation on an object once per marking phase: they record the
292 // MarkingParity when they visit an object, and only re-visit the object when it
293 // is marked again and the MarkingParity changes.
300 // ICs store extra state in a Code object. The default extra state is
302 typedef int ExtraICState;
303 static const ExtraICState kNoExtraICState = 0;
305 // Instance size sentinel for objects of variable size.
306 const int kVariableSizeSentinel = 0;
308 // We may store the unsigned bit field as signed Smi value and do not
310 const int kStubMajorKeyBits = 7;
311 const int kStubMinorKeyBits = kSmiValueSize - kStubMajorKeyBits - 1;
313 // All Maps have a field instance_type containing a InstanceType.
314 // It describes the type of the instances.
316 // As an example, a JavaScript object is a heap object and its map
317 // instance_type is JS_OBJECT_TYPE.
319 // The names of the string instance types are intended to systematically
320 // mirror their encoding in the instance_type field of the map. The default
321 // encoding is considered TWO_BYTE. It is not mentioned in the name. ONE_BYTE
322 // encoding is mentioned explicitly in the name. Likewise, the default
323 // representation is considered sequential. It is not mentioned in the
324 // name. The other representations (e.g. CONS, EXTERNAL) are explicitly
325 // mentioned. Finally, the string is either a STRING_TYPE (if it is a normal
326 // string) or a INTERNALIZED_STRING_TYPE (if it is a internalized string).
328 // NOTE: The following things are some that depend on the string types having
329 // instance_types that are less than those of all other types:
330 // HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
333 // NOTE: Everything following JS_VALUE_TYPE is considered a
334 // JSObject for GC purposes. The first four entries here have typeof
335 // 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
336 #define INSTANCE_TYPE_LIST(V) \
338 V(ONE_BYTE_STRING_TYPE) \
339 V(CONS_STRING_TYPE) \
340 V(CONS_ONE_BYTE_STRING_TYPE) \
341 V(SLICED_STRING_TYPE) \
342 V(SLICED_ONE_BYTE_STRING_TYPE) \
343 V(EXTERNAL_STRING_TYPE) \
344 V(EXTERNAL_ONE_BYTE_STRING_TYPE) \
345 V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
346 V(SHORT_EXTERNAL_STRING_TYPE) \
347 V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE) \
348 V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
350 V(INTERNALIZED_STRING_TYPE) \
351 V(ONE_BYTE_INTERNALIZED_STRING_TYPE) \
352 V(EXTERNAL_INTERNALIZED_STRING_TYPE) \
353 V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
354 V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
355 V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE) \
356 V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
357 V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
360 V(SIMD128_VALUE_TYPE) \
366 V(PROPERTY_CELL_TYPE) \
368 V(HEAP_NUMBER_TYPE) \
369 V(MUTABLE_HEAP_NUMBER_TYPE) \
372 V(BYTECODE_ARRAY_TYPE) \
375 V(FIXED_INT8_ARRAY_TYPE) \
376 V(FIXED_UINT8_ARRAY_TYPE) \
377 V(FIXED_INT16_ARRAY_TYPE) \
378 V(FIXED_UINT16_ARRAY_TYPE) \
379 V(FIXED_INT32_ARRAY_TYPE) \
380 V(FIXED_UINT32_ARRAY_TYPE) \
381 V(FIXED_FLOAT32_ARRAY_TYPE) \
382 V(FIXED_FLOAT64_ARRAY_TYPE) \
383 V(FIXED_UINT8_CLAMPED_ARRAY_TYPE) \
387 V(DECLARED_ACCESSOR_DESCRIPTOR_TYPE) \
388 V(DECLARED_ACCESSOR_INFO_TYPE) \
389 V(EXECUTABLE_ACCESSOR_INFO_TYPE) \
390 V(ACCESSOR_PAIR_TYPE) \
391 V(ACCESS_CHECK_INFO_TYPE) \
392 V(INTERCEPTOR_INFO_TYPE) \
393 V(CALL_HANDLER_INFO_TYPE) \
394 V(FUNCTION_TEMPLATE_INFO_TYPE) \
395 V(OBJECT_TEMPLATE_INFO_TYPE) \
396 V(SIGNATURE_INFO_TYPE) \
397 V(TYPE_SWITCH_INFO_TYPE) \
398 V(ALLOCATION_MEMENTO_TYPE) \
399 V(ALLOCATION_SITE_TYPE) \
402 V(POLYMORPHIC_CODE_CACHE_TYPE) \
403 V(TYPE_FEEDBACK_INFO_TYPE) \
404 V(ALIASED_ARGUMENTS_ENTRY_TYPE) \
406 V(PROTOTYPE_INFO_TYPE) \
407 V(SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE) \
409 V(FIXED_ARRAY_TYPE) \
410 V(FIXED_DOUBLE_ARRAY_TYPE) \
411 V(SHARED_FUNCTION_INFO_TYPE) \
414 V(JS_MESSAGE_OBJECT_TYPE) \
419 V(JS_CONTEXT_EXTENSION_OBJECT_TYPE) \
420 V(JS_GENERATOR_OBJECT_TYPE) \
422 V(JS_GLOBAL_OBJECT_TYPE) \
423 V(JS_BUILTINS_OBJECT_TYPE) \
424 V(JS_GLOBAL_PROXY_TYPE) \
426 V(JS_ARRAY_BUFFER_TYPE) \
427 V(JS_TYPED_ARRAY_TYPE) \
428 V(JS_DATA_VIEW_TYPE) \
432 V(JS_SET_ITERATOR_TYPE) \
433 V(JS_MAP_ITERATOR_TYPE) \
434 V(JS_WEAK_MAP_TYPE) \
435 V(JS_WEAK_SET_TYPE) \
438 V(JS_FUNCTION_TYPE) \
439 V(JS_FUNCTION_PROXY_TYPE) \
441 V(BREAK_POINT_INFO_TYPE)
444 // Since string types are not consecutive, this macro is used to
445 // iterate over them.
446 #define STRING_TYPE_LIST(V) \
447 V(STRING_TYPE, kVariableSizeSentinel, string, String) \
448 V(ONE_BYTE_STRING_TYPE, kVariableSizeSentinel, one_byte_string, \
450 V(CONS_STRING_TYPE, ConsString::kSize, cons_string, ConsString) \
451 V(CONS_ONE_BYTE_STRING_TYPE, ConsString::kSize, cons_one_byte_string, \
453 V(SLICED_STRING_TYPE, SlicedString::kSize, sliced_string, SlicedString) \
454 V(SLICED_ONE_BYTE_STRING_TYPE, SlicedString::kSize, sliced_one_byte_string, \
455 SlicedOneByteString) \
456 V(EXTERNAL_STRING_TYPE, ExternalTwoByteString::kSize, external_string, \
458 V(EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kSize, \
459 external_one_byte_string, ExternalOneByteString) \
460 V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, ExternalTwoByteString::kSize, \
461 external_string_with_one_byte_data, ExternalStringWithOneByteData) \
462 V(SHORT_EXTERNAL_STRING_TYPE, ExternalTwoByteString::kShortSize, \
463 short_external_string, ShortExternalString) \
464 V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kShortSize, \
465 short_external_one_byte_string, ShortExternalOneByteString) \
466 V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, \
467 ExternalTwoByteString::kShortSize, \
468 short_external_string_with_one_byte_data, \
469 ShortExternalStringWithOneByteData) \
471 V(INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, internalized_string, \
472 InternalizedString) \
473 V(ONE_BYTE_INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, \
474 one_byte_internalized_string, OneByteInternalizedString) \
475 V(EXTERNAL_INTERNALIZED_STRING_TYPE, ExternalTwoByteString::kSize, \
476 external_internalized_string, ExternalInternalizedString) \
477 V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, ExternalOneByteString::kSize, \
478 external_one_byte_internalized_string, ExternalOneByteInternalizedString) \
479 V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
480 ExternalTwoByteString::kSize, \
481 external_internalized_string_with_one_byte_data, \
482 ExternalInternalizedStringWithOneByteData) \
483 V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE, \
484 ExternalTwoByteString::kShortSize, short_external_internalized_string, \
485 ShortExternalInternalizedString) \
486 V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, \
487 ExternalOneByteString::kShortSize, \
488 short_external_one_byte_internalized_string, \
489 ShortExternalOneByteInternalizedString) \
490 V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
491 ExternalTwoByteString::kShortSize, \
492 short_external_internalized_string_with_one_byte_data, \
493 ShortExternalInternalizedStringWithOneByteData)
495 // A struct is a simple object a set of object-valued fields. Including an
496 // object type in this causes the compiler to generate most of the boilerplate
497 // code for the class including allocation and garbage collection routines,
498 // casts and predicates. All you need to define is the class, methods and
499 // object verification routines. Easy, no?
501 // Note that for subtle reasons related to the ordering or numerical values of
502 // type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
504 #define STRUCT_LIST(V) \
506 V(EXECUTABLE_ACCESSOR_INFO, ExecutableAccessorInfo, \
507 executable_accessor_info) \
508 V(ACCESSOR_PAIR, AccessorPair, accessor_pair) \
509 V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \
510 V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \
511 V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info) \
512 V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \
513 V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \
514 V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info) \
515 V(SCRIPT, Script, script) \
516 V(ALLOCATION_SITE, AllocationSite, allocation_site) \
517 V(ALLOCATION_MEMENTO, AllocationMemento, allocation_memento) \
518 V(CODE_CACHE, CodeCache, code_cache) \
519 V(POLYMORPHIC_CODE_CACHE, PolymorphicCodeCache, polymorphic_code_cache) \
520 V(TYPE_FEEDBACK_INFO, TypeFeedbackInfo, type_feedback_info) \
521 V(ALIASED_ARGUMENTS_ENTRY, AliasedArgumentsEntry, aliased_arguments_entry) \
522 V(DEBUG_INFO, DebugInfo, debug_info) \
523 V(BREAK_POINT_INFO, BreakPointInfo, break_point_info) \
524 V(PROTOTYPE_INFO, PrototypeInfo, prototype_info) \
525 V(SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION, \
526 SloppyBlockWithEvalContextExtension, \
527 sloppy_block_with_eval_context_extension)
529 // We use the full 8 bits of the instance_type field to encode heap object
530 // instance types. The high-order bit (bit 7) is set if the object is not a
531 // string, and cleared if it is a string.
532 const uint32_t kIsNotStringMask = 0x80;
533 const uint32_t kStringTag = 0x0;
534 const uint32_t kNotStringTag = 0x80;
536 // Bit 6 indicates that the object is an internalized string (if set) or not.
537 // Bit 7 has to be clear as well.
538 const uint32_t kIsNotInternalizedMask = 0x40;
539 const uint32_t kNotInternalizedTag = 0x40;
540 const uint32_t kInternalizedTag = 0x0;
542 // If bit 7 is clear then bit 2 indicates whether the string consists of
543 // two-byte characters or one-byte characters.
544 const uint32_t kStringEncodingMask = 0x4;
545 const uint32_t kTwoByteStringTag = 0x0;
546 const uint32_t kOneByteStringTag = 0x4;
548 // If bit 7 is clear, the low-order 2 bits indicate the representation
550 const uint32_t kStringRepresentationMask = 0x03;
551 enum StringRepresentationTag {
553 kConsStringTag = 0x1,
554 kExternalStringTag = 0x2,
555 kSlicedStringTag = 0x3
557 const uint32_t kIsIndirectStringMask = 0x1;
558 const uint32_t kIsIndirectStringTag = 0x1;
559 STATIC_ASSERT((kSeqStringTag & kIsIndirectStringMask) == 0); // NOLINT
560 STATIC_ASSERT((kExternalStringTag & kIsIndirectStringMask) == 0); // NOLINT
561 STATIC_ASSERT((kConsStringTag &
562 kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
563 STATIC_ASSERT((kSlicedStringTag &
564 kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
566 // Use this mask to distinguish between cons and slice only after making
567 // sure that the string is one of the two (an indirect string).
568 const uint32_t kSlicedNotConsMask = kSlicedStringTag & ~kConsStringTag;
569 STATIC_ASSERT(IS_POWER_OF_TWO(kSlicedNotConsMask));
571 // If bit 7 is clear, then bit 3 indicates whether this two-byte
572 // string actually contains one byte data.
573 const uint32_t kOneByteDataHintMask = 0x08;
574 const uint32_t kOneByteDataHintTag = 0x08;
576 // If bit 7 is clear and string representation indicates an external string,
577 // then bit 4 indicates whether the data pointer is cached.
578 const uint32_t kShortExternalStringMask = 0x10;
579 const uint32_t kShortExternalStringTag = 0x10;
582 // A ConsString with an empty string as the right side is a candidate
583 // for being shortcut by the garbage collector. We don't allocate any
584 // non-flat internalized strings, so we do not shortcut them thereby
585 // avoiding turning internalized strings into strings. The bit-masks
586 // below contain the internalized bit as additional safety.
587 // See heap.cc, mark-compact.cc and objects-visiting.cc.
588 const uint32_t kShortcutTypeMask =
590 kIsNotInternalizedMask |
591 kStringRepresentationMask;
592 const uint32_t kShortcutTypeTag = kConsStringTag | kNotInternalizedTag;
594 static inline bool IsShortcutCandidate(int type) {
595 return ((type & kShortcutTypeMask) == kShortcutTypeTag);
601 INTERNALIZED_STRING_TYPE = kTwoByteStringTag | kSeqStringTag |
602 kInternalizedTag, // FIRST_PRIMITIVE_TYPE
603 ONE_BYTE_INTERNALIZED_STRING_TYPE =
604 kOneByteStringTag | kSeqStringTag | kInternalizedTag,
605 EXTERNAL_INTERNALIZED_STRING_TYPE =
606 kTwoByteStringTag | kExternalStringTag | kInternalizedTag,
607 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
608 kOneByteStringTag | kExternalStringTag | kInternalizedTag,
609 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
610 EXTERNAL_INTERNALIZED_STRING_TYPE | kOneByteDataHintTag |
612 SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE = EXTERNAL_INTERNALIZED_STRING_TYPE |
613 kShortExternalStringTag |
615 SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
616 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kShortExternalStringTag |
618 SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
619 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
620 kShortExternalStringTag | kInternalizedTag,
621 STRING_TYPE = INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
622 ONE_BYTE_STRING_TYPE =
623 ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
624 CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag | kNotInternalizedTag,
625 CONS_ONE_BYTE_STRING_TYPE =
626 kOneByteStringTag | kConsStringTag | kNotInternalizedTag,
628 kTwoByteStringTag | kSlicedStringTag | kNotInternalizedTag,
629 SLICED_ONE_BYTE_STRING_TYPE =
630 kOneByteStringTag | kSlicedStringTag | kNotInternalizedTag,
631 EXTERNAL_STRING_TYPE =
632 EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
633 EXTERNAL_ONE_BYTE_STRING_TYPE =
634 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
635 EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
636 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
638 SHORT_EXTERNAL_STRING_TYPE =
639 SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
640 SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE =
641 SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
642 SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
643 SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
647 SYMBOL_TYPE = kNotStringTag, // FIRST_NONSTRING_TYPE, LAST_NAME_TYPE
649 // Other primitives (cannot contain non-map-word pointers to heap objects).
652 ODDBALL_TYPE, // LAST_PRIMITIVE_TYPE
654 // Objects allocated in their own spaces (never in new space).
658 // "Data", objects that cannot contain non-map-word pointers to heap
660 MUTABLE_HEAP_NUMBER_TYPE,
665 FIXED_INT8_ARRAY_TYPE, // FIRST_FIXED_TYPED_ARRAY_TYPE
666 FIXED_UINT8_ARRAY_TYPE,
667 FIXED_INT16_ARRAY_TYPE,
668 FIXED_UINT16_ARRAY_TYPE,
669 FIXED_INT32_ARRAY_TYPE,
670 FIXED_UINT32_ARRAY_TYPE,
671 FIXED_FLOAT32_ARRAY_TYPE,
672 FIXED_FLOAT64_ARRAY_TYPE,
673 FIXED_UINT8_CLAMPED_ARRAY_TYPE, // LAST_FIXED_TYPED_ARRAY_TYPE
674 FIXED_DOUBLE_ARRAY_TYPE,
675 FILLER_TYPE, // LAST_DATA_TYPE
678 DECLARED_ACCESSOR_DESCRIPTOR_TYPE,
679 DECLARED_ACCESSOR_INFO_TYPE,
680 EXECUTABLE_ACCESSOR_INFO_TYPE,
682 ACCESS_CHECK_INFO_TYPE,
683 INTERCEPTOR_INFO_TYPE,
684 CALL_HANDLER_INFO_TYPE,
685 FUNCTION_TEMPLATE_INFO_TYPE,
686 OBJECT_TEMPLATE_INFO_TYPE,
688 TYPE_SWITCH_INFO_TYPE,
689 ALLOCATION_SITE_TYPE,
690 ALLOCATION_MEMENTO_TYPE,
693 POLYMORPHIC_CODE_CACHE_TYPE,
694 TYPE_FEEDBACK_INFO_TYPE,
695 ALIASED_ARGUMENTS_ENTRY_TYPE,
698 BREAK_POINT_INFO_TYPE,
700 SHARED_FUNCTION_INFO_TYPE,
705 SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE,
707 // All the following types are subtypes of JSReceiver, which corresponds to
708 // objects in the JS sense. The first and the last type in this range are
709 // the two forms of function. This organization enables using the same
710 // compares for checking the JS_RECEIVER/SPEC_OBJECT range and the
711 // NONCALLABLE_JS_OBJECT range.
712 JS_FUNCTION_PROXY_TYPE, // FIRST_JS_RECEIVER_TYPE, FIRST_JS_PROXY_TYPE
713 JS_PROXY_TYPE, // LAST_JS_PROXY_TYPE
714 JS_VALUE_TYPE, // FIRST_JS_OBJECT_TYPE
715 JS_MESSAGE_OBJECT_TYPE,
718 JS_CONTEXT_EXTENSION_OBJECT_TYPE,
719 JS_GENERATOR_OBJECT_TYPE,
721 JS_GLOBAL_OBJECT_TYPE,
722 JS_BUILTINS_OBJECT_TYPE,
723 JS_GLOBAL_PROXY_TYPE,
725 JS_ARRAY_BUFFER_TYPE,
730 JS_SET_ITERATOR_TYPE,
731 JS_MAP_ITERATOR_TYPE,
735 JS_FUNCTION_TYPE, // LAST_JS_OBJECT_TYPE, LAST_JS_RECEIVER_TYPE
739 LAST_TYPE = JS_FUNCTION_TYPE,
740 FIRST_NAME_TYPE = FIRST_TYPE,
741 LAST_NAME_TYPE = SYMBOL_TYPE,
742 FIRST_UNIQUE_NAME_TYPE = INTERNALIZED_STRING_TYPE,
743 LAST_UNIQUE_NAME_TYPE = SYMBOL_TYPE,
744 FIRST_NONSTRING_TYPE = SYMBOL_TYPE,
745 FIRST_PRIMITIVE_TYPE = FIRST_NAME_TYPE,
746 LAST_PRIMITIVE_TYPE = ODDBALL_TYPE,
747 // Boundaries for testing for a fixed typed array.
748 FIRST_FIXED_TYPED_ARRAY_TYPE = FIXED_INT8_ARRAY_TYPE,
749 LAST_FIXED_TYPED_ARRAY_TYPE = FIXED_UINT8_CLAMPED_ARRAY_TYPE,
750 // Boundary for promotion to old space.
751 LAST_DATA_TYPE = FILLER_TYPE,
752 // Boundary for objects represented as JSReceiver (i.e. JSObject or JSProxy).
753 // Note that there is no range for JSObject or JSProxy, since their subtypes
754 // are not continuous in this enum! The enum ranges instead reflect the
755 // external class names, where proxies are treated as either ordinary objects,
757 FIRST_JS_RECEIVER_TYPE = JS_FUNCTION_PROXY_TYPE,
758 LAST_JS_RECEIVER_TYPE = LAST_TYPE,
759 // Boundaries for testing the types represented as JSObject
760 FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
761 LAST_JS_OBJECT_TYPE = LAST_TYPE,
762 // Boundaries for testing the types represented as JSProxy
763 FIRST_JS_PROXY_TYPE = JS_FUNCTION_PROXY_TYPE,
764 LAST_JS_PROXY_TYPE = JS_PROXY_TYPE,
765 // Boundaries for testing whether the type is a JavaScript object.
766 FIRST_SPEC_OBJECT_TYPE = FIRST_JS_RECEIVER_TYPE,
767 LAST_SPEC_OBJECT_TYPE = LAST_JS_RECEIVER_TYPE,
768 // Boundaries for testing the types for which typeof is "object".
769 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_PROXY_TYPE,
770 LAST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_REGEXP_TYPE,
771 // Note that the types for which typeof is "function" are not continuous.
772 // Define this so that we can put assertions on discrete checks.
773 NUM_OF_CALLABLE_SPEC_OBJECT_TYPES = 2
776 STATIC_ASSERT(JS_OBJECT_TYPE == Internals::kJSObjectType);
777 STATIC_ASSERT(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
778 STATIC_ASSERT(ODDBALL_TYPE == Internals::kOddballType);
779 STATIC_ASSERT(FOREIGN_TYPE == Internals::kForeignType);
782 #define FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(V) \
783 V(FAST_ELEMENTS_SUB_TYPE) \
784 V(DICTIONARY_ELEMENTS_SUB_TYPE) \
785 V(FAST_PROPERTIES_SUB_TYPE) \
786 V(DICTIONARY_PROPERTIES_SUB_TYPE) \
787 V(MAP_CODE_CACHE_SUB_TYPE) \
788 V(SCOPE_INFO_SUB_TYPE) \
789 V(STRING_TABLE_SUB_TYPE) \
790 V(DESCRIPTOR_ARRAY_SUB_TYPE) \
791 V(TRANSITION_ARRAY_SUB_TYPE)
793 enum FixedArraySubInstanceType {
794 #define DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE(name) name,
795 FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE)
796 #undef DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE
797 LAST_FIXED_ARRAY_SUB_TYPE = TRANSITION_ARRAY_SUB_TYPE
810 #define DECL_BOOLEAN_ACCESSORS(name) \
811 inline bool name() const; \
812 inline void set_##name(bool value); \
815 #define DECL_ACCESSORS(name, type) \
816 inline type* name() const; \
817 inline void set_##name(type* value, \
818 WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
821 #define DECLARE_CAST(type) \
822 INLINE(static type* cast(Object* object)); \
823 INLINE(static const type* cast(const Object* object));
827 class AllocationSite;
828 class AllocationSiteCreationContext;
829 class AllocationSiteUsageContext;
832 class ElementsAccessor;
833 class FixedArrayBase;
834 class FunctionLiteral;
836 class JSBuiltinsObject;
837 class LayoutDescriptor;
838 class LookupIterator;
839 class ObjectHashTable;
842 class SafepointEntry;
843 class SharedFunctionInfo;
845 class TypeFeedbackInfo;
846 class TypeFeedbackVector;
849 // We cannot just say "class HeapType;" if it is created from a template... =8-?
850 template<class> class TypeImpl;
851 struct HeapTypeConfig;
852 typedef TypeImpl<HeapTypeConfig> HeapType;
855 // A template-ized version of the IsXXX functions.
856 template <class C> inline bool Is(Object* obj);
859 #define DECLARE_VERIFIER(Name) void Name##Verify();
861 #define DECLARE_VERIFIER(Name)
865 #define DECLARE_PRINTER(Name) void Name##Print(std::ostream& os); // NOLINT
867 #define DECLARE_PRINTER(Name)
871 #define OBJECT_TYPE_LIST(V) \
876 #define HEAP_OBJECT_TYPE_LIST(V) \
878 V(MutableHeapNumber) \
897 V(ExternalTwoByteString) \
898 V(ExternalOneByteString) \
899 V(SeqTwoByteString) \
900 V(SeqOneByteString) \
901 V(InternalizedString) \
904 V(FixedTypedArrayBase) \
907 V(FixedUint16Array) \
909 V(FixedUint32Array) \
911 V(FixedFloat32Array) \
912 V(FixedFloat64Array) \
913 V(FixedUint8ClampedArray) \
919 V(JSContextExtensionObject) \
920 V(JSGeneratorObject) \
922 V(LayoutDescriptor) \
926 V(TypeFeedbackVector) \
927 V(DeoptimizationInputData) \
928 V(DeoptimizationOutputData) \
932 V(FixedDoubleArray) \
936 V(ScriptContextTable) \
942 V(SharedFunctionInfo) \
951 V(JSArrayBufferView) \
960 V(JSWeakCollection) \
967 V(NormalizedMapCache) \
968 V(CompilationCacheTable) \
969 V(CodeCacheHashTable) \
970 V(PolymorphicCodeCacheHashTable) \
975 V(JSBuiltinsObject) \
977 V(UndetectableObject) \
978 V(AccessCheckNeeded) \
986 // Object is the abstract superclass for all classes in the
988 // Object does not use any virtual functions to avoid the
989 // allocation of the C++ vtable.
990 // Since both Smi and HeapObject are subclasses of Object no
991 // data members can be present in Object.
995 bool IsObject() const { return true; }
997 #define IS_TYPE_FUNCTION_DECL(type_) INLINE(bool Is##type_() const);
998 OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
999 HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
1000 #undef IS_TYPE_FUNCTION_DECL
1002 // A non-keyed store is of the form a.x = foo or a["x"] = foo whereas
1003 // a keyed store is of the form a[expression] = foo.
1004 enum StoreFromKeyed {
1005 MAY_BE_STORE_FROM_KEYED,
1006 CERTAINLY_NOT_STORE_FROM_KEYED
1009 INLINE(bool IsFixedArrayBase() const);
1010 INLINE(bool IsExternal() const);
1011 INLINE(bool IsAccessorInfo() const);
1013 INLINE(bool IsStruct() const);
1014 #define DECLARE_STRUCT_PREDICATE(NAME, Name, name) \
1015 INLINE(bool Is##Name() const);
1016 STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
1017 #undef DECLARE_STRUCT_PREDICATE
1019 INLINE(bool IsSpecObject()) const;
1020 INLINE(bool IsSpecFunction()) const;
1021 INLINE(bool IsTemplateInfo()) const;
1022 INLINE(bool IsNameDictionary() const);
1023 INLINE(bool IsGlobalDictionary() const);
1024 INLINE(bool IsSeededNumberDictionary() const);
1025 INLINE(bool IsUnseededNumberDictionary() const);
1026 INLINE(bool IsOrderedHashSet() const);
1027 INLINE(bool IsOrderedHashMap() const);
1028 bool IsCallable() const;
1029 static bool IsPromise(Handle<Object> object);
1032 INLINE(bool IsUndefined() const);
1033 INLINE(bool IsNull() const);
1034 INLINE(bool IsTheHole() const);
1035 INLINE(bool IsException() const);
1036 INLINE(bool IsUninitialized() const);
1037 INLINE(bool IsTrue() const);
1038 INLINE(bool IsFalse() const);
1039 INLINE(bool IsArgumentsMarker() const);
1041 // Filler objects (fillers and free space objects).
1042 INLINE(bool IsFiller() const);
1044 // Extract the number.
1045 inline double Number();
1046 INLINE(bool IsNaN() const);
1047 INLINE(bool IsMinusZero() const);
1048 bool ToInt32(int32_t* value);
1049 bool ToUint32(uint32_t* value);
1051 inline Representation OptimalRepresentation();
1053 inline ElementsKind OptimalElementsKind();
1055 inline bool FitsRepresentation(Representation representation);
1057 // Checks whether two valid primitive encodings of a property name resolve to
1058 // the same logical property. E.g., the smi 1, the string "1" and the double
1059 // 1 all refer to the same property, so this helper will return true.
1060 inline bool KeyEquals(Object* other);
1062 Handle<HeapType> OptimalType(Isolate* isolate, Representation representation);
1064 inline static Handle<Object> NewStorageFor(Isolate* isolate,
1065 Handle<Object> object,
1066 Representation representation);
1068 inline static Handle<Object> WrapForRead(Isolate* isolate,
1069 Handle<Object> object,
1070 Representation representation);
1072 // Returns true if the object is of the correct type to be used as a
1073 // implementation of a JSObject's elements.
1074 inline bool HasValidElements();
1076 inline bool HasSpecificClassOf(String* name);
1078 bool BooleanValue(); // ECMA-262 9.2.
1080 // ES6 section 7.2.13 Strict Equality Comparison
1081 bool StrictEquals(Object* that);
1083 // Convert to a JSObject if needed.
1084 // native_context is used when creating wrapper object.
1085 static inline MaybeHandle<JSReceiver> ToObject(Isolate* isolate,
1086 Handle<Object> object);
1087 MUST_USE_RESULT static MaybeHandle<JSReceiver> ToObject(
1088 Isolate* isolate, Handle<Object> object, Handle<Context> context);
1090 // ES6 section 7.1.14 ToPropertyKey
1091 MUST_USE_RESULT static inline MaybeHandle<Name> ToName(Isolate* isolate,
1092 Handle<Object> input);
1094 // ES6 section 7.1.1 ToPrimitive
1095 MUST_USE_RESULT static inline MaybeHandle<Object> ToPrimitive(
1096 Handle<Object> input, ToPrimitiveHint hint = ToPrimitiveHint::kDefault);
1098 // ES6 section 7.1.3 ToNumber
1099 MUST_USE_RESULT static MaybeHandle<Object> ToNumber(Isolate* isolate,
1100 Handle<Object> input);
1102 // ES6 section 7.1.12 ToString
1103 MUST_USE_RESULT static MaybeHandle<String> ToString(Isolate* isolate,
1104 Handle<Object> input);
1106 // ES6 section 7.3.9 GetMethod
1107 MUST_USE_RESULT static MaybeHandle<Object> GetMethod(
1108 Handle<JSReceiver> receiver, Handle<Name> name);
1110 MUST_USE_RESULT static MaybeHandle<Object> GetProperty(
1111 LookupIterator* it, LanguageMode language_mode = SLOPPY);
1113 // Implementation of [[Put]], ECMA-262 5th edition, section 8.12.5.
1114 MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
1115 Handle<Object> object, Handle<Name> name, Handle<Object> value,
1116 LanguageMode language_mode,
1117 StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED);
1119 MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
1120 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1121 StoreFromKeyed store_mode);
1123 MUST_USE_RESULT static MaybeHandle<Object> SetSuperProperty(
1124 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1125 StoreFromKeyed store_mode);
1127 MUST_USE_RESULT static MaybeHandle<Object> ReadAbsentProperty(
1128 LookupIterator* it, LanguageMode language_mode);
1129 MUST_USE_RESULT static MaybeHandle<Object> ReadAbsentProperty(
1130 Isolate* isolate, Handle<Object> receiver, Handle<Object> name,
1131 LanguageMode language_mode);
1132 MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyProperty(
1133 LookupIterator* it, Handle<Object> value, LanguageMode language_mode);
1134 MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyProperty(
1135 Isolate* isolate, Handle<Object> receiver, Handle<Object> name,
1136 Handle<Object> value, LanguageMode language_mode);
1137 MUST_USE_RESULT static MaybeHandle<Object> RedefineNonconfigurableProperty(
1138 Isolate* isolate, Handle<Object> name, Handle<Object> value,
1139 LanguageMode language_mode);
1140 MUST_USE_RESULT static MaybeHandle<Object> SetDataProperty(
1141 LookupIterator* it, Handle<Object> value);
1142 MUST_USE_RESULT static MaybeHandle<Object> AddDataProperty(
1143 LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
1144 LanguageMode language_mode, StoreFromKeyed store_mode);
1145 MUST_USE_RESULT static inline MaybeHandle<Object> GetPropertyOrElement(
1146 Handle<Object> object, Handle<Name> name,
1147 LanguageMode language_mode = SLOPPY);
1148 MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
1149 Isolate* isolate, Handle<Object> object, const char* key,
1150 LanguageMode language_mode = SLOPPY);
1151 MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
1152 Handle<Object> object, Handle<Name> name,
1153 LanguageMode language_mode = SLOPPY);
1155 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithAccessor(
1156 LookupIterator* it, LanguageMode language_mode);
1157 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithAccessor(
1158 LookupIterator* it, Handle<Object> value, LanguageMode language_mode);
1160 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithDefinedGetter(
1161 Handle<Object> receiver,
1162 Handle<JSReceiver> getter);
1163 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithDefinedSetter(
1164 Handle<Object> receiver,
1165 Handle<JSReceiver> setter,
1166 Handle<Object> value);
1168 MUST_USE_RESULT static inline MaybeHandle<Object> GetElement(
1169 Isolate* isolate, Handle<Object> object, uint32_t index,
1170 LanguageMode language_mode = SLOPPY);
1172 MUST_USE_RESULT static inline MaybeHandle<Object> SetElement(
1173 Isolate* isolate, Handle<Object> object, uint32_t index,
1174 Handle<Object> value, LanguageMode language_mode);
1176 static inline Handle<Object> GetPrototypeSkipHiddenPrototypes(
1177 Isolate* isolate, Handle<Object> receiver);
1179 bool HasInPrototypeChain(Isolate* isolate, Object* object);
1181 // Returns the permanent hash code associated with this object. May return
1182 // undefined if not yet created.
1185 // Returns undefined for JSObjects, but returns the hash code for simple
1186 // objects. This avoids a double lookup in the cases where we know we will
1187 // add the hash to the JSObject if it does not already exist.
1188 Object* GetSimpleHash();
1190 // Returns the permanent hash code associated with this object depending on
1191 // the actual object type. May create and store a hash code if needed and none
1193 static Handle<Smi> GetOrCreateHash(Isolate* isolate, Handle<Object> object);
1195 // Checks whether this object has the same value as the given one. This
1196 // function is implemented according to ES5, section 9.12 and can be used
1197 // to implement the Harmony "egal" function.
1198 bool SameValue(Object* other);
1200 // Checks whether this object has the same value as the given one.
1201 // +0 and -0 are treated equal. Everything else is the same as SameValue.
1202 // This function is implemented according to ES6, section 7.2.4 and is used
1203 // by ES6 Map and Set.
1204 bool SameValueZero(Object* other);
1206 // Tries to convert an object to an array length. Returns true and sets the
1207 // output parameter if it succeeds.
1208 inline bool ToArrayLength(uint32_t* index);
1210 // Tries to convert an object to an array index. Returns true and sets the
1211 // output parameter if it succeeds. Equivalent to ToArrayLength, but does not
1212 // allow kMaxUInt32.
1213 inline bool ToArrayIndex(uint32_t* index);
1215 // Returns true if this is a JSValue containing a string and the index is
1216 // < the length of the string. Used to implement [] on strings.
1217 inline bool IsStringObjectWithCharacterAt(uint32_t index);
1219 DECLARE_VERIFIER(Object)
1221 // Verify a pointer is a valid object pointer.
1222 static void VerifyPointer(Object* p);
1225 inline void VerifyApiCallResultType();
1227 // Prints this object without details.
1228 void ShortPrint(FILE* out = stdout);
1230 // Prints this object without details to a message accumulator.
1231 void ShortPrint(StringStream* accumulator);
1233 void ShortPrint(std::ostream& os); // NOLINT
1235 DECLARE_CAST(Object)
1237 // Layout description.
1238 static const int kHeaderSize = 0; // Object does not take up any space.
1241 // For our gdb macros, we should perhaps change these in the future.
1244 // Prints this object with details.
1245 void Print(std::ostream& os); // NOLINT
1247 void Print() { ShortPrint(); }
1248 void Print(std::ostream& os) { ShortPrint(os); } // NOLINT
1252 friend class LookupIterator;
1253 friend class PrototypeIterator;
1255 // Return the map of the root of object's prototype chain.
1256 Map* GetRootMap(Isolate* isolate);
1258 // Helper for SetProperty and SetSuperProperty.
1259 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyInternal(
1260 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1261 StoreFromKeyed store_mode, bool* found);
1263 DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
1267 // In objects.h to be usable without objects-inl.h inclusion.
1268 bool Object::IsSmi() const { return HAS_SMI_TAG(this); }
1269 bool Object::IsHeapObject() const { return Internals::HasHeapObjectTag(this); }
1273 explicit Brief(const Object* const v) : value(v) {}
1274 const Object* value;
1278 std::ostream& operator<<(std::ostream& os, const Brief& v);
1281 // Smi represents integer Numbers that can be stored in 31 bits.
1282 // Smis are immediate which means they are NOT allocated in the heap.
1283 // The this pointer has the following format: [31 bit signed int] 0
1284 // For long smis it has the following format:
1285 // [32 bit signed int] [31 bits zero padding] 0
1286 // Smi stands for small integer.
1287 class Smi: public Object {
1289 // Returns the integer value.
1290 inline int value() const { return Internals::SmiValue(this); }
1292 // Convert a value to a Smi object.
1293 static inline Smi* FromInt(int value) {
1294 DCHECK(Smi::IsValid(value));
1295 return reinterpret_cast<Smi*>(Internals::IntToSmi(value));
1298 static inline Smi* FromIntptr(intptr_t value) {
1299 DCHECK(Smi::IsValid(value));
1300 int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
1301 return reinterpret_cast<Smi*>((value << smi_shift_bits) | kSmiTag);
1304 // Returns whether value can be represented in a Smi.
1305 static inline bool IsValid(intptr_t value) {
1306 bool result = Internals::IsValidSmi(value);
1307 DCHECK_EQ(result, value >= kMinValue && value <= kMaxValue);
1313 // Dispatched behavior.
1314 void SmiPrint(std::ostream& os) const; // NOLINT
1315 DECLARE_VERIFIER(Smi)
1317 static const int kMinValue =
1318 (static_cast<unsigned int>(-1)) << (kSmiValueSize - 1);
1319 static const int kMaxValue = -(kMinValue + 1);
1322 DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
1326 // Heap objects typically have a map pointer in their first word. However,
1327 // during GC other data (e.g. mark bits, forwarding addresses) is sometimes
1328 // encoded in the first word. The class MapWord is an abstraction of the
1329 // value in a heap object's first word.
1330 class MapWord BASE_EMBEDDED {
1332 // Normal state: the map word contains a map pointer.
1334 // Create a map word from a map pointer.
1335 static inline MapWord FromMap(const Map* map);
1337 // View this map word as a map pointer.
1338 inline Map* ToMap();
1341 // Scavenge collection: the map word of live objects in the from space
1342 // contains a forwarding address (a heap object pointer in the to space).
1344 // True if this map word is a forwarding address for a scavenge
1345 // collection. Only valid during a scavenge collection (specifically,
1346 // when all map words are heap object pointers, i.e. not during a full GC).
1347 inline bool IsForwardingAddress();
1349 // Create a map word from a forwarding address.
1350 static inline MapWord FromForwardingAddress(HeapObject* object);
1352 // View this map word as a forwarding address.
1353 inline HeapObject* ToForwardingAddress();
1355 static inline MapWord FromRawValue(uintptr_t value) {
1356 return MapWord(value);
1359 inline uintptr_t ToRawValue() {
1364 // HeapObject calls the private constructor and directly reads the value.
1365 friend class HeapObject;
1367 explicit MapWord(uintptr_t value) : value_(value) {}
1373 // The content of an heap object (except for the map pointer). kTaggedValues
1374 // objects can contain both heap pointers and Smis, kMixedValues can contain
1375 // heap pointers, Smis, and raw values (e.g. doubles or strings), and kRawValues
1376 // objects can contain raw values and Smis.
1377 enum class HeapObjectContents { kTaggedValues, kMixedValues, kRawValues };
1380 // HeapObject is the superclass for all classes describing heap allocated
1382 class HeapObject: public Object {
1384 // [map]: Contains a map which contains the object's reflective
1386 inline Map* map() const;
1387 inline void set_map(Map* value);
1388 // The no-write-barrier version. This is OK if the object is white and in
1389 // new space, or if the value is an immortal immutable object, like the maps
1390 // of primitive (non-JS) objects like strings, heap numbers etc.
1391 inline void set_map_no_write_barrier(Map* value);
1393 // Get the map using acquire load.
1394 inline Map* synchronized_map();
1395 inline MapWord synchronized_map_word() const;
1397 // Set the map using release store
1398 inline void synchronized_set_map(Map* value);
1399 inline void synchronized_set_map_no_write_barrier(Map* value);
1400 inline void synchronized_set_map_word(MapWord map_word);
1402 // During garbage collection, the map word of a heap object does not
1403 // necessarily contain a map pointer.
1404 inline MapWord map_word() const;
1405 inline void set_map_word(MapWord map_word);
1407 // The Heap the object was allocated in. Used also to access Isolate.
1408 inline Heap* GetHeap() const;
1410 // Convenience method to get current isolate.
1411 inline Isolate* GetIsolate() const;
1413 // Converts an address to a HeapObject pointer.
1414 static inline HeapObject* FromAddress(Address address) {
1415 DCHECK_TAG_ALIGNED(address);
1416 return reinterpret_cast<HeapObject*>(address + kHeapObjectTag);
1419 // Returns the address of this HeapObject.
1420 inline Address address() {
1421 return reinterpret_cast<Address>(this) - kHeapObjectTag;
1424 // Iterates over pointers contained in the object (including the Map)
1425 void Iterate(ObjectVisitor* v);
1427 // Iterates over all pointers contained in the object except the
1428 // first map pointer. The object type is given in the first
1429 // parameter. This function does not access the map pointer in the
1430 // object, and so is safe to call while the map pointer is modified.
1431 void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
1433 // Returns the heap object's size in bytes
1436 // Indicates what type of values this heap object may contain.
1437 inline HeapObjectContents ContentType();
1439 // Given a heap object's map pointer, returns the heap size in bytes
1440 // Useful when the map pointer field is used for other purposes.
1442 inline int SizeFromMap(Map* map);
1444 // Returns the field at offset in obj, as a read/write Object* reference.
1445 // Does no checking, and is safe to use during GC, while maps are invalid.
1446 // Does not invoke write barrier, so should only be assigned to
1447 // during marking GC.
1448 static inline Object** RawField(HeapObject* obj, int offset);
1450 // Adds the |code| object related to |name| to the code cache of this map. If
1451 // this map is a dictionary map that is shared, the map copied and installed
1453 static void UpdateMapCodeCache(Handle<HeapObject> object,
1457 DECLARE_CAST(HeapObject)
1459 // Return the write barrier mode for this. Callers of this function
1460 // must be able to present a reference to an DisallowHeapAllocation
1461 // object as a sign that they are not going to use this function
1462 // from code that allocates and thus invalidates the returned write
1464 inline WriteBarrierMode GetWriteBarrierMode(
1465 const DisallowHeapAllocation& promise);
1467 // Dispatched behavior.
1468 void HeapObjectShortPrint(std::ostream& os); // NOLINT
1470 void PrintHeader(std::ostream& os, const char* id); // NOLINT
1472 DECLARE_PRINTER(HeapObject)
1473 DECLARE_VERIFIER(HeapObject)
1475 inline void VerifyObjectField(int offset);
1476 inline void VerifySmiField(int offset);
1478 // Verify a pointer is a valid HeapObject pointer that points to object
1479 // areas in the heap.
1480 static void VerifyHeapPointer(Object* p);
1483 inline AllocationAlignment RequiredAlignment();
1485 // Layout description.
1486 // First field in a heap object is map.
1487 static const int kMapOffset = Object::kHeaderSize;
1488 static const int kHeaderSize = kMapOffset + kPointerSize;
1490 STATIC_ASSERT(kMapOffset == Internals::kHeapObjectMapOffset);
1493 // helpers for calling an ObjectVisitor to iterate over pointers in the
1494 // half-open range [start, end) specified as integer offsets
1495 inline void IteratePointers(ObjectVisitor* v, int start, int end);
1496 // as above, for the single element at "offset"
1497 inline void IteratePointer(ObjectVisitor* v, int offset);
1498 // as above, for the next code link of a code object.
1499 inline void IterateNextCodeLink(ObjectVisitor* v, int offset);
1502 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1506 // This class describes a body of an object of a fixed size
1507 // in which all pointer fields are located in the [start_offset, end_offset)
1509 template<int start_offset, int end_offset, int size>
1510 class FixedBodyDescriptor {
1512 static const int kStartOffset = start_offset;
1513 static const int kEndOffset = end_offset;
1514 static const int kSize = size;
1516 static inline void IterateBody(HeapObject* obj, ObjectVisitor* v);
1518 template<typename StaticVisitor>
1519 static inline void IterateBody(HeapObject* obj) {
1520 StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
1521 HeapObject::RawField(obj, end_offset));
1526 // This class describes a body of an object of a variable size
1527 // in which all pointer fields are located in the [start_offset, object_size)
1529 template<int start_offset>
1530 class FlexibleBodyDescriptor {
1532 static const int kStartOffset = start_offset;
1534 static inline void IterateBody(HeapObject* obj,
1538 template<typename StaticVisitor>
1539 static inline void IterateBody(HeapObject* obj, int object_size) {
1540 StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
1541 HeapObject::RawField(obj, object_size));
1546 // The HeapNumber class describes heap allocated numbers that cannot be
1547 // represented in a Smi (small integer)
1548 class HeapNumber: public HeapObject {
1550 // [value]: number value.
1551 inline double value() const;
1552 inline void set_value(double value);
1554 DECLARE_CAST(HeapNumber)
1556 // Dispatched behavior.
1557 bool HeapNumberBooleanValue();
1559 void HeapNumberPrint(std::ostream& os); // NOLINT
1560 DECLARE_VERIFIER(HeapNumber)
1562 inline int get_exponent();
1563 inline int get_sign();
1565 // Layout description.
1566 static const int kValueOffset = HeapObject::kHeaderSize;
1567 // IEEE doubles are two 32 bit words. The first is just mantissa, the second
1568 // is a mixture of sign, exponent and mantissa. The offsets of two 32 bit
1569 // words within double numbers are endian dependent and they are set
1571 #if defined(V8_TARGET_LITTLE_ENDIAN)
1572 static const int kMantissaOffset = kValueOffset;
1573 static const int kExponentOffset = kValueOffset + 4;
1574 #elif defined(V8_TARGET_BIG_ENDIAN)
1575 static const int kMantissaOffset = kValueOffset + 4;
1576 static const int kExponentOffset = kValueOffset;
1578 #error Unknown byte ordering
1581 static const int kSize = kValueOffset + kDoubleSize;
1582 static const uint32_t kSignMask = 0x80000000u;
1583 static const uint32_t kExponentMask = 0x7ff00000u;
1584 static const uint32_t kMantissaMask = 0xfffffu;
1585 static const int kMantissaBits = 52;
1586 static const int kExponentBits = 11;
1587 static const int kExponentBias = 1023;
1588 static const int kExponentShift = 20;
1589 static const int kInfinityOrNanExponent =
1590 (kExponentMask >> kExponentShift) - kExponentBias;
1591 static const int kMantissaBitsInTopWord = 20;
1592 static const int kNonMantissaBitsInTopWord = 12;
1595 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1599 // The Simd128Value class describes heap allocated 128 bit SIMD values.
1600 class Simd128Value : public HeapObject {
1602 DECLARE_CAST(Simd128Value)
1604 DECLARE_PRINTER(Simd128Value)
1605 DECLARE_VERIFIER(Simd128Value)
1607 static Handle<String> ToString(Handle<Simd128Value> input);
1609 // Equality operations.
1610 inline bool Equals(Simd128Value* that);
1612 // Checks that another instance is bit-wise equal.
1613 bool BitwiseEquals(const Simd128Value* other) const;
1614 // Computes a hash from the 128 bit value, viewed as 4 32-bit integers.
1615 uint32_t Hash() const;
1616 // Copies the 16 bytes of SIMD data to the destination address.
1617 void CopyBits(void* destination) const;
1619 // Layout description.
1620 static const int kValueOffset = HeapObject::kHeaderSize;
1621 static const int kSize = kValueOffset + kSimd128Size;
1624 DISALLOW_IMPLICIT_CONSTRUCTORS(Simd128Value);
1628 // V has parameters (TYPE, Type, type, lane count, lane type)
1629 #define SIMD128_TYPES(V) \
1630 V(FLOAT32X4, Float32x4, float32x4, 4, float) \
1631 V(INT32X4, Int32x4, int32x4, 4, int32_t) \
1632 V(UINT32X4, Uint32x4, uint32x4, 4, uint32_t) \
1633 V(BOOL32X4, Bool32x4, bool32x4, 4, bool) \
1634 V(INT16X8, Int16x8, int16x8, 8, int16_t) \
1635 V(UINT16X8, Uint16x8, uint16x8, 8, uint16_t) \
1636 V(BOOL16X8, Bool16x8, bool16x8, 8, bool) \
1637 V(INT8X16, Int8x16, int8x16, 16, int8_t) \
1638 V(UINT8X16, Uint8x16, uint8x16, 16, uint8_t) \
1639 V(BOOL8X16, Bool8x16, bool8x16, 16, bool)
1641 #define SIMD128_VALUE_CLASS(TYPE, Type, type, lane_count, lane_type) \
1642 class Type final : public Simd128Value { \
1644 inline lane_type get_lane(int lane) const; \
1645 inline void set_lane(int lane, lane_type value); \
1647 DECLARE_CAST(Type) \
1649 DECLARE_PRINTER(Type) \
1651 static Handle<String> ToString(Handle<Type> input); \
1653 inline bool Equals(Type* that); \
1656 DISALLOW_IMPLICIT_CONSTRUCTORS(Type); \
1658 SIMD128_TYPES(SIMD128_VALUE_CLASS)
1659 #undef SIMD128_VALUE_CLASS
1662 enum EnsureElementsMode {
1663 DONT_ALLOW_DOUBLE_ELEMENTS,
1664 ALLOW_COPIED_DOUBLE_ELEMENTS,
1665 ALLOW_CONVERTED_DOUBLE_ELEMENTS
1669 // Indicator for one component of an AccessorPair.
1670 enum AccessorComponent {
1676 // JSReceiver includes types on which properties can be defined, i.e.,
1677 // JSObject and JSProxy.
1678 class JSReceiver: public HeapObject {
1680 DECLARE_CAST(JSReceiver)
1682 // ES6 section 7.1.1 ToPrimitive
1683 MUST_USE_RESULT static MaybeHandle<Object> ToPrimitive(
1684 Handle<JSReceiver> receiver,
1685 ToPrimitiveHint hint = ToPrimitiveHint::kDefault);
1686 MUST_USE_RESULT static MaybeHandle<Object> OrdinaryToPrimitive(
1687 Handle<JSReceiver> receiver, OrdinaryToPrimitiveHint hint);
1689 // Implementation of [[HasProperty]], ECMA-262 5th edition, section 8.12.6.
1690 MUST_USE_RESULT static inline Maybe<bool> HasProperty(
1691 Handle<JSReceiver> object, Handle<Name> name);
1692 MUST_USE_RESULT static inline Maybe<bool> HasOwnProperty(Handle<JSReceiver>,
1694 MUST_USE_RESULT static inline Maybe<bool> HasElement(
1695 Handle<JSReceiver> object, uint32_t index);
1696 MUST_USE_RESULT static inline Maybe<bool> HasOwnElement(
1697 Handle<JSReceiver> object, uint32_t index);
1699 // Implementation of [[Delete]], ECMA-262 5th edition, section 8.12.7.
1700 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyOrElement(
1701 Handle<JSReceiver> object, Handle<Name> name,
1702 LanguageMode language_mode = SLOPPY);
1703 MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
1704 Handle<JSReceiver> object, Handle<Name> name,
1705 LanguageMode language_mode = SLOPPY);
1706 MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
1707 LookupIterator* it, LanguageMode language_mode);
1708 MUST_USE_RESULT static MaybeHandle<Object> DeleteElement(
1709 Handle<JSReceiver> object, uint32_t index,
1710 LanguageMode language_mode = SLOPPY);
1712 // Tests for the fast common case for property enumeration.
1713 bool IsSimpleEnum();
1715 // Returns the class name ([[Class]] property in the specification).
1716 String* class_name();
1718 // Returns the constructor name (the name (possibly, inferred name) of the
1719 // function that was used to instantiate the object).
1720 String* constructor_name();
1722 MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetPropertyAttributes(
1723 Handle<JSReceiver> object, Handle<Name> name);
1724 MUST_USE_RESULT static inline Maybe<PropertyAttributes>
1725 GetOwnPropertyAttributes(Handle<JSReceiver> object, Handle<Name> name);
1727 MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetElementAttributes(
1728 Handle<JSReceiver> object, uint32_t index);
1729 MUST_USE_RESULT static inline Maybe<PropertyAttributes>
1730 GetOwnElementAttributes(Handle<JSReceiver> object, uint32_t index);
1732 MUST_USE_RESULT static Maybe<PropertyAttributes> GetPropertyAttributes(
1733 LookupIterator* it);
1736 static Handle<Object> GetDataProperty(Handle<JSReceiver> object,
1738 static Handle<Object> GetDataProperty(LookupIterator* it);
1741 // Retrieves a permanent object identity hash code. The undefined value might
1742 // be returned in case no hash was created yet.
1743 inline Object* GetIdentityHash();
1745 // Retrieves a permanent object identity hash code. May create and store a
1746 // hash code if needed and none exists.
1747 inline static Handle<Smi> GetOrCreateIdentityHash(
1748 Handle<JSReceiver> object);
1750 enum KeyCollectionType { OWN_ONLY, INCLUDE_PROTOS };
1752 // Computes the enumerable keys for a JSObject. Used for implementing
1753 // "for (n in object) { }".
1754 MUST_USE_RESULT static MaybeHandle<FixedArray> GetKeys(
1755 Handle<JSReceiver> object,
1756 KeyCollectionType type);
1759 DISALLOW_IMPLICIT_CONSTRUCTORS(JSReceiver);
1763 // The JSObject describes real heap allocated JavaScript objects with
1765 // Note that the map of JSObject changes during execution to enable inline
1767 class JSObject: public JSReceiver {
1769 // [properties]: Backing storage for properties.
1770 // properties is a FixedArray in the fast case and a Dictionary in the
1772 DECL_ACCESSORS(properties, FixedArray) // Get and set fast properties.
1773 inline void initialize_properties();
1774 inline bool HasFastProperties();
1775 // Gets slow properties for non-global objects.
1776 inline NameDictionary* property_dictionary();
1777 // Gets global object properties.
1778 inline GlobalDictionary* global_dictionary();
1780 // [elements]: The elements (properties with names that are integers).
1782 // Elements can be in two general modes: fast and slow. Each mode
1783 // corrensponds to a set of object representations of elements that
1784 // have something in common.
1786 // In the fast mode elements is a FixedArray and so each element can
1787 // be quickly accessed. This fact is used in the generated code. The
1788 // elements array can have one of three maps in this mode:
1789 // fixed_array_map, sloppy_arguments_elements_map or
1790 // fixed_cow_array_map (for copy-on-write arrays). In the latter case
1791 // the elements array may be shared by a few objects and so before
1792 // writing to any element the array must be copied. Use
1793 // EnsureWritableFastElements in this case.
1795 // In the slow mode the elements is either a NumberDictionary, a
1796 // FixedArray parameter map for a (sloppy) arguments object.
1797 DECL_ACCESSORS(elements, FixedArrayBase)
1798 inline void initialize_elements();
1799 static void ResetElements(Handle<JSObject> object);
1800 static inline void SetMapAndElements(Handle<JSObject> object,
1802 Handle<FixedArrayBase> elements);
1803 inline ElementsKind GetElementsKind();
1804 ElementsAccessor* GetElementsAccessor();
1805 // Returns true if an object has elements of FAST_SMI_ELEMENTS ElementsKind.
1806 inline bool HasFastSmiElements();
1807 // Returns true if an object has elements of FAST_ELEMENTS ElementsKind.
1808 inline bool HasFastObjectElements();
1809 // Returns true if an object has elements of FAST_ELEMENTS or
1810 // FAST_SMI_ONLY_ELEMENTS.
1811 inline bool HasFastSmiOrObjectElements();
1812 // Returns true if an object has any of the fast elements kinds.
1813 inline bool HasFastElements();
1814 // Returns true if an object has elements of FAST_DOUBLE_ELEMENTS
1816 inline bool HasFastDoubleElements();
1817 // Returns true if an object has elements of FAST_HOLEY_*_ELEMENTS
1819 inline bool HasFastHoleyElements();
1820 inline bool HasSloppyArgumentsElements();
1821 inline bool HasDictionaryElements();
1823 inline bool HasFixedTypedArrayElements();
1825 inline bool HasFixedUint8ClampedElements();
1826 inline bool HasFixedArrayElements();
1827 inline bool HasFixedInt8Elements();
1828 inline bool HasFixedUint8Elements();
1829 inline bool HasFixedInt16Elements();
1830 inline bool HasFixedUint16Elements();
1831 inline bool HasFixedInt32Elements();
1832 inline bool HasFixedUint32Elements();
1833 inline bool HasFixedFloat32Elements();
1834 inline bool HasFixedFloat64Elements();
1836 inline bool HasFastArgumentsElements();
1837 inline bool HasSlowArgumentsElements();
1838 inline SeededNumberDictionary* element_dictionary(); // Gets slow elements.
1840 // Requires: HasFastElements().
1841 static Handle<FixedArray> EnsureWritableFastElements(
1842 Handle<JSObject> object);
1844 // Collects elements starting at index 0.
1845 // Undefined values are placed after non-undefined values.
1846 // Returns the number of non-undefined values.
1847 static Handle<Object> PrepareElementsForSort(Handle<JSObject> object,
1849 // As PrepareElementsForSort, but only on objects where elements is
1850 // a dictionary, and it will stay a dictionary. Collates undefined and
1851 // unexisting elements below limit from position zero of the elements.
1852 static Handle<Object> PrepareSlowElementsForSort(Handle<JSObject> object,
1855 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithInterceptor(
1856 LookupIterator* it, Handle<Object> value);
1858 // SetLocalPropertyIgnoreAttributes converts callbacks to fields. We need to
1859 // grant an exemption to ExecutableAccessor callbacks in some cases.
1860 enum ExecutableAccessorInfoHandling { DEFAULT_HANDLING, DONT_FORCE_FIELD };
1862 MUST_USE_RESULT static MaybeHandle<Object> DefineOwnPropertyIgnoreAttributes(
1863 LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
1864 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1866 MUST_USE_RESULT static MaybeHandle<Object> SetOwnPropertyIgnoreAttributes(
1867 Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
1868 PropertyAttributes attributes,
1869 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1871 MUST_USE_RESULT static MaybeHandle<Object> SetOwnElementIgnoreAttributes(
1872 Handle<JSObject> object, uint32_t index, Handle<Object> value,
1873 PropertyAttributes attributes,
1874 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1876 // Equivalent to one of the above depending on whether |name| can be converted
1877 // to an array index.
1878 MUST_USE_RESULT static MaybeHandle<Object>
1879 DefinePropertyOrElementIgnoreAttributes(
1880 Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
1881 PropertyAttributes attributes = NONE,
1882 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1884 // Adds or reconfigures a property to attributes NONE. It will fail when it
1886 MUST_USE_RESULT static Maybe<bool> CreateDataProperty(LookupIterator* it,
1887 Handle<Object> value);
1889 static void AddProperty(Handle<JSObject> object, Handle<Name> name,
1890 Handle<Object> value, PropertyAttributes attributes);
1892 MUST_USE_RESULT static MaybeHandle<Object> AddDataElement(
1893 Handle<JSObject> receiver, uint32_t index, Handle<Object> value,
1894 PropertyAttributes attributes);
1896 // Extend the receiver with a single fast property appeared first in the
1897 // passed map. This also extends the property backing store if necessary.
1898 static void AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map);
1900 // Migrates the given object to a map whose field representations are the
1901 // lowest upper bound of all known representations for that field.
1902 static void MigrateInstance(Handle<JSObject> instance);
1904 // Migrates the given object only if the target map is already available,
1905 // or returns false if such a map is not yet available.
1906 static bool TryMigrateInstance(Handle<JSObject> instance);
1908 // Sets the property value in a normalized object given (key, value, details).
1909 // Handles the special representation of JS global objects.
1910 static void SetNormalizedProperty(Handle<JSObject> object, Handle<Name> name,
1911 Handle<Object> value,
1912 PropertyDetails details);
1913 static void SetDictionaryElement(Handle<JSObject> object, uint32_t index,
1914 Handle<Object> value,
1915 PropertyAttributes attributes);
1916 static void SetDictionaryArgumentsElement(Handle<JSObject> object,
1918 Handle<Object> value,
1919 PropertyAttributes attributes);
1921 static void OptimizeAsPrototype(Handle<JSObject> object,
1922 PrototypeOptimizationMode mode);
1923 static void ReoptimizeIfPrototype(Handle<JSObject> object);
1924 static void LazyRegisterPrototypeUser(Handle<Map> user, Isolate* isolate);
1925 static bool UnregisterPrototypeUser(Handle<Map> user, Isolate* isolate);
1926 static void InvalidatePrototypeChains(Map* map);
1928 // Alternative implementation of WeakFixedArray::NullCallback.
1929 class PrototypeRegistryCompactionCallback {
1931 static void Callback(Object* value, int old_index, int new_index);
1934 // Retrieve interceptors.
1935 InterceptorInfo* GetNamedInterceptor();
1936 InterceptorInfo* GetIndexedInterceptor();
1938 // Used from JSReceiver.
1939 MUST_USE_RESULT static Maybe<PropertyAttributes>
1940 GetPropertyAttributesWithInterceptor(LookupIterator* it);
1941 MUST_USE_RESULT static Maybe<PropertyAttributes>
1942 GetPropertyAttributesWithFailedAccessCheck(LookupIterator* it);
1944 // Retrieves an AccessorPair property from the given object. Might return
1945 // undefined if the property doesn't exist or is of a different kind.
1946 MUST_USE_RESULT static MaybeHandle<Object> GetAccessor(
1947 Handle<JSObject> object,
1949 AccessorComponent component);
1951 // Defines an AccessorPair property on the given object.
1952 // TODO(mstarzinger): Rename to SetAccessor().
1953 static MaybeHandle<Object> DefineAccessor(Handle<JSObject> object,
1955 Handle<Object> getter,
1956 Handle<Object> setter,
1957 PropertyAttributes attributes);
1959 // Defines an AccessorInfo property on the given object.
1960 MUST_USE_RESULT static MaybeHandle<Object> SetAccessor(
1961 Handle<JSObject> object,
1962 Handle<AccessorInfo> info);
1964 // The result must be checked first for exceptions. If there's no exception,
1965 // the output parameter |done| indicates whether the interceptor has a result
1967 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithInterceptor(
1968 LookupIterator* it, bool* done);
1970 // Accessors for hidden properties object.
1972 // Hidden properties are not own properties of the object itself.
1973 // Instead they are stored in an auxiliary structure kept as an own
1974 // property with a special name Heap::hidden_string(). But if the
1975 // receiver is a JSGlobalProxy then the auxiliary object is a property
1976 // of its prototype, and if it's a detached proxy, then you can't have
1977 // hidden properties.
1979 // Sets a hidden property on this object. Returns this object if successful,
1980 // undefined if called on a detached proxy.
1981 static Handle<Object> SetHiddenProperty(Handle<JSObject> object,
1983 Handle<Object> value);
1984 // Gets the value of a hidden property with the given key. Returns the hole
1985 // if the property doesn't exist (or if called on a detached proxy),
1986 // otherwise returns the value set for the key.
1987 Object* GetHiddenProperty(Handle<Name> key);
1988 // Deletes a hidden property. Deleting a non-existing property is
1989 // considered successful.
1990 static void DeleteHiddenProperty(Handle<JSObject> object,
1992 // Returns true if the object has a property with the hidden string as name.
1993 static bool HasHiddenProperties(Handle<JSObject> object);
1995 static void SetIdentityHash(Handle<JSObject> object, Handle<Smi> hash);
1997 static void ValidateElements(Handle<JSObject> object);
1999 // Makes sure that this object can contain HeapObject as elements.
2000 static inline void EnsureCanContainHeapObjectElements(Handle<JSObject> obj);
2002 // Makes sure that this object can contain the specified elements.
2003 static inline void EnsureCanContainElements(
2004 Handle<JSObject> object,
2007 EnsureElementsMode mode);
2008 static inline void EnsureCanContainElements(
2009 Handle<JSObject> object,
2010 Handle<FixedArrayBase> elements,
2012 EnsureElementsMode mode);
2013 static void EnsureCanContainElements(
2014 Handle<JSObject> object,
2015 Arguments* arguments,
2018 EnsureElementsMode mode);
2020 // Would we convert a fast elements array to dictionary mode given
2021 // an access at key?
2022 bool WouldConvertToSlowElements(uint32_t index);
2024 // Computes the new capacity when expanding the elements of a JSObject.
2025 static uint32_t NewElementsCapacity(uint32_t old_capacity) {
2026 // (old_capacity + 50%) + 16
2027 return old_capacity + (old_capacity >> 1) + 16;
2030 // These methods do not perform access checks!
2031 static void UpdateAllocationSite(Handle<JSObject> object,
2032 ElementsKind to_kind);
2034 // Lookup interceptors are used for handling properties controlled by host
2036 inline bool HasNamedInterceptor();
2037 inline bool HasIndexedInterceptor();
2039 // Computes the enumerable keys from interceptors. Used for debug mirrors and
2040 // by JSReceiver::GetKeys.
2041 MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForNamedInterceptor(
2042 Handle<JSObject> object,
2043 Handle<JSReceiver> receiver);
2044 MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForIndexedInterceptor(
2045 Handle<JSObject> object,
2046 Handle<JSReceiver> receiver);
2048 // Support functions for v8 api (needed for correct interceptor behavior).
2049 MUST_USE_RESULT static Maybe<bool> HasRealNamedProperty(
2050 Handle<JSObject> object, Handle<Name> name);
2051 MUST_USE_RESULT static Maybe<bool> HasRealElementProperty(
2052 Handle<JSObject> object, uint32_t index);
2053 MUST_USE_RESULT static Maybe<bool> HasRealNamedCallbackProperty(
2054 Handle<JSObject> object, Handle<Name> name);
2056 // Get the header size for a JSObject. Used to compute the index of
2057 // internal fields as well as the number of internal fields.
2058 inline int GetHeaderSize();
2060 inline int GetInternalFieldCount();
2061 inline int GetInternalFieldOffset(int index);
2062 inline Object* GetInternalField(int index);
2063 inline void SetInternalField(int index, Object* value);
2064 inline void SetInternalField(int index, Smi* value);
2066 // Returns the number of properties on this object filtering out properties
2067 // with the specified attributes (ignoring interceptors).
2068 int NumberOfOwnProperties(PropertyAttributes filter = NONE);
2069 // Fill in details for properties into storage starting at the specified
2070 // index. Returns the number of properties added.
2071 int GetOwnPropertyNames(FixedArray* storage, int index,
2072 PropertyAttributes filter = NONE);
2074 // Returns the number of properties on this object filtering out properties
2075 // with the specified attributes (ignoring interceptors).
2076 int NumberOfOwnElements(PropertyAttributes filter);
2077 // Returns the number of enumerable elements (ignoring interceptors).
2078 int NumberOfEnumElements();
2079 // Returns the number of elements on this object filtering out elements
2080 // with the specified attributes (ignoring interceptors).
2081 int GetOwnElementKeys(FixedArray* storage, PropertyAttributes filter);
2082 // Count and fill in the enumerable elements into storage.
2083 // (storage->length() == NumberOfEnumElements()).
2084 // If storage is NULL, will count the elements without adding
2085 // them to any storage.
2086 // Returns the number of enumerable elements.
2087 int GetEnumElementKeys(FixedArray* storage);
2089 static Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
2092 // Returns a new map with all transitions dropped from the object's current
2093 // map and the ElementsKind set.
2094 static Handle<Map> GetElementsTransitionMap(Handle<JSObject> object,
2095 ElementsKind to_kind);
2096 static void TransitionElementsKind(Handle<JSObject> object,
2097 ElementsKind to_kind);
2099 // Always use this to migrate an object to a new map.
2100 // |expected_additional_properties| is only used for fast-to-slow transitions
2101 // and ignored otherwise.
2102 static void MigrateToMap(Handle<JSObject> object, Handle<Map> new_map,
2103 int expected_additional_properties = 0);
2105 // Convert the object to use the canonical dictionary
2106 // representation. If the object is expected to have additional properties
2107 // added this number can be indicated to have the backing store allocated to
2108 // an initial capacity for holding these properties.
2109 static void NormalizeProperties(Handle<JSObject> object,
2110 PropertyNormalizationMode mode,
2111 int expected_additional_properties,
2112 const char* reason);
2114 // Convert and update the elements backing store to be a
2115 // SeededNumberDictionary dictionary. Returns the backing after conversion.
2116 static Handle<SeededNumberDictionary> NormalizeElements(
2117 Handle<JSObject> object);
2119 void RequireSlowElements(SeededNumberDictionary* dictionary);
2121 // Transform slow named properties to fast variants.
2122 static void MigrateSlowToFast(Handle<JSObject> object,
2123 int unused_property_fields, const char* reason);
2125 inline bool IsUnboxedDoubleField(FieldIndex index);
2127 // Access fast-case object properties at index.
2128 static Handle<Object> FastPropertyAt(Handle<JSObject> object,
2129 Representation representation,
2131 inline Object* RawFastPropertyAt(FieldIndex index);
2132 inline double RawFastDoublePropertyAt(FieldIndex index);
2134 inline void FastPropertyAtPut(FieldIndex index, Object* value);
2135 inline void RawFastPropertyAtPut(FieldIndex index, Object* value);
2136 inline void RawFastDoublePropertyAtPut(FieldIndex index, double value);
2137 inline void WriteToField(int descriptor, Object* value);
2139 // Access to in object properties.
2140 inline int GetInObjectPropertyOffset(int index);
2141 inline Object* InObjectPropertyAt(int index);
2142 inline Object* InObjectPropertyAtPut(int index,
2144 WriteBarrierMode mode
2145 = UPDATE_WRITE_BARRIER);
2147 // Set the object's prototype (only JSReceiver and null are allowed values).
2148 MUST_USE_RESULT static MaybeHandle<Object> SetPrototype(
2149 Handle<JSObject> object, Handle<Object> value, bool from_javascript);
2151 // Initializes the body after properties slot, properties slot is
2152 // initialized by set_properties. Fill the pre-allocated fields with
2153 // pre_allocated_value and the rest with filler_value.
2154 // Note: this call does not update write barrier, the caller is responsible
2155 // to ensure that |filler_value| can be collected without WB here.
2156 inline void InitializeBody(Map* map,
2157 Object* pre_allocated_value,
2158 Object* filler_value);
2160 // Check whether this object references another object
2161 bool ReferencesObject(Object* obj);
2163 // Disalow further properties to be added to the oject.
2164 MUST_USE_RESULT static MaybeHandle<Object> PreventExtensions(
2165 Handle<JSObject> object);
2167 bool IsExtensible();
2170 MUST_USE_RESULT static MaybeHandle<Object> Seal(Handle<JSObject> object);
2172 // ES5 Object.freeze
2173 MUST_USE_RESULT static MaybeHandle<Object> Freeze(Handle<JSObject> object);
2175 // Called the first time an object is observed with ES7 Object.observe.
2176 static void SetObserved(Handle<JSObject> object);
2179 enum DeepCopyHints { kNoHints = 0, kObjectIsShallow = 1 };
2181 MUST_USE_RESULT static MaybeHandle<JSObject> DeepCopy(
2182 Handle<JSObject> object,
2183 AllocationSiteUsageContext* site_context,
2184 DeepCopyHints hints = kNoHints);
2185 MUST_USE_RESULT static MaybeHandle<JSObject> DeepWalk(
2186 Handle<JSObject> object,
2187 AllocationSiteCreationContext* site_context);
2189 DECLARE_CAST(JSObject)
2191 // Dispatched behavior.
2192 void JSObjectShortPrint(StringStream* accumulator);
2193 DECLARE_PRINTER(JSObject)
2194 DECLARE_VERIFIER(JSObject)
2196 void PrintProperties(std::ostream& os); // NOLINT
2197 void PrintElements(std::ostream& os); // NOLINT
2199 #if defined(DEBUG) || defined(OBJECT_PRINT)
2200 void PrintTransitions(std::ostream& os); // NOLINT
2203 static void PrintElementsTransition(
2204 FILE* file, Handle<JSObject> object,
2205 ElementsKind from_kind, Handle<FixedArrayBase> from_elements,
2206 ElementsKind to_kind, Handle<FixedArrayBase> to_elements);
2208 void PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map);
2211 // Structure for collecting spill information about JSObjects.
2212 class SpillInformation {
2216 int number_of_objects_;
2217 int number_of_objects_with_fast_properties_;
2218 int number_of_objects_with_fast_elements_;
2219 int number_of_fast_used_fields_;
2220 int number_of_fast_unused_fields_;
2221 int number_of_slow_used_properties_;
2222 int number_of_slow_unused_properties_;
2223 int number_of_fast_used_elements_;
2224 int number_of_fast_unused_elements_;
2225 int number_of_slow_used_elements_;
2226 int number_of_slow_unused_elements_;
2229 void IncrementSpillStatistics(SpillInformation* info);
2233 // If a GC was caused while constructing this object, the elements pointer
2234 // may point to a one pointer filler map. The object won't be rooted, but
2235 // our heap verification code could stumble across it.
2236 bool ElementsAreSafeToExamine();
2239 Object* SlowReverseLookup(Object* value);
2241 // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
2242 // Also maximal value of JSArray's length property.
2243 static const uint32_t kMaxElementCount = 0xffffffffu;
2245 // Constants for heuristics controlling conversion of fast elements
2246 // to slow elements.
2248 // Maximal gap that can be introduced by adding an element beyond
2249 // the current elements length.
2250 static const uint32_t kMaxGap = 1024;
2252 // Maximal length of fast elements array that won't be checked for
2253 // being dense enough on expansion.
2254 static const int kMaxUncheckedFastElementsLength = 5000;
2256 // Same as above but for old arrays. This limit is more strict. We
2257 // don't want to be wasteful with long lived objects.
2258 static const int kMaxUncheckedOldFastElementsLength = 500;
2260 // Note that Page::kMaxRegularHeapObjectSize puts a limit on
2261 // permissible values (see the DCHECK in heap.cc).
2262 static const int kInitialMaxFastElementArray = 100000;
2264 // This constant applies only to the initial map of "global.Object" and
2265 // not to arbitrary other JSObject maps.
2266 static const int kInitialGlobalObjectUnusedPropertiesCount = 4;
2268 static const int kMaxInstanceSize = 255 * kPointerSize;
2269 // When extending the backing storage for property values, we increase
2270 // its size by more than the 1 entry necessary, so sequentially adding fields
2271 // to the same object requires fewer allocations and copies.
2272 static const int kFieldsAdded = 3;
2274 // Layout description.
2275 static const int kPropertiesOffset = HeapObject::kHeaderSize;
2276 static const int kElementsOffset = kPropertiesOffset + kPointerSize;
2277 static const int kHeaderSize = kElementsOffset + kPointerSize;
2279 STATIC_ASSERT(kHeaderSize == Internals::kJSObjectHeaderSize);
2281 class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> {
2283 static inline int SizeOf(Map* map, HeapObject* object);
2286 Context* GetCreationContext();
2288 // Enqueue change record for Object.observe. May cause GC.
2289 MUST_USE_RESULT static MaybeHandle<Object> EnqueueChangeRecord(
2290 Handle<JSObject> object, const char* type, Handle<Name> name,
2291 Handle<Object> old_value);
2293 // Gets the number of currently used elements.
2294 int GetFastElementsUsage();
2296 // Deletes an existing named property in a normalized object.
2297 static void DeleteNormalizedProperty(Handle<JSObject> object,
2298 Handle<Name> name, int entry);
2300 static bool AllCanRead(LookupIterator* it);
2301 static bool AllCanWrite(LookupIterator* it);
2304 friend class JSReceiver;
2305 friend class Object;
2307 static void MigrateFastToFast(Handle<JSObject> object, Handle<Map> new_map);
2308 static void MigrateFastToSlow(Handle<JSObject> object,
2309 Handle<Map> new_map,
2310 int expected_additional_properties);
2312 // Used from Object::GetProperty().
2313 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithFailedAccessCheck(
2314 LookupIterator* it);
2316 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithFailedAccessCheck(
2317 LookupIterator* it, Handle<Object> value);
2319 // Add a property to a slow-case object.
2320 static void AddSlowProperty(Handle<JSObject> object,
2322 Handle<Object> value,
2323 PropertyAttributes attributes);
2325 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithInterceptor(
2326 LookupIterator* it);
2328 bool ReferencesObjectFromElements(FixedArray* elements,
2332 // Return the hash table backing store or the inline stored identity hash,
2333 // whatever is found.
2334 MUST_USE_RESULT Object* GetHiddenPropertiesHashTable();
2336 // Return the hash table backing store for hidden properties. If there is no
2337 // backing store, allocate one.
2338 static Handle<ObjectHashTable> GetOrCreateHiddenPropertiesHashtable(
2339 Handle<JSObject> object);
2341 // Set the hidden property backing store to either a hash table or
2342 // the inline-stored identity hash.
2343 static Handle<Object> SetHiddenPropertiesHashTable(
2344 Handle<JSObject> object,
2345 Handle<Object> value);
2347 MUST_USE_RESULT Object* GetIdentityHash();
2349 static Handle<Smi> GetOrCreateIdentityHash(Handle<JSObject> object);
2351 static Handle<SeededNumberDictionary> GetNormalizedElementDictionary(
2352 Handle<JSObject> object, Handle<FixedArrayBase> elements);
2354 // Helper for fast versions of preventExtensions, seal, and freeze.
2355 // attrs is one of NONE, SEALED, or FROZEN (depending on the operation).
2356 template <PropertyAttributes attrs>
2357 MUST_USE_RESULT static MaybeHandle<Object> PreventExtensionsWithTransition(
2358 Handle<JSObject> object);
2360 DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
2364 // Common superclass for FixedArrays that allow implementations to share
2365 // common accessors and some code paths.
2366 class FixedArrayBase: public HeapObject {
2368 // [length]: length of the array.
2369 inline int length() const;
2370 inline void set_length(int value);
2372 // Get and set the length using acquire loads and release stores.
2373 inline int synchronized_length() const;
2374 inline void synchronized_set_length(int value);
2376 DECLARE_CAST(FixedArrayBase)
2378 // Layout description.
2379 // Length is smi tagged when it is stored.
2380 static const int kLengthOffset = HeapObject::kHeaderSize;
2381 static const int kHeaderSize = kLengthOffset + kPointerSize;
2385 class FixedDoubleArray;
2386 class IncrementalMarking;
2389 // FixedArray describes fixed-sized arrays with element type Object*.
2390 class FixedArray: public FixedArrayBase {
2392 // Setter and getter for elements.
2393 inline Object* get(int index) const;
2394 static inline Handle<Object> get(Handle<FixedArray> array, int index);
2395 // Setter that uses write barrier.
2396 inline void set(int index, Object* value);
2397 inline bool is_the_hole(int index);
2399 // Setter that doesn't need write barrier.
2400 inline void set(int index, Smi* value);
2401 // Setter with explicit barrier mode.
2402 inline void set(int index, Object* value, WriteBarrierMode mode);
2404 // Setters for frequently used oddballs located in old space.
2405 inline void set_undefined(int index);
2406 inline void set_null(int index);
2407 inline void set_the_hole(int index);
2409 inline Object** GetFirstElementAddress();
2410 inline bool ContainsOnlySmisOrHoles();
2412 // Gives access to raw memory which stores the array's data.
2413 inline Object** data_start();
2415 inline void FillWithHoles(int from, int to);
2417 // Shrink length and insert filler objects.
2418 void Shrink(int length);
2420 enum KeyFilter { ALL_KEYS, NON_SYMBOL_KEYS };
2422 // Add the elements of a JSArray to this FixedArray.
2423 MUST_USE_RESULT static MaybeHandle<FixedArray> AddKeysFromArrayLike(
2424 Handle<FixedArray> content, Handle<JSObject> array,
2425 KeyFilter filter = ALL_KEYS);
2427 // Computes the union of keys and return the result.
2428 // Used for implementing "for (n in object) { }"
2429 MUST_USE_RESULT static MaybeHandle<FixedArray> UnionOfKeys(
2430 Handle<FixedArray> first,
2431 Handle<FixedArray> second);
2433 // Copy a sub array from the receiver to dest.
2434 void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
2436 // Garbage collection support.
2437 static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
2439 // Code Generation support.
2440 static int OffsetOfElementAt(int index) { return SizeFor(index); }
2442 // Garbage collection support.
2443 inline Object** RawFieldOfElementAt(int index);
2445 DECLARE_CAST(FixedArray)
2447 // Maximal allowed size, in bytes, of a single FixedArray.
2448 // Prevents overflowing size computations, as well as extreme memory
2450 static const int kMaxSize = 128 * MB * kPointerSize;
2451 // Maximally allowed length of a FixedArray.
2452 static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
2454 // Dispatched behavior.
2455 DECLARE_PRINTER(FixedArray)
2456 DECLARE_VERIFIER(FixedArray)
2458 // Checks if two FixedArrays have identical contents.
2459 bool IsEqualTo(FixedArray* other);
2462 // Swap two elements in a pair of arrays. If this array and the
2463 // numbers array are the same object, the elements are only swapped
2465 void SwapPairs(FixedArray* numbers, int i, int j);
2467 // Sort prefix of this array and the numbers array as pairs wrt. the
2468 // numbers. If the numbers array and the this array are the same
2469 // object, the prefix of this array is sorted.
2470 void SortPairs(FixedArray* numbers, uint32_t len);
2472 class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> {
2474 static inline int SizeOf(Map* map, HeapObject* object);
2478 // Set operation on FixedArray without using write barriers. Can
2479 // only be used for storing old space objects or smis.
2480 static inline void NoWriteBarrierSet(FixedArray* array,
2484 // Set operation on FixedArray without incremental write barrier. Can
2485 // only be used if the object is guaranteed to be white (whiteness witness
2487 static inline void NoIncrementalWriteBarrierSet(FixedArray* array,
2492 STATIC_ASSERT(kHeaderSize == Internals::kFixedArrayHeaderSize);
2494 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
2498 // FixedDoubleArray describes fixed-sized arrays with element type double.
2499 class FixedDoubleArray: public FixedArrayBase {
2501 // Setter and getter for elements.
2502 inline double get_scalar(int index);
2503 inline uint64_t get_representation(int index);
2504 static inline Handle<Object> get(Handle<FixedDoubleArray> array, int index);
2505 inline void set(int index, double value);
2506 inline void set_the_hole(int index);
2508 // Checking for the hole.
2509 inline bool is_the_hole(int index);
2511 // Garbage collection support.
2512 inline static int SizeFor(int length) {
2513 return kHeaderSize + length * kDoubleSize;
2516 // Gives access to raw memory which stores the array's data.
2517 inline double* data_start();
2519 inline void FillWithHoles(int from, int to);
2521 // Code Generation support.
2522 static int OffsetOfElementAt(int index) { return SizeFor(index); }
2524 DECLARE_CAST(FixedDoubleArray)
2526 // Maximal allowed size, in bytes, of a single FixedDoubleArray.
2527 // Prevents overflowing size computations, as well as extreme memory
2529 static const int kMaxSize = 512 * MB;
2530 // Maximally allowed length of a FixedArray.
2531 static const int kMaxLength = (kMaxSize - kHeaderSize) / kDoubleSize;
2533 // Dispatched behavior.
2534 DECLARE_PRINTER(FixedDoubleArray)
2535 DECLARE_VERIFIER(FixedDoubleArray)
2538 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedDoubleArray);
2542 class WeakFixedArray : public FixedArray {
2544 // If |maybe_array| is not a WeakFixedArray, a fresh one will be allocated.
2545 // This function does not check if the value exists already, callers must
2546 // ensure this themselves if necessary.
2547 static Handle<WeakFixedArray> Add(Handle<Object> maybe_array,
2548 Handle<HeapObject> value,
2549 int* assigned_index = NULL);
2551 // Returns true if an entry was found and removed.
2552 bool Remove(Handle<HeapObject> value);
2554 class NullCallback {
2556 static void Callback(Object* value, int old_index, int new_index) {}
2559 template <class CompactionCallback>
2562 inline Object* Get(int index) const;
2563 inline void Clear(int index);
2564 inline int Length() const;
2566 inline bool IsEmptySlot(int index) const;
2567 static Object* Empty() { return Smi::FromInt(0); }
2571 explicit Iterator(Object* maybe_array) : list_(NULL) { Reset(maybe_array); }
2572 void Reset(Object* maybe_array);
2579 WeakFixedArray* list_;
2581 int last_used_index_;
2582 DisallowHeapAllocation no_gc_;
2584 DISALLOW_COPY_AND_ASSIGN(Iterator);
2587 DECLARE_CAST(WeakFixedArray)
2590 static const int kLastUsedIndexIndex = 0;
2591 static const int kFirstIndex = 1;
2593 static Handle<WeakFixedArray> Allocate(
2594 Isolate* isolate, int size, Handle<WeakFixedArray> initialize_from);
2596 static void Set(Handle<WeakFixedArray> array, int index,
2597 Handle<HeapObject> value);
2598 inline void clear(int index);
2600 inline int last_used_index() const;
2601 inline void set_last_used_index(int index);
2603 // Disallow inherited setters.
2604 void set(int index, Smi* value);
2605 void set(int index, Object* value);
2606 void set(int index, Object* value, WriteBarrierMode mode);
2607 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakFixedArray);
2611 // Generic array grows dynamically with O(1) amortized insertion.
2612 class ArrayList : public FixedArray {
2616 // Use this if GC can delete elements from the array.
2617 kReloadLengthAfterAllocation,
2619 static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj,
2620 AddMode mode = kNone);
2621 static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj1,
2622 Handle<Object> obj2, AddMode = kNone);
2623 inline int Length();
2624 inline void SetLength(int length);
2625 inline Object* Get(int index);
2626 inline Object** Slot(int index);
2627 inline void Set(int index, Object* obj);
2628 inline void Clear(int index, Object* undefined);
2629 DECLARE_CAST(ArrayList)
2632 static Handle<ArrayList> EnsureSpace(Handle<ArrayList> array, int length);
2633 static const int kLengthIndex = 0;
2634 static const int kFirstIndex = 1;
2635 DISALLOW_IMPLICIT_CONSTRUCTORS(ArrayList);
2639 // DescriptorArrays are fixed arrays used to hold instance descriptors.
2640 // The format of the these objects is:
2641 // [0]: Number of descriptors
2642 // [1]: Either Smi(0) if uninitialized, or a pointer to small fixed array:
2643 // [0]: pointer to fixed array with enum cache
2644 // [1]: either Smi(0) or pointer to fixed array with indices
2646 // [2 + number of descriptors * kDescriptorSize]: start of slack
2647 class DescriptorArray: public FixedArray {
2649 // Returns true for both shared empty_descriptor_array and for smis, which the
2650 // map uses to encode additional bit fields when the descriptor array is not
2652 inline bool IsEmpty();
2654 // Returns the number of descriptors in the array.
2655 inline int number_of_descriptors();
2657 inline int number_of_descriptors_storage();
2659 inline int NumberOfSlackDescriptors();
2661 inline void SetNumberOfDescriptors(int number_of_descriptors);
2662 inline int number_of_entries();
2664 inline bool HasEnumCache();
2666 inline void CopyEnumCacheFrom(DescriptorArray* array);
2668 inline FixedArray* GetEnumCache();
2670 inline bool HasEnumIndicesCache();
2672 inline FixedArray* GetEnumIndicesCache();
2674 inline Object** GetEnumCacheSlot();
2676 void ClearEnumCache();
2678 // Initialize or change the enum cache,
2679 // using the supplied storage for the small "bridge".
2680 void SetEnumCache(FixedArray* bridge_storage,
2681 FixedArray* new_cache,
2682 Object* new_index_cache);
2684 bool CanHoldValue(int descriptor, Object* value);
2686 // Accessors for fetching instance descriptor at descriptor number.
2687 inline Name* GetKey(int descriptor_number);
2688 inline Object** GetKeySlot(int descriptor_number);
2689 inline Object* GetValue(int descriptor_number);
2690 inline void SetValue(int descriptor_number, Object* value);
2691 inline Object** GetValueSlot(int descriptor_number);
2692 static inline int GetValueOffset(int descriptor_number);
2693 inline Object** GetDescriptorStartSlot(int descriptor_number);
2694 inline Object** GetDescriptorEndSlot(int descriptor_number);
2695 inline PropertyDetails GetDetails(int descriptor_number);
2696 inline PropertyType GetType(int descriptor_number);
2697 inline int GetFieldIndex(int descriptor_number);
2698 inline HeapType* GetFieldType(int descriptor_number);
2699 inline Object* GetConstant(int descriptor_number);
2700 inline Object* GetCallbacksObject(int descriptor_number);
2701 inline AccessorDescriptor* GetCallbacks(int descriptor_number);
2703 inline Name* GetSortedKey(int descriptor_number);
2704 inline int GetSortedKeyIndex(int descriptor_number);
2705 inline void SetSortedKey(int pointer, int descriptor_number);
2706 inline void SetRepresentation(int descriptor_number,
2707 Representation representation);
2709 // Accessor for complete descriptor.
2710 inline void Get(int descriptor_number, Descriptor* desc);
2711 inline void Set(int descriptor_number, Descriptor* desc);
2712 void Replace(int descriptor_number, Descriptor* descriptor);
2714 // Append automatically sets the enumeration index. This should only be used
2715 // to add descriptors in bulk at the end, followed by sorting the descriptor
2717 inline void Append(Descriptor* desc);
2719 static Handle<DescriptorArray> CopyUpTo(Handle<DescriptorArray> desc,
2720 int enumeration_index,
2723 static Handle<DescriptorArray> CopyUpToAddAttributes(
2724 Handle<DescriptorArray> desc,
2725 int enumeration_index,
2726 PropertyAttributes attributes,
2729 // Sort the instance descriptors by the hash codes of their keys.
2732 // Search the instance descriptors for given name.
2733 INLINE(int Search(Name* name, int number_of_own_descriptors));
2735 // As the above, but uses DescriptorLookupCache and updates it when
2737 INLINE(int SearchWithCache(Name* name, Map* map));
2739 // Allocates a DescriptorArray, but returns the singleton
2740 // empty descriptor array object if number_of_descriptors is 0.
2741 static Handle<DescriptorArray> Allocate(Isolate* isolate,
2742 int number_of_descriptors,
2745 DECLARE_CAST(DescriptorArray)
2747 // Constant for denoting key was not found.
2748 static const int kNotFound = -1;
2750 static const int kDescriptorLengthIndex = 0;
2751 static const int kEnumCacheIndex = 1;
2752 static const int kFirstIndex = 2;
2754 // The length of the "bridge" to the enum cache.
2755 static const int kEnumCacheBridgeLength = 2;
2756 static const int kEnumCacheBridgeCacheIndex = 0;
2757 static const int kEnumCacheBridgeIndicesCacheIndex = 1;
2759 // Layout description.
2760 static const int kDescriptorLengthOffset = FixedArray::kHeaderSize;
2761 static const int kEnumCacheOffset = kDescriptorLengthOffset + kPointerSize;
2762 static const int kFirstOffset = kEnumCacheOffset + kPointerSize;
2764 // Layout description for the bridge array.
2765 static const int kEnumCacheBridgeCacheOffset = FixedArray::kHeaderSize;
2767 // Layout of descriptor.
2768 static const int kDescriptorKey = 0;
2769 static const int kDescriptorDetails = 1;
2770 static const int kDescriptorValue = 2;
2771 static const int kDescriptorSize = 3;
2773 #if defined(DEBUG) || defined(OBJECT_PRINT)
2774 // For our gdb macros, we should perhaps change these in the future.
2777 // Print all the descriptors.
2778 void PrintDescriptors(std::ostream& os); // NOLINT
2782 // Is the descriptor array sorted and without duplicates?
2783 bool IsSortedNoDuplicates(int valid_descriptors = -1);
2785 // Is the descriptor array consistent with the back pointers in targets?
2786 bool IsConsistentWithBackPointers(Map* current_map);
2788 // Are two DescriptorArrays equal?
2789 bool IsEqualTo(DescriptorArray* other);
2792 // Returns the fixed array length required to hold number_of_descriptors
2794 static int LengthFor(int number_of_descriptors) {
2795 return ToKeyIndex(number_of_descriptors);
2799 // WhitenessWitness is used to prove that a descriptor array is white
2800 // (unmarked), so incremental write barriers can be skipped because the
2801 // marking invariant cannot be broken and slots pointing into evacuation
2802 // candidates will be discovered when the object is scanned. A witness is
2803 // always stack-allocated right after creating an array. By allocating a
2804 // witness, incremental marking is globally disabled. The witness is then
2805 // passed along wherever needed to statically prove that the array is known to
2807 class WhitenessWitness {
2809 inline explicit WhitenessWitness(DescriptorArray* array);
2810 inline ~WhitenessWitness();
2813 IncrementalMarking* marking_;
2816 // An entry in a DescriptorArray, represented as an (array, index) pair.
2819 inline explicit Entry(DescriptorArray* descs, int index) :
2820 descs_(descs), index_(index) { }
2822 inline PropertyType type();
2823 inline Object* GetCallbackObject();
2826 DescriptorArray* descs_;
2830 // Conversion from descriptor number to array indices.
2831 static int ToKeyIndex(int descriptor_number) {
2832 return kFirstIndex +
2833 (descriptor_number * kDescriptorSize) +
2837 static int ToDetailsIndex(int descriptor_number) {
2838 return kFirstIndex +
2839 (descriptor_number * kDescriptorSize) +
2843 static int ToValueIndex(int descriptor_number) {
2844 return kFirstIndex +
2845 (descriptor_number * kDescriptorSize) +
2849 // Transfer a complete descriptor from the src descriptor array to this
2850 // descriptor array.
2851 void CopyFrom(int index, DescriptorArray* src, const WhitenessWitness&);
2853 inline void Set(int descriptor_number,
2855 const WhitenessWitness&);
2857 // Swap first and second descriptor.
2858 inline void SwapSortedKeys(int first, int second);
2860 DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
2864 enum SearchMode { ALL_ENTRIES, VALID_ENTRIES };
2866 template <SearchMode search_mode, typename T>
2867 inline int Search(T* array, Name* name, int valid_entries = 0,
2868 int* out_insertion_index = NULL);
2871 // HashTable is a subclass of FixedArray that implements a hash table
2872 // that uses open addressing and quadratic probing.
2874 // In order for the quadratic probing to work, elements that have not
2875 // yet been used and elements that have been deleted are
2876 // distinguished. Probing continues when deleted elements are
2877 // encountered and stops when unused elements are encountered.
2879 // - Elements with key == undefined have not been used yet.
2880 // - Elements with key == the_hole have been deleted.
2882 // The hash table class is parameterized with a Shape and a Key.
2883 // Shape must be a class with the following interface:
2884 // class ExampleShape {
2886 // // Tells whether key matches other.
2887 // static bool IsMatch(Key key, Object* other);
2888 // // Returns the hash value for key.
2889 // static uint32_t Hash(Key key);
2890 // // Returns the hash value for object.
2891 // static uint32_t HashForObject(Key key, Object* object);
2892 // // Convert key to an object.
2893 // static inline Handle<Object> AsHandle(Isolate* isolate, Key key);
2894 // // The prefix size indicates number of elements in the beginning
2895 // // of the backing storage.
2896 // static const int kPrefixSize = ..;
2897 // // The Element size indicates number of elements per entry.
2898 // static const int kEntrySize = ..;
2900 // The prefix size indicates an amount of memory in the
2901 // beginning of the backing storage that can be used for non-element
2902 // information by subclasses.
2904 template<typename Key>
2907 static const bool UsesSeed = false;
2908 static uint32_t Hash(Key key) { return 0; }
2909 static uint32_t SeededHash(Key key, uint32_t seed) {
2913 static uint32_t HashForObject(Key key, Object* object) { return 0; }
2914 static uint32_t SeededHashForObject(Key key, uint32_t seed, Object* object) {
2916 return HashForObject(key, object);
2921 class HashTableBase : public FixedArray {
2923 // Returns the number of elements in the hash table.
2924 inline int NumberOfElements();
2926 // Returns the number of deleted elements in the hash table.
2927 inline int NumberOfDeletedElements();
2929 // Returns the capacity of the hash table.
2930 inline int Capacity();
2932 // ElementAdded should be called whenever an element is added to a
2934 inline void ElementAdded();
2936 // ElementRemoved should be called whenever an element is removed from
2938 inline void ElementRemoved();
2939 inline void ElementsRemoved(int n);
2941 // Computes the required capacity for a table holding the given
2942 // number of elements. May be more than HashTable::kMaxCapacity.
2943 static inline int ComputeCapacity(int at_least_space_for);
2945 // Tells whether k is a real key. The hole and undefined are not allowed
2946 // as keys and can be used to indicate missing or deleted elements.
2947 inline bool IsKey(Object* k);
2949 // Compute the probe offset (quadratic probing).
2950 INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
2951 return (n + n * n) >> 1;
2954 static const int kNumberOfElementsIndex = 0;
2955 static const int kNumberOfDeletedElementsIndex = 1;
2956 static const int kCapacityIndex = 2;
2957 static const int kPrefixStartIndex = 3;
2959 // Constant used for denoting a absent entry.
2960 static const int kNotFound = -1;
2963 // Update the number of elements in the hash table.
2964 inline void SetNumberOfElements(int nof);
2966 // Update the number of deleted elements in the hash table.
2967 inline void SetNumberOfDeletedElements(int nod);
2969 // Returns probe entry.
2970 static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
2971 DCHECK(base::bits::IsPowerOfTwo32(size));
2972 return (hash + GetProbeOffset(number)) & (size - 1);
2975 inline static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
2976 return hash & (size - 1);
2979 inline static uint32_t NextProbe(
2980 uint32_t last, uint32_t number, uint32_t size) {
2981 return (last + number) & (size - 1);
2986 template <typename Derived, typename Shape, typename Key>
2987 class HashTable : public HashTableBase {
2990 inline uint32_t Hash(Key key) {
2991 if (Shape::UsesSeed) {
2992 return Shape::SeededHash(key, GetHeap()->HashSeed());
2994 return Shape::Hash(key);
2998 inline uint32_t HashForObject(Key key, Object* object) {
2999 if (Shape::UsesSeed) {
3000 return Shape::SeededHashForObject(key, GetHeap()->HashSeed(), object);
3002 return Shape::HashForObject(key, object);
3006 // Returns a new HashTable object.
3007 MUST_USE_RESULT static Handle<Derived> New(
3008 Isolate* isolate, int at_least_space_for,
3009 MinimumCapacity capacity_option = USE_DEFAULT_MINIMUM_CAPACITY,
3010 PretenureFlag pretenure = NOT_TENURED);
3012 DECLARE_CAST(HashTable)
3014 // Garbage collection support.
3015 void IteratePrefix(ObjectVisitor* visitor);
3016 void IterateElements(ObjectVisitor* visitor);
3018 // Find entry for key otherwise return kNotFound.
3019 inline int FindEntry(Key key);
3020 inline int FindEntry(Isolate* isolate, Key key, int32_t hash);
3021 int FindEntry(Isolate* isolate, Key key);
3023 // Rehashes the table in-place.
3024 void Rehash(Key key);
3026 // Returns the key at entry.
3027 Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
3029 static const int kElementsStartIndex = kPrefixStartIndex + Shape::kPrefixSize;
3030 static const int kEntrySize = Shape::kEntrySize;
3031 static const int kElementsStartOffset =
3032 kHeaderSize + kElementsStartIndex * kPointerSize;
3033 static const int kCapacityOffset =
3034 kHeaderSize + kCapacityIndex * kPointerSize;
3036 // Returns the index for an entry (of the key)
3037 static inline int EntryToIndex(int entry) {
3038 return (entry * kEntrySize) + kElementsStartIndex;
3042 friend class ObjectHashTable;
3044 // Find the entry at which to insert element with the given key that
3045 // has the given hash value.
3046 uint32_t FindInsertionEntry(uint32_t hash);
3048 // Attempt to shrink hash table after removal of key.
3049 MUST_USE_RESULT static Handle<Derived> Shrink(Handle<Derived> table, Key key);
3051 // Ensure enough space for n additional elements.
3052 MUST_USE_RESULT static Handle<Derived> EnsureCapacity(
3053 Handle<Derived> table,
3056 PretenureFlag pretenure = NOT_TENURED);
3058 // Sets the capacity of the hash table.
3059 void SetCapacity(int capacity) {
3060 // To scale a computed hash code to fit within the hash table, we
3061 // use bit-wise AND with a mask, so the capacity must be positive
3063 DCHECK(capacity > 0);
3064 DCHECK(capacity <= kMaxCapacity);
3065 set(kCapacityIndex, Smi::FromInt(capacity));
3068 // Maximal capacity of HashTable. Based on maximal length of underlying
3069 // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
3071 static const int kMaxCapacity =
3072 (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
3075 // Returns _expected_ if one of entries given by the first _probe_ probes is
3076 // equal to _expected_. Otherwise, returns the entry given by the probe
3078 uint32_t EntryForProbe(Key key, Object* k, int probe, uint32_t expected);
3080 void Swap(uint32_t entry1, uint32_t entry2, WriteBarrierMode mode);
3082 // Rehashes this hash-table into the new table.
3083 void Rehash(Handle<Derived> new_table, Key key);
3087 // HashTableKey is an abstract superclass for virtual key behavior.
3088 class HashTableKey {
3090 // Returns whether the other object matches this key.
3091 virtual bool IsMatch(Object* other) = 0;
3092 // Returns the hash value for this key.
3093 virtual uint32_t Hash() = 0;
3094 // Returns the hash value for object.
3095 virtual uint32_t HashForObject(Object* key) = 0;
3096 // Returns the key object for storing into the hash table.
3097 MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate) = 0;
3099 virtual ~HashTableKey() {}
3103 class StringTableShape : public BaseShape<HashTableKey*> {
3105 static inline bool IsMatch(HashTableKey* key, Object* value) {
3106 return key->IsMatch(value);
3109 static inline uint32_t Hash(HashTableKey* key) {
3113 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3114 return key->HashForObject(object);
3117 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
3119 static const int kPrefixSize = 0;
3120 static const int kEntrySize = 1;
3123 class SeqOneByteString;
3127 // No special elements in the prefix and the element size is 1
3128 // because only the string itself (the key) needs to be stored.
3129 class StringTable: public HashTable<StringTable,
3133 // Find string in the string table. If it is not there yet, it is
3134 // added. The return value is the string found.
3135 static Handle<String> LookupString(Isolate* isolate, Handle<String> key);
3136 static Handle<String> LookupKey(Isolate* isolate, HashTableKey* key);
3137 static String* LookupKeyIfExists(Isolate* isolate, HashTableKey* key);
3139 // Tries to internalize given string and returns string handle on success
3140 // or an empty handle otherwise.
3141 MUST_USE_RESULT static MaybeHandle<String> InternalizeStringIfExists(
3143 Handle<String> string);
3145 // Looks up a string that is equal to the given string and returns
3146 // string handle if it is found, or an empty handle otherwise.
3147 MUST_USE_RESULT static MaybeHandle<String> LookupStringIfExists(
3149 Handle<String> str);
3150 MUST_USE_RESULT static MaybeHandle<String> LookupTwoCharsStringIfExists(
3155 static void EnsureCapacityForDeserialization(Isolate* isolate, int expected);
3157 DECLARE_CAST(StringTable)
3160 template <bool seq_one_byte>
3161 friend class JsonParser;
3163 DISALLOW_IMPLICIT_CONSTRUCTORS(StringTable);
3167 template <typename Derived, typename Shape, typename Key>
3168 class Dictionary: public HashTable<Derived, Shape, Key> {
3169 typedef HashTable<Derived, Shape, Key> DerivedHashTable;
3172 // Returns the value at entry.
3173 Object* ValueAt(int entry) {
3174 return this->get(Derived::EntryToIndex(entry) + 1);
3177 // Set the value for entry.
3178 void ValueAtPut(int entry, Object* value) {
3179 this->set(Derived::EntryToIndex(entry) + 1, value);
3182 // Returns the property details for the property at entry.
3183 PropertyDetails DetailsAt(int entry) {
3184 return Shape::DetailsAt(static_cast<Derived*>(this), entry);
3187 // Set the details for entry.
3188 void DetailsAtPut(int entry, PropertyDetails value) {
3189 Shape::DetailsAtPut(static_cast<Derived*>(this), entry, value);
3192 // Returns true if property at given entry is deleted.
3193 bool IsDeleted(int entry) {
3194 return Shape::IsDeleted(static_cast<Derived*>(this), entry);
3197 // Delete a property from the dictionary.
3198 static Handle<Object> DeleteProperty(Handle<Derived> dictionary, int entry);
3200 // Attempt to shrink the dictionary after deletion of key.
3201 MUST_USE_RESULT static inline Handle<Derived> Shrink(
3202 Handle<Derived> dictionary,
3204 return DerivedHashTable::Shrink(dictionary, key);
3208 // TODO(dcarney): templatize or move to SeededNumberDictionary
3209 void CopyValuesTo(FixedArray* elements);
3211 // Returns the number of elements in the dictionary filtering out properties
3212 // with the specified attributes.
3213 int NumberOfElementsFilterAttributes(PropertyAttributes filter);
3215 // Returns the number of enumerable elements in the dictionary.
3216 int NumberOfEnumElements() {
3217 return NumberOfElementsFilterAttributes(
3218 static_cast<PropertyAttributes>(DONT_ENUM | SYMBOLIC));
3221 // Returns true if the dictionary contains any elements that are non-writable,
3222 // non-configurable, non-enumerable, or have getters/setters.
3223 bool HasComplexElements();
3225 enum SortMode { UNSORTED, SORTED };
3227 // Fill in details for properties into storage.
3228 // Returns the number of properties added.
3229 int CopyKeysTo(FixedArray* storage, int index, PropertyAttributes filter,
3230 SortMode sort_mode);
3232 // Copies enumerable keys to preallocated fixed array.
3233 void CopyEnumKeysTo(FixedArray* storage);
3235 // Accessors for next enumeration index.
3236 void SetNextEnumerationIndex(int index) {
3238 this->set(kNextEnumerationIndexIndex, Smi::FromInt(index));
3241 int NextEnumerationIndex() {
3242 return Smi::cast(this->get(kNextEnumerationIndexIndex))->value();
3245 // Creates a new dictionary.
3246 MUST_USE_RESULT static Handle<Derived> New(
3248 int at_least_space_for,
3249 PretenureFlag pretenure = NOT_TENURED);
3251 // Ensure enough space for n additional elements.
3252 static Handle<Derived> EnsureCapacity(Handle<Derived> obj, int n, Key key);
3255 void Print(std::ostream& os); // NOLINT
3257 // Returns the key (slow).
3258 Object* SlowReverseLookup(Object* value);
3260 // Sets the entry to (key, value) pair.
3261 inline void SetEntry(int entry,
3263 Handle<Object> value);
3264 inline void SetEntry(int entry,
3266 Handle<Object> value,
3267 PropertyDetails details);
3269 MUST_USE_RESULT static Handle<Derived> Add(
3270 Handle<Derived> dictionary,
3272 Handle<Object> value,
3273 PropertyDetails details);
3275 // Returns iteration indices array for the |dictionary|.
3276 // Values are direct indices in the |HashTable| array.
3277 static Handle<FixedArray> BuildIterationIndicesArray(
3278 Handle<Derived> dictionary);
3281 // Generic at put operation.
3282 MUST_USE_RESULT static Handle<Derived> AtPut(
3283 Handle<Derived> dictionary,
3285 Handle<Object> value);
3287 // Add entry to dictionary.
3288 static void AddEntry(
3289 Handle<Derived> dictionary,
3291 Handle<Object> value,
3292 PropertyDetails details,
3295 // Generate new enumeration indices to avoid enumeration index overflow.
3296 // Returns iteration indices array for the |dictionary|.
3297 static Handle<FixedArray> GenerateNewEnumerationIndices(
3298 Handle<Derived> dictionary);
3299 static const int kMaxNumberKeyIndex = DerivedHashTable::kPrefixStartIndex;
3300 static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
3304 template <typename Derived, typename Shape>
3305 class NameDictionaryBase : public Dictionary<Derived, Shape, Handle<Name> > {
3306 typedef Dictionary<Derived, Shape, Handle<Name> > DerivedDictionary;
3309 // Find entry for key, otherwise return kNotFound. Optimized version of
3310 // HashTable::FindEntry.
3311 int FindEntry(Handle<Name> key);
3315 template <typename Key>
3316 class BaseDictionaryShape : public BaseShape<Key> {
3318 template <typename Dictionary>
3319 static inline PropertyDetails DetailsAt(Dictionary* dict, int entry) {
3320 STATIC_ASSERT(Dictionary::kEntrySize == 3);
3321 DCHECK(entry >= 0); // Not found is -1, which is not caught by get().
3322 return PropertyDetails(
3323 Smi::cast(dict->get(Dictionary::EntryToIndex(entry) + 2)));
3326 template <typename Dictionary>
3327 static inline void DetailsAtPut(Dictionary* dict, int entry,
3328 PropertyDetails value) {
3329 STATIC_ASSERT(Dictionary::kEntrySize == 3);
3330 dict->set(Dictionary::EntryToIndex(entry) + 2, value.AsSmi());
3333 template <typename Dictionary>
3334 static bool IsDeleted(Dictionary* dict, int entry) {
3338 template <typename Dictionary>
3339 static inline void SetEntry(Dictionary* dict, int entry, Handle<Object> key,
3340 Handle<Object> value, PropertyDetails details);
3344 class NameDictionaryShape : public BaseDictionaryShape<Handle<Name> > {
3346 static inline bool IsMatch(Handle<Name> key, Object* other);
3347 static inline uint32_t Hash(Handle<Name> key);
3348 static inline uint32_t HashForObject(Handle<Name> key, Object* object);
3349 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Name> key);
3350 static const int kPrefixSize = 2;
3351 static const int kEntrySize = 3;
3352 static const bool kIsEnumerable = true;
3356 class NameDictionary
3357 : public NameDictionaryBase<NameDictionary, NameDictionaryShape> {
3358 typedef NameDictionaryBase<NameDictionary, NameDictionaryShape>
3362 DECLARE_CAST(NameDictionary)
3364 inline static Handle<FixedArray> DoGenerateNewEnumerationIndices(
3365 Handle<NameDictionary> dictionary);
3369 class GlobalDictionaryShape : public NameDictionaryShape {
3371 static const int kEntrySize = 2; // Overrides NameDictionaryShape::kEntrySize
3373 template <typename Dictionary>
3374 static inline PropertyDetails DetailsAt(Dictionary* dict, int entry);
3376 template <typename Dictionary>
3377 static inline void DetailsAtPut(Dictionary* dict, int entry,
3378 PropertyDetails value);
3380 template <typename Dictionary>
3381 static bool IsDeleted(Dictionary* dict, int entry);
3383 template <typename Dictionary>
3384 static inline void SetEntry(Dictionary* dict, int entry, Handle<Object> key,
3385 Handle<Object> value, PropertyDetails details);
3389 class GlobalDictionary
3390 : public NameDictionaryBase<GlobalDictionary, GlobalDictionaryShape> {
3392 DECLARE_CAST(GlobalDictionary)
3396 class NumberDictionaryShape : public BaseDictionaryShape<uint32_t> {
3398 static inline bool IsMatch(uint32_t key, Object* other);
3399 static inline Handle<Object> AsHandle(Isolate* isolate, uint32_t key);
3400 static const int kEntrySize = 3;
3401 static const bool kIsEnumerable = false;
3405 class SeededNumberDictionaryShape : public NumberDictionaryShape {
3407 static const bool UsesSeed = true;
3408 static const int kPrefixSize = 2;
3410 static inline uint32_t SeededHash(uint32_t key, uint32_t seed);
3411 static inline uint32_t SeededHashForObject(uint32_t key,
3417 class UnseededNumberDictionaryShape : public NumberDictionaryShape {
3419 static const int kPrefixSize = 0;
3421 static inline uint32_t Hash(uint32_t key);
3422 static inline uint32_t HashForObject(uint32_t key, Object* object);
3426 class SeededNumberDictionary
3427 : public Dictionary<SeededNumberDictionary,
3428 SeededNumberDictionaryShape,
3431 DECLARE_CAST(SeededNumberDictionary)
3433 // Type specific at put (default NONE attributes is used when adding).
3434 MUST_USE_RESULT static Handle<SeededNumberDictionary> AtNumberPut(
3435 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3436 Handle<Object> value, bool used_as_prototype);
3437 MUST_USE_RESULT static Handle<SeededNumberDictionary> AddNumberEntry(
3438 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3439 Handle<Object> value, PropertyDetails details, bool used_as_prototype);
3441 // Set an existing entry or add a new one if needed.
3442 // Return the updated dictionary.
3443 MUST_USE_RESULT static Handle<SeededNumberDictionary> Set(
3444 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3445 Handle<Object> value, PropertyDetails details, bool used_as_prototype);
3447 void UpdateMaxNumberKey(uint32_t key, bool used_as_prototype);
3449 // If slow elements are required we will never go back to fast-case
3450 // for the elements kept in this dictionary. We require slow
3451 // elements if an element has been added at an index larger than
3452 // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
3453 // when defining a getter or setter with a number key.
3454 inline bool requires_slow_elements();
3455 inline void set_requires_slow_elements();
3457 // Get the value of the max number key that has been added to this
3458 // dictionary. max_number_key can only be called if
3459 // requires_slow_elements returns false.
3460 inline uint32_t max_number_key();
3463 static const int kRequiresSlowElementsMask = 1;
3464 static const int kRequiresSlowElementsTagSize = 1;
3465 static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
3469 class UnseededNumberDictionary
3470 : public Dictionary<UnseededNumberDictionary,
3471 UnseededNumberDictionaryShape,
3474 DECLARE_CAST(UnseededNumberDictionary)
3476 // Type specific at put (default NONE attributes is used when adding).
3477 MUST_USE_RESULT static Handle<UnseededNumberDictionary> AtNumberPut(
3478 Handle<UnseededNumberDictionary> dictionary,
3480 Handle<Object> value);
3481 MUST_USE_RESULT static Handle<UnseededNumberDictionary> AddNumberEntry(
3482 Handle<UnseededNumberDictionary> dictionary,
3484 Handle<Object> value);
3486 // Set an existing entry or add a new one if needed.
3487 // Return the updated dictionary.
3488 MUST_USE_RESULT static Handle<UnseededNumberDictionary> Set(
3489 Handle<UnseededNumberDictionary> dictionary,
3491 Handle<Object> value);
3495 class ObjectHashTableShape : public BaseShape<Handle<Object> > {
3497 static inline bool IsMatch(Handle<Object> key, Object* other);
3498 static inline uint32_t Hash(Handle<Object> key);
3499 static inline uint32_t HashForObject(Handle<Object> key, Object* object);
3500 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
3501 static const int kPrefixSize = 0;
3502 static const int kEntrySize = 2;
3506 // ObjectHashTable maps keys that are arbitrary objects to object values by
3507 // using the identity hash of the key for hashing purposes.
3508 class ObjectHashTable: public HashTable<ObjectHashTable,
3509 ObjectHashTableShape,
3512 ObjectHashTable, ObjectHashTableShape, Handle<Object> > DerivedHashTable;
3514 DECLARE_CAST(ObjectHashTable)
3516 // Attempt to shrink hash table after removal of key.
3517 MUST_USE_RESULT static inline Handle<ObjectHashTable> Shrink(
3518 Handle<ObjectHashTable> table,
3519 Handle<Object> key);
3521 // Looks up the value associated with the given key. The hole value is
3522 // returned in case the key is not present.
3523 Object* Lookup(Handle<Object> key);
3524 Object* Lookup(Handle<Object> key, int32_t hash);
3525 Object* Lookup(Isolate* isolate, Handle<Object> key, int32_t hash);
3527 // Adds (or overwrites) the value associated with the given key.
3528 static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
3530 Handle<Object> value);
3531 static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
3532 Handle<Object> key, Handle<Object> value,
3535 // Returns an ObjectHashTable (possibly |table|) where |key| has been removed.
3536 static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
3539 static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
3540 Handle<Object> key, bool* was_present,
3544 friend class MarkCompactCollector;
3546 void AddEntry(int entry, Object* key, Object* value);
3547 void RemoveEntry(int entry);
3549 // Returns the index to the value of an entry.
3550 static inline int EntryToValueIndex(int entry) {
3551 return EntryToIndex(entry) + 1;
3556 // OrderedHashTable is a HashTable with Object keys that preserves
3557 // insertion order. There are Map and Set interfaces (OrderedHashMap
3558 // and OrderedHashTable, below). It is meant to be used by JSMap/JSSet.
3560 // Only Object* keys are supported, with Object::SameValueZero() used as the
3561 // equality operator and Object::GetHash() for the hash function.
3563 // Based on the "Deterministic Hash Table" as described by Jason Orendorff at
3564 // https://wiki.mozilla.org/User:Jorend/Deterministic_hash_tables
3565 // Originally attributed to Tyler Close.
3568 // [0]: bucket count
3569 // [1]: element count
3570 // [2]: deleted element count
3571 // [3..(3 + NumberOfBuckets() - 1)]: "hash table", where each item is an
3572 // offset into the data table (see below) where the
3573 // first item in this bucket is stored.
3574 // [3 + NumberOfBuckets()..length]: "data table", an array of length
3575 // Capacity() * kEntrySize, where the first entrysize
3576 // items are handled by the derived class and the
3577 // item at kChainOffset is another entry into the
3578 // data table indicating the next entry in this hash
3581 // When we transition the table to a new version we obsolete it and reuse parts
3582 // of the memory to store information how to transition an iterator to the new
3585 // Memory layout for obsolete table:
3586 // [0]: bucket count
3587 // [1]: Next newer table
3588 // [2]: Number of removed holes or -1 when the table was cleared.
3589 // [3..(3 + NumberOfRemovedHoles() - 1)]: The indexes of the removed holes.
3590 // [3 + NumberOfRemovedHoles()..length]: Not used
3592 template<class Derived, class Iterator, int entrysize>
3593 class OrderedHashTable: public FixedArray {
3595 // Returns an OrderedHashTable with a capacity of at least |capacity|.
3596 static Handle<Derived> Allocate(
3597 Isolate* isolate, int capacity, PretenureFlag pretenure = NOT_TENURED);
3599 // Returns an OrderedHashTable (possibly |table|) with enough space
3600 // to add at least one new element.
3601 static Handle<Derived> EnsureGrowable(Handle<Derived> table);
3603 // Returns an OrderedHashTable (possibly |table|) that's shrunken
3605 static Handle<Derived> Shrink(Handle<Derived> table);
3607 // Returns a new empty OrderedHashTable and records the clearing so that
3608 // exisiting iterators can be updated.
3609 static Handle<Derived> Clear(Handle<Derived> table);
3611 int NumberOfElements() {
3612 return Smi::cast(get(kNumberOfElementsIndex))->value();
3615 int NumberOfDeletedElements() {
3616 return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
3619 int UsedCapacity() { return NumberOfElements() + NumberOfDeletedElements(); }
3621 int NumberOfBuckets() {
3622 return Smi::cast(get(kNumberOfBucketsIndex))->value();
3625 // Returns an index into |this| for the given entry.
3626 int EntryToIndex(int entry) {
3627 return kHashTableStartIndex + NumberOfBuckets() + (entry * kEntrySize);
3630 Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
3633 return !get(kNextTableIndex)->IsSmi();
3636 // The next newer table. This is only valid if the table is obsolete.
3637 Derived* NextTable() {
3638 return Derived::cast(get(kNextTableIndex));
3641 // When the table is obsolete we store the indexes of the removed holes.
3642 int RemovedIndexAt(int index) {
3643 return Smi::cast(get(kRemovedHolesIndex + index))->value();
3646 static const int kNotFound = -1;
3647 static const int kMinCapacity = 4;
3649 static const int kNumberOfBucketsIndex = 0;
3650 static const int kNumberOfElementsIndex = kNumberOfBucketsIndex + 1;
3651 static const int kNumberOfDeletedElementsIndex = kNumberOfElementsIndex + 1;
3652 static const int kHashTableStartIndex = kNumberOfDeletedElementsIndex + 1;
3653 static const int kNextTableIndex = kNumberOfElementsIndex;
3655 static const int kNumberOfBucketsOffset =
3656 kHeaderSize + kNumberOfBucketsIndex * kPointerSize;
3657 static const int kNumberOfElementsOffset =
3658 kHeaderSize + kNumberOfElementsIndex * kPointerSize;
3659 static const int kNumberOfDeletedElementsOffset =
3660 kHeaderSize + kNumberOfDeletedElementsIndex * kPointerSize;
3661 static const int kHashTableStartOffset =
3662 kHeaderSize + kHashTableStartIndex * kPointerSize;
3663 static const int kNextTableOffset =
3664 kHeaderSize + kNextTableIndex * kPointerSize;
3666 static const int kEntrySize = entrysize + 1;
3667 static const int kChainOffset = entrysize;
3669 static const int kLoadFactor = 2;
3671 // NumberOfDeletedElements is set to kClearedTableSentinel when
3672 // the table is cleared, which allows iterator transitions to
3673 // optimize that case.
3674 static const int kClearedTableSentinel = -1;
3677 static Handle<Derived> Rehash(Handle<Derived> table, int new_capacity);
3679 void SetNumberOfBuckets(int num) {
3680 set(kNumberOfBucketsIndex, Smi::FromInt(num));
3683 void SetNumberOfElements(int num) {
3684 set(kNumberOfElementsIndex, Smi::FromInt(num));
3687 void SetNumberOfDeletedElements(int num) {
3688 set(kNumberOfDeletedElementsIndex, Smi::FromInt(num));
3692 return NumberOfBuckets() * kLoadFactor;
3695 void SetNextTable(Derived* next_table) {
3696 set(kNextTableIndex, next_table);
3699 void SetRemovedIndexAt(int index, int removed_index) {
3700 return set(kRemovedHolesIndex + index, Smi::FromInt(removed_index));
3703 static const int kRemovedHolesIndex = kHashTableStartIndex;
3705 static const int kMaxCapacity =
3706 (FixedArray::kMaxLength - kHashTableStartIndex)
3707 / (1 + (kEntrySize * kLoadFactor));
3711 class JSSetIterator;
3714 class OrderedHashSet: public OrderedHashTable<
3715 OrderedHashSet, JSSetIterator, 1> {
3717 DECLARE_CAST(OrderedHashSet)
3721 class JSMapIterator;
3724 class OrderedHashMap
3725 : public OrderedHashTable<OrderedHashMap, JSMapIterator, 2> {
3727 DECLARE_CAST(OrderedHashMap)
3729 inline Object* ValueAt(int entry);
3731 static const int kValueOffset = 1;
3735 template <int entrysize>
3736 class WeakHashTableShape : public BaseShape<Handle<Object> > {
3738 static inline bool IsMatch(Handle<Object> key, Object* other);
3739 static inline uint32_t Hash(Handle<Object> key);
3740 static inline uint32_t HashForObject(Handle<Object> key, Object* object);
3741 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
3742 static const int kPrefixSize = 0;
3743 static const int kEntrySize = entrysize;
3747 // WeakHashTable maps keys that are arbitrary heap objects to heap object
3748 // values. The table wraps the keys in weak cells and store values directly.
3749 // Thus it references keys weakly and values strongly.
3750 class WeakHashTable: public HashTable<WeakHashTable,
3751 WeakHashTableShape<2>,
3754 WeakHashTable, WeakHashTableShape<2>, Handle<Object> > DerivedHashTable;
3756 DECLARE_CAST(WeakHashTable)
3758 // Looks up the value associated with the given key. The hole value is
3759 // returned in case the key is not present.
3760 Object* Lookup(Handle<HeapObject> key);
3762 // Adds (or overwrites) the value associated with the given key. Mapping a
3763 // key to the hole value causes removal of the whole entry.
3764 MUST_USE_RESULT static Handle<WeakHashTable> Put(Handle<WeakHashTable> table,
3765 Handle<HeapObject> key,
3766 Handle<HeapObject> value);
3768 static Handle<FixedArray> GetValues(Handle<WeakHashTable> table);
3771 friend class MarkCompactCollector;
3773 void AddEntry(int entry, Handle<WeakCell> key, Handle<HeapObject> value);
3775 // Returns the index to the value of an entry.
3776 static inline int EntryToValueIndex(int entry) {
3777 return EntryToIndex(entry) + 1;
3782 // ScopeInfo represents information about different scopes of a source
3783 // program and the allocation of the scope's variables. Scope information
3784 // is stored in a compressed form in ScopeInfo objects and is used
3785 // at runtime (stack dumps, deoptimization, etc.).
3787 // This object provides quick access to scope info details for runtime
3789 class ScopeInfo : public FixedArray {
3791 DECLARE_CAST(ScopeInfo)
3793 // Return the type of this scope.
3794 ScopeType scope_type();
3796 // Does this scope call eval?
3799 // Return the language mode of this scope.
3800 LanguageMode language_mode();
3802 // True if this scope is a (var) declaration scope.
3803 bool is_declaration_scope();
3805 // Does this scope make a sloppy eval call?
3806 bool CallsSloppyEval() { return CallsEval() && is_sloppy(language_mode()); }
3808 // Return the total number of locals allocated on the stack and in the
3809 // context. This includes the parameters that are allocated in the context.
3812 // Return the number of stack slots for code. This number consists of two
3814 // 1. One stack slot per stack allocated local.
3815 // 2. One stack slot for the function name if it is stack allocated.
3816 int StackSlotCount();
3818 // Return the number of context slots for code if a context is allocated. This
3819 // number consists of three parts:
3820 // 1. Size of fixed header for every context: Context::MIN_CONTEXT_SLOTS
3821 // 2. One context slot per context allocated local.
3822 // 3. One context slot for the function name if it is context allocated.
3823 // Parameters allocated in the context count as context allocated locals. If
3824 // no contexts are allocated for this scope ContextLength returns 0.
3825 int ContextLength();
3827 // Does this scope declare a "this" binding?
3830 // Does this scope declare a "this" binding, and the "this" binding is stack-
3831 // or context-allocated?
3832 bool HasAllocatedReceiver();
3834 // Is this scope the scope of a named function expression?
3835 bool HasFunctionName();
3837 // Return if this has context allocated locals.
3838 bool HasHeapAllocatedLocals();
3840 // Return if contexts are allocated for this scope.
3843 // Return if this is a function scope with "use asm".
3844 inline bool IsAsmModule();
3846 // Return if this is a nested function within an asm module scope.
3847 inline bool IsAsmFunction();
3849 inline bool HasSimpleParameters();
3851 // Return the function_name if present.
3852 String* FunctionName();
3854 // Return the name of the given parameter.
3855 String* ParameterName(int var);
3857 // Return the name of the given local.
3858 String* LocalName(int var);
3860 // Return the name of the given stack local.
3861 String* StackLocalName(int var);
3863 // Return the name of the given stack local.
3864 int StackLocalIndex(int var);
3866 // Return the name of the given context local.
3867 String* ContextLocalName(int var);
3869 // Return the mode of the given context local.
3870 VariableMode ContextLocalMode(int var);
3872 // Return the initialization flag of the given context local.
3873 InitializationFlag ContextLocalInitFlag(int var);
3875 // Return the initialization flag of the given context local.
3876 MaybeAssignedFlag ContextLocalMaybeAssignedFlag(int var);
3878 // Return true if this local was introduced by the compiler, and should not be
3879 // exposed to the user in a debugger.
3880 bool LocalIsSynthetic(int var);
3882 String* StrongModeFreeVariableName(int var);
3883 int StrongModeFreeVariableStartPosition(int var);
3884 int StrongModeFreeVariableEndPosition(int var);
3886 // Lookup support for serialized scope info. Returns the
3887 // the stack slot index for a given slot name if the slot is
3888 // present; otherwise returns a value < 0. The name must be an internalized
3890 int StackSlotIndex(String* name);
3892 // Lookup support for serialized scope info. Returns the
3893 // context slot index for a given slot name if the slot is present; otherwise
3894 // returns a value < 0. The name must be an internalized string.
3895 // If the slot is present and mode != NULL, sets *mode to the corresponding
3896 // mode for that variable.
3897 static int ContextSlotIndex(Handle<ScopeInfo> scope_info, Handle<String> name,
3898 VariableMode* mode, VariableLocation* location,
3899 InitializationFlag* init_flag,
3900 MaybeAssignedFlag* maybe_assigned_flag);
3902 // Lookup the name of a certain context slot by its index.
3903 String* ContextSlotName(int slot_index);
3905 // Lookup support for serialized scope info. Returns the
3906 // parameter index for a given parameter name if the parameter is present;
3907 // otherwise returns a value < 0. The name must be an internalized string.
3908 int ParameterIndex(String* name);
3910 // Lookup support for serialized scope info. Returns the function context
3911 // slot index if the function name is present and context-allocated (named
3912 // function expressions, only), otherwise returns a value < 0. The name
3913 // must be an internalized string.
3914 int FunctionContextSlotIndex(String* name, VariableMode* mode);
3916 // Lookup support for serialized scope info. Returns the receiver context
3917 // slot index if scope has a "this" binding, and the binding is
3918 // context-allocated. Otherwise returns a value < 0.
3919 int ReceiverContextSlotIndex();
3921 FunctionKind function_kind();
3923 static Handle<ScopeInfo> Create(Isolate* isolate, Zone* zone, Scope* scope);
3924 static Handle<ScopeInfo> CreateGlobalThisBinding(Isolate* isolate);
3926 // Serializes empty scope info.
3927 static ScopeInfo* Empty(Isolate* isolate);
3933 // The layout of the static part of a ScopeInfo is as follows. Each entry is
3934 // numeric and occupies one array slot.
3935 // 1. A set of properties of the scope
3936 // 2. The number of parameters. This only applies to function scopes. For
3937 // non-function scopes this is 0.
3938 // 3. The number of non-parameter variables allocated on the stack.
3939 // 4. The number of non-parameter and parameter variables allocated in the
3941 #define FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(V) \
3944 V(StackLocalCount) \
3945 V(ContextLocalCount) \
3946 V(ContextGlobalCount) \
3947 V(StrongModeFreeVariableCount)
3949 #define FIELD_ACCESSORS(name) \
3950 inline void Set##name(int value); \
3952 FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(FIELD_ACCESSORS)
3953 #undef FIELD_ACCESSORS
3957 #define DECL_INDEX(name) k##name,
3958 FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(DECL_INDEX)
3963 // The layout of the variable part of a ScopeInfo is as follows:
3964 // 1. ParameterEntries:
3965 // This part stores the names of the parameters for function scopes. One
3966 // slot is used per parameter, so in total this part occupies
3967 // ParameterCount() slots in the array. For other scopes than function
3968 // scopes ParameterCount() is 0.
3969 // 2. StackLocalFirstSlot:
3970 // Index of a first stack slot for stack local. Stack locals belonging to
3971 // this scope are located on a stack at slots starting from this index.
3972 // 3. StackLocalEntries:
3973 // Contains the names of local variables that are allocated on the stack,
3974 // in increasing order of the stack slot index. First local variable has
3975 // a stack slot index defined in StackLocalFirstSlot (point 2 above).
3976 // One slot is used per stack local, so in total this part occupies
3977 // StackLocalCount() slots in the array.
3978 // 4. ContextLocalNameEntries:
3979 // Contains the names of local variables and parameters that are allocated
3980 // in the context. They are stored in increasing order of the context slot
3981 // index starting with Context::MIN_CONTEXT_SLOTS. One slot is used per
3982 // context local, so in total this part occupies ContextLocalCount() slots
3984 // 5. ContextLocalInfoEntries:
3985 // Contains the variable modes and initialization flags corresponding to
3986 // the context locals in ContextLocalNameEntries. One slot is used per
3987 // context local, so in total this part occupies ContextLocalCount()
3988 // slots in the array.
3989 // 6. StrongModeFreeVariableNameEntries:
3990 // Stores the names of strong mode free variables.
3991 // 7. StrongModeFreeVariablePositionEntries:
3992 // Stores the locations (start and end position) of strong mode free
3994 // 8. RecieverEntryIndex:
3995 // If the scope binds a "this" value, one slot is reserved to hold the
3996 // context or stack slot index for the variable.
3997 // 9. FunctionNameEntryIndex:
3998 // If the scope belongs to a named function expression this part contains
3999 // information about the function variable. It always occupies two array
4000 // slots: a. The name of the function variable.
4001 // b. The context or stack slot index for the variable.
4002 int ParameterEntriesIndex();
4003 int StackLocalFirstSlotIndex();
4004 int StackLocalEntriesIndex();
4005 int ContextLocalNameEntriesIndex();
4006 int ContextGlobalNameEntriesIndex();
4007 int ContextLocalInfoEntriesIndex();
4008 int ContextGlobalInfoEntriesIndex();
4009 int StrongModeFreeVariableNameEntriesIndex();
4010 int StrongModeFreeVariablePositionEntriesIndex();
4011 int ReceiverEntryIndex();
4012 int FunctionNameEntryIndex();
4014 int Lookup(Handle<String> name, int start, int end, VariableMode* mode,
4015 VariableLocation* location, InitializationFlag* init_flag,
4016 MaybeAssignedFlag* maybe_assigned_flag);
4018 // Used for the function name variable for named function expressions, and for
4020 enum VariableAllocationInfo { NONE, STACK, CONTEXT, UNUSED };
4022 // Properties of scopes.
4023 class ScopeTypeField : public BitField<ScopeType, 0, 4> {};
4024 class CallsEvalField : public BitField<bool, ScopeTypeField::kNext, 1> {};
4025 STATIC_ASSERT(LANGUAGE_END == 3);
4026 class LanguageModeField
4027 : public BitField<LanguageMode, CallsEvalField::kNext, 2> {};
4028 class DeclarationScopeField
4029 : public BitField<bool, LanguageModeField::kNext, 1> {};
4030 class ReceiverVariableField
4031 : public BitField<VariableAllocationInfo, DeclarationScopeField::kNext,
4033 class FunctionVariableField
4034 : public BitField<VariableAllocationInfo, ReceiverVariableField::kNext,
4036 class FunctionVariableMode
4037 : public BitField<VariableMode, FunctionVariableField::kNext, 3> {};
4038 class AsmModuleField : public BitField<bool, FunctionVariableMode::kNext, 1> {
4040 class AsmFunctionField : public BitField<bool, AsmModuleField::kNext, 1> {};
4041 class HasSimpleParametersField
4042 : public BitField<bool, AsmFunctionField::kNext, 1> {};
4043 class FunctionKindField
4044 : public BitField<FunctionKind, HasSimpleParametersField::kNext, 8> {};
4046 // BitFields representing the encoded information for context locals in the
4047 // ContextLocalInfoEntries part.
4048 class ContextLocalMode: public BitField<VariableMode, 0, 3> {};
4049 class ContextLocalInitFlag: public BitField<InitializationFlag, 3, 1> {};
4050 class ContextLocalMaybeAssignedFlag
4051 : public BitField<MaybeAssignedFlag, 4, 1> {};
4053 friend class ScopeIterator;
4057 // The cache for maps used by normalized (dictionary mode) objects.
4058 // Such maps do not have property descriptors, so a typical program
4059 // needs very limited number of distinct normalized maps.
4060 class NormalizedMapCache: public FixedArray {
4062 static Handle<NormalizedMapCache> New(Isolate* isolate);
4064 MUST_USE_RESULT MaybeHandle<Map> Get(Handle<Map> fast_map,
4065 PropertyNormalizationMode mode);
4066 void Set(Handle<Map> fast_map, Handle<Map> normalized_map);
4070 DECLARE_CAST(NormalizedMapCache)
4072 static inline bool IsNormalizedMapCache(const Object* obj);
4074 DECLARE_VERIFIER(NormalizedMapCache)
4076 static const int kEntries = 64;
4078 static inline int GetIndex(Handle<Map> map);
4080 // The following declarations hide base class methods.
4081 Object* get(int index);
4082 void set(int index, Object* value);
4086 // ByteArray represents fixed sized byte arrays. Used for the relocation info
4087 // that is attached to code objects.
4088 class ByteArray: public FixedArrayBase {
4092 // Setter and getter.
4093 inline byte get(int index);
4094 inline void set(int index, byte value);
4096 // Treat contents as an int array.
4097 inline int get_int(int index);
4099 static int SizeFor(int length) {
4100 return OBJECT_POINTER_ALIGN(kHeaderSize + length);
4102 // We use byte arrays for free blocks in the heap. Given a desired size in
4103 // bytes that is a multiple of the word size and big enough to hold a byte
4104 // array, this function returns the number of elements a byte array should
4106 static int LengthFor(int size_in_bytes) {
4107 DCHECK(IsAligned(size_in_bytes, kPointerSize));
4108 DCHECK(size_in_bytes >= kHeaderSize);
4109 return size_in_bytes - kHeaderSize;
4112 // Returns data start address.
4113 inline Address GetDataStartAddress();
4115 // Returns a pointer to the ByteArray object for a given data start address.
4116 static inline ByteArray* FromDataStartAddress(Address address);
4118 DECLARE_CAST(ByteArray)
4120 // Dispatched behavior.
4121 inline int ByteArraySize();
4122 DECLARE_PRINTER(ByteArray)
4123 DECLARE_VERIFIER(ByteArray)
4125 // Layout description.
4126 static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
4128 // Maximal memory consumption for a single ByteArray.
4129 static const int kMaxSize = 512 * MB;
4130 // Maximal length of a single ByteArray.
4131 static const int kMaxLength = kMaxSize - kHeaderSize;
4134 DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
4138 // BytecodeArray represents a sequence of interpreter bytecodes.
4139 class BytecodeArray : public FixedArrayBase {
4141 static int SizeFor(int length) {
4142 return OBJECT_POINTER_ALIGN(kHeaderSize + length);
4145 // Setter and getter
4146 inline byte get(int index);
4147 inline void set(int index, byte value);
4149 // Returns data start address.
4150 inline Address GetFirstBytecodeAddress();
4152 // Accessors for frame size.
4153 inline int frame_size() const;
4154 inline void set_frame_size(int frame_size);
4156 // Accessors for parameter count (including implicit 'this' receiver).
4157 inline int parameter_count() const;
4158 inline void set_parameter_count(int number_of_parameters);
4160 // Accessors for the constant pool.
4161 DECL_ACCESSORS(constant_pool, FixedArray)
4163 DECLARE_CAST(BytecodeArray)
4165 // Dispatched behavior.
4166 inline int BytecodeArraySize();
4167 inline void BytecodeArrayIterateBody(ObjectVisitor* v);
4169 DECLARE_PRINTER(BytecodeArray)
4170 DECLARE_VERIFIER(BytecodeArray)
4172 void Disassemble(std::ostream& os);
4174 // Layout description.
4175 static const int kFrameSizeOffset = FixedArrayBase::kHeaderSize;
4176 static const int kParameterSizeOffset = kFrameSizeOffset + kIntSize;
4177 static const int kConstantPoolOffset = kParameterSizeOffset + kIntSize;
4178 static const int kHeaderSize = kConstantPoolOffset + kPointerSize;
4180 static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
4182 // Maximal memory consumption for a single BytecodeArray.
4183 static const int kMaxSize = 512 * MB;
4184 // Maximal length of a single BytecodeArray.
4185 static const int kMaxLength = kMaxSize - kHeaderSize;
4188 DISALLOW_IMPLICIT_CONSTRUCTORS(BytecodeArray);
4192 // FreeSpace are fixed-size free memory blocks used by the heap and GC.
4193 // They look like heap objects (are heap object tagged and have a map) so that
4194 // the heap remains iterable. They have a size and a next pointer.
4195 // The next pointer is the raw address of the next FreeSpace object (or NULL)
4196 // in the free list.
4197 class FreeSpace: public HeapObject {
4199 // [size]: size of the free space including the header.
4200 inline int size() const;
4201 inline void set_size(int value);
4203 inline int nobarrier_size() const;
4204 inline void nobarrier_set_size(int value);
4208 // Accessors for the next field.
4209 inline FreeSpace* next();
4210 inline FreeSpace** next_address();
4211 inline void set_next(FreeSpace* next);
4213 inline static FreeSpace* cast(HeapObject* obj);
4215 // Dispatched behavior.
4216 DECLARE_PRINTER(FreeSpace)
4217 DECLARE_VERIFIER(FreeSpace)
4219 // Layout description.
4220 // Size is smi tagged when it is stored.
4221 static const int kSizeOffset = HeapObject::kHeaderSize;
4222 static const int kNextOffset = POINTER_SIZE_ALIGN(kSizeOffset + kPointerSize);
4225 DISALLOW_IMPLICIT_CONSTRUCTORS(FreeSpace);
4229 // V has parameters (Type, type, TYPE, C type, element_size)
4230 #define TYPED_ARRAYS(V) \
4231 V(Uint8, uint8, UINT8, uint8_t, 1) \
4232 V(Int8, int8, INT8, int8_t, 1) \
4233 V(Uint16, uint16, UINT16, uint16_t, 2) \
4234 V(Int16, int16, INT16, int16_t, 2) \
4235 V(Uint32, uint32, UINT32, uint32_t, 4) \
4236 V(Int32, int32, INT32, int32_t, 4) \
4237 V(Float32, float32, FLOAT32, float, 4) \
4238 V(Float64, float64, FLOAT64, double, 8) \
4239 V(Uint8Clamped, uint8_clamped, UINT8_CLAMPED, uint8_t, 1)
4242 class FixedTypedArrayBase: public FixedArrayBase {
4244 // [base_pointer]: Either points to the FixedTypedArrayBase itself or nullptr.
4245 DECL_ACCESSORS(base_pointer, Object)
4247 // [external_pointer]: Contains the offset between base_pointer and the start
4248 // of the data. If the base_pointer is a nullptr, the external_pointer
4249 // therefore points to the actual backing store.
4250 DECL_ACCESSORS(external_pointer, void)
4252 // Dispatched behavior.
4253 inline void FixedTypedArrayBaseIterateBody(ObjectVisitor* v);
4255 template <typename StaticVisitor>
4256 inline void FixedTypedArrayBaseIterateBody();
4258 DECLARE_CAST(FixedTypedArrayBase)
4260 static const int kBasePointerOffset = FixedArrayBase::kHeaderSize;
4261 static const int kExternalPointerOffset = kBasePointerOffset + kPointerSize;
4262 static const int kHeaderSize =
4263 DOUBLE_POINTER_ALIGN(kExternalPointerOffset + kPointerSize);
4265 static const int kDataOffset = kHeaderSize;
4269 static inline int TypedArraySize(InstanceType type, int length);
4270 inline int TypedArraySize(InstanceType type);
4272 // Use with care: returns raw pointer into heap.
4273 inline void* DataPtr();
4275 inline int DataSize();
4278 static inline int ElementSize(InstanceType type);
4280 inline int DataSize(InstanceType type);
4282 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArrayBase);
4286 template <class Traits>
4287 class FixedTypedArray: public FixedTypedArrayBase {
4289 typedef typename Traits::ElementType ElementType;
4290 static const InstanceType kInstanceType = Traits::kInstanceType;
4292 DECLARE_CAST(FixedTypedArray<Traits>)
4294 inline ElementType get_scalar(int index);
4295 static inline Handle<Object> get(Handle<FixedTypedArray> array, int index);
4296 inline void set(int index, ElementType value);
4298 static inline ElementType from_int(int value);
4299 static inline ElementType from_double(double value);
4301 // This accessor applies the correct conversion from Smi, HeapNumber
4303 inline void SetValue(uint32_t index, Object* value);
4305 DECLARE_PRINTER(FixedTypedArray)
4306 DECLARE_VERIFIER(FixedTypedArray)
4309 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArray);
4312 #define FIXED_TYPED_ARRAY_TRAITS(Type, type, TYPE, elementType, size) \
4313 class Type##ArrayTraits { \
4314 public: /* NOLINT */ \
4315 typedef elementType ElementType; \
4316 static const InstanceType kInstanceType = FIXED_##TYPE##_ARRAY_TYPE; \
4317 static const char* Designator() { return #type " array"; } \
4318 static inline Handle<Object> ToHandle(Isolate* isolate, \
4319 elementType scalar); \
4320 static inline elementType defaultValue(); \
4323 typedef FixedTypedArray<Type##ArrayTraits> Fixed##Type##Array;
4325 TYPED_ARRAYS(FIXED_TYPED_ARRAY_TRAITS)
4327 #undef FIXED_TYPED_ARRAY_TRAITS
4330 // DeoptimizationInputData is a fixed array used to hold the deoptimization
4331 // data for code generated by the Hydrogen/Lithium compiler. It also
4332 // contains information about functions that were inlined. If N different
4333 // functions were inlined then first N elements of the literal array will
4334 // contain these functions.
4337 class DeoptimizationInputData: public FixedArray {
4339 // Layout description. Indices in the array.
4340 static const int kTranslationByteArrayIndex = 0;
4341 static const int kInlinedFunctionCountIndex = 1;
4342 static const int kLiteralArrayIndex = 2;
4343 static const int kOsrAstIdIndex = 3;
4344 static const int kOsrPcOffsetIndex = 4;
4345 static const int kOptimizationIdIndex = 5;
4346 static const int kSharedFunctionInfoIndex = 6;
4347 static const int kWeakCellCacheIndex = 7;
4348 static const int kFirstDeoptEntryIndex = 8;
4350 // Offsets of deopt entry elements relative to the start of the entry.
4351 static const int kAstIdRawOffset = 0;
4352 static const int kTranslationIndexOffset = 1;
4353 static const int kArgumentsStackHeightOffset = 2;
4354 static const int kPcOffset = 3;
4355 static const int kDeoptEntrySize = 4;
4357 // Simple element accessors.
4358 #define DECLARE_ELEMENT_ACCESSORS(name, type) \
4359 inline type* name(); \
4360 inline void Set##name(type* value);
4362 DECLARE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
4363 DECLARE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
4364 DECLARE_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
4365 DECLARE_ELEMENT_ACCESSORS(OsrAstId, Smi)
4366 DECLARE_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
4367 DECLARE_ELEMENT_ACCESSORS(OptimizationId, Smi)
4368 DECLARE_ELEMENT_ACCESSORS(SharedFunctionInfo, Object)
4369 DECLARE_ELEMENT_ACCESSORS(WeakCellCache, Object)
4371 #undef DECLARE_ELEMENT_ACCESSORS
4373 // Accessors for elements of the ith deoptimization entry.
4374 #define DECLARE_ENTRY_ACCESSORS(name, type) \
4375 inline type* name(int i); \
4376 inline void Set##name(int i, type* value);
4378 DECLARE_ENTRY_ACCESSORS(AstIdRaw, Smi)
4379 DECLARE_ENTRY_ACCESSORS(TranslationIndex, Smi)
4380 DECLARE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi)
4381 DECLARE_ENTRY_ACCESSORS(Pc, Smi)
4383 #undef DECLARE_ENTRY_ACCESSORS
4385 inline BailoutId AstId(int i);
4387 inline void SetAstId(int i, BailoutId value);
4389 inline int DeoptCount();
4391 // Allocates a DeoptimizationInputData.
4392 static Handle<DeoptimizationInputData> New(Isolate* isolate,
4393 int deopt_entry_count,
4394 PretenureFlag pretenure);
4396 DECLARE_CAST(DeoptimizationInputData)
4398 #ifdef ENABLE_DISASSEMBLER
4399 void DeoptimizationInputDataPrint(std::ostream& os); // NOLINT
4403 static int IndexForEntry(int i) {
4404 return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
4408 static int LengthFor(int entry_count) { return IndexForEntry(entry_count); }
4412 // DeoptimizationOutputData is a fixed array used to hold the deoptimization
4413 // data for code generated by the full compiler.
4414 // The format of the these objects is
4415 // [i * 2]: Ast ID for ith deoptimization.
4416 // [i * 2 + 1]: PC and state of ith deoptimization
4417 class DeoptimizationOutputData: public FixedArray {
4419 inline int DeoptPoints();
4421 inline BailoutId AstId(int index);
4423 inline void SetAstId(int index, BailoutId id);
4425 inline Smi* PcAndState(int index);
4426 inline void SetPcAndState(int index, Smi* offset);
4428 static int LengthOfFixedArray(int deopt_points) {
4429 return deopt_points * 2;
4432 // Allocates a DeoptimizationOutputData.
4433 static Handle<DeoptimizationOutputData> New(Isolate* isolate,
4434 int number_of_deopt_points,
4435 PretenureFlag pretenure);
4437 DECLARE_CAST(DeoptimizationOutputData)
4439 #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
4440 void DeoptimizationOutputDataPrint(std::ostream& os); // NOLINT
4445 // HandlerTable is a fixed array containing entries for exception handlers in
4446 // the code object it is associated with. The tables comes in two flavors:
4447 // 1) Based on ranges: Used for unoptimized code. Contains one entry per
4448 // exception handler and a range representing the try-block covered by that
4449 // handler. Layout looks as follows:
4450 // [ range-start , range-end , handler-offset , stack-depth ]
4451 // 2) Based on return addresses: Used for turbofanned code. Contains one entry
4452 // per call-site that could throw an exception. Layout looks as follows:
4453 // [ return-address-offset , handler-offset ]
4454 class HandlerTable : public FixedArray {
4456 // Conservative prediction whether a given handler will locally catch an
4457 // exception or cause a re-throw to outside the code boundary. Since this is
4458 // undecidable it is merely an approximation (e.g. useful for debugger).
4459 enum CatchPrediction { UNCAUGHT, CAUGHT };
4461 // Accessors for handler table based on ranges.
4462 inline void SetRangeStart(int index, int value);
4463 inline void SetRangeEnd(int index, int value);
4464 inline void SetRangeHandler(int index, int offset, CatchPrediction pred);
4465 inline void SetRangeDepth(int index, int value);
4467 // Accessors for handler table based on return addresses.
4468 inline void SetReturnOffset(int index, int value);
4469 inline void SetReturnHandler(int index, int offset, CatchPrediction pred);
4471 // Lookup handler in a table based on ranges.
4472 int LookupRange(int pc_offset, int* stack_depth, CatchPrediction* prediction);
4474 // Lookup handler in a table based on return addresses.
4475 int LookupReturn(int pc_offset, CatchPrediction* prediction);
4477 // Returns the required length of the underlying fixed array.
4478 static int LengthForRange(int entries) { return entries * kRangeEntrySize; }
4479 static int LengthForReturn(int entries) { return entries * kReturnEntrySize; }
4481 DECLARE_CAST(HandlerTable)
4483 #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
4484 void HandlerTableRangePrint(std::ostream& os); // NOLINT
4485 void HandlerTableReturnPrint(std::ostream& os); // NOLINT
4489 // Layout description for handler table based on ranges.
4490 static const int kRangeStartIndex = 0;
4491 static const int kRangeEndIndex = 1;
4492 static const int kRangeHandlerIndex = 2;
4493 static const int kRangeDepthIndex = 3;
4494 static const int kRangeEntrySize = 4;
4496 // Layout description for handler table based on return addresses.
4497 static const int kReturnOffsetIndex = 0;
4498 static const int kReturnHandlerIndex = 1;
4499 static const int kReturnEntrySize = 2;
4501 // Encoding of the {handler} field.
4502 class HandlerPredictionField : public BitField<CatchPrediction, 0, 1> {};
4503 class HandlerOffsetField : public BitField<int, 1, 30> {};
4507 // Code describes objects with on-the-fly generated machine code.
4508 class Code: public HeapObject {
4510 // Opaque data type for encapsulating code flags like kind, inline
4511 // cache state, and arguments count.
4512 typedef uint32_t Flags;
4514 #define NON_IC_KIND_LIST(V) \
4516 V(OPTIMIZED_FUNCTION) \
4523 #define IC_KIND_LIST(V) \
4534 #define CODE_KIND_LIST(V) \
4535 NON_IC_KIND_LIST(V) \
4539 #define DEFINE_CODE_KIND_ENUM(name) name,
4540 CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM)
4541 #undef DEFINE_CODE_KIND_ENUM
4545 // No more than 16 kinds. The value is currently encoded in four bits in
4547 STATIC_ASSERT(NUMBER_OF_KINDS <= 16);
4549 static const char* Kind2String(Kind kind);
4557 static const int kPrologueOffsetNotSet = -1;
4559 #ifdef ENABLE_DISASSEMBLER
4561 static const char* ICState2String(InlineCacheState state);
4562 static const char* StubType2String(StubType type);
4563 static void PrintExtraICState(std::ostream& os, // NOLINT
4564 Kind kind, ExtraICState extra);
4565 void Disassemble(const char* name, std::ostream& os); // NOLINT
4566 #endif // ENABLE_DISASSEMBLER
4568 // [instruction_size]: Size of the native instructions
4569 inline int instruction_size() const;
4570 inline void set_instruction_size(int value);
4572 // [relocation_info]: Code relocation information
4573 DECL_ACCESSORS(relocation_info, ByteArray)
4574 void InvalidateRelocation();
4575 void InvalidateEmbeddedObjects();
4577 // [handler_table]: Fixed array containing offsets of exception handlers.
4578 DECL_ACCESSORS(handler_table, FixedArray)
4580 // [deoptimization_data]: Array containing data for deopt.
4581 DECL_ACCESSORS(deoptimization_data, FixedArray)
4583 // [raw_type_feedback_info]: This field stores various things, depending on
4584 // the kind of the code object.
4585 // FUNCTION => type feedback information.
4586 // STUB and ICs => major/minor key as Smi.
4587 DECL_ACCESSORS(raw_type_feedback_info, Object)
4588 inline Object* type_feedback_info();
4589 inline void set_type_feedback_info(
4590 Object* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4591 inline uint32_t stub_key();
4592 inline void set_stub_key(uint32_t key);
4594 // [next_code_link]: Link for lists of optimized or deoptimized code.
4595 // Note that storage for this field is overlapped with typefeedback_info.
4596 DECL_ACCESSORS(next_code_link, Object)
4598 // [gc_metadata]: Field used to hold GC related metadata. The contents of this
4599 // field does not have to be traced during garbage collection since
4600 // it is only used by the garbage collector itself.
4601 DECL_ACCESSORS(gc_metadata, Object)
4603 // [ic_age]: Inline caching age: the value of the Heap::global_ic_age
4604 // at the moment when this object was created.
4605 inline void set_ic_age(int count);
4606 inline int ic_age() const;
4608 // [prologue_offset]: Offset of the function prologue, used for aging
4609 // FUNCTIONs and OPTIMIZED_FUNCTIONs.
4610 inline int prologue_offset() const;
4611 inline void set_prologue_offset(int offset);
4613 // [constant_pool offset]: Offset of the constant pool.
4614 // Valid for FLAG_enable_embedded_constant_pool only
4615 inline int constant_pool_offset() const;
4616 inline void set_constant_pool_offset(int offset);
4618 // Unchecked accessors to be used during GC.
4619 inline ByteArray* unchecked_relocation_info();
4621 inline int relocation_size();
4623 // [flags]: Various code flags.
4624 inline Flags flags();
4625 inline void set_flags(Flags flags);
4627 // [flags]: Access to specific code flags.
4629 inline InlineCacheState ic_state(); // Only valid for IC stubs.
4630 inline ExtraICState extra_ic_state(); // Only valid for IC stubs.
4632 inline StubType type(); // Only valid for monomorphic IC stubs.
4634 // Testers for IC stub kinds.
4635 inline bool is_inline_cache_stub();
4636 inline bool is_debug_stub();
4637 inline bool is_handler();
4638 inline bool is_load_stub();
4639 inline bool is_keyed_load_stub();
4640 inline bool is_store_stub();
4641 inline bool is_keyed_store_stub();
4642 inline bool is_call_stub();
4643 inline bool is_binary_op_stub();
4644 inline bool is_compare_ic_stub();
4645 inline bool is_compare_nil_ic_stub();
4646 inline bool is_to_boolean_ic_stub();
4647 inline bool is_keyed_stub();
4648 inline bool is_optimized_code();
4649 inline bool embeds_maps_weakly();
4651 inline bool IsCodeStubOrIC();
4652 inline bool IsJavaScriptCode();
4654 inline void set_raw_kind_specific_flags1(int value);
4655 inline void set_raw_kind_specific_flags2(int value);
4657 // [is_crankshafted]: For kind STUB or ICs, tells whether or not a code
4658 // object was generated by either the hydrogen or the TurboFan optimizing
4659 // compiler (but it may not be an optimized function).
4660 inline bool is_crankshafted();
4661 inline bool is_hydrogen_stub(); // Crankshafted, but not a function.
4662 inline void set_is_crankshafted(bool value);
4664 // [is_turbofanned]: For kind STUB or OPTIMIZED_FUNCTION, tells whether the
4665 // code object was generated by the TurboFan optimizing compiler.
4666 inline bool is_turbofanned();
4667 inline void set_is_turbofanned(bool value);
4669 // [can_have_weak_objects]: For kind OPTIMIZED_FUNCTION, tells whether the
4670 // embedded objects in code should be treated weakly.
4671 inline bool can_have_weak_objects();
4672 inline void set_can_have_weak_objects(bool value);
4674 // [has_deoptimization_support]: For FUNCTION kind, tells if it has
4675 // deoptimization support.
4676 inline bool has_deoptimization_support();
4677 inline void set_has_deoptimization_support(bool value);
4679 // [has_debug_break_slots]: For FUNCTION kind, tells if it has
4680 // been compiled with debug break slots.
4681 inline bool has_debug_break_slots();
4682 inline void set_has_debug_break_slots(bool value);
4684 // [has_reloc_info_for_serialization]: For FUNCTION kind, tells if its
4685 // reloc info includes runtime and external references to support
4686 // serialization/deserialization.
4687 inline bool has_reloc_info_for_serialization();
4688 inline void set_has_reloc_info_for_serialization(bool value);
4690 // [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for
4691 // how long the function has been marked for OSR and therefore which
4692 // level of loop nesting we are willing to do on-stack replacement
4694 inline void set_allow_osr_at_loop_nesting_level(int level);
4695 inline int allow_osr_at_loop_nesting_level();
4697 // [profiler_ticks]: For FUNCTION kind, tells for how many profiler ticks
4698 // the code object was seen on the stack with no IC patching going on.
4699 inline int profiler_ticks();
4700 inline void set_profiler_ticks(int ticks);
4702 // [builtin_index]: For BUILTIN kind, tells which builtin index it has.
4703 // For builtins, tells which builtin index it has.
4704 // Note that builtins can have a code kind other than BUILTIN, which means
4705 // that for arbitrary code objects, this index value may be random garbage.
4706 // To verify in that case, compare the code object to the indexed builtin.
4707 inline int builtin_index();
4708 inline void set_builtin_index(int id);
4710 // [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots
4711 // reserved in the code prologue.
4712 inline unsigned stack_slots();
4713 inline void set_stack_slots(unsigned slots);
4715 // [safepoint_table_start]: For kind OPTIMIZED_FUNCTION, the offset in
4716 // the instruction stream where the safepoint table starts.
4717 inline unsigned safepoint_table_offset();
4718 inline void set_safepoint_table_offset(unsigned offset);
4720 // [back_edge_table_start]: For kind FUNCTION, the offset in the
4721 // instruction stream where the back edge table starts.
4722 inline unsigned back_edge_table_offset();
4723 inline void set_back_edge_table_offset(unsigned offset);
4725 inline bool back_edges_patched_for_osr();
4727 // [to_boolean_foo]: For kind TO_BOOLEAN_IC tells what state the stub is in.
4728 inline uint16_t to_boolean_state();
4730 // [has_function_cache]: For kind STUB tells whether there is a function
4731 // cache is passed to the stub.
4732 inline bool has_function_cache();
4733 inline void set_has_function_cache(bool flag);
4736 // [marked_for_deoptimization]: For kind OPTIMIZED_FUNCTION tells whether
4737 // the code is going to be deoptimized because of dead embedded maps.
4738 inline bool marked_for_deoptimization();
4739 inline void set_marked_for_deoptimization(bool flag);
4741 // [constant_pool]: The constant pool for this function.
4742 inline Address constant_pool();
4744 // Get the safepoint entry for the given pc.
4745 SafepointEntry GetSafepointEntry(Address pc);
4747 // Find an object in a stub with a specified map
4748 Object* FindNthObject(int n, Map* match_map);
4750 // Find the first allocation site in an IC stub.
4751 AllocationSite* FindFirstAllocationSite();
4753 // Find the first map in an IC stub.
4754 Map* FindFirstMap();
4755 void FindAllMaps(MapHandleList* maps);
4757 // Find the first handler in an IC stub.
4758 Code* FindFirstHandler();
4760 // Find |length| handlers and put them into |code_list|. Returns false if not
4761 // enough handlers can be found.
4762 bool FindHandlers(CodeHandleList* code_list, int length = -1);
4764 // Find the handler for |map|.
4765 MaybeHandle<Code> FindHandlerForMap(Map* map);
4767 // Find the first name in an IC stub.
4768 Name* FindFirstName();
4770 class FindAndReplacePattern;
4771 // For each (map-to-find, object-to-replace) pair in the pattern, this
4772 // function replaces the corresponding placeholder in the code with the
4773 // object-to-replace. The function assumes that pairs in the pattern come in
4774 // the same order as the placeholders in the code.
4775 // If the placeholder is a weak cell, then the value of weak cell is matched
4776 // against the map-to-find.
4777 void FindAndReplace(const FindAndReplacePattern& pattern);
4779 // The entire code object including its header is copied verbatim to the
4780 // snapshot so that it can be written in one, fast, memcpy during
4781 // deserialization. The deserializer will overwrite some pointers, rather
4782 // like a runtime linker, but the random allocation addresses used in the
4783 // mksnapshot process would still be present in the unlinked snapshot data,
4784 // which would make snapshot production non-reproducible. This method wipes
4785 // out the to-be-overwritten header data for reproducible snapshots.
4786 inline void WipeOutHeader();
4788 // Flags operations.
4789 static inline Flags ComputeFlags(
4790 Kind kind, InlineCacheState ic_state = UNINITIALIZED,
4791 ExtraICState extra_ic_state = kNoExtraICState, StubType type = NORMAL,
4792 CacheHolderFlag holder = kCacheOnReceiver);
4794 static inline Flags ComputeMonomorphicFlags(
4795 Kind kind, ExtraICState extra_ic_state = kNoExtraICState,
4796 CacheHolderFlag holder = kCacheOnReceiver, StubType type = NORMAL);
4798 static inline Flags ComputeHandlerFlags(
4799 Kind handler_kind, StubType type = NORMAL,
4800 CacheHolderFlag holder = kCacheOnReceiver);
4802 static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
4803 static inline StubType ExtractTypeFromFlags(Flags flags);
4804 static inline CacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
4805 static inline Kind ExtractKindFromFlags(Flags flags);
4806 static inline ExtraICState ExtractExtraICStateFromFlags(Flags flags);
4808 static inline Flags RemoveTypeFromFlags(Flags flags);
4809 static inline Flags RemoveTypeAndHolderFromFlags(Flags flags);
4811 // Convert a target address into a code object.
4812 static inline Code* GetCodeFromTargetAddress(Address address);
4814 // Convert an entry address into an object.
4815 static inline Object* GetObjectFromEntryAddress(Address location_of_address);
4817 // Returns the address of the first instruction.
4818 inline byte* instruction_start();
4820 // Returns the address right after the last instruction.
4821 inline byte* instruction_end();
4823 // Returns the size of the instructions, padding, and relocation information.
4824 inline int body_size();
4826 // Returns the address of the first relocation info (read backwards!).
4827 inline byte* relocation_start();
4829 // Code entry point.
4830 inline byte* entry();
4832 // Returns true if pc is inside this object's instructions.
4833 inline bool contains(byte* pc);
4835 // Relocate the code by delta bytes. Called to signal that this code
4836 // object has been moved by delta bytes.
4837 void Relocate(intptr_t delta);
4839 // Migrate code described by desc.
4840 void CopyFrom(const CodeDesc& desc);
4842 // Returns the object size for a given body (used for allocation).
4843 static int SizeFor(int body_size) {
4844 DCHECK_SIZE_TAG_ALIGNED(body_size);
4845 return RoundUp(kHeaderSize + body_size, kCodeAlignment);
4848 // Calculate the size of the code object to report for log events. This takes
4849 // the layout of the code object into account.
4850 inline int ExecutableSize();
4852 // Locating source position.
4853 int SourcePosition(Address pc);
4854 int SourceStatementPosition(Address pc);
4858 // Dispatched behavior.
4859 inline int CodeSize();
4860 inline void CodeIterateBody(ObjectVisitor* v);
4862 template<typename StaticVisitor>
4863 inline void CodeIterateBody(Heap* heap);
4865 DECLARE_PRINTER(Code)
4866 DECLARE_VERIFIER(Code)
4868 void ClearInlineCaches();
4869 void ClearInlineCaches(Kind kind);
4871 BailoutId TranslatePcOffsetToAstId(uint32_t pc_offset);
4872 uint32_t TranslateAstIdToPcOffset(BailoutId ast_id);
4874 #define DECLARE_CODE_AGE_ENUM(X) k##X##CodeAge,
4876 kToBeExecutedOnceCodeAge = -3,
4877 kNotExecutedCodeAge = -2,
4878 kExecutedOnceCodeAge = -1,
4880 CODE_AGE_LIST(DECLARE_CODE_AGE_ENUM)
4882 kFirstCodeAge = kToBeExecutedOnceCodeAge,
4883 kLastCodeAge = kAfterLastCodeAge - 1,
4884 kCodeAgeCount = kAfterLastCodeAge - kFirstCodeAge - 1,
4885 kIsOldCodeAge = kSexagenarianCodeAge,
4886 kPreAgedCodeAge = kIsOldCodeAge - 1
4888 #undef DECLARE_CODE_AGE_ENUM
4890 // Code aging. Indicates how many full GCs this code has survived without
4891 // being entered through the prologue. Used to determine when it is
4892 // relatively safe to flush this code object and replace it with the lazy
4893 // compilation stub.
4894 static void MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate);
4895 static void MarkCodeAsExecuted(byte* sequence, Isolate* isolate);
4896 void MakeYoung(Isolate* isolate);
4897 void MarkToBeExecutedOnce(Isolate* isolate);
4898 void MakeOlder(MarkingParity);
4899 static bool IsYoungSequence(Isolate* isolate, byte* sequence);
4902 static inline Code* GetPreAgedCodeAgeStub(Isolate* isolate) {
4903 return GetCodeAgeStub(isolate, kNotExecutedCodeAge, NO_MARKING_PARITY);
4906 void PrintDeoptLocation(FILE* out, Address pc);
4907 bool CanDeoptAt(Address pc);
4910 void VerifyEmbeddedObjectsDependency();
4914 enum VerifyMode { kNoContextSpecificPointers, kNoContextRetainingPointers };
4915 void VerifyEmbeddedObjects(VerifyMode mode = kNoContextRetainingPointers);
4916 static void VerifyRecompiledCode(Code* old_code, Code* new_code);
4919 inline bool CanContainWeakObjects();
4921 inline bool IsWeakObject(Object* object);
4923 static inline bool IsWeakObjectInOptimizedCode(Object* object);
4925 static Handle<WeakCell> WeakCellFor(Handle<Code> code);
4926 WeakCell* CachedWeakCell();
4928 // Max loop nesting marker used to postpose OSR. We don't take loop
4929 // nesting that is deeper than 5 levels into account.
4930 static const int kMaxLoopNestingMarker = 6;
4932 static const int kConstantPoolSize =
4933 FLAG_enable_embedded_constant_pool ? kIntSize : 0;
4935 // Layout description.
4936 static const int kRelocationInfoOffset = HeapObject::kHeaderSize;
4937 static const int kHandlerTableOffset = kRelocationInfoOffset + kPointerSize;
4938 static const int kDeoptimizationDataOffset =
4939 kHandlerTableOffset + kPointerSize;
4940 // For FUNCTION kind, we store the type feedback info here.
4941 static const int kTypeFeedbackInfoOffset =
4942 kDeoptimizationDataOffset + kPointerSize;
4943 static const int kNextCodeLinkOffset = kTypeFeedbackInfoOffset + kPointerSize;
4944 static const int kGCMetadataOffset = kNextCodeLinkOffset + kPointerSize;
4945 static const int kInstructionSizeOffset = kGCMetadataOffset + kPointerSize;
4946 static const int kICAgeOffset = kInstructionSizeOffset + kIntSize;
4947 static const int kFlagsOffset = kICAgeOffset + kIntSize;
4948 static const int kKindSpecificFlags1Offset = kFlagsOffset + kIntSize;
4949 static const int kKindSpecificFlags2Offset =
4950 kKindSpecificFlags1Offset + kIntSize;
4951 // Note: We might be able to squeeze this into the flags above.
4952 static const int kPrologueOffset = kKindSpecificFlags2Offset + kIntSize;
4953 static const int kConstantPoolOffset = kPrologueOffset + kIntSize;
4954 static const int kHeaderPaddingStart =
4955 kConstantPoolOffset + kConstantPoolSize;
4957 // Add padding to align the instruction start following right after
4958 // the Code object header.
4959 static const int kHeaderSize =
4960 (kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;
4962 // Byte offsets within kKindSpecificFlags1Offset.
4963 static const int kFullCodeFlags = kKindSpecificFlags1Offset;
4964 class FullCodeFlagsHasDeoptimizationSupportField:
4965 public BitField<bool, 0, 1> {}; // NOLINT
4966 class FullCodeFlagsHasDebugBreakSlotsField: public BitField<bool, 1, 1> {};
4967 class FullCodeFlagsHasRelocInfoForSerialization
4968 : public BitField<bool, 2, 1> {};
4969 // Bit 3 in this bitfield is unused.
4970 class ProfilerTicksField : public BitField<int, 4, 28> {};
4972 // Flags layout. BitField<type, shift, size>.
4973 class ICStateField : public BitField<InlineCacheState, 0, 4> {};
4974 class TypeField : public BitField<StubType, 4, 1> {};
4975 class CacheHolderField : public BitField<CacheHolderFlag, 5, 2> {};
4976 class KindField : public BitField<Kind, 7, 4> {};
4977 class ExtraICStateField: public BitField<ExtraICState, 11,
4978 PlatformSmiTagging::kSmiValueSize - 11 + 1> {}; // NOLINT
4980 // KindSpecificFlags1 layout (STUB and OPTIMIZED_FUNCTION)
4981 static const int kStackSlotsFirstBit = 0;
4982 static const int kStackSlotsBitCount = 24;
4983 static const int kHasFunctionCacheBit =
4984 kStackSlotsFirstBit + kStackSlotsBitCount;
4985 static const int kMarkedForDeoptimizationBit = kHasFunctionCacheBit + 1;
4986 static const int kIsTurbofannedBit = kMarkedForDeoptimizationBit + 1;
4987 static const int kCanHaveWeakObjects = kIsTurbofannedBit + 1;
4989 STATIC_ASSERT(kStackSlotsFirstBit + kStackSlotsBitCount <= 32);
4990 STATIC_ASSERT(kCanHaveWeakObjects + 1 <= 32);
4992 class StackSlotsField: public BitField<int,
4993 kStackSlotsFirstBit, kStackSlotsBitCount> {}; // NOLINT
4994 class HasFunctionCacheField : public BitField<bool, kHasFunctionCacheBit, 1> {
4996 class MarkedForDeoptimizationField
4997 : public BitField<bool, kMarkedForDeoptimizationBit, 1> {}; // NOLINT
4998 class IsTurbofannedField : public BitField<bool, kIsTurbofannedBit, 1> {
5000 class CanHaveWeakObjectsField
5001 : public BitField<bool, kCanHaveWeakObjects, 1> {}; // NOLINT
5003 // KindSpecificFlags2 layout (ALL)
5004 static const int kIsCrankshaftedBit = 0;
5005 class IsCrankshaftedField: public BitField<bool,
5006 kIsCrankshaftedBit, 1> {}; // NOLINT
5008 // KindSpecificFlags2 layout (STUB and OPTIMIZED_FUNCTION)
5009 static const int kSafepointTableOffsetFirstBit = kIsCrankshaftedBit + 1;
5010 static const int kSafepointTableOffsetBitCount = 30;
5012 STATIC_ASSERT(kSafepointTableOffsetFirstBit +
5013 kSafepointTableOffsetBitCount <= 32);
5014 STATIC_ASSERT(1 + kSafepointTableOffsetBitCount <= 32);
5016 class SafepointTableOffsetField: public BitField<int,
5017 kSafepointTableOffsetFirstBit,
5018 kSafepointTableOffsetBitCount> {}; // NOLINT
5020 // KindSpecificFlags2 layout (FUNCTION)
5021 class BackEdgeTableOffsetField: public BitField<int,
5022 kIsCrankshaftedBit + 1, 27> {}; // NOLINT
5023 class AllowOSRAtLoopNestingLevelField: public BitField<int,
5024 kIsCrankshaftedBit + 1 + 27, 4> {}; // NOLINT
5025 STATIC_ASSERT(AllowOSRAtLoopNestingLevelField::kMax >= kMaxLoopNestingMarker);
5027 static const int kArgumentsBits = 16;
5028 static const int kMaxArguments = (1 << kArgumentsBits) - 1;
5030 // This constant should be encodable in an ARM instruction.
5031 static const int kFlagsNotUsedInLookup =
5032 TypeField::kMask | CacheHolderField::kMask;
5035 friend class RelocIterator;
5036 friend class Deoptimizer; // For FindCodeAgeSequence.
5038 void ClearInlineCaches(Kind* kind);
5041 byte* FindCodeAgeSequence();
5042 static void GetCodeAgeAndParity(Code* code, Age* age,
5043 MarkingParity* parity);
5044 static void GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
5045 MarkingParity* parity);
5046 static Code* GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity);
5048 // Code aging -- platform-specific
5049 static void PatchPlatformCodeAge(Isolate* isolate,
5050 byte* sequence, Age age,
5051 MarkingParity parity);
5053 DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
5057 // This class describes the layout of dependent codes array of a map. The
5058 // array is partitioned into several groups of dependent codes. Each group
5059 // contains codes with the same dependency on the map. The array has the
5060 // following layout for n dependency groups:
5062 // +----+----+-----+----+---------+----------+-----+---------+-----------+
5063 // | C1 | C2 | ... | Cn | group 1 | group 2 | ... | group n | undefined |
5064 // +----+----+-----+----+---------+----------+-----+---------+-----------+
5066 // The first n elements are Smis, each of them specifies the number of codes
5067 // in the corresponding group. The subsequent elements contain grouped code
5068 // objects in weak cells. The suffix of the array can be filled with the
5069 // undefined value if the number of codes is less than the length of the
5070 // array. The order of the code objects within a group is not preserved.
5072 // All code indexes used in the class are counted starting from the first
5073 // code object of the first group. In other words, code index 0 corresponds
5074 // to array index n = kCodesStartIndex.
5076 class DependentCode: public FixedArray {
5078 enum DependencyGroup {
5079 // Group of code that weakly embed this map and depend on being
5080 // deoptimized when the map is garbage collected.
5082 // Group of code that embed a transition to this map, and depend on being
5083 // deoptimized when the transition is replaced by a new version.
5085 // Group of code that omit run-time prototype checks for prototypes
5086 // described by this map. The group is deoptimized whenever an object
5087 // described by this map changes shape (and transitions to a new map),
5088 // possibly invalidating the assumptions embedded in the code.
5089 kPrototypeCheckGroup,
5090 // Group of code that depends on global property values in property cells
5091 // not being changed.
5092 kPropertyCellChangedGroup,
5093 // Group of code that omit run-time type checks for the field(s) introduced
5096 // Group of code that omit run-time type checks for initial maps of
5098 kInitialMapChangedGroup,
5099 // Group of code that depends on tenuring information in AllocationSites
5100 // not being changed.
5101 kAllocationSiteTenuringChangedGroup,
5102 // Group of code that depends on element transition information in
5103 // AllocationSites not being changed.
5104 kAllocationSiteTransitionChangedGroup
5107 static const int kGroupCount = kAllocationSiteTransitionChangedGroup + 1;
5109 // Array for holding the index of the first code object of each group.
5110 // The last element stores the total number of code objects.
5111 class GroupStartIndexes {
5113 explicit GroupStartIndexes(DependentCode* entries);
5114 void Recompute(DependentCode* entries);
5115 int at(int i) { return start_indexes_[i]; }
5116 int number_of_entries() { return start_indexes_[kGroupCount]; }
5118 int start_indexes_[kGroupCount + 1];
5121 bool Contains(DependencyGroup group, WeakCell* code_cell);
5123 static Handle<DependentCode> InsertCompilationDependencies(
5124 Handle<DependentCode> entries, DependencyGroup group,
5125 Handle<Foreign> info);
5127 static Handle<DependentCode> InsertWeakCode(Handle<DependentCode> entries,
5128 DependencyGroup group,
5129 Handle<WeakCell> code_cell);
5131 void UpdateToFinishedCode(DependencyGroup group, Foreign* info,
5132 WeakCell* code_cell);
5134 void RemoveCompilationDependencies(DependentCode::DependencyGroup group,
5137 void DeoptimizeDependentCodeGroup(Isolate* isolate,
5138 DependentCode::DependencyGroup group);
5140 bool MarkCodeForDeoptimization(Isolate* isolate,
5141 DependentCode::DependencyGroup group);
5143 // The following low-level accessors should only be used by this class
5144 // and the mark compact collector.
5145 inline int number_of_entries(DependencyGroup group);
5146 inline void set_number_of_entries(DependencyGroup group, int value);
5147 inline Object* object_at(int i);
5148 inline void set_object_at(int i, Object* object);
5149 inline void clear_at(int i);
5150 inline void copy(int from, int to);
5151 DECLARE_CAST(DependentCode)
5153 static const char* DependencyGroupName(DependencyGroup group);
5154 static void SetMarkedForDeoptimization(Code* code, DependencyGroup group);
5157 static Handle<DependentCode> Insert(Handle<DependentCode> entries,
5158 DependencyGroup group,
5159 Handle<Object> object);
5160 static Handle<DependentCode> EnsureSpace(Handle<DependentCode> entries);
5161 // Make a room at the end of the given group by moving out the first
5162 // code objects of the subsequent groups.
5163 inline void ExtendGroup(DependencyGroup group);
5164 // Compact by removing cleared weak cells and return true if there was
5165 // any cleared weak cell.
5167 static int Grow(int number_of_entries) {
5168 if (number_of_entries < 5) return number_of_entries + 1;
5169 return number_of_entries * 5 / 4;
5171 static const int kCodesStartIndex = kGroupCount;
5175 class PrototypeInfo;
5178 // All heap objects have a Map that describes their structure.
5179 // A Map contains information about:
5180 // - Size information about the object
5181 // - How to iterate over an object (for garbage collection)
5182 class Map: public HeapObject {
5185 // Size in bytes or kVariableSizeSentinel if instances do not have
5187 inline int instance_size();
5188 inline void set_instance_size(int value);
5190 // Only to clear an unused byte, remove once byte is used.
5191 inline void clear_unused();
5193 // [inobject_properties_or_constructor_function_index]: Provides access
5194 // to the inobject properties in case of JSObject maps, or the constructor
5195 // function index in case of primitive maps.
5196 inline int inobject_properties_or_constructor_function_index();
5197 inline void set_inobject_properties_or_constructor_function_index(int value);
5198 // Count of properties allocated in the object (JSObject only).
5199 inline int GetInObjectProperties();
5200 inline void SetInObjectProperties(int value);
5201 // Index of the constructor function in the native context (primitives only),
5202 // or the special sentinel value to indicate that there is no object wrapper
5203 // for the primitive (i.e. in case of null or undefined).
5204 static const int kNoConstructorFunctionIndex = 0;
5205 inline int GetConstructorFunctionIndex();
5206 inline void SetConstructorFunctionIndex(int value);
5209 inline InstanceType instance_type();
5210 inline void set_instance_type(InstanceType value);
5212 // Tells how many unused property fields are available in the
5213 // instance (only used for JSObject in fast mode).
5214 inline int unused_property_fields();
5215 inline void set_unused_property_fields(int value);
5218 inline byte bit_field() const;
5219 inline void set_bit_field(byte value);
5222 inline byte bit_field2() const;
5223 inline void set_bit_field2(byte value);
5226 inline uint32_t bit_field3() const;
5227 inline void set_bit_field3(uint32_t bits);
5229 class EnumLengthBits: public BitField<int,
5230 0, kDescriptorIndexBitCount> {}; // NOLINT
5231 class NumberOfOwnDescriptorsBits: public BitField<int,
5232 kDescriptorIndexBitCount, kDescriptorIndexBitCount> {}; // NOLINT
5233 STATIC_ASSERT(kDescriptorIndexBitCount + kDescriptorIndexBitCount == 20);
5234 class DictionaryMap : public BitField<bool, 20, 1> {};
5235 class OwnsDescriptors : public BitField<bool, 21, 1> {};
5236 class HasInstanceCallHandler : public BitField<bool, 22, 1> {};
5237 class Deprecated : public BitField<bool, 23, 1> {};
5238 class IsUnstable : public BitField<bool, 24, 1> {};
5239 class IsMigrationTarget : public BitField<bool, 25, 1> {};
5240 class IsStrong : public BitField<bool, 26, 1> {};
5243 // Keep this bit field at the very end for better code in
5244 // Builtins::kJSConstructStubGeneric stub.
5245 // This counter is used for in-object slack tracking and for map aging.
5246 // The in-object slack tracking is considered enabled when the counter is
5247 // in the range [kSlackTrackingCounterStart, kSlackTrackingCounterEnd].
5248 class Counter : public BitField<int, 28, 4> {};
5249 static const int kSlackTrackingCounterStart = 14;
5250 static const int kSlackTrackingCounterEnd = 8;
5251 static const int kRetainingCounterStart = kSlackTrackingCounterEnd - 1;
5252 static const int kRetainingCounterEnd = 0;
5254 // Tells whether the object in the prototype property will be used
5255 // for instances created from this function. If the prototype
5256 // property is set to a value that is not a JSObject, the prototype
5257 // property will not be used to create instances of the function.
5258 // See ECMA-262, 13.2.2.
5259 inline void set_non_instance_prototype(bool value);
5260 inline bool has_non_instance_prototype();
5262 // Tells whether function has special prototype property. If not, prototype
5263 // property will not be created when accessed (will return undefined),
5264 // and construction from this function will not be allowed.
5265 inline void set_function_with_prototype(bool value);
5266 inline bool function_with_prototype();
5268 // Tells whether the instance with this map should be ignored by the
5269 // Object.getPrototypeOf() function and the __proto__ accessor.
5270 inline void set_is_hidden_prototype();
5271 inline bool is_hidden_prototype();
5273 // Records and queries whether the instance has a named interceptor.
5274 inline void set_has_named_interceptor();
5275 inline bool has_named_interceptor();
5277 // Records and queries whether the instance has an indexed interceptor.
5278 inline void set_has_indexed_interceptor();
5279 inline bool has_indexed_interceptor();
5281 // Tells whether the instance is undetectable.
5282 // An undetectable object is a special class of JSObject: 'typeof' operator
5283 // returns undefined, ToBoolean returns false. Otherwise it behaves like
5284 // a normal JS object. It is useful for implementing undetectable
5285 // document.all in Firefox & Safari.
5286 // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
5287 inline void set_is_undetectable();
5288 inline bool is_undetectable();
5290 // Tells whether the instance has a call-as-function handler.
5291 inline void set_is_observed();
5292 inline bool is_observed();
5294 inline void set_is_strong();
5295 inline bool is_strong();
5296 inline void set_is_extensible(bool value);
5297 inline bool is_extensible();
5298 inline void set_is_prototype_map(bool value);
5299 inline bool is_prototype_map() const;
5301 inline void set_elements_kind(ElementsKind elements_kind);
5302 inline ElementsKind elements_kind();
5304 // Tells whether the instance has fast elements that are only Smis.
5305 inline bool has_fast_smi_elements();
5307 // Tells whether the instance has fast elements.
5308 inline bool has_fast_object_elements();
5309 inline bool has_fast_smi_or_object_elements();
5310 inline bool has_fast_double_elements();
5311 inline bool has_fast_elements();
5312 inline bool has_sloppy_arguments_elements();
5313 inline bool has_fixed_typed_array_elements();
5314 inline bool has_dictionary_elements();
5316 static bool IsValidElementsTransition(ElementsKind from_kind,
5317 ElementsKind to_kind);
5319 // Returns true if the current map doesn't have DICTIONARY_ELEMENTS but if a
5320 // map with DICTIONARY_ELEMENTS was found in the prototype chain.
5321 bool DictionaryElementsInPrototypeChainOnly();
5323 inline Map* ElementsTransitionMap();
5325 inline FixedArrayBase* GetInitialElements();
5327 // [raw_transitions]: Provides access to the transitions storage field.
5328 // Don't call set_raw_transitions() directly to overwrite transitions, use
5329 // the TransitionArray::ReplaceTransitions() wrapper instead!
5330 DECL_ACCESSORS(raw_transitions, Object)
5331 // [prototype_info]: Per-prototype metadata. Aliased with transitions
5332 // (which prototype maps don't have).
5333 DECL_ACCESSORS(prototype_info, Object)
5334 // PrototypeInfo is created lazily using this helper (which installs it on
5335 // the given prototype's map).
5336 static Handle<PrototypeInfo> GetOrCreatePrototypeInfo(
5337 Handle<JSObject> prototype, Isolate* isolate);
5338 static Handle<PrototypeInfo> GetOrCreatePrototypeInfo(
5339 Handle<Map> prototype_map, Isolate* isolate);
5341 // [prototype chain validity cell]: Associated with a prototype object,
5342 // stored in that object's map's PrototypeInfo, indicates that prototype
5343 // chains through this object are currently valid. The cell will be
5344 // invalidated and replaced when the prototype chain changes.
5345 static Handle<Cell> GetOrCreatePrototypeChainValidityCell(Handle<Map> map,
5347 static const int kPrototypeChainValid = 0;
5348 static const int kPrototypeChainInvalid = 1;
5351 Map* FindFieldOwner(int descriptor);
5353 inline int GetInObjectPropertyOffset(int index);
5355 int NumberOfFields();
5357 // TODO(ishell): candidate with JSObject::MigrateToMap().
5358 bool InstancesNeedRewriting(Map* target, int target_number_of_fields,
5359 int target_inobject, int target_unused,
5360 int* old_number_of_fields);
5361 // TODO(ishell): moveit!
5362 static Handle<Map> GeneralizeAllFieldRepresentations(Handle<Map> map);
5363 MUST_USE_RESULT static Handle<HeapType> GeneralizeFieldType(
5364 Handle<HeapType> type1,
5365 Handle<HeapType> type2,
5367 static void GeneralizeFieldType(Handle<Map> map, int modify_index,
5368 Representation new_representation,
5369 Handle<HeapType> new_field_type);
5370 static Handle<Map> ReconfigureProperty(Handle<Map> map, int modify_index,
5371 PropertyKind new_kind,
5372 PropertyAttributes new_attributes,
5373 Representation new_representation,
5374 Handle<HeapType> new_field_type,
5375 StoreMode store_mode);
5376 static Handle<Map> CopyGeneralizeAllRepresentations(
5377 Handle<Map> map, int modify_index, StoreMode store_mode,
5378 PropertyKind kind, PropertyAttributes attributes, const char* reason);
5380 static Handle<Map> PrepareForDataProperty(Handle<Map> old_map,
5381 int descriptor_number,
5382 Handle<Object> value);
5384 static Handle<Map> Normalize(Handle<Map> map, PropertyNormalizationMode mode,
5385 const char* reason);
5387 // Returns the constructor name (the name (possibly, inferred name) of the
5388 // function that was used to instantiate the object).
5389 String* constructor_name();
5391 // Tells whether the map is used for JSObjects in dictionary mode (ie
5392 // normalized objects, ie objects for which HasFastProperties returns false).
5393 // A map can never be used for both dictionary mode and fast mode JSObjects.
5394 // False by default and for HeapObjects that are not JSObjects.
5395 inline void set_dictionary_map(bool value);
5396 inline bool is_dictionary_map();
5398 // Tells whether the instance needs security checks when accessing its
5400 inline void set_is_access_check_needed(bool access_check_needed);
5401 inline bool is_access_check_needed();
5403 // Returns true if map has a non-empty stub code cache.
5404 inline bool has_code_cache();
5406 // [prototype]: implicit prototype object.
5407 DECL_ACCESSORS(prototype, Object)
5408 // TODO(jkummerow): make set_prototype private.
5409 static void SetPrototype(
5410 Handle<Map> map, Handle<Object> prototype,
5411 PrototypeOptimizationMode proto_mode = FAST_PROTOTYPE);
5413 // [constructor]: points back to the function responsible for this map.
5414 // The field overlaps with the back pointer. All maps in a transition tree
5415 // have the same constructor, so maps with back pointers can walk the
5416 // back pointer chain until they find the map holding their constructor.
5417 DECL_ACCESSORS(constructor_or_backpointer, Object)
5418 inline Object* GetConstructor() const;
5419 inline void SetConstructor(Object* constructor,
5420 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
5421 // [back pointer]: points back to the parent map from which a transition
5422 // leads to this map. The field overlaps with the constructor (see above).
5423 inline Object* GetBackPointer();
5424 inline void SetBackPointer(Object* value,
5425 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
5427 // [instance descriptors]: describes the object.
5428 DECL_ACCESSORS(instance_descriptors, DescriptorArray)
5430 // [layout descriptor]: describes the object layout.
5431 DECL_ACCESSORS(layout_descriptor, LayoutDescriptor)
5432 // |layout descriptor| accessor which can be used from GC.
5433 inline LayoutDescriptor* layout_descriptor_gc_safe();
5434 inline bool HasFastPointerLayout() const;
5436 // |layout descriptor| accessor that is safe to call even when
5437 // FLAG_unbox_double_fields is disabled (in this case Map does not contain
5438 // |layout_descriptor| field at all).
5439 inline LayoutDescriptor* GetLayoutDescriptor();
5441 inline void UpdateDescriptors(DescriptorArray* descriptors,
5442 LayoutDescriptor* layout_descriptor);
5443 inline void InitializeDescriptors(DescriptorArray* descriptors,
5444 LayoutDescriptor* layout_descriptor);
5446 // [stub cache]: contains stubs compiled for this map.
5447 DECL_ACCESSORS(code_cache, Object)
5449 // [dependent code]: list of optimized codes that weakly embed this map.
5450 DECL_ACCESSORS(dependent_code, DependentCode)
5452 // [weak cell cache]: cache that stores a weak cell pointing to this map.
5453 DECL_ACCESSORS(weak_cell_cache, Object)
5455 inline PropertyDetails GetLastDescriptorDetails();
5457 inline int LastAdded();
5459 inline int NumberOfOwnDescriptors();
5460 inline void SetNumberOfOwnDescriptors(int number);
5462 inline Cell* RetrieveDescriptorsPointer();
5464 inline int EnumLength();
5465 inline void SetEnumLength(int length);
5467 inline bool owns_descriptors();
5468 inline void set_owns_descriptors(bool owns_descriptors);
5469 inline bool has_instance_call_handler();
5470 inline void set_has_instance_call_handler();
5471 inline void mark_unstable();
5472 inline bool is_stable();
5473 inline void set_migration_target(bool value);
5474 inline bool is_migration_target();
5475 inline void set_counter(int value);
5476 inline int counter();
5477 inline void deprecate();
5478 inline bool is_deprecated();
5479 inline bool CanBeDeprecated();
5480 // Returns a non-deprecated version of the input. If the input was not
5481 // deprecated, it is directly returned. Otherwise, the non-deprecated version
5482 // is found by re-transitioning from the root of the transition tree using the
5483 // descriptor array of the map. Returns MaybeHandle<Map>() if no updated map
5485 static MaybeHandle<Map> TryUpdate(Handle<Map> map) WARN_UNUSED_RESULT;
5487 // Returns a non-deprecated version of the input. This method may deprecate
5488 // existing maps along the way if encodings conflict. Not for use while
5489 // gathering type feedback. Use TryUpdate in those cases instead.
5490 static Handle<Map> Update(Handle<Map> map);
5492 static Handle<Map> CopyDropDescriptors(Handle<Map> map);
5493 static Handle<Map> CopyInsertDescriptor(Handle<Map> map,
5494 Descriptor* descriptor,
5495 TransitionFlag flag);
5497 MUST_USE_RESULT static MaybeHandle<Map> CopyWithField(
5500 Handle<HeapType> type,
5501 PropertyAttributes attributes,
5502 Representation representation,
5503 TransitionFlag flag);
5505 MUST_USE_RESULT static MaybeHandle<Map> CopyWithConstant(
5508 Handle<Object> constant,
5509 PropertyAttributes attributes,
5510 TransitionFlag flag);
5512 // Returns a new map with all transitions dropped from the given map and
5513 // the ElementsKind set.
5514 static Handle<Map> TransitionElementsTo(Handle<Map> map,
5515 ElementsKind to_kind);
5517 static Handle<Map> AsElementsKind(Handle<Map> map, ElementsKind kind);
5519 static Handle<Map> CopyAsElementsKind(Handle<Map> map,
5521 TransitionFlag flag);
5523 static Handle<Map> CopyForObserved(Handle<Map> map);
5525 static Handle<Map> CopyForPreventExtensions(Handle<Map> map,
5526 PropertyAttributes attrs_to_add,
5527 Handle<Symbol> transition_marker,
5528 const char* reason);
5530 static Handle<Map> FixProxy(Handle<Map> map, InstanceType type, int size);
5533 // Maximal number of fast properties. Used to restrict the number of map
5534 // transitions to avoid an explosion in the number of maps for objects used as
5536 inline bool TooManyFastProperties(StoreFromKeyed store_mode);
5537 static Handle<Map> TransitionToDataProperty(Handle<Map> map,
5539 Handle<Object> value,
5540 PropertyAttributes attributes,
5541 StoreFromKeyed store_mode);
5542 static Handle<Map> TransitionToAccessorProperty(
5543 Handle<Map> map, Handle<Name> name, AccessorComponent component,
5544 Handle<Object> accessor, PropertyAttributes attributes);
5545 static Handle<Map> ReconfigureExistingProperty(Handle<Map> map,
5548 PropertyAttributes attributes);
5550 inline void AppendDescriptor(Descriptor* desc);
5552 // Returns a copy of the map, prepared for inserting into the transition
5553 // tree (if the |map| owns descriptors then the new one will share
5554 // descriptors with |map|).
5555 static Handle<Map> CopyForTransition(Handle<Map> map, const char* reason);
5557 // Returns a copy of the map, with all transitions dropped from the
5558 // instance descriptors.
5559 static Handle<Map> Copy(Handle<Map> map, const char* reason);
5560 static Handle<Map> Create(Isolate* isolate, int inobject_properties);
5562 // Returns the next free property index (only valid for FAST MODE).
5563 int NextFreePropertyIndex();
5565 // Returns the number of properties described in instance_descriptors
5566 // filtering out properties with the specified attributes.
5567 int NumberOfDescribedProperties(DescriptorFlag which = OWN_DESCRIPTORS,
5568 PropertyAttributes filter = NONE);
5572 // Code cache operations.
5574 // Clears the code cache.
5575 inline void ClearCodeCache(Heap* heap);
5577 // Update code cache.
5578 static void UpdateCodeCache(Handle<Map> map,
5582 // Extend the descriptor array of the map with the list of descriptors.
5583 // In case of duplicates, the latest descriptor is used.
5584 static void AppendCallbackDescriptors(Handle<Map> map,
5585 Handle<Object> descriptors);
5587 static inline int SlackForArraySize(int old_size, int size_limit);
5589 static void EnsureDescriptorSlack(Handle<Map> map, int slack);
5591 // Returns the found code or undefined if absent.
5592 Object* FindInCodeCache(Name* name, Code::Flags flags);
5594 // Returns the non-negative index of the code object if it is in the
5595 // cache and -1 otherwise.
5596 int IndexInCodeCache(Object* name, Code* code);
5598 // Removes a code object from the code cache at the given index.
5599 void RemoveFromCodeCache(Name* name, Code* code, int index);
5601 // Computes a hash value for this map, to be used in HashTables and such.
5604 // Returns the map that this map transitions to if its elements_kind
5605 // is changed to |elements_kind|, or NULL if no such map is cached yet.
5606 // |safe_to_add_transitions| is set to false if adding transitions is not
5608 Map* LookupElementsTransitionMap(ElementsKind elements_kind);
5610 // Returns the transitioned map for this map with the most generic
5611 // elements_kind that's found in |candidates|, or null handle if no match is
5613 static Handle<Map> FindTransitionedMap(Handle<Map> map,
5614 MapHandleList* candidates);
5616 inline bool CanTransition();
5618 inline bool IsPrimitiveMap();
5619 inline bool IsJSObjectMap();
5620 inline bool IsJSArrayMap();
5621 inline bool IsStringMap();
5622 inline bool IsJSProxyMap();
5623 inline bool IsJSGlobalProxyMap();
5624 inline bool IsJSGlobalObjectMap();
5625 inline bool IsGlobalObjectMap();
5627 inline bool CanOmitMapChecks();
5629 static void AddDependentCode(Handle<Map> map,
5630 DependentCode::DependencyGroup group,
5633 bool IsMapInArrayPrototypeChain();
5635 static Handle<WeakCell> WeakCellForMap(Handle<Map> map);
5637 // Dispatched behavior.
5638 DECLARE_PRINTER(Map)
5639 DECLARE_VERIFIER(Map)
5642 void DictionaryMapVerify();
5643 void VerifyOmittedMapChecks();
5646 inline int visitor_id();
5647 inline void set_visitor_id(int visitor_id);
5649 static Handle<Map> TransitionToPrototype(Handle<Map> map,
5650 Handle<Object> prototype,
5651 PrototypeOptimizationMode mode);
5653 static const int kMaxPreAllocatedPropertyFields = 255;
5655 // Layout description.
5656 static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
5657 static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
5658 static const int kBitField3Offset = kInstanceAttributesOffset + kIntSize;
5659 static const int kPrototypeOffset = kBitField3Offset + kPointerSize;
5660 static const int kConstructorOrBackPointerOffset =
5661 kPrototypeOffset + kPointerSize;
5662 // When there is only one transition, it is stored directly in this field;
5663 // otherwise a transition array is used.
5664 // For prototype maps, this slot is used to store this map's PrototypeInfo
5666 static const int kTransitionsOrPrototypeInfoOffset =
5667 kConstructorOrBackPointerOffset + kPointerSize;
5668 static const int kDescriptorsOffset =
5669 kTransitionsOrPrototypeInfoOffset + kPointerSize;
5670 #if V8_DOUBLE_FIELDS_UNBOXING
5671 static const int kLayoutDecriptorOffset = kDescriptorsOffset + kPointerSize;
5672 static const int kCodeCacheOffset = kLayoutDecriptorOffset + kPointerSize;
5674 static const int kLayoutDecriptorOffset = 1; // Must not be ever accessed.
5675 static const int kCodeCacheOffset = kDescriptorsOffset + kPointerSize;
5677 static const int kDependentCodeOffset = kCodeCacheOffset + kPointerSize;
5678 static const int kWeakCellCacheOffset = kDependentCodeOffset + kPointerSize;
5679 static const int kSize = kWeakCellCacheOffset + kPointerSize;
5681 // Layout of pointer fields. Heap iteration code relies on them
5682 // being continuously allocated.
5683 static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
5684 static const int kPointerFieldsEndOffset = kSize;
5686 // Byte offsets within kInstanceSizesOffset.
5687 static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
5688 static const int kInObjectPropertiesOrConstructorFunctionIndexByte = 1;
5689 static const int kInObjectPropertiesOrConstructorFunctionIndexOffset =
5690 kInstanceSizesOffset + kInObjectPropertiesOrConstructorFunctionIndexByte;
5691 // Note there is one byte available for use here.
5692 static const int kUnusedByte = 2;
5693 static const int kUnusedOffset = kInstanceSizesOffset + kUnusedByte;
5694 static const int kVisitorIdByte = 3;
5695 static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte;
5697 // Byte offsets within kInstanceAttributesOffset attributes.
5698 #if V8_TARGET_LITTLE_ENDIAN
5699 // Order instance type and bit field together such that they can be loaded
5700 // together as a 16-bit word with instance type in the lower 8 bits regardless
5701 // of endianess. Also provide endian-independent offset to that 16-bit word.
5702 static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
5703 static const int kBitFieldOffset = kInstanceAttributesOffset + 1;
5705 static const int kBitFieldOffset = kInstanceAttributesOffset + 0;
5706 static const int kInstanceTypeOffset = kInstanceAttributesOffset + 1;
5708 static const int kInstanceTypeAndBitFieldOffset =
5709 kInstanceAttributesOffset + 0;
5710 static const int kBitField2Offset = kInstanceAttributesOffset + 2;
5711 static const int kUnusedPropertyFieldsByte = 3;
5712 static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 3;
5714 STATIC_ASSERT(kInstanceTypeAndBitFieldOffset ==
5715 Internals::kMapInstanceTypeAndBitFieldOffset);
5717 // Bit positions for bit field.
5718 static const int kHasNonInstancePrototype = 0;
5719 static const int kIsHiddenPrototype = 1;
5720 static const int kHasNamedInterceptor = 2;
5721 static const int kHasIndexedInterceptor = 3;
5722 static const int kIsUndetectable = 4;
5723 static const int kIsObserved = 5;
5724 static const int kIsAccessCheckNeeded = 6;
5725 class FunctionWithPrototype: public BitField<bool, 7, 1> {};
5727 // Bit positions for bit field 2
5728 static const int kIsExtensible = 0;
5729 static const int kStringWrapperSafeForDefaultValueOf = 1;
5730 class IsPrototypeMapBits : public BitField<bool, 2, 1> {};
5731 class ElementsKindBits: public BitField<ElementsKind, 3, 5> {};
5733 // Derived values from bit field 2
5734 static const int8_t kMaximumBitField2FastElementValue = static_cast<int8_t>(
5735 (FAST_ELEMENTS + 1) << Map::ElementsKindBits::kShift) - 1;
5736 static const int8_t kMaximumBitField2FastSmiElementValue =
5737 static_cast<int8_t>((FAST_SMI_ELEMENTS + 1) <<
5738 Map::ElementsKindBits::kShift) - 1;
5739 static const int8_t kMaximumBitField2FastHoleyElementValue =
5740 static_cast<int8_t>((FAST_HOLEY_ELEMENTS + 1) <<
5741 Map::ElementsKindBits::kShift) - 1;
5742 static const int8_t kMaximumBitField2FastHoleySmiElementValue =
5743 static_cast<int8_t>((FAST_HOLEY_SMI_ELEMENTS + 1) <<
5744 Map::ElementsKindBits::kShift) - 1;
5746 typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
5747 kPointerFieldsEndOffset,
5748 kSize> BodyDescriptor;
5750 // Compares this map to another to see if they describe equivalent objects.
5751 // If |mode| is set to CLEAR_INOBJECT_PROPERTIES, |other| is treated as if
5752 // it had exactly zero inobject properties.
5753 // The "shared" flags of both this map and |other| are ignored.
5754 bool EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode);
5756 // Returns true if given field is unboxed double.
5757 inline bool IsUnboxedDoubleField(FieldIndex index);
5760 static void TraceTransition(const char* what, Map* from, Map* to, Name* name);
5761 static void TraceAllTransitions(Map* map);
5764 static inline Handle<Map> CopyInstallDescriptorsForTesting(
5765 Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
5766 Handle<LayoutDescriptor> layout_descriptor);
5769 static void ConnectTransition(Handle<Map> parent, Handle<Map> child,
5770 Handle<Name> name, SimpleTransitionFlag flag);
5772 bool EquivalentToForTransition(Map* other);
5773 static Handle<Map> RawCopy(Handle<Map> map, int instance_size);
5774 static Handle<Map> ShareDescriptor(Handle<Map> map,
5775 Handle<DescriptorArray> descriptors,
5776 Descriptor* descriptor);
5777 static Handle<Map> CopyInstallDescriptors(
5778 Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
5779 Handle<LayoutDescriptor> layout_descriptor);
5780 static Handle<Map> CopyAddDescriptor(Handle<Map> map,
5781 Descriptor* descriptor,
5782 TransitionFlag flag);
5783 static Handle<Map> CopyReplaceDescriptors(
5784 Handle<Map> map, Handle<DescriptorArray> descriptors,
5785 Handle<LayoutDescriptor> layout_descriptor, TransitionFlag flag,
5786 MaybeHandle<Name> maybe_name, const char* reason,
5787 SimpleTransitionFlag simple_flag);
5789 static Handle<Map> CopyReplaceDescriptor(Handle<Map> map,
5790 Handle<DescriptorArray> descriptors,
5791 Descriptor* descriptor,
5793 TransitionFlag flag);
5794 static MUST_USE_RESULT MaybeHandle<Map> TryReconfigureExistingProperty(
5795 Handle<Map> map, int descriptor, PropertyKind kind,
5796 PropertyAttributes attributes, const char** reason);
5798 static Handle<Map> CopyNormalized(Handle<Map> map,
5799 PropertyNormalizationMode mode);
5801 // Fires when the layout of an object with a leaf map changes.
5802 // This includes adding transitions to the leaf map or changing
5803 // the descriptor array.
5804 inline void NotifyLeafMapLayoutChange();
5806 void DeprecateTransitionTree();
5807 bool DeprecateTarget(PropertyKind kind, Name* key,
5808 PropertyAttributes attributes,
5809 DescriptorArray* new_descriptors,
5810 LayoutDescriptor* new_layout_descriptor);
5812 Map* FindLastMatchMap(int verbatim, int length, DescriptorArray* descriptors);
5814 // Update field type of the given descriptor to new representation and new
5815 // type. The type must be prepared for storing in descriptor array:
5816 // it must be either a simple type or a map wrapped in a weak cell.
5817 void UpdateFieldType(int descriptor_number, Handle<Name> name,
5818 Representation new_representation,
5819 Handle<Object> new_wrapped_type);
5821 void PrintReconfiguration(FILE* file, int modify_index, PropertyKind kind,
5822 PropertyAttributes attributes);
5823 void PrintGeneralization(FILE* file,
5828 bool constant_to_field,
5829 Representation old_representation,
5830 Representation new_representation,
5831 HeapType* old_field_type,
5832 HeapType* new_field_type);
5834 static const int kFastPropertiesSoftLimit = 12;
5835 static const int kMaxFastProperties = 128;
5837 DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
5841 // An abstract superclass, a marker class really, for simple structure classes.
5842 // It doesn't carry much functionality but allows struct classes to be
5843 // identified in the type system.
5844 class Struct: public HeapObject {
5846 inline void InitializeBody(int object_size);
5847 DECLARE_CAST(Struct)
5851 // A simple one-element struct, useful where smis need to be boxed.
5852 class Box : public Struct {
5854 // [value]: the boxed contents.
5855 DECL_ACCESSORS(value, Object)
5859 // Dispatched behavior.
5860 DECLARE_PRINTER(Box)
5861 DECLARE_VERIFIER(Box)
5863 static const int kValueOffset = HeapObject::kHeaderSize;
5864 static const int kSize = kValueOffset + kPointerSize;
5867 DISALLOW_IMPLICIT_CONSTRUCTORS(Box);
5871 // Container for metadata stored on each prototype map.
5872 class PrototypeInfo : public Struct {
5874 static const int UNREGISTERED = -1;
5876 // [prototype_users]: WeakFixedArray containing maps using this prototype,
5877 // or Smi(0) if uninitialized.
5878 DECL_ACCESSORS(prototype_users, Object)
5879 // [registry_slot]: Slot in prototype's user registry where this user
5880 // is stored. Returns UNREGISTERED if this prototype has not been registered.
5881 inline int registry_slot() const;
5882 inline void set_registry_slot(int slot);
5883 // [validity_cell]: Cell containing the validity bit for prototype chains
5884 // going through this object, or Smi(0) if uninitialized.
5885 DECL_ACCESSORS(validity_cell, Object)
5886 // [constructor_name]: User-friendly name of the original constructor.
5887 DECL_ACCESSORS(constructor_name, Object)
5889 DECLARE_CAST(PrototypeInfo)
5891 // Dispatched behavior.
5892 DECLARE_PRINTER(PrototypeInfo)
5893 DECLARE_VERIFIER(PrototypeInfo)
5895 static const int kPrototypeUsersOffset = HeapObject::kHeaderSize;
5896 static const int kRegistrySlotOffset = kPrototypeUsersOffset + kPointerSize;
5897 static const int kValidityCellOffset = kRegistrySlotOffset + kPointerSize;
5898 static const int kConstructorNameOffset = kValidityCellOffset + kPointerSize;
5899 static const int kSize = kConstructorNameOffset + kPointerSize;
5902 DISALLOW_IMPLICIT_CONSTRUCTORS(PrototypeInfo);
5906 // Pair used to store both a ScopeInfo and an extension object in the extension
5907 // slot of a block context. Needed in the rare case where a declaration block
5908 // scope (a "varblock" as used to desugar parameter destructuring) also contains
5909 // a sloppy direct eval. (In no other case both are needed at the same time.)
5910 class SloppyBlockWithEvalContextExtension : public Struct {
5912 // [scope_info]: Scope info.
5913 DECL_ACCESSORS(scope_info, ScopeInfo)
5914 // [extension]: Extension object.
5915 DECL_ACCESSORS(extension, JSObject)
5917 DECLARE_CAST(SloppyBlockWithEvalContextExtension)
5919 // Dispatched behavior.
5920 DECLARE_PRINTER(SloppyBlockWithEvalContextExtension)
5921 DECLARE_VERIFIER(SloppyBlockWithEvalContextExtension)
5923 static const int kScopeInfoOffset = HeapObject::kHeaderSize;
5924 static const int kExtensionOffset = kScopeInfoOffset + kPointerSize;
5925 static const int kSize = kExtensionOffset + kPointerSize;
5928 DISALLOW_IMPLICIT_CONSTRUCTORS(SloppyBlockWithEvalContextExtension);
5932 // Script describes a script which has been added to the VM.
5933 class Script: public Struct {
5942 // Script compilation types.
5943 enum CompilationType {
5944 COMPILATION_TYPE_HOST = 0,
5945 COMPILATION_TYPE_EVAL = 1
5948 // Script compilation state.
5949 enum CompilationState {
5950 COMPILATION_STATE_INITIAL = 0,
5951 COMPILATION_STATE_COMPILED = 1
5954 // [source]: the script source.
5955 DECL_ACCESSORS(source, Object)
5957 // [name]: the script name.
5958 DECL_ACCESSORS(name, Object)
5960 // [id]: the script id.
5961 DECL_ACCESSORS(id, Smi)
5963 // [line_offset]: script line offset in resource from where it was extracted.
5964 DECL_ACCESSORS(line_offset, Smi)
5966 // [column_offset]: script column offset in resource from where it was
5968 DECL_ACCESSORS(column_offset, Smi)
5970 // [context_data]: context data for the context this script was compiled in.
5971 DECL_ACCESSORS(context_data, Object)
5973 // [wrapper]: the wrapper cache. This is either undefined or a WeakCell.
5974 DECL_ACCESSORS(wrapper, HeapObject)
5976 // [type]: the script type.
5977 DECL_ACCESSORS(type, Smi)
5979 // [line_ends]: FixedArray of line ends positions.
5980 DECL_ACCESSORS(line_ends, Object)
5982 // [eval_from_shared]: for eval scripts the shared funcion info for the
5983 // function from which eval was called.
5984 DECL_ACCESSORS(eval_from_shared, Object)
5986 // [eval_from_instructions_offset]: the instruction offset in the code for the
5987 // function from which eval was called where eval was called.
5988 DECL_ACCESSORS(eval_from_instructions_offset, Smi)
5990 // [shared_function_infos]: weak fixed array containing all shared
5991 // function infos created from this script.
5992 DECL_ACCESSORS(shared_function_infos, Object)
5994 // [flags]: Holds an exciting bitfield.
5995 DECL_ACCESSORS(flags, Smi)
5997 // [source_url]: sourceURL from magic comment
5998 DECL_ACCESSORS(source_url, Object)
6000 // [source_url]: sourceMappingURL magic comment
6001 DECL_ACCESSORS(source_mapping_url, Object)
6003 // [compilation_type]: how the the script was compiled. Encoded in the
6005 inline CompilationType compilation_type();
6006 inline void set_compilation_type(CompilationType type);
6008 // [compilation_state]: determines whether the script has already been
6009 // compiled. Encoded in the 'flags' field.
6010 inline CompilationState compilation_state();
6011 inline void set_compilation_state(CompilationState state);
6013 // [hide_source]: determines whether the script source can be exposed as
6014 // function source. Encoded in the 'flags' field.
6015 inline bool hide_source();
6016 inline void set_hide_source(bool value);
6018 // [origin_options]: optional attributes set by the embedder via ScriptOrigin,
6019 // and used by the embedder to make decisions about the script. V8 just passes
6020 // this through. Encoded in the 'flags' field.
6021 inline v8::ScriptOriginOptions origin_options();
6022 inline void set_origin_options(ScriptOriginOptions origin_options);
6024 DECLARE_CAST(Script)
6026 // If script source is an external string, check that the underlying
6027 // resource is accessible. Otherwise, always return true.
6028 inline bool HasValidSource();
6030 // Convert code position into column number.
6031 static int GetColumnNumber(Handle<Script> script, int code_pos);
6033 // Convert code position into (zero-based) line number.
6034 // The non-handlified version does not allocate, but may be much slower.
6035 static int GetLineNumber(Handle<Script> script, int code_pos);
6036 int GetLineNumber(int code_pos);
6038 static Handle<Object> GetNameOrSourceURL(Handle<Script> script);
6040 // Init line_ends array with code positions of line ends inside script source.
6041 static void InitLineEnds(Handle<Script> script);
6043 // Get the JS object wrapping the given script; create it if none exists.
6044 static Handle<JSObject> GetWrapper(Handle<Script> script);
6046 // Look through the list of existing shared function infos to find one
6047 // that matches the function literal. Return empty handle if not found.
6048 MaybeHandle<SharedFunctionInfo> FindSharedFunctionInfo(FunctionLiteral* fun);
6050 // Iterate over all script objects on the heap.
6053 explicit Iterator(Isolate* isolate);
6057 WeakFixedArray::Iterator iterator_;
6058 DISALLOW_COPY_AND_ASSIGN(Iterator);
6061 // Dispatched behavior.
6062 DECLARE_PRINTER(Script)
6063 DECLARE_VERIFIER(Script)
6065 static const int kSourceOffset = HeapObject::kHeaderSize;
6066 static const int kNameOffset = kSourceOffset + kPointerSize;
6067 static const int kLineOffsetOffset = kNameOffset + kPointerSize;
6068 static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
6069 static const int kContextOffset = kColumnOffsetOffset + kPointerSize;
6070 static const int kWrapperOffset = kContextOffset + kPointerSize;
6071 static const int kTypeOffset = kWrapperOffset + kPointerSize;
6072 static const int kLineEndsOffset = kTypeOffset + kPointerSize;
6073 static const int kIdOffset = kLineEndsOffset + kPointerSize;
6074 static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
6075 static const int kEvalFrominstructionsOffsetOffset =
6076 kEvalFromSharedOffset + kPointerSize;
6077 static const int kSharedFunctionInfosOffset =
6078 kEvalFrominstructionsOffsetOffset + kPointerSize;
6079 static const int kFlagsOffset = kSharedFunctionInfosOffset + kPointerSize;
6080 static const int kSourceUrlOffset = kFlagsOffset + kPointerSize;
6081 static const int kSourceMappingUrlOffset = kSourceUrlOffset + kPointerSize;
6082 static const int kSize = kSourceMappingUrlOffset + kPointerSize;
6085 int GetLineNumberWithArray(int code_pos);
6087 // Bit positions in the flags field.
6088 static const int kCompilationTypeBit = 0;
6089 static const int kCompilationStateBit = 1;
6090 static const int kHideSourceBit = 2;
6091 static const int kOriginOptionsShift = 3;
6092 static const int kOriginOptionsSize = 3;
6093 static const int kOriginOptionsMask = ((1 << kOriginOptionsSize) - 1)
6094 << kOriginOptionsShift;
6096 DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
6100 // List of builtin functions we want to identify to improve code
6103 // Each entry has a name of a global object property holding an object
6104 // optionally followed by ".prototype", a name of a builtin function
6105 // on the object (the one the id is set for), and a label.
6107 // Installation of ids for the selected builtin functions is handled
6108 // by the bootstrapper.
6109 #define FUNCTIONS_WITH_ID_LIST(V) \
6110 V(Array.prototype, indexOf, ArrayIndexOf) \
6111 V(Array.prototype, lastIndexOf, ArrayLastIndexOf) \
6112 V(Array.prototype, push, ArrayPush) \
6113 V(Array.prototype, pop, ArrayPop) \
6114 V(Array.prototype, shift, ArrayShift) \
6115 V(Function.prototype, apply, FunctionApply) \
6116 V(Function.prototype, call, FunctionCall) \
6117 V(String.prototype, charCodeAt, StringCharCodeAt) \
6118 V(String.prototype, charAt, StringCharAt) \
6119 V(String, fromCharCode, StringFromCharCode) \
6120 V(Math, random, MathRandom) \
6121 V(Math, floor, MathFloor) \
6122 V(Math, round, MathRound) \
6123 V(Math, ceil, MathCeil) \
6124 V(Math, abs, MathAbs) \
6125 V(Math, log, MathLog) \
6126 V(Math, exp, MathExp) \
6127 V(Math, sqrt, MathSqrt) \
6128 V(Math, pow, MathPow) \
6129 V(Math, max, MathMax) \
6130 V(Math, min, MathMin) \
6131 V(Math, cos, MathCos) \
6132 V(Math, sin, MathSin) \
6133 V(Math, tan, MathTan) \
6134 V(Math, acos, MathAcos) \
6135 V(Math, asin, MathAsin) \
6136 V(Math, atan, MathAtan) \
6137 V(Math, atan2, MathAtan2) \
6138 V(Math, imul, MathImul) \
6139 V(Math, clz32, MathClz32) \
6140 V(Math, fround, MathFround)
6142 #define ATOMIC_FUNCTIONS_WITH_ID_LIST(V) \
6143 V(Atomics, load, AtomicsLoad) \
6144 V(Atomics, store, AtomicsStore)
6146 enum BuiltinFunctionId {
6148 #define DECLARE_FUNCTION_ID(ignored1, ignore2, name) \
6150 FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
6151 ATOMIC_FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
6152 #undef DECLARE_FUNCTION_ID
6153 // Fake id for a special case of Math.pow. Note, it continues the
6154 // list of math functions.
6159 // Result of searching in an optimized code map of a SharedFunctionInfo. Note
6160 // that both {code} and {literals} can be NULL to pass search result status.
6161 struct CodeAndLiterals {
6162 Code* code; // Cached optimized code.
6163 FixedArray* literals; // Cached literals array.
6167 // SharedFunctionInfo describes the JSFunction information that can be
6168 // shared by multiple instances of the function.
6169 class SharedFunctionInfo: public HeapObject {
6171 // [name]: Function name.
6172 DECL_ACCESSORS(name, Object)
6174 // [code]: Function code.
6175 DECL_ACCESSORS(code, Code)
6176 inline void ReplaceCode(Code* code);
6178 // [optimized_code_map]: Map from native context to optimized code
6179 // and a shared literals array or Smi(0) if none.
6180 DECL_ACCESSORS(optimized_code_map, Object)
6182 // Returns entry from optimized code map for specified context and OSR entry.
6183 // Note that {code == nullptr} indicates no matching entry has been found,
6184 // whereas {literals == nullptr} indicates the code is context-independent.
6185 CodeAndLiterals SearchOptimizedCodeMap(Context* native_context,
6186 BailoutId osr_ast_id);
6188 // Clear optimized code map.
6189 void ClearOptimizedCodeMap();
6191 // Removed a specific optimized code object from the optimized code map.
6192 void EvictFromOptimizedCodeMap(Code* optimized_code, const char* reason);
6194 // Trims the optimized code map after entries have been removed.
6195 void TrimOptimizedCodeMap(int shrink_by);
6197 // Add a new entry to the optimized code map for context-independent code.
6198 static void AddSharedCodeToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
6201 // Add a new entry to the optimized code map for context-dependent code.
6202 static void AddToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
6203 Handle<Context> native_context,
6205 Handle<FixedArray> literals,
6206 BailoutId osr_ast_id);
6208 // Set up the link between shared function info and the script. The shared
6209 // function info is added to the list on the script.
6210 static void SetScript(Handle<SharedFunctionInfo> shared,
6211 Handle<Object> script_object);
6213 // Layout description of the optimized code map.
6214 static const int kNextMapIndex = 0;
6215 static const int kSharedCodeIndex = 1;
6216 static const int kEntriesStart = 2;
6217 static const int kContextOffset = 0;
6218 static const int kCachedCodeOffset = 1;
6219 static const int kLiteralsOffset = 2;
6220 static const int kOsrAstIdOffset = 3;
6221 static const int kEntryLength = 4;
6222 static const int kInitialLength = kEntriesStart + kEntryLength;
6224 // [scope_info]: Scope info.
6225 DECL_ACCESSORS(scope_info, ScopeInfo)
6227 // [construct stub]: Code stub for constructing instances of this function.
6228 DECL_ACCESSORS(construct_stub, Code)
6230 // Returns if this function has been compiled to native code yet.
6231 inline bool is_compiled();
6233 // [length]: The function length - usually the number of declared parameters.
6234 // Use up to 2^30 parameters.
6235 inline int length() const;
6236 inline void set_length(int value);
6238 // [internal formal parameter count]: The declared number of parameters.
6239 // For subclass constructors, also includes new.target.
6240 // The size of function's frame is internal_formal_parameter_count + 1.
6241 inline int internal_formal_parameter_count() const;
6242 inline void set_internal_formal_parameter_count(int value);
6244 // Set the formal parameter count so the function code will be
6245 // called without using argument adaptor frames.
6246 inline void DontAdaptArguments();
6248 // [expected_nof_properties]: Expected number of properties for the function.
6249 inline int expected_nof_properties() const;
6250 inline void set_expected_nof_properties(int value);
6252 // [feedback_vector] - accumulates ast node feedback from full-codegen and
6253 // (increasingly) from crankshafted code where sufficient feedback isn't
6255 DECL_ACCESSORS(feedback_vector, TypeFeedbackVector)
6257 // Unconditionally clear the type feedback vector (including vector ICs).
6258 void ClearTypeFeedbackInfo();
6260 // Clear the type feedback vector with a more subtle policy at GC time.
6261 void ClearTypeFeedbackInfoAtGCTime();
6264 // [unique_id] - For --trace-maps purposes, an identifier that's persistent
6265 // even if the GC moves this SharedFunctionInfo.
6266 inline int unique_id() const;
6267 inline void set_unique_id(int value);
6270 // [instance class name]: class name for instances.
6271 DECL_ACCESSORS(instance_class_name, Object)
6273 // [function data]: This field holds some additional data for function.
6274 // Currently it has one of:
6275 // - a FunctionTemplateInfo to make benefit the API [IsApiFunction()].
6276 // - a Smi identifying a builtin function [HasBuiltinFunctionId()].
6277 // - a BytecodeArray for the interpreter [HasBytecodeArray()].
6278 // In the long run we don't want all functions to have this field but
6279 // we can fix that when we have a better model for storing hidden data
6281 DECL_ACCESSORS(function_data, Object)
6283 inline bool IsApiFunction();
6284 inline FunctionTemplateInfo* get_api_func_data();
6285 inline bool HasBuiltinFunctionId();
6286 inline BuiltinFunctionId builtin_function_id();
6287 inline bool HasBytecodeArray();
6288 inline BytecodeArray* bytecode_array();
6290 // [script info]: Script from which the function originates.
6291 DECL_ACCESSORS(script, Object)
6293 // [num_literals]: Number of literals used by this function.
6294 inline int num_literals() const;
6295 inline void set_num_literals(int value);
6297 // [start_position_and_type]: Field used to store both the source code
6298 // position, whether or not the function is a function expression,
6299 // and whether or not the function is a toplevel function. The two
6300 // least significants bit indicates whether the function is an
6301 // expression and the rest contains the source code position.
6302 inline int start_position_and_type() const;
6303 inline void set_start_position_and_type(int value);
6305 // The function is subject to debugging if a debug info is attached.
6306 inline bool HasDebugInfo();
6307 inline DebugInfo* GetDebugInfo();
6309 // A function has debug code if the compiled code has debug break slots.
6310 inline bool HasDebugCode();
6312 // [debug info]: Debug information.
6313 DECL_ACCESSORS(debug_info, Object)
6315 // [inferred name]: Name inferred from variable or property
6316 // assignment of this function. Used to facilitate debugging and
6317 // profiling of JavaScript code written in OO style, where almost
6318 // all functions are anonymous but are assigned to object
6320 DECL_ACCESSORS(inferred_name, String)
6322 // The function's name if it is non-empty, otherwise the inferred name.
6323 String* DebugName();
6325 // Position of the 'function' token in the script source.
6326 inline int function_token_position() const;
6327 inline void set_function_token_position(int function_token_position);
6329 // Position of this function in the script source.
6330 inline int start_position() const;
6331 inline void set_start_position(int start_position);
6333 // End position of this function in the script source.
6334 inline int end_position() const;
6335 inline void set_end_position(int end_position);
6337 // Is this function a function expression in the source code.
6338 DECL_BOOLEAN_ACCESSORS(is_expression)
6340 // Is this function a top-level function (scripts, evals).
6341 DECL_BOOLEAN_ACCESSORS(is_toplevel)
6343 // Bit field containing various information collected by the compiler to
6344 // drive optimization.
6345 inline int compiler_hints() const;
6346 inline void set_compiler_hints(int value);
6348 inline int ast_node_count() const;
6349 inline void set_ast_node_count(int count);
6351 inline int profiler_ticks() const;
6352 inline void set_profiler_ticks(int ticks);
6354 // Inline cache age is used to infer whether the function survived a context
6355 // disposal or not. In the former case we reset the opt_count.
6356 inline int ic_age();
6357 inline void set_ic_age(int age);
6359 // Indicates if this function can be lazy compiled.
6360 // This is used to determine if we can safely flush code from a function
6361 // when doing GC if we expect that the function will no longer be used.
6362 DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation)
6364 // Indicates if this function can be lazy compiled without a context.
6365 // This is used to determine if we can force compilation without reaching
6366 // the function through program execution but through other means (e.g. heap
6367 // iteration by the debugger).
6368 DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation_without_context)
6370 // Indicates whether optimizations have been disabled for this
6371 // shared function info. If a function is repeatedly optimized or if
6372 // we cannot optimize the function we disable optimization to avoid
6373 // spending time attempting to optimize it again.
6374 DECL_BOOLEAN_ACCESSORS(optimization_disabled)
6376 // Indicates the language mode.
6377 inline LanguageMode language_mode();
6378 inline void set_language_mode(LanguageMode language_mode);
6380 // False if the function definitely does not allocate an arguments object.
6381 DECL_BOOLEAN_ACCESSORS(uses_arguments)
6383 // Indicates that this function uses a super property (or an eval that may
6384 // use a super property).
6385 // This is needed to set up the [[HomeObject]] on the function instance.
6386 DECL_BOOLEAN_ACCESSORS(needs_home_object)
6388 // True if the function has any duplicated parameter names.
6389 DECL_BOOLEAN_ACCESSORS(has_duplicate_parameters)
6391 // Indicates whether the function is a native function.
6392 // These needs special treatment in .call and .apply since
6393 // null passed as the receiver should not be translated to the
6395 DECL_BOOLEAN_ACCESSORS(native)
6397 // Indicate that this function should always be inlined in optimized code.
6398 DECL_BOOLEAN_ACCESSORS(force_inline)
6400 // Indicates that the function was created by the Function function.
6401 // Though it's anonymous, toString should treat it as if it had the name
6402 // "anonymous". We don't set the name itself so that the system does not
6403 // see a binding for it.
6404 DECL_BOOLEAN_ACCESSORS(name_should_print_as_anonymous)
6406 // Indicates whether the function is a bound function created using
6407 // the bind function.
6408 DECL_BOOLEAN_ACCESSORS(bound)
6410 // Indicates that the function is anonymous (the name field can be set
6411 // through the API, which does not change this flag).
6412 DECL_BOOLEAN_ACCESSORS(is_anonymous)
6414 // Is this a function or top-level/eval code.
6415 DECL_BOOLEAN_ACCESSORS(is_function)
6417 // Indicates that code for this function cannot be compiled with Crankshaft.
6418 DECL_BOOLEAN_ACCESSORS(dont_crankshaft)
6420 // Indicates that code for this function cannot be flushed.
6421 DECL_BOOLEAN_ACCESSORS(dont_flush)
6423 // Indicates that this function is a generator.
6424 DECL_BOOLEAN_ACCESSORS(is_generator)
6426 // Indicates that this function is an arrow function.
6427 DECL_BOOLEAN_ACCESSORS(is_arrow)
6429 // Indicates that this function is a concise method.
6430 DECL_BOOLEAN_ACCESSORS(is_concise_method)
6432 // Indicates that this function is an accessor (getter or setter).
6433 DECL_BOOLEAN_ACCESSORS(is_accessor_function)
6435 // Indicates that this function is a default constructor.
6436 DECL_BOOLEAN_ACCESSORS(is_default_constructor)
6438 // Indicates that this function is an asm function.
6439 DECL_BOOLEAN_ACCESSORS(asm_function)
6441 // Indicates that the the shared function info is deserialized from cache.
6442 DECL_BOOLEAN_ACCESSORS(deserialized)
6444 // Indicates that the the shared function info has never been compiled before.
6445 DECL_BOOLEAN_ACCESSORS(never_compiled)
6447 inline FunctionKind kind();
6448 inline void set_kind(FunctionKind kind);
6450 // Indicates whether or not the code in the shared function support
6452 inline bool has_deoptimization_support();
6454 // Enable deoptimization support through recompiled code.
6455 void EnableDeoptimizationSupport(Code* recompiled);
6457 // Disable (further) attempted optimization of all functions sharing this
6458 // shared function info.
6459 void DisableOptimization(BailoutReason reason);
6461 inline BailoutReason disable_optimization_reason();
6463 // Lookup the bailout ID and DCHECK that it exists in the non-optimized
6464 // code, returns whether it asserted (i.e., always true if assertions are
6466 bool VerifyBailoutId(BailoutId id);
6468 // [source code]: Source code for the function.
6469 bool HasSourceCode() const;
6470 Handle<Object> GetSourceCode();
6472 // Number of times the function was optimized.
6473 inline int opt_count();
6474 inline void set_opt_count(int opt_count);
6476 // Number of times the function was deoptimized.
6477 inline void set_deopt_count(int value);
6478 inline int deopt_count();
6479 inline void increment_deopt_count();
6481 // Number of time we tried to re-enable optimization after it
6482 // was disabled due to high number of deoptimizations.
6483 inline void set_opt_reenable_tries(int value);
6484 inline int opt_reenable_tries();
6486 inline void TryReenableOptimization();
6488 // Stores deopt_count, opt_reenable_tries and ic_age as bit-fields.
6489 inline void set_counters(int value);
6490 inline int counters() const;
6492 // Stores opt_count and bailout_reason as bit-fields.
6493 inline void set_opt_count_and_bailout_reason(int value);
6494 inline int opt_count_and_bailout_reason() const;
6496 inline void set_disable_optimization_reason(BailoutReason reason);
6498 // Tells whether this function should be subject to debugging.
6499 inline bool IsSubjectToDebugging();
6501 // Whether this function is defined in native code or extensions.
6502 inline bool IsBuiltin();
6504 // Check whether or not this function is inlineable.
6505 bool IsInlineable();
6507 // Source size of this function.
6510 // Calculate the instance size.
6511 int CalculateInstanceSize();
6513 // Calculate the number of in-object properties.
6514 int CalculateInObjectProperties();
6516 inline bool has_simple_parameters();
6518 // Initialize a SharedFunctionInfo from a parsed function literal.
6519 static void InitFromFunctionLiteral(Handle<SharedFunctionInfo> shared_info,
6520 FunctionLiteral* lit);
6522 // Dispatched behavior.
6523 DECLARE_PRINTER(SharedFunctionInfo)
6524 DECLARE_VERIFIER(SharedFunctionInfo)
6526 void ResetForNewContext(int new_ic_age);
6528 // Iterate over all shared function infos that are created from a script.
6529 // That excludes shared function infos created for API functions and C++
6533 explicit Iterator(Isolate* isolate);
6534 SharedFunctionInfo* Next();
6539 Script::Iterator script_iterator_;
6540 WeakFixedArray::Iterator sfi_iterator_;
6541 DisallowHeapAllocation no_gc_;
6542 DISALLOW_COPY_AND_ASSIGN(Iterator);
6545 DECLARE_CAST(SharedFunctionInfo)
6548 static const int kDontAdaptArgumentsSentinel = -1;
6550 // Layout description.
6552 static const int kNameOffset = HeapObject::kHeaderSize;
6553 static const int kCodeOffset = kNameOffset + kPointerSize;
6554 static const int kOptimizedCodeMapOffset = kCodeOffset + kPointerSize;
6555 static const int kScopeInfoOffset = kOptimizedCodeMapOffset + kPointerSize;
6556 static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize;
6557 static const int kInstanceClassNameOffset =
6558 kConstructStubOffset + kPointerSize;
6559 static const int kFunctionDataOffset =
6560 kInstanceClassNameOffset + kPointerSize;
6561 static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
6562 static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
6563 static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
6564 static const int kFeedbackVectorOffset =
6565 kInferredNameOffset + kPointerSize;
6567 static const int kUniqueIdOffset = kFeedbackVectorOffset + kPointerSize;
6568 static const int kLastPointerFieldOffset = kUniqueIdOffset;
6570 // Just to not break the postmortrem support with conditional offsets
6571 static const int kUniqueIdOffset = kFeedbackVectorOffset;
6572 static const int kLastPointerFieldOffset = kFeedbackVectorOffset;
6575 #if V8_HOST_ARCH_32_BIT
6577 static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
6578 static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
6579 static const int kExpectedNofPropertiesOffset =
6580 kFormalParameterCountOffset + kPointerSize;
6581 static const int kNumLiteralsOffset =
6582 kExpectedNofPropertiesOffset + kPointerSize;
6583 static const int kStartPositionAndTypeOffset =
6584 kNumLiteralsOffset + kPointerSize;
6585 static const int kEndPositionOffset =
6586 kStartPositionAndTypeOffset + kPointerSize;
6587 static const int kFunctionTokenPositionOffset =
6588 kEndPositionOffset + kPointerSize;
6589 static const int kCompilerHintsOffset =
6590 kFunctionTokenPositionOffset + kPointerSize;
6591 static const int kOptCountAndBailoutReasonOffset =
6592 kCompilerHintsOffset + kPointerSize;
6593 static const int kCountersOffset =
6594 kOptCountAndBailoutReasonOffset + kPointerSize;
6595 static const int kAstNodeCountOffset =
6596 kCountersOffset + kPointerSize;
6597 static const int kProfilerTicksOffset =
6598 kAstNodeCountOffset + kPointerSize;
6601 static const int kSize = kProfilerTicksOffset + kPointerSize;
6603 // The only reason to use smi fields instead of int fields
6604 // is to allow iteration without maps decoding during
6605 // garbage collections.
6606 // To avoid wasting space on 64-bit architectures we use
6607 // the following trick: we group integer fields into pairs
6608 // The least significant integer in each pair is shifted left by 1.
6609 // By doing this we guarantee that LSB of each kPointerSize aligned
6610 // word is not set and thus this word cannot be treated as pointer
6611 // to HeapObject during old space traversal.
6612 #if V8_TARGET_LITTLE_ENDIAN
6613 static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
6614 static const int kFormalParameterCountOffset =
6615 kLengthOffset + kIntSize;
6617 static const int kExpectedNofPropertiesOffset =
6618 kFormalParameterCountOffset + kIntSize;
6619 static const int kNumLiteralsOffset =
6620 kExpectedNofPropertiesOffset + kIntSize;
6622 static const int kEndPositionOffset =
6623 kNumLiteralsOffset + kIntSize;
6624 static const int kStartPositionAndTypeOffset =
6625 kEndPositionOffset + kIntSize;
6627 static const int kFunctionTokenPositionOffset =
6628 kStartPositionAndTypeOffset + kIntSize;
6629 static const int kCompilerHintsOffset =
6630 kFunctionTokenPositionOffset + kIntSize;
6632 static const int kOptCountAndBailoutReasonOffset =
6633 kCompilerHintsOffset + kIntSize;
6634 static const int kCountersOffset =
6635 kOptCountAndBailoutReasonOffset + kIntSize;
6637 static const int kAstNodeCountOffset =
6638 kCountersOffset + kIntSize;
6639 static const int kProfilerTicksOffset =
6640 kAstNodeCountOffset + kIntSize;
6643 static const int kSize = kProfilerTicksOffset + kIntSize;
6645 #elif V8_TARGET_BIG_ENDIAN
6646 static const int kFormalParameterCountOffset =
6647 kLastPointerFieldOffset + kPointerSize;
6648 static const int kLengthOffset = kFormalParameterCountOffset + kIntSize;
6650 static const int kNumLiteralsOffset = kLengthOffset + kIntSize;
6651 static const int kExpectedNofPropertiesOffset = kNumLiteralsOffset + kIntSize;
6653 static const int kStartPositionAndTypeOffset =
6654 kExpectedNofPropertiesOffset + kIntSize;
6655 static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;
6657 static const int kCompilerHintsOffset = kEndPositionOffset + kIntSize;
6658 static const int kFunctionTokenPositionOffset =
6659 kCompilerHintsOffset + kIntSize;
6661 static const int kCountersOffset = kFunctionTokenPositionOffset + kIntSize;
6662 static const int kOptCountAndBailoutReasonOffset = kCountersOffset + kIntSize;
6664 static const int kProfilerTicksOffset =
6665 kOptCountAndBailoutReasonOffset + kIntSize;
6666 static const int kAstNodeCountOffset = kProfilerTicksOffset + kIntSize;
6669 static const int kSize = kAstNodeCountOffset + kIntSize;
6672 #error Unknown byte ordering
6673 #endif // Big endian
6677 static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
6679 typedef FixedBodyDescriptor<kNameOffset,
6680 kLastPointerFieldOffset + kPointerSize,
6681 kSize> BodyDescriptor;
6683 // Bit positions in start_position_and_type.
6684 // The source code start position is in the 30 most significant bits of
6685 // the start_position_and_type field.
6686 static const int kIsExpressionBit = 0;
6687 static const int kIsTopLevelBit = 1;
6688 static const int kStartPositionShift = 2;
6689 static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
6691 // Bit positions in compiler_hints.
6692 enum CompilerHints {
6693 kAllowLazyCompilation,
6694 kAllowLazyCompilationWithoutContext,
6695 kOptimizationDisabled,
6696 kStrictModeFunction,
6697 kStrongModeFunction,
6700 kHasDuplicateParameters,
6705 kNameShouldPrintAsAnonymous,
6712 kIsAccessorFunction,
6713 kIsDefaultConstructor,
6714 kIsSubclassConstructor,
6720 kCompilerHintsCount // Pseudo entry
6722 // Add hints for other modes when they're added.
6723 STATIC_ASSERT(LANGUAGE_END == 3);
6725 class FunctionKindBits : public BitField<FunctionKind, kIsArrow, 8> {};
6727 class DeoptCountBits : public BitField<int, 0, 4> {};
6728 class OptReenableTriesBits : public BitField<int, 4, 18> {};
6729 class ICAgeBits : public BitField<int, 22, 8> {};
6731 class OptCountBits : public BitField<int, 0, 22> {};
6732 class DisabledOptimizationReasonBits : public BitField<int, 22, 8> {};
6735 #if V8_HOST_ARCH_32_BIT
6736 // On 32 bit platforms, compiler hints is a smi.
6737 static const int kCompilerHintsSmiTagSize = kSmiTagSize;
6738 static const int kCompilerHintsSize = kPointerSize;
6740 // On 64 bit platforms, compiler hints is not a smi, see comment above.
6741 static const int kCompilerHintsSmiTagSize = 0;
6742 static const int kCompilerHintsSize = kIntSize;
6745 STATIC_ASSERT(SharedFunctionInfo::kCompilerHintsCount <=
6746 SharedFunctionInfo::kCompilerHintsSize * kBitsPerByte);
6749 // Constants for optimizing codegen for strict mode function and
6751 // Allows to use byte-width instructions.
6752 static const int kStrictModeBitWithinByte =
6753 (kStrictModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
6754 static const int kStrongModeBitWithinByte =
6755 (kStrongModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
6757 static const int kNativeBitWithinByte =
6758 (kNative + kCompilerHintsSmiTagSize) % kBitsPerByte;
6760 static const int kBoundBitWithinByte =
6761 (kBoundFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
6763 #if defined(V8_TARGET_LITTLE_ENDIAN)
6764 static const int kStrictModeByteOffset = kCompilerHintsOffset +
6765 (kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
6766 static const int kStrongModeByteOffset =
6767 kCompilerHintsOffset +
6768 (kStrongModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
6769 static const int kNativeByteOffset = kCompilerHintsOffset +
6770 (kNative + kCompilerHintsSmiTagSize) / kBitsPerByte;
6771 static const int kBoundByteOffset =
6772 kCompilerHintsOffset +
6773 (kBoundFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
6774 #elif defined(V8_TARGET_BIG_ENDIAN)
6775 static const int kStrictModeByteOffset = kCompilerHintsOffset +
6776 (kCompilerHintsSize - 1) -
6777 ((kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
6778 static const int kStrongModeByteOffset =
6779 kCompilerHintsOffset + (kCompilerHintsSize - 1) -
6780 ((kStrongModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
6781 static const int kNativeByteOffset = kCompilerHintsOffset +
6782 (kCompilerHintsSize - 1) -
6783 ((kNative + kCompilerHintsSmiTagSize) / kBitsPerByte);
6784 static const int kBoundByteOffset =
6785 kCompilerHintsOffset + (kCompilerHintsSize - 1) -
6786 ((kBoundFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
6788 #error Unknown byte ordering
6792 DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
6796 // Printing support.
6797 struct SourceCodeOf {
6798 explicit SourceCodeOf(SharedFunctionInfo* v, int max = -1)
6799 : value(v), max_length(max) {}
6800 const SharedFunctionInfo* value;
6805 std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v);
6808 class JSGeneratorObject: public JSObject {
6810 // [function]: The function corresponding to this generator object.
6811 DECL_ACCESSORS(function, JSFunction)
6813 // [context]: The context of the suspended computation.
6814 DECL_ACCESSORS(context, Context)
6816 // [receiver]: The receiver of the suspended computation.
6817 DECL_ACCESSORS(receiver, Object)
6819 // [continuation]: Offset into code of continuation.
6821 // A positive offset indicates a suspended generator. The special
6822 // kGeneratorExecuting and kGeneratorClosed values indicate that a generator
6823 // cannot be resumed.
6824 inline int continuation() const;
6825 inline void set_continuation(int continuation);
6826 inline bool is_closed();
6827 inline bool is_executing();
6828 inline bool is_suspended();
6830 // [operand_stack]: Saved operand stack.
6831 DECL_ACCESSORS(operand_stack, FixedArray)
6833 DECLARE_CAST(JSGeneratorObject)
6835 // Dispatched behavior.
6836 DECLARE_PRINTER(JSGeneratorObject)
6837 DECLARE_VERIFIER(JSGeneratorObject)
6839 // Magic sentinel values for the continuation.
6840 static const int kGeneratorExecuting = -1;
6841 static const int kGeneratorClosed = 0;
6843 // Layout description.
6844 static const int kFunctionOffset = JSObject::kHeaderSize;
6845 static const int kContextOffset = kFunctionOffset + kPointerSize;
6846 static const int kReceiverOffset = kContextOffset + kPointerSize;
6847 static const int kContinuationOffset = kReceiverOffset + kPointerSize;
6848 static const int kOperandStackOffset = kContinuationOffset + kPointerSize;
6849 static const int kSize = kOperandStackOffset + kPointerSize;
6851 // Resume mode, for use by runtime functions.
6852 enum ResumeMode { NEXT, THROW };
6854 // Yielding from a generator returns an object with the following inobject
6855 // properties. See Context::iterator_result_map() for the map.
6856 static const int kResultValuePropertyIndex = 0;
6857 static const int kResultDonePropertyIndex = 1;
6858 static const int kResultPropertyCount = 2;
6860 static const int kResultValuePropertyOffset = JSObject::kHeaderSize;
6861 static const int kResultDonePropertyOffset =
6862 kResultValuePropertyOffset + kPointerSize;
6863 static const int kResultSize = kResultDonePropertyOffset + kPointerSize;
6866 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGeneratorObject);
6870 // Representation for module instance objects.
6871 class JSModule: public JSObject {
6873 // [context]: the context holding the module's locals, or undefined if none.
6874 DECL_ACCESSORS(context, Object)
6876 // [scope_info]: Scope info.
6877 DECL_ACCESSORS(scope_info, ScopeInfo)
6879 DECLARE_CAST(JSModule)
6881 // Dispatched behavior.
6882 DECLARE_PRINTER(JSModule)
6883 DECLARE_VERIFIER(JSModule)
6885 // Layout description.
6886 static const int kContextOffset = JSObject::kHeaderSize;
6887 static const int kScopeInfoOffset = kContextOffset + kPointerSize;
6888 static const int kSize = kScopeInfoOffset + kPointerSize;
6891 DISALLOW_IMPLICIT_CONSTRUCTORS(JSModule);
6895 // JSFunction describes JavaScript functions.
6896 class JSFunction: public JSObject {
6898 // [prototype_or_initial_map]:
6899 DECL_ACCESSORS(prototype_or_initial_map, Object)
6901 // [shared]: The information about the function that
6902 // can be shared by instances.
6903 DECL_ACCESSORS(shared, SharedFunctionInfo)
6905 // [context]: The context for this function.
6906 inline Context* context();
6907 inline void set_context(Object* context);
6908 inline JSObject* global_proxy();
6910 // [code]: The generated code object for this function. Executed
6911 // when the function is invoked, e.g. foo() or new foo(). See
6912 // [[Call]] and [[Construct]] description in ECMA-262, section
6914 inline Code* code();
6915 inline void set_code(Code* code);
6916 inline void set_code_no_write_barrier(Code* code);
6917 inline void ReplaceCode(Code* code);
6919 // Tells whether this function is builtin.
6920 inline bool IsBuiltin();
6922 // Tells whether this function inlines the given shared function info.
6923 bool Inlines(SharedFunctionInfo* candidate);
6925 // Tells whether this function should be subject to debugging.
6926 inline bool IsSubjectToDebugging();
6928 // Tells whether or not the function needs arguments adaption.
6929 inline bool NeedsArgumentsAdaption();
6931 // Tells whether or not this function has been optimized.
6932 inline bool IsOptimized();
6934 // Mark this function for lazy recompilation. The function will be
6935 // recompiled the next time it is executed.
6936 void MarkForOptimization();
6937 void AttemptConcurrentOptimization();
6939 // Tells whether or not the function is already marked for lazy
6941 inline bool IsMarkedForOptimization();
6942 inline bool IsMarkedForConcurrentOptimization();
6944 // Tells whether or not the function is on the concurrent recompilation queue.
6945 inline bool IsInOptimizationQueue();
6947 // Inobject slack tracking is the way to reclaim unused inobject space.
6949 // The instance size is initially determined by adding some slack to
6950 // expected_nof_properties (to allow for a few extra properties added
6951 // after the constructor). There is no guarantee that the extra space
6952 // will not be wasted.
6954 // Here is the algorithm to reclaim the unused inobject space:
6955 // - Detect the first constructor call for this JSFunction.
6956 // When it happens enter the "in progress" state: initialize construction
6957 // counter in the initial_map.
6958 // - While the tracking is in progress create objects filled with
6959 // one_pointer_filler_map instead of undefined_value. This way they can be
6960 // resized quickly and safely.
6961 // - Once enough objects have been created compute the 'slack'
6962 // (traverse the map transition tree starting from the
6963 // initial_map and find the lowest value of unused_property_fields).
6964 // - Traverse the transition tree again and decrease the instance size
6965 // of every map. Existing objects will resize automatically (they are
6966 // filled with one_pointer_filler_map). All further allocations will
6967 // use the adjusted instance size.
6968 // - SharedFunctionInfo's expected_nof_properties left unmodified since
6969 // allocations made using different closures could actually create different
6970 // kind of objects (see prototype inheritance pattern).
6972 // Important: inobject slack tracking is not attempted during the snapshot
6975 // True if the initial_map is set and the object constructions countdown
6976 // counter is not zero.
6977 static const int kGenerousAllocationCount =
6978 Map::kSlackTrackingCounterStart - Map::kSlackTrackingCounterEnd + 1;
6979 inline bool IsInobjectSlackTrackingInProgress();
6981 // Starts the tracking.
6982 // Initializes object constructions countdown counter in the initial map.
6983 void StartInobjectSlackTracking();
6985 // Completes the tracking.
6986 void CompleteInobjectSlackTracking();
6988 // [literals_or_bindings]: Fixed array holding either
6989 // the materialized literals or the bindings of a bound function.
6991 // If the function contains object, regexp or array literals, the
6992 // literals array prefix contains the object, regexp, and array
6993 // function to be used when creating these literals. This is
6994 // necessary so that we do not dynamically lookup the object, regexp
6995 // or array functions. Performing a dynamic lookup, we might end up
6996 // using the functions from a new context that we should not have
6999 // On bound functions, the array is a (copy-on-write) fixed-array containing
7000 // the function that was bound, bound this-value and any bound
7001 // arguments. Bound functions never contain literals.
7002 DECL_ACCESSORS(literals_or_bindings, FixedArray)
7004 inline FixedArray* literals();
7005 inline void set_literals(FixedArray* literals);
7007 inline FixedArray* function_bindings();
7008 inline void set_function_bindings(FixedArray* bindings);
7010 // The initial map for an object created by this constructor.
7011 inline Map* initial_map();
7012 static void SetInitialMap(Handle<JSFunction> function, Handle<Map> map,
7013 Handle<Object> prototype);
7014 inline bool has_initial_map();
7015 static void EnsureHasInitialMap(Handle<JSFunction> function);
7017 // Get and set the prototype property on a JSFunction. If the
7018 // function has an initial map the prototype is set on the initial
7019 // map. Otherwise, the prototype is put in the initial map field
7020 // until an initial map is needed.
7021 inline bool has_prototype();
7022 inline bool has_instance_prototype();
7023 inline Object* prototype();
7024 inline Object* instance_prototype();
7025 static void SetPrototype(Handle<JSFunction> function,
7026 Handle<Object> value);
7027 static void SetInstancePrototype(Handle<JSFunction> function,
7028 Handle<Object> value);
7030 // Creates a new closure for the fucntion with the same bindings,
7031 // bound values, and prototype. An equivalent of spec operations
7032 // ``CloneMethod`` and ``CloneBoundFunction``.
7033 static Handle<JSFunction> CloneClosure(Handle<JSFunction> function);
7035 // After prototype is removed, it will not be created when accessed, and
7036 // [[Construct]] from this function will not be allowed.
7037 bool RemovePrototype();
7038 inline bool should_have_prototype();
7040 // Accessor for this function's initial map's [[class]]
7041 // property. This is primarily used by ECMA native functions. This
7042 // method sets the class_name field of this function's initial map
7043 // to a given value. It creates an initial map if this function does
7044 // not have one. Note that this method does not copy the initial map
7045 // if it has one already, but simply replaces it with the new value.
7046 // Instances created afterwards will have a map whose [[class]] is
7047 // set to 'value', but there is no guarantees on instances created
7049 void SetInstanceClassName(String* name);
7051 // Returns if this function has been compiled to native code yet.
7052 inline bool is_compiled();
7054 // Returns `false` if formal parameters include rest parameters, optional
7055 // parameters, or destructuring parameters.
7056 // TODO(caitp): make this a flag set during parsing
7057 inline bool has_simple_parameters();
7059 // [next_function_link]: Links functions into various lists, e.g. the list
7060 // of optimized functions hanging off the native_context. The CodeFlusher
7061 // uses this link to chain together flushing candidates. Treated weakly
7062 // by the garbage collector.
7063 DECL_ACCESSORS(next_function_link, Object)
7065 // Prints the name of the function using PrintF.
7066 void PrintName(FILE* out = stdout);
7068 DECLARE_CAST(JSFunction)
7070 // Iterates the objects, including code objects indirectly referenced
7071 // through pointers to the first instruction in the code object.
7072 void JSFunctionIterateBody(int object_size, ObjectVisitor* v);
7074 // Dispatched behavior.
7075 DECLARE_PRINTER(JSFunction)
7076 DECLARE_VERIFIER(JSFunction)
7078 // Returns the number of allocated literals.
7079 inline int NumberOfLiterals();
7081 // Used for flags such as --hydrogen-filter.
7082 bool PassesFilter(const char* raw_filter);
7084 // The function's name if it is configured, otherwise shared function info
7086 static Handle<String> GetDebugName(Handle<JSFunction> function);
7088 // Layout descriptors. The last property (from kNonWeakFieldsEndOffset to
7089 // kSize) is weak and has special handling during garbage collection.
7090 static const int kCodeEntryOffset = JSObject::kHeaderSize;
7091 static const int kPrototypeOrInitialMapOffset =
7092 kCodeEntryOffset + kPointerSize;
7093 static const int kSharedFunctionInfoOffset =
7094 kPrototypeOrInitialMapOffset + kPointerSize;
7095 static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
7096 static const int kLiteralsOffset = kContextOffset + kPointerSize;
7097 static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize;
7098 static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset;
7099 static const int kSize = kNextFunctionLinkOffset + kPointerSize;
7101 // Layout of the bound-function binding array.
7102 static const int kBoundFunctionIndex = 0;
7103 static const int kBoundThisIndex = 1;
7104 static const int kBoundArgumentsStartIndex = 2;
7107 DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
7111 // JSGlobalProxy's prototype must be a JSGlobalObject or null,
7112 // and the prototype is hidden. JSGlobalProxy always delegates
7113 // property accesses to its prototype if the prototype is not null.
7115 // A JSGlobalProxy can be reinitialized which will preserve its identity.
7117 // Accessing a JSGlobalProxy requires security check.
7119 class JSGlobalProxy : public JSObject {
7121 // [native_context]: the owner native context of this global proxy object.
7122 // It is null value if this object is not used by any context.
7123 DECL_ACCESSORS(native_context, Object)
7125 // [hash]: The hash code property (undefined if not initialized yet).
7126 DECL_ACCESSORS(hash, Object)
7128 DECLARE_CAST(JSGlobalProxy)
7130 inline bool IsDetachedFrom(GlobalObject* global) const;
7132 // Dispatched behavior.
7133 DECLARE_PRINTER(JSGlobalProxy)
7134 DECLARE_VERIFIER(JSGlobalProxy)
7136 // Layout description.
7137 static const int kNativeContextOffset = JSObject::kHeaderSize;
7138 static const int kHashOffset = kNativeContextOffset + kPointerSize;
7139 static const int kSize = kHashOffset + kPointerSize;
7142 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
7146 // Common super class for JavaScript global objects and the special
7147 // builtins global objects.
7148 class GlobalObject: public JSObject {
7150 // [builtins]: the object holding the runtime routines written in JS.
7151 DECL_ACCESSORS(builtins, JSBuiltinsObject)
7153 // [native context]: the natives corresponding to this global object.
7154 DECL_ACCESSORS(native_context, Context)
7156 // [global proxy]: the global proxy object of the context
7157 DECL_ACCESSORS(global_proxy, JSObject)
7159 DECLARE_CAST(GlobalObject)
7161 static void InvalidatePropertyCell(Handle<GlobalObject> object,
7163 // Ensure that the global object has a cell for the given property name.
7164 static Handle<PropertyCell> EnsurePropertyCell(Handle<GlobalObject> global,
7167 // Layout description.
7168 static const int kBuiltinsOffset = JSObject::kHeaderSize;
7169 static const int kNativeContextOffset = kBuiltinsOffset + kPointerSize;
7170 static const int kGlobalProxyOffset = kNativeContextOffset + kPointerSize;
7171 static const int kHeaderSize = kGlobalProxyOffset + kPointerSize;
7174 DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
7178 // JavaScript global object.
7179 class JSGlobalObject: public GlobalObject {
7181 DECLARE_CAST(JSGlobalObject)
7183 inline bool IsDetached();
7185 // Dispatched behavior.
7186 DECLARE_PRINTER(JSGlobalObject)
7187 DECLARE_VERIFIER(JSGlobalObject)
7189 // Layout description.
7190 static const int kSize = GlobalObject::kHeaderSize;
7193 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
7197 // Builtins global object which holds the runtime routines written in
7199 class JSBuiltinsObject: public GlobalObject {
7201 DECLARE_CAST(JSBuiltinsObject)
7203 // Dispatched behavior.
7204 DECLARE_PRINTER(JSBuiltinsObject)
7205 DECLARE_VERIFIER(JSBuiltinsObject)
7207 // Layout description.
7208 static const int kSize = GlobalObject::kHeaderSize;
7211 DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
7215 // Representation for JS Wrapper objects, String, Number, Boolean, etc.
7216 class JSValue: public JSObject {
7218 // [value]: the object being wrapped.
7219 DECL_ACCESSORS(value, Object)
7221 DECLARE_CAST(JSValue)
7223 // Dispatched behavior.
7224 DECLARE_PRINTER(JSValue)
7225 DECLARE_VERIFIER(JSValue)
7227 // Layout description.
7228 static const int kValueOffset = JSObject::kHeaderSize;
7229 static const int kSize = kValueOffset + kPointerSize;
7232 DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
7238 // Representation for JS date objects.
7239 class JSDate: public JSObject {
7241 // If one component is NaN, all of them are, indicating a NaN time value.
7242 // [value]: the time value.
7243 DECL_ACCESSORS(value, Object)
7244 // [year]: caches year. Either undefined, smi, or NaN.
7245 DECL_ACCESSORS(year, Object)
7246 // [month]: caches month. Either undefined, smi, or NaN.
7247 DECL_ACCESSORS(month, Object)
7248 // [day]: caches day. Either undefined, smi, or NaN.
7249 DECL_ACCESSORS(day, Object)
7250 // [weekday]: caches day of week. Either undefined, smi, or NaN.
7251 DECL_ACCESSORS(weekday, Object)
7252 // [hour]: caches hours. Either undefined, smi, or NaN.
7253 DECL_ACCESSORS(hour, Object)
7254 // [min]: caches minutes. Either undefined, smi, or NaN.
7255 DECL_ACCESSORS(min, Object)
7256 // [sec]: caches seconds. Either undefined, smi, or NaN.
7257 DECL_ACCESSORS(sec, Object)
7258 // [cache stamp]: sample of the date cache stamp at the
7259 // moment when chached fields were cached.
7260 DECL_ACCESSORS(cache_stamp, Object)
7262 DECLARE_CAST(JSDate)
7264 // Returns the date field with the specified index.
7265 // See FieldIndex for the list of date fields.
7266 static Object* GetField(Object* date, Smi* index);
7268 void SetValue(Object* value, bool is_value_nan);
7270 // ES6 section 20.3.4.45 Date.prototype [ @@toPrimitive ]
7271 static MUST_USE_RESULT MaybeHandle<Object> ToPrimitive(
7272 Handle<JSReceiver> receiver, Handle<Object> hint);
7274 // Dispatched behavior.
7275 DECLARE_PRINTER(JSDate)
7276 DECLARE_VERIFIER(JSDate)
7278 // The order is important. It must be kept in sync with date macros
7289 kFirstUncachedField,
7290 kMillisecond = kFirstUncachedField,
7294 kYearUTC = kFirstUTCField,
7307 // Layout description.
7308 static const int kValueOffset = JSObject::kHeaderSize;
7309 static const int kYearOffset = kValueOffset + kPointerSize;
7310 static const int kMonthOffset = kYearOffset + kPointerSize;
7311 static const int kDayOffset = kMonthOffset + kPointerSize;
7312 static const int kWeekdayOffset = kDayOffset + kPointerSize;
7313 static const int kHourOffset = kWeekdayOffset + kPointerSize;
7314 static const int kMinOffset = kHourOffset + kPointerSize;
7315 static const int kSecOffset = kMinOffset + kPointerSize;
7316 static const int kCacheStampOffset = kSecOffset + kPointerSize;
7317 static const int kSize = kCacheStampOffset + kPointerSize;
7320 inline Object* DoGetField(FieldIndex index);
7322 Object* GetUTCField(FieldIndex index, double value, DateCache* date_cache);
7324 // Computes and caches the cacheable fields of the date.
7325 inline void SetCachedFields(int64_t local_time_ms, DateCache* date_cache);
7328 DISALLOW_IMPLICIT_CONSTRUCTORS(JSDate);
7332 // Representation of message objects used for error reporting through
7333 // the API. The messages are formatted in JavaScript so this object is
7334 // a real JavaScript object. The information used for formatting the
7335 // error messages are not directly accessible from JavaScript to
7336 // prevent leaking information to user code called during error
7338 class JSMessageObject: public JSObject {
7340 // [type]: the type of error message.
7341 inline int type() const;
7342 inline void set_type(int value);
7344 // [arguments]: the arguments for formatting the error message.
7345 DECL_ACCESSORS(argument, Object)
7347 // [script]: the script from which the error message originated.
7348 DECL_ACCESSORS(script, Object)
7350 // [stack_frames]: an array of stack frames for this error object.
7351 DECL_ACCESSORS(stack_frames, Object)
7353 // [start_position]: the start position in the script for the error message.
7354 inline int start_position() const;
7355 inline void set_start_position(int value);
7357 // [end_position]: the end position in the script for the error message.
7358 inline int end_position() const;
7359 inline void set_end_position(int value);
7361 DECLARE_CAST(JSMessageObject)
7363 // Dispatched behavior.
7364 DECLARE_PRINTER(JSMessageObject)
7365 DECLARE_VERIFIER(JSMessageObject)
7367 // Layout description.
7368 static const int kTypeOffset = JSObject::kHeaderSize;
7369 static const int kArgumentsOffset = kTypeOffset + kPointerSize;
7370 static const int kScriptOffset = kArgumentsOffset + kPointerSize;
7371 static const int kStackFramesOffset = kScriptOffset + kPointerSize;
7372 static const int kStartPositionOffset = kStackFramesOffset + kPointerSize;
7373 static const int kEndPositionOffset = kStartPositionOffset + kPointerSize;
7374 static const int kSize = kEndPositionOffset + kPointerSize;
7376 typedef FixedBodyDescriptor<HeapObject::kMapOffset,
7377 kStackFramesOffset + kPointerSize,
7378 kSize> BodyDescriptor;
7382 // Regular expressions
7383 // The regular expression holds a single reference to a FixedArray in
7384 // the kDataOffset field.
7385 // The FixedArray contains the following data:
7386 // - tag : type of regexp implementation (not compiled yet, atom or irregexp)
7387 // - reference to the original source string
7388 // - reference to the original flag string
7389 // If it is an atom regexp
7390 // - a reference to a literal string to search for
7391 // If it is an irregexp regexp:
7392 // - a reference to code for Latin1 inputs (bytecode or compiled), or a smi
7393 // used for tracking the last usage (used for code flushing).
7394 // - a reference to code for UC16 inputs (bytecode or compiled), or a smi
7395 // used for tracking the last usage (used for code flushing)..
7396 // - max number of registers used by irregexp implementations.
7397 // - number of capture registers (output values) of the regexp.
7398 class JSRegExp: public JSObject {
7401 // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
7402 // ATOM: A simple string to match against using an indexOf operation.
7403 // IRREGEXP: Compiled with Irregexp.
7404 // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
7405 enum Type { NOT_COMPILED, ATOM, IRREGEXP };
7412 UNICODE_ESCAPES = 16
7417 explicit Flags(uint32_t value) : value_(value) { }
7418 bool is_global() { return (value_ & GLOBAL) != 0; }
7419 bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
7420 bool is_multiline() { return (value_ & MULTILINE) != 0; }
7421 bool is_sticky() { return (value_ & STICKY) != 0; }
7422 bool is_unicode() { return (value_ & UNICODE_ESCAPES) != 0; }
7423 uint32_t value() { return value_; }
7428 DECL_ACCESSORS(data, Object)
7430 inline Type TypeTag();
7431 inline int CaptureCount();
7432 inline Flags GetFlags();
7433 inline String* Pattern();
7434 inline Object* DataAt(int index);
7435 // Set implementation data after the object has been prepared.
7436 inline void SetDataAt(int index, Object* value);
7438 static int code_index(bool is_latin1) {
7440 return kIrregexpLatin1CodeIndex;
7442 return kIrregexpUC16CodeIndex;
7446 static int saved_code_index(bool is_latin1) {
7448 return kIrregexpLatin1CodeSavedIndex;
7450 return kIrregexpUC16CodeSavedIndex;
7454 DECLARE_CAST(JSRegExp)
7456 // Dispatched behavior.
7457 DECLARE_VERIFIER(JSRegExp)
7459 static const int kDataOffset = JSObject::kHeaderSize;
7460 static const int kSize = kDataOffset + kPointerSize;
7462 // Indices in the data array.
7463 static const int kTagIndex = 0;
7464 static const int kSourceIndex = kTagIndex + 1;
7465 static const int kFlagsIndex = kSourceIndex + 1;
7466 static const int kDataIndex = kFlagsIndex + 1;
7467 // The data fields are used in different ways depending on the
7468 // value of the tag.
7469 // Atom regexps (literal strings).
7470 static const int kAtomPatternIndex = kDataIndex;
7472 static const int kAtomDataSize = kAtomPatternIndex + 1;
7474 // Irregexp compiled code or bytecode for Latin1. If compilation
7475 // fails, this fields hold an exception object that should be
7476 // thrown if the regexp is used again.
7477 static const int kIrregexpLatin1CodeIndex = kDataIndex;
7478 // Irregexp compiled code or bytecode for UC16. If compilation
7479 // fails, this fields hold an exception object that should be
7480 // thrown if the regexp is used again.
7481 static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
7483 // Saved instance of Irregexp compiled code or bytecode for Latin1 that
7484 // is a potential candidate for flushing.
7485 static const int kIrregexpLatin1CodeSavedIndex = kDataIndex + 2;
7486 // Saved instance of Irregexp compiled code or bytecode for UC16 that is
7487 // a potential candidate for flushing.
7488 static const int kIrregexpUC16CodeSavedIndex = kDataIndex + 3;
7490 // Maximal number of registers used by either Latin1 or UC16.
7491 // Only used to check that there is enough stack space
7492 static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 4;
7493 // Number of captures in the compiled regexp.
7494 static const int kIrregexpCaptureCountIndex = kDataIndex + 5;
7496 static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
7498 // Offsets directly into the data fixed array.
7499 static const int kDataTagOffset =
7500 FixedArray::kHeaderSize + kTagIndex * kPointerSize;
7501 static const int kDataOneByteCodeOffset =
7502 FixedArray::kHeaderSize + kIrregexpLatin1CodeIndex * kPointerSize;
7503 static const int kDataUC16CodeOffset =
7504 FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
7505 static const int kIrregexpCaptureCountOffset =
7506 FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
7508 // In-object fields.
7509 static const int kSourceFieldIndex = 0;
7510 static const int kGlobalFieldIndex = 1;
7511 static const int kIgnoreCaseFieldIndex = 2;
7512 static const int kMultilineFieldIndex = 3;
7513 static const int kLastIndexFieldIndex = 4;
7514 static const int kInObjectFieldCount = 5;
7516 // The uninitialized value for a regexp code object.
7517 static const int kUninitializedValue = -1;
7519 // The compilation error value for the regexp code object. The real error
7520 // object is in the saved code field.
7521 static const int kCompilationErrorValue = -2;
7523 // When we store the sweep generation at which we moved the code from the
7524 // code index to the saved code index we mask it of to be in the [0:255]
7526 static const int kCodeAgeMask = 0xff;
7530 class CompilationCacheShape : public BaseShape<HashTableKey*> {
7532 static inline bool IsMatch(HashTableKey* key, Object* value) {
7533 return key->IsMatch(value);
7536 static inline uint32_t Hash(HashTableKey* key) {
7540 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
7541 return key->HashForObject(object);
7544 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
7546 static const int kPrefixSize = 0;
7547 static const int kEntrySize = 2;
7551 // This cache is used in two different variants. For regexp caching, it simply
7552 // maps identifying info of the regexp to the cached regexp object. Scripts and
7553 // eval code only gets cached after a second probe for the code object. To do
7554 // so, on first "put" only a hash identifying the source is entered into the
7555 // cache, mapping it to a lifetime count of the hash. On each call to Age all
7556 // such lifetimes get reduced, and removed once they reach zero. If a second put
7557 // is called while such a hash is live in the cache, the hash gets replaced by
7558 // an actual cache entry. Age also removes stale live entries from the cache.
7559 // Such entries are identified by SharedFunctionInfos pointing to either the
7560 // recompilation stub, or to "old" code. This avoids memory leaks due to
7561 // premature caching of scripts and eval strings that are never needed later.
7562 class CompilationCacheTable: public HashTable<CompilationCacheTable,
7563 CompilationCacheShape,
7566 // Find cached value for a string key, otherwise return null.
7567 Handle<Object> Lookup(
7568 Handle<String> src, Handle<Context> context, LanguageMode language_mode);
7569 Handle<Object> LookupEval(
7570 Handle<String> src, Handle<SharedFunctionInfo> shared,
7571 LanguageMode language_mode, int scope_position);
7572 Handle<Object> LookupRegExp(Handle<String> source, JSRegExp::Flags flags);
7573 static Handle<CompilationCacheTable> Put(
7574 Handle<CompilationCacheTable> cache, Handle<String> src,
7575 Handle<Context> context, LanguageMode language_mode,
7576 Handle<Object> value);
7577 static Handle<CompilationCacheTable> PutEval(
7578 Handle<CompilationCacheTable> cache, Handle<String> src,
7579 Handle<SharedFunctionInfo> context, Handle<SharedFunctionInfo> value,
7580 int scope_position);
7581 static Handle<CompilationCacheTable> PutRegExp(
7582 Handle<CompilationCacheTable> cache, Handle<String> src,
7583 JSRegExp::Flags flags, Handle<FixedArray> value);
7584 void Remove(Object* value);
7586 static const int kHashGenerations = 10;
7588 DECLARE_CAST(CompilationCacheTable)
7591 DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
7595 class CodeCache: public Struct {
7597 DECL_ACCESSORS(default_cache, FixedArray)
7598 DECL_ACCESSORS(normal_type_cache, Object)
7600 // Add the code object to the cache.
7602 Handle<CodeCache> cache, Handle<Name> name, Handle<Code> code);
7604 // Lookup code object in the cache. Returns code object if found and undefined
7606 Object* Lookup(Name* name, Code::Flags flags);
7608 // Get the internal index of a code object in the cache. Returns -1 if the
7609 // code object is not in that cache. This index can be used to later call
7610 // RemoveByIndex. The cache cannot be modified between a call to GetIndex and
7612 int GetIndex(Object* name, Code* code);
7614 // Remove an object from the cache with the provided internal index.
7615 void RemoveByIndex(Object* name, Code* code, int index);
7617 DECLARE_CAST(CodeCache)
7619 // Dispatched behavior.
7620 DECLARE_PRINTER(CodeCache)
7621 DECLARE_VERIFIER(CodeCache)
7623 static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
7624 static const int kNormalTypeCacheOffset =
7625 kDefaultCacheOffset + kPointerSize;
7626 static const int kSize = kNormalTypeCacheOffset + kPointerSize;
7629 static void UpdateDefaultCache(
7630 Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
7631 static void UpdateNormalTypeCache(
7632 Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
7633 Object* LookupDefaultCache(Name* name, Code::Flags flags);
7634 Object* LookupNormalTypeCache(Name* name, Code::Flags flags);
7636 // Code cache layout of the default cache. Elements are alternating name and
7637 // code objects for non normal load/store/call IC's.
7638 static const int kCodeCacheEntrySize = 2;
7639 static const int kCodeCacheEntryNameOffset = 0;
7640 static const int kCodeCacheEntryCodeOffset = 1;
7642 DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
7646 class CodeCacheHashTableShape : public BaseShape<HashTableKey*> {
7648 static inline bool IsMatch(HashTableKey* key, Object* value) {
7649 return key->IsMatch(value);
7652 static inline uint32_t Hash(HashTableKey* key) {
7656 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
7657 return key->HashForObject(object);
7660 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
7662 static const int kPrefixSize = 0;
7663 static const int kEntrySize = 2;
7667 class CodeCacheHashTable: public HashTable<CodeCacheHashTable,
7668 CodeCacheHashTableShape,
7671 Object* Lookup(Name* name, Code::Flags flags);
7672 static Handle<CodeCacheHashTable> Put(
7673 Handle<CodeCacheHashTable> table,
7677 int GetIndex(Name* name, Code::Flags flags);
7678 void RemoveByIndex(int index);
7680 DECLARE_CAST(CodeCacheHashTable)
7682 // Initial size of the fixed array backing the hash table.
7683 static const int kInitialSize = 64;
7686 DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
7690 class PolymorphicCodeCache: public Struct {
7692 DECL_ACCESSORS(cache, Object)
7694 static void Update(Handle<PolymorphicCodeCache> cache,
7695 MapHandleList* maps,
7700 // Returns an undefined value if the entry is not found.
7701 Handle<Object> Lookup(MapHandleList* maps, Code::Flags flags);
7703 DECLARE_CAST(PolymorphicCodeCache)
7705 // Dispatched behavior.
7706 DECLARE_PRINTER(PolymorphicCodeCache)
7707 DECLARE_VERIFIER(PolymorphicCodeCache)
7709 static const int kCacheOffset = HeapObject::kHeaderSize;
7710 static const int kSize = kCacheOffset + kPointerSize;
7713 DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCache);
7717 class PolymorphicCodeCacheHashTable
7718 : public HashTable<PolymorphicCodeCacheHashTable,
7719 CodeCacheHashTableShape,
7722 Object* Lookup(MapHandleList* maps, int code_kind);
7724 static Handle<PolymorphicCodeCacheHashTable> Put(
7725 Handle<PolymorphicCodeCacheHashTable> hash_table,
7726 MapHandleList* maps,
7730 DECLARE_CAST(PolymorphicCodeCacheHashTable)
7732 static const int kInitialSize = 64;
7734 DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCacheHashTable);
7738 class TypeFeedbackInfo: public Struct {
7740 inline int ic_total_count();
7741 inline void set_ic_total_count(int count);
7743 inline int ic_with_type_info_count();
7744 inline void change_ic_with_type_info_count(int delta);
7746 inline int ic_generic_count();
7747 inline void change_ic_generic_count(int delta);
7749 inline void initialize_storage();
7751 inline void change_own_type_change_checksum();
7752 inline int own_type_change_checksum();
7754 inline void set_inlined_type_change_checksum(int checksum);
7755 inline bool matches_inlined_type_change_checksum(int checksum);
7757 DECLARE_CAST(TypeFeedbackInfo)
7759 // Dispatched behavior.
7760 DECLARE_PRINTER(TypeFeedbackInfo)
7761 DECLARE_VERIFIER(TypeFeedbackInfo)
7763 static const int kStorage1Offset = HeapObject::kHeaderSize;
7764 static const int kStorage2Offset = kStorage1Offset + kPointerSize;
7765 static const int kStorage3Offset = kStorage2Offset + kPointerSize;
7766 static const int kSize = kStorage3Offset + kPointerSize;
7769 static const int kTypeChangeChecksumBits = 7;
7771 class ICTotalCountField: public BitField<int, 0,
7772 kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
7773 class OwnTypeChangeChecksum: public BitField<int,
7774 kSmiValueSize - kTypeChangeChecksumBits,
7775 kTypeChangeChecksumBits> {}; // NOLINT
7776 class ICsWithTypeInfoCountField: public BitField<int, 0,
7777 kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
7778 class InlinedTypeChangeChecksum: public BitField<int,
7779 kSmiValueSize - kTypeChangeChecksumBits,
7780 kTypeChangeChecksumBits> {}; // NOLINT
7782 DISALLOW_IMPLICIT_CONSTRUCTORS(TypeFeedbackInfo);
7786 enum AllocationSiteMode {
7787 DONT_TRACK_ALLOCATION_SITE,
7788 TRACK_ALLOCATION_SITE,
7789 LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
7793 class AllocationSite: public Struct {
7795 static const uint32_t kMaximumArrayBytesToPretransition = 8 * 1024;
7796 static const double kPretenureRatio;
7797 static const int kPretenureMinimumCreated = 100;
7799 // Values for pretenure decision field.
7800 enum PretenureDecision {
7806 kLastPretenureDecisionValue = kZombie
7809 const char* PretenureDecisionName(PretenureDecision decision);
7811 DECL_ACCESSORS(transition_info, Object)
7812 // nested_site threads a list of sites that represent nested literals
7813 // walked in a particular order. So [[1, 2], 1, 2] will have one
7814 // nested_site, but [[1, 2], 3, [4]] will have a list of two.
7815 DECL_ACCESSORS(nested_site, Object)
7816 DECL_ACCESSORS(pretenure_data, Smi)
7817 DECL_ACCESSORS(pretenure_create_count, Smi)
7818 DECL_ACCESSORS(dependent_code, DependentCode)
7819 DECL_ACCESSORS(weak_next, Object)
7821 inline void Initialize();
7823 // This method is expensive, it should only be called for reporting.
7824 bool IsNestedSite();
7826 // transition_info bitfields, for constructed array transition info.
7827 class ElementsKindBits: public BitField<ElementsKind, 0, 15> {};
7828 class UnusedBits: public BitField<int, 15, 14> {};
7829 class DoNotInlineBit: public BitField<bool, 29, 1> {};
7831 // Bitfields for pretenure_data
7832 class MementoFoundCountBits: public BitField<int, 0, 26> {};
7833 class PretenureDecisionBits: public BitField<PretenureDecision, 26, 3> {};
7834 class DeoptDependentCodeBit: public BitField<bool, 29, 1> {};
7835 STATIC_ASSERT(PretenureDecisionBits::kMax >= kLastPretenureDecisionValue);
7837 // Increments the mementos found counter and returns true when the first
7838 // memento was found for a given allocation site.
7839 inline bool IncrementMementoFoundCount();
7841 inline void IncrementMementoCreateCount();
7843 PretenureFlag GetPretenureMode();
7845 void ResetPretenureDecision();
7847 inline PretenureDecision pretenure_decision();
7848 inline void set_pretenure_decision(PretenureDecision decision);
7850 inline bool deopt_dependent_code();
7851 inline void set_deopt_dependent_code(bool deopt);
7853 inline int memento_found_count();
7854 inline void set_memento_found_count(int count);
7856 inline int memento_create_count();
7857 inline void set_memento_create_count(int count);
7859 // The pretenuring decision is made during gc, and the zombie state allows
7860 // us to recognize when an allocation site is just being kept alive because
7861 // a later traversal of new space may discover AllocationMementos that point
7862 // to this AllocationSite.
7863 inline bool IsZombie();
7865 inline bool IsMaybeTenure();
7867 inline void MarkZombie();
7869 inline bool MakePretenureDecision(PretenureDecision current_decision,
7871 bool maximum_size_scavenge);
7873 inline bool DigestPretenuringFeedback(bool maximum_size_scavenge);
7875 inline ElementsKind GetElementsKind();
7876 inline void SetElementsKind(ElementsKind kind);
7878 inline bool CanInlineCall();
7879 inline void SetDoNotInlineCall();
7881 inline bool SitePointsToLiteral();
7883 static void DigestTransitionFeedback(Handle<AllocationSite> site,
7884 ElementsKind to_kind);
7886 DECLARE_PRINTER(AllocationSite)
7887 DECLARE_VERIFIER(AllocationSite)
7889 DECLARE_CAST(AllocationSite)
7890 static inline AllocationSiteMode GetMode(
7891 ElementsKind boilerplate_elements_kind);
7892 static inline AllocationSiteMode GetMode(ElementsKind from, ElementsKind to);
7893 static inline bool CanTrack(InstanceType type);
7895 static const int kTransitionInfoOffset = HeapObject::kHeaderSize;
7896 static const int kNestedSiteOffset = kTransitionInfoOffset + kPointerSize;
7897 static const int kPretenureDataOffset = kNestedSiteOffset + kPointerSize;
7898 static const int kPretenureCreateCountOffset =
7899 kPretenureDataOffset + kPointerSize;
7900 static const int kDependentCodeOffset =
7901 kPretenureCreateCountOffset + kPointerSize;
7902 static const int kWeakNextOffset = kDependentCodeOffset + kPointerSize;
7903 static const int kSize = kWeakNextOffset + kPointerSize;
7905 // During mark compact we need to take special care for the dependent code
7907 static const int kPointerFieldsBeginOffset = kTransitionInfoOffset;
7908 static const int kPointerFieldsEndOffset = kWeakNextOffset;
7910 // For other visitors, use the fixed body descriptor below.
7911 typedef FixedBodyDescriptor<HeapObject::kHeaderSize,
7912 kDependentCodeOffset + kPointerSize,
7913 kSize> BodyDescriptor;
7916 inline bool PretenuringDecisionMade();
7918 DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationSite);
7922 class AllocationMemento: public Struct {
7924 static const int kAllocationSiteOffset = HeapObject::kHeaderSize;
7925 static const int kSize = kAllocationSiteOffset + kPointerSize;
7927 DECL_ACCESSORS(allocation_site, Object)
7929 inline bool IsValid();
7930 inline AllocationSite* GetAllocationSite();
7932 DECLARE_PRINTER(AllocationMemento)
7933 DECLARE_VERIFIER(AllocationMemento)
7935 DECLARE_CAST(AllocationMemento)
7938 DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationMemento);
7942 // Representation of a slow alias as part of a sloppy arguments objects.
7943 // For fast aliases (if HasSloppyArgumentsElements()):
7944 // - the parameter map contains an index into the context
7945 // - all attributes of the element have default values
7946 // For slow aliases (if HasDictionaryArgumentsElements()):
7947 // - the parameter map contains no fast alias mapping (i.e. the hole)
7948 // - this struct (in the slow backing store) contains an index into the context
7949 // - all attributes are available as part if the property details
7950 class AliasedArgumentsEntry: public Struct {
7952 inline int aliased_context_slot() const;
7953 inline void set_aliased_context_slot(int count);
7955 DECLARE_CAST(AliasedArgumentsEntry)
7957 // Dispatched behavior.
7958 DECLARE_PRINTER(AliasedArgumentsEntry)
7959 DECLARE_VERIFIER(AliasedArgumentsEntry)
7961 static const int kAliasedContextSlot = HeapObject::kHeaderSize;
7962 static const int kSize = kAliasedContextSlot + kPointerSize;
7965 DISALLOW_IMPLICIT_CONSTRUCTORS(AliasedArgumentsEntry);
7969 enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
7970 enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
7973 class StringHasher {
7975 explicit inline StringHasher(int length, uint32_t seed);
7977 template <typename schar>
7978 static inline uint32_t HashSequentialString(const schar* chars,
7982 // Reads all the data, even for long strings and computes the utf16 length.
7983 static uint32_t ComputeUtf8Hash(Vector<const char> chars,
7985 int* utf16_length_out);
7987 // Calculated hash value for a string consisting of 1 to
7988 // String::kMaxArrayIndexSize digits with no leading zeros (except "0").
7989 // value is represented decimal value.
7990 static uint32_t MakeArrayIndexHash(uint32_t value, int length);
7992 // No string is allowed to have a hash of zero. That value is reserved
7993 // for internal properties. If the hash calculation yields zero then we
7995 static const int kZeroHash = 27;
7997 // Reusable parts of the hashing algorithm.
7998 INLINE(static uint32_t AddCharacterCore(uint32_t running_hash, uint16_t c));
7999 INLINE(static uint32_t GetHashCore(uint32_t running_hash));
8000 INLINE(static uint32_t ComputeRunningHash(uint32_t running_hash,
8001 const uc16* chars, int length));
8002 INLINE(static uint32_t ComputeRunningHashOneByte(uint32_t running_hash,
8007 // Returns the value to store in the hash field of a string with
8008 // the given length and contents.
8009 uint32_t GetHashField();
8010 // Returns true if the hash of this string can be computed without
8011 // looking at the contents.
8012 inline bool has_trivial_hash();
8013 // Adds a block of characters to the hash.
8014 template<typename Char>
8015 inline void AddCharacters(const Char* chars, int len);
8018 // Add a character to the hash.
8019 inline void AddCharacter(uint16_t c);
8020 // Update index. Returns true if string is still an index.
8021 inline bool UpdateIndex(uint16_t c);
8024 uint32_t raw_running_hash_;
8025 uint32_t array_index_;
8026 bool is_array_index_;
8027 bool is_first_char_;
8028 DISALLOW_COPY_AND_ASSIGN(StringHasher);
8032 class IteratingStringHasher : public StringHasher {
8034 static inline uint32_t Hash(String* string, uint32_t seed);
8035 inline void VisitOneByteString(const uint8_t* chars, int length);
8036 inline void VisitTwoByteString(const uint16_t* chars, int length);
8039 inline IteratingStringHasher(int len, uint32_t seed);
8040 void VisitConsString(ConsString* cons_string);
8041 DISALLOW_COPY_AND_ASSIGN(IteratingStringHasher);
8045 // The characteristics of a string are stored in its map. Retrieving these
8046 // few bits of information is moderately expensive, involving two memory
8047 // loads where the second is dependent on the first. To improve efficiency
8048 // the shape of the string is given its own class so that it can be retrieved
8049 // once and used for several string operations. A StringShape is small enough
8050 // to be passed by value and is immutable, but be aware that flattening a
8051 // string can potentially alter its shape. Also be aware that a GC caused by
8052 // something else can alter the shape of a string due to ConsString
8053 // shortcutting. Keeping these restrictions in mind has proven to be error-
8054 // prone and so we no longer put StringShapes in variables unless there is a
8055 // concrete performance benefit at that particular point in the code.
8056 class StringShape BASE_EMBEDDED {
8058 inline explicit StringShape(const String* s);
8059 inline explicit StringShape(Map* s);
8060 inline explicit StringShape(InstanceType t);
8061 inline bool IsSequential();
8062 inline bool IsExternal();
8063 inline bool IsCons();
8064 inline bool IsSliced();
8065 inline bool IsIndirect();
8066 inline bool IsExternalOneByte();
8067 inline bool IsExternalTwoByte();
8068 inline bool IsSequentialOneByte();
8069 inline bool IsSequentialTwoByte();
8070 inline bool IsInternalized();
8071 inline StringRepresentationTag representation_tag();
8072 inline uint32_t encoding_tag();
8073 inline uint32_t full_representation_tag();
8074 inline uint32_t size_tag();
8076 inline uint32_t type() { return type_; }
8077 inline void invalidate() { valid_ = false; }
8078 inline bool valid() { return valid_; }
8080 inline void invalidate() { }
8086 inline void set_valid() { valid_ = true; }
8089 inline void set_valid() { }
8094 // The Name abstract class captures anything that can be used as a property
8095 // name, i.e., strings and symbols. All names store a hash value.
8096 class Name: public HeapObject {
8098 // Get and set the hash field of the name.
8099 inline uint32_t hash_field();
8100 inline void set_hash_field(uint32_t value);
8102 // Tells whether the hash code has been computed.
8103 inline bool HasHashCode();
8105 // Returns a hash value used for the property table
8106 inline uint32_t Hash();
8108 // Equality operations.
8109 inline bool Equals(Name* other);
8110 inline static bool Equals(Handle<Name> one, Handle<Name> two);
8113 inline bool AsArrayIndex(uint32_t* index);
8115 // If the name is private, it can only name own properties.
8116 inline bool IsPrivate();
8118 // If the name is a non-flat string, this method returns a flat version of the
8119 // string. Otherwise it'll just return the input.
8120 static inline Handle<Name> Flatten(Handle<Name> name,
8121 PretenureFlag pretenure = NOT_TENURED);
8123 // Return a string version of this name that is converted according to the
8124 // rules described in ES6 section 9.2.11.
8125 MUST_USE_RESULT static MaybeHandle<String> ToFunctionName(Handle<Name> name);
8129 DECLARE_PRINTER(Name)
8131 void NameShortPrint();
8132 int NameShortPrint(Vector<char> str);
8135 // Layout description.
8136 static const int kHashFieldSlot = HeapObject::kHeaderSize;
8137 #if V8_TARGET_LITTLE_ENDIAN || !V8_HOST_ARCH_64_BIT
8138 static const int kHashFieldOffset = kHashFieldSlot;
8140 static const int kHashFieldOffset = kHashFieldSlot + kIntSize;
8142 static const int kSize = kHashFieldSlot + kPointerSize;
8144 // Mask constant for checking if a name has a computed hash code
8145 // and if it is a string that is an array index. The least significant bit
8146 // indicates whether a hash code has been computed. If the hash code has
8147 // been computed the 2nd bit tells whether the string can be used as an
8149 static const int kHashNotComputedMask = 1;
8150 static const int kIsNotArrayIndexMask = 1 << 1;
8151 static const int kNofHashBitFields = 2;
8153 // Shift constant retrieving hash code from hash field.
8154 static const int kHashShift = kNofHashBitFields;
8156 // Only these bits are relevant in the hash, since the top two are shifted
8158 static const uint32_t kHashBitMask = 0xffffffffu >> kHashShift;
8160 // Array index strings this short can keep their index in the hash field.
8161 static const int kMaxCachedArrayIndexLength = 7;
8163 // For strings which are array indexes the hash value has the string length
8164 // mixed into the hash, mainly to avoid a hash value of zero which would be
8165 // the case for the string '0'. 24 bits are used for the array index value.
8166 static const int kArrayIndexValueBits = 24;
8167 static const int kArrayIndexLengthBits =
8168 kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
8170 STATIC_ASSERT((kArrayIndexLengthBits > 0));
8172 class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
8173 kArrayIndexValueBits> {}; // NOLINT
8174 class ArrayIndexLengthBits : public BitField<unsigned int,
8175 kNofHashBitFields + kArrayIndexValueBits,
8176 kArrayIndexLengthBits> {}; // NOLINT
8178 // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
8179 // could use a mask to test if the length of string is less than or equal to
8180 // kMaxCachedArrayIndexLength.
8181 STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
8183 static const unsigned int kContainsCachedArrayIndexMask =
8184 (~static_cast<unsigned>(kMaxCachedArrayIndexLength)
8185 << ArrayIndexLengthBits::kShift) |
8186 kIsNotArrayIndexMask;
8188 // Value of empty hash field indicating that the hash is not computed.
8189 static const int kEmptyHashField =
8190 kIsNotArrayIndexMask | kHashNotComputedMask;
8193 static inline bool IsHashFieldComputed(uint32_t field);
8196 DISALLOW_IMPLICIT_CONSTRUCTORS(Name);
8201 class Symbol: public Name {
8203 // [name]: The print name of a symbol, or undefined if none.
8204 DECL_ACCESSORS(name, Object)
8206 DECL_ACCESSORS(flags, Smi)
8208 // [is_private]: Whether this is a private symbol. Private symbols can only
8209 // be used to designate own properties of objects.
8210 DECL_BOOLEAN_ACCESSORS(is_private)
8212 DECLARE_CAST(Symbol)
8214 // Dispatched behavior.
8215 DECLARE_PRINTER(Symbol)
8216 DECLARE_VERIFIER(Symbol)
8218 // Layout description.
8219 static const int kNameOffset = Name::kSize;
8220 static const int kFlagsOffset = kNameOffset + kPointerSize;
8221 static const int kSize = kFlagsOffset + kPointerSize;
8223 typedef FixedBodyDescriptor<kNameOffset, kFlagsOffset, kSize> BodyDescriptor;
8225 void SymbolShortPrint(std::ostream& os);
8228 static const int kPrivateBit = 0;
8230 const char* PrivateSymbolToName() const;
8233 friend class Name; // For PrivateSymbolToName.
8236 DISALLOW_IMPLICIT_CONSTRUCTORS(Symbol);
8242 // The String abstract class captures JavaScript string values:
8245 // 4.3.16 String Value
8246 // A string value is a member of the type String and is a finite
8247 // ordered sequence of zero or more 16-bit unsigned integer values.
8249 // All string values have a length field.
8250 class String: public Name {
8252 enum Encoding { ONE_BYTE_ENCODING, TWO_BYTE_ENCODING };
8254 // Array index strings this short can keep their index in the hash field.
8255 static const int kMaxCachedArrayIndexLength = 7;
8257 // For strings which are array indexes the hash value has the string length
8258 // mixed into the hash, mainly to avoid a hash value of zero which would be
8259 // the case for the string '0'. 24 bits are used for the array index value.
8260 static const int kArrayIndexValueBits = 24;
8261 static const int kArrayIndexLengthBits =
8262 kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
8264 STATIC_ASSERT((kArrayIndexLengthBits > 0));
8266 class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
8267 kArrayIndexValueBits> {}; // NOLINT
8268 class ArrayIndexLengthBits : public BitField<unsigned int,
8269 kNofHashBitFields + kArrayIndexValueBits,
8270 kArrayIndexLengthBits> {}; // NOLINT
8272 // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
8273 // could use a mask to test if the length of string is less than or equal to
8274 // kMaxCachedArrayIndexLength.
8275 STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
8277 static const unsigned int kContainsCachedArrayIndexMask =
8278 (~static_cast<unsigned>(kMaxCachedArrayIndexLength)
8279 << ArrayIndexLengthBits::kShift) |
8280 kIsNotArrayIndexMask;
8282 class SubStringRange {
8284 explicit inline SubStringRange(String* string, int first = 0,
8287 inline iterator begin();
8288 inline iterator end();
8296 // Representation of the flat content of a String.
8297 // A non-flat string doesn't have flat content.
8298 // A flat string has content that's encoded as a sequence of either
8299 // one-byte chars or two-byte UC16.
8300 // Returned by String::GetFlatContent().
8303 // Returns true if the string is flat and this structure contains content.
8304 bool IsFlat() { return state_ != NON_FLAT; }
8305 // Returns true if the structure contains one-byte content.
8306 bool IsOneByte() { return state_ == ONE_BYTE; }
8307 // Returns true if the structure contains two-byte content.
8308 bool IsTwoByte() { return state_ == TWO_BYTE; }
8310 // Return the one byte content of the string. Only use if IsOneByte()
8312 Vector<const uint8_t> ToOneByteVector() {
8313 DCHECK_EQ(ONE_BYTE, state_);
8314 return Vector<const uint8_t>(onebyte_start, length_);
8316 // Return the two-byte content of the string. Only use if IsTwoByte()
8318 Vector<const uc16> ToUC16Vector() {
8319 DCHECK_EQ(TWO_BYTE, state_);
8320 return Vector<const uc16>(twobyte_start, length_);
8324 DCHECK(i < length_);
8325 DCHECK(state_ != NON_FLAT);
8326 if (state_ == ONE_BYTE) return onebyte_start[i];
8327 return twobyte_start[i];
8330 bool UsesSameString(const FlatContent& other) const {
8331 return onebyte_start == other.onebyte_start;
8335 enum State { NON_FLAT, ONE_BYTE, TWO_BYTE };
8337 // Constructors only used by String::GetFlatContent().
8338 explicit FlatContent(const uint8_t* start, int length)
8339 : onebyte_start(start), length_(length), state_(ONE_BYTE) {}
8340 explicit FlatContent(const uc16* start, int length)
8341 : twobyte_start(start), length_(length), state_(TWO_BYTE) { }
8342 FlatContent() : onebyte_start(NULL), length_(0), state_(NON_FLAT) { }
8345 const uint8_t* onebyte_start;
8346 const uc16* twobyte_start;
8351 friend class String;
8352 friend class IterableSubString;
8355 template <typename Char>
8356 INLINE(Vector<const Char> GetCharVector());
8358 // Get and set the length of the string.
8359 inline int length() const;
8360 inline void set_length(int value);
8362 // Get and set the length of the string using acquire loads and release
8364 inline int synchronized_length() const;
8365 inline void synchronized_set_length(int value);
8367 // Returns whether this string has only one-byte chars, i.e. all of them can
8368 // be one-byte encoded. This might be the case even if the string is
8369 // two-byte. Such strings may appear when the embedder prefers
8370 // two-byte external representations even for one-byte data.
8371 inline bool IsOneByteRepresentation() const;
8372 inline bool IsTwoByteRepresentation() const;
8374 // Cons and slices have an encoding flag that may not represent the actual
8375 // encoding of the underlying string. This is taken into account here.
8376 // Requires: this->IsFlat()
8377 inline bool IsOneByteRepresentationUnderneath();
8378 inline bool IsTwoByteRepresentationUnderneath();
8380 // NOTE: this should be considered only a hint. False negatives are
8382 inline bool HasOnlyOneByteChars();
8384 // Get and set individual two byte chars in the string.
8385 inline void Set(int index, uint16_t value);
8386 // Get individual two byte char in the string. Repeated calls
8387 // to this method are not efficient unless the string is flat.
8388 INLINE(uint16_t Get(int index));
8390 // ES6 section 7.1.3.1 ToNumber Applied to the String Type
8391 static Handle<Object> ToNumber(Handle<String> subject);
8393 // Flattens the string. Checks first inline to see if it is
8394 // necessary. Does nothing if the string is not a cons string.
8395 // Flattening allocates a sequential string with the same data as
8396 // the given string and mutates the cons string to a degenerate
8397 // form, where the first component is the new sequential string and
8398 // the second component is the empty string. If allocation fails,
8399 // this function returns a failure. If flattening succeeds, this
8400 // function returns the sequential string that is now the first
8401 // component of the cons string.
8403 // Degenerate cons strings are handled specially by the garbage
8404 // collector (see IsShortcutCandidate).
8406 static inline Handle<String> Flatten(Handle<String> string,
8407 PretenureFlag pretenure = NOT_TENURED);
8409 // Tries to return the content of a flat string as a structure holding either
8410 // a flat vector of char or of uc16.
8411 // If the string isn't flat, and therefore doesn't have flat content, the
8412 // returned structure will report so, and can't provide a vector of either
8414 FlatContent GetFlatContent();
8416 // Returns the parent of a sliced string or first part of a flat cons string.
8417 // Requires: StringShape(this).IsIndirect() && this->IsFlat()
8418 inline String* GetUnderlying();
8420 // String equality operations.
8421 inline bool Equals(String* other);
8422 inline static bool Equals(Handle<String> one, Handle<String> two);
8423 bool IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match = false);
8424 bool IsOneByteEqualTo(Vector<const uint8_t> str);
8425 bool IsTwoByteEqualTo(Vector<const uc16> str);
8427 // Return a UTF8 representation of the string. The string is null
8428 // terminated but may optionally contain nulls. Length is returned
8429 // in length_output if length_output is not a null pointer The string
8430 // should be nearly flat, otherwise the performance of this method may
8431 // be very slow (quadratic in the length). Setting robustness_flag to
8432 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
8433 // handles unexpected data without causing assert failures and it does not
8434 // do any heap allocations. This is useful when printing stack traces.
8435 base::SmartArrayPointer<char> ToCString(AllowNullsFlag allow_nulls,
8436 RobustnessFlag robustness_flag,
8437 int offset, int length,
8438 int* length_output = 0);
8439 base::SmartArrayPointer<char> ToCString(
8440 AllowNullsFlag allow_nulls = DISALLOW_NULLS,
8441 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
8442 int* length_output = 0);
8444 // Return a 16 bit Unicode representation of the string.
8445 // The string should be nearly flat, otherwise the performance of
8446 // of this method may be very bad. Setting robustness_flag to
8447 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
8448 // handles unexpected data without causing assert failures and it does not
8449 // do any heap allocations. This is useful when printing stack traces.
8450 base::SmartArrayPointer<uc16> ToWideCString(
8451 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
8453 bool ComputeArrayIndex(uint32_t* index);
8456 bool MakeExternal(v8::String::ExternalStringResource* resource);
8457 bool MakeExternal(v8::String::ExternalOneByteStringResource* resource);
8460 inline bool AsArrayIndex(uint32_t* index);
8462 DECLARE_CAST(String)
8464 void PrintOn(FILE* out);
8466 // For use during stack traces. Performs rudimentary sanity check.
8469 // Dispatched behavior.
8470 void StringShortPrint(StringStream* accumulator);
8471 void PrintUC16(std::ostream& os, int start = 0, int end = -1); // NOLINT
8472 #if defined(DEBUG) || defined(OBJECT_PRINT)
8473 char* ToAsciiArray();
8475 DECLARE_PRINTER(String)
8476 DECLARE_VERIFIER(String)
8478 inline bool IsFlat();
8480 // Layout description.
8481 static const int kLengthOffset = Name::kSize;
8482 static const int kSize = kLengthOffset + kPointerSize;
8484 // Maximum number of characters to consider when trying to convert a string
8485 // value into an array index.
8486 static const int kMaxArrayIndexSize = 10;
8487 STATIC_ASSERT(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits));
8490 static const int32_t kMaxOneByteCharCode = unibrow::Latin1::kMaxChar;
8491 static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar;
8492 static const int kMaxUtf16CodeUnit = 0xffff;
8493 static const uint32_t kMaxUtf16CodeUnitU = kMaxUtf16CodeUnit;
8495 // Value of hash field containing computed hash equal to zero.
8496 static const int kEmptyStringHash = kIsNotArrayIndexMask;
8498 // Maximal string length.
8499 static const int kMaxLength = (1 << 28) - 16;
8501 // Max length for computing hash. For strings longer than this limit the
8502 // string length is used as the hash value.
8503 static const int kMaxHashCalcLength = 16383;
8505 // Limit for truncation in short printing.
8506 static const int kMaxShortPrintLength = 1024;
8508 // Support for regular expressions.
8509 const uc16* GetTwoByteData(unsigned start);
8511 // Helper function for flattening strings.
8512 template <typename sinkchar>
8513 static void WriteToFlat(String* source,
8518 // The return value may point to the first aligned word containing the first
8519 // non-one-byte character, rather than directly to the non-one-byte character.
8520 // If the return value is >= the passed length, the entire string was
8522 static inline int NonAsciiStart(const char* chars, int length) {
8523 const char* start = chars;
8524 const char* limit = chars + length;
8526 if (length >= kIntptrSize) {
8527 // Check unaligned bytes.
8528 while (!IsAligned(reinterpret_cast<intptr_t>(chars), sizeof(uintptr_t))) {
8529 if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
8530 return static_cast<int>(chars - start);
8534 // Check aligned words.
8535 DCHECK(unibrow::Utf8::kMaxOneByteChar == 0x7F);
8536 const uintptr_t non_one_byte_mask = kUintptrAllBitsSet / 0xFF * 0x80;
8537 while (chars + sizeof(uintptr_t) <= limit) {
8538 if (*reinterpret_cast<const uintptr_t*>(chars) & non_one_byte_mask) {
8539 return static_cast<int>(chars - start);
8541 chars += sizeof(uintptr_t);
8544 // Check remaining unaligned bytes.
8545 while (chars < limit) {
8546 if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
8547 return static_cast<int>(chars - start);
8552 return static_cast<int>(chars - start);
8555 static inline bool IsAscii(const char* chars, int length) {
8556 return NonAsciiStart(chars, length) >= length;
8559 static inline bool IsAscii(const uint8_t* chars, int length) {
8561 NonAsciiStart(reinterpret_cast<const char*>(chars), length) >= length;
8564 static inline int NonOneByteStart(const uc16* chars, int length) {
8565 const uc16* limit = chars + length;
8566 const uc16* start = chars;
8567 while (chars < limit) {
8568 if (*chars > kMaxOneByteCharCodeU) return static_cast<int>(chars - start);
8571 return static_cast<int>(chars - start);
8574 static inline bool IsOneByte(const uc16* chars, int length) {
8575 return NonOneByteStart(chars, length) >= length;
8578 template<class Visitor>
8579 static inline ConsString* VisitFlat(Visitor* visitor,
8583 static Handle<FixedArray> CalculateLineEnds(Handle<String> string,
8584 bool include_ending_line);
8586 // Use the hash field to forward to the canonical internalized string
8587 // when deserializing an internalized string.
8588 inline void SetForwardedInternalizedString(String* string);
8589 inline String* GetForwardedInternalizedString();
8593 friend class StringTableInsertionKey;
8595 static Handle<String> SlowFlatten(Handle<ConsString> cons,
8596 PretenureFlag tenure);
8598 // Slow case of String::Equals. This implementation works on any strings
8599 // but it is most efficient on strings that are almost flat.
8600 bool SlowEquals(String* other);
8602 static bool SlowEquals(Handle<String> one, Handle<String> two);
8604 // Slow case of AsArrayIndex.
8605 bool SlowAsArrayIndex(uint32_t* index);
8607 // Compute and set the hash code.
8608 uint32_t ComputeAndSetHash();
8610 DISALLOW_IMPLICIT_CONSTRUCTORS(String);
8614 // The SeqString abstract class captures sequential string values.
8615 class SeqString: public String {
8617 DECLARE_CAST(SeqString)
8619 // Layout description.
8620 static const int kHeaderSize = String::kSize;
8622 // Truncate the string in-place if possible and return the result.
8623 // In case of new_length == 0, the empty string is returned without
8624 // truncating the original string.
8625 MUST_USE_RESULT static Handle<String> Truncate(Handle<SeqString> string,
8628 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
8632 // The OneByteString class captures sequential one-byte string objects.
8633 // Each character in the OneByteString is an one-byte character.
8634 class SeqOneByteString: public SeqString {
8636 static const bool kHasOneByteEncoding = true;
8638 // Dispatched behavior.
8639 inline uint16_t SeqOneByteStringGet(int index);
8640 inline void SeqOneByteStringSet(int index, uint16_t value);
8642 // Get the address of the characters in this string.
8643 inline Address GetCharsAddress();
8645 inline uint8_t* GetChars();
8647 DECLARE_CAST(SeqOneByteString)
8649 // Garbage collection support. This method is called by the
8650 // garbage collector to compute the actual size of an OneByteString
8652 inline int SeqOneByteStringSize(InstanceType instance_type);
8654 // Computes the size for an OneByteString instance of a given length.
8655 static int SizeFor(int length) {
8656 return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
8659 // Maximal memory usage for a single sequential one-byte string.
8660 static const int kMaxSize = 512 * MB - 1;
8661 STATIC_ASSERT((kMaxSize - kHeaderSize) >= String::kMaxLength);
8664 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqOneByteString);
8668 // The TwoByteString class captures sequential unicode string objects.
8669 // Each character in the TwoByteString is a two-byte uint16_t.
8670 class SeqTwoByteString: public SeqString {
8672 static const bool kHasOneByteEncoding = false;
8674 // Dispatched behavior.
8675 inline uint16_t SeqTwoByteStringGet(int index);
8676 inline void SeqTwoByteStringSet(int index, uint16_t value);
8678 // Get the address of the characters in this string.
8679 inline Address GetCharsAddress();
8681 inline uc16* GetChars();
8684 const uint16_t* SeqTwoByteStringGetData(unsigned start);
8686 DECLARE_CAST(SeqTwoByteString)
8688 // Garbage collection support. This method is called by the
8689 // garbage collector to compute the actual size of a TwoByteString
8691 inline int SeqTwoByteStringSize(InstanceType instance_type);
8693 // Computes the size for a TwoByteString instance of a given length.
8694 static int SizeFor(int length) {
8695 return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
8698 // Maximal memory usage for a single sequential two-byte string.
8699 static const int kMaxSize = 512 * MB - 1;
8700 STATIC_ASSERT(static_cast<int>((kMaxSize - kHeaderSize)/sizeof(uint16_t)) >=
8701 String::kMaxLength);
8704 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
8708 // The ConsString class describes string values built by using the
8709 // addition operator on strings. A ConsString is a pair where the
8710 // first and second components are pointers to other string values.
8711 // One or both components of a ConsString can be pointers to other
8712 // ConsStrings, creating a binary tree of ConsStrings where the leaves
8713 // are non-ConsString string values. The string value represented by
8714 // a ConsString can be obtained by concatenating the leaf string
8715 // values in a left-to-right depth-first traversal of the tree.
8716 class ConsString: public String {
8718 // First string of the cons cell.
8719 inline String* first();
8720 // Doesn't check that the result is a string, even in debug mode. This is
8721 // useful during GC where the mark bits confuse the checks.
8722 inline Object* unchecked_first();
8723 inline void set_first(String* first,
8724 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8726 // Second string of the cons cell.
8727 inline String* second();
8728 // Doesn't check that the result is a string, even in debug mode. This is
8729 // useful during GC where the mark bits confuse the checks.
8730 inline Object* unchecked_second();
8731 inline void set_second(String* second,
8732 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8734 // Dispatched behavior.
8735 uint16_t ConsStringGet(int index);
8737 DECLARE_CAST(ConsString)
8739 // Layout description.
8740 static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
8741 static const int kSecondOffset = kFirstOffset + kPointerSize;
8742 static const int kSize = kSecondOffset + kPointerSize;
8744 // Minimum length for a cons string.
8745 static const int kMinLength = 13;
8747 typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize>
8750 DECLARE_VERIFIER(ConsString)
8753 DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
8757 // The Sliced String class describes strings that are substrings of another
8758 // sequential string. The motivation is to save time and memory when creating
8759 // a substring. A Sliced String is described as a pointer to the parent,
8760 // the offset from the start of the parent string and the length. Using
8761 // a Sliced String therefore requires unpacking of the parent string and
8762 // adding the offset to the start address. A substring of a Sliced String
8763 // are not nested since the double indirection is simplified when creating
8764 // such a substring.
8765 // Currently missing features are:
8766 // - handling externalized parent strings
8767 // - external strings as parent
8768 // - truncating sliced string to enable otherwise unneeded parent to be GC'ed.
8769 class SlicedString: public String {
8771 inline String* parent();
8772 inline void set_parent(String* parent,
8773 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8774 inline int offset() const;
8775 inline void set_offset(int offset);
8777 // Dispatched behavior.
8778 uint16_t SlicedStringGet(int index);
8780 DECLARE_CAST(SlicedString)
8782 // Layout description.
8783 static const int kParentOffset = POINTER_SIZE_ALIGN(String::kSize);
8784 static const int kOffsetOffset = kParentOffset + kPointerSize;
8785 static const int kSize = kOffsetOffset + kPointerSize;
8787 // Minimum length for a sliced string.
8788 static const int kMinLength = 13;
8790 typedef FixedBodyDescriptor<kParentOffset,
8791 kOffsetOffset + kPointerSize, kSize>
8794 DECLARE_VERIFIER(SlicedString)
8797 DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString);
8801 // The ExternalString class describes string values that are backed by
8802 // a string resource that lies outside the V8 heap. ExternalStrings
8803 // consist of the length field common to all strings, a pointer to the
8804 // external resource. It is important to ensure (externally) that the
8805 // resource is not deallocated while the ExternalString is live in the
8808 // The API expects that all ExternalStrings are created through the
8809 // API. Therefore, ExternalStrings should not be used internally.
8810 class ExternalString: public String {
8812 DECLARE_CAST(ExternalString)
8814 // Layout description.
8815 static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
8816 static const int kShortSize = kResourceOffset + kPointerSize;
8817 static const int kResourceDataOffset = kResourceOffset + kPointerSize;
8818 static const int kSize = kResourceDataOffset + kPointerSize;
8820 static const int kMaxShortLength =
8821 (kShortSize - SeqString::kHeaderSize) / kCharSize;
8823 // Return whether external string is short (data pointer is not cached).
8824 inline bool is_short();
8826 STATIC_ASSERT(kResourceOffset == Internals::kStringResourceOffset);
8829 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
8833 // The ExternalOneByteString class is an external string backed by an
8835 class ExternalOneByteString : public ExternalString {
8837 static const bool kHasOneByteEncoding = true;
8839 typedef v8::String::ExternalOneByteStringResource Resource;
8841 // The underlying resource.
8842 inline const Resource* resource();
8843 inline void set_resource(const Resource* buffer);
8845 // Update the pointer cache to the external character array.
8846 // The cached pointer is always valid, as the external character array does =
8847 // not move during lifetime. Deserialization is the only exception, after
8848 // which the pointer cache has to be refreshed.
8849 inline void update_data_cache();
8851 inline const uint8_t* GetChars();
8853 // Dispatched behavior.
8854 inline uint16_t ExternalOneByteStringGet(int index);
8856 DECLARE_CAST(ExternalOneByteString)
8858 // Garbage collection support.
8859 inline void ExternalOneByteStringIterateBody(ObjectVisitor* v);
8861 template <typename StaticVisitor>
8862 inline void ExternalOneByteStringIterateBody();
8865 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalOneByteString);
8869 // The ExternalTwoByteString class is an external string backed by a UTF-16
8871 class ExternalTwoByteString: public ExternalString {
8873 static const bool kHasOneByteEncoding = false;
8875 typedef v8::String::ExternalStringResource Resource;
8877 // The underlying string resource.
8878 inline const Resource* resource();
8879 inline void set_resource(const Resource* buffer);
8881 // Update the pointer cache to the external character array.
8882 // The cached pointer is always valid, as the external character array does =
8883 // not move during lifetime. Deserialization is the only exception, after
8884 // which the pointer cache has to be refreshed.
8885 inline void update_data_cache();
8887 inline const uint16_t* GetChars();
8889 // Dispatched behavior.
8890 inline uint16_t ExternalTwoByteStringGet(int index);
8893 inline const uint16_t* ExternalTwoByteStringGetData(unsigned start);
8895 DECLARE_CAST(ExternalTwoByteString)
8897 // Garbage collection support.
8898 inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
8900 template<typename StaticVisitor>
8901 inline void ExternalTwoByteStringIterateBody();
8904 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
8908 // Utility superclass for stack-allocated objects that must be updated
8909 // on gc. It provides two ways for the gc to update instances, either
8910 // iterating or updating after gc.
8911 class Relocatable BASE_EMBEDDED {
8913 explicit inline Relocatable(Isolate* isolate);
8914 inline virtual ~Relocatable();
8915 virtual void IterateInstance(ObjectVisitor* v) { }
8916 virtual void PostGarbageCollection() { }
8918 static void PostGarbageCollectionProcessing(Isolate* isolate);
8919 static int ArchiveSpacePerThread();
8920 static char* ArchiveState(Isolate* isolate, char* to);
8921 static char* RestoreState(Isolate* isolate, char* from);
8922 static void Iterate(Isolate* isolate, ObjectVisitor* v);
8923 static void Iterate(ObjectVisitor* v, Relocatable* top);
8924 static char* Iterate(ObjectVisitor* v, char* t);
8932 // A flat string reader provides random access to the contents of a
8933 // string independent of the character width of the string. The handle
8934 // must be valid as long as the reader is being used.
8935 class FlatStringReader : public Relocatable {
8937 FlatStringReader(Isolate* isolate, Handle<String> str);
8938 FlatStringReader(Isolate* isolate, Vector<const char> input);
8939 void PostGarbageCollection();
8940 inline uc32 Get(int index);
8941 template <typename Char>
8942 inline Char Get(int index);
8943 int length() { return length_; }
8952 // This maintains an off-stack representation of the stack frames required
8953 // to traverse a ConsString, allowing an entirely iterative and restartable
8954 // traversal of the entire string
8955 class ConsStringIterator {
8957 inline ConsStringIterator() {}
8958 inline explicit ConsStringIterator(ConsString* cons_string, int offset = 0) {
8959 Reset(cons_string, offset);
8961 inline void Reset(ConsString* cons_string, int offset = 0) {
8963 // Next will always return NULL.
8964 if (cons_string == NULL) return;
8965 Initialize(cons_string, offset);
8967 // Returns NULL when complete.
8968 inline String* Next(int* offset_out) {
8970 if (depth_ == 0) return NULL;
8971 return Continue(offset_out);
8975 static const int kStackSize = 32;
8976 // Use a mask instead of doing modulo operations for stack wrapping.
8977 static const int kDepthMask = kStackSize-1;
8978 STATIC_ASSERT(IS_POWER_OF_TWO(kStackSize));
8979 static inline int OffsetForDepth(int depth);
8981 inline void PushLeft(ConsString* string);
8982 inline void PushRight(ConsString* string);
8983 inline void AdjustMaximumDepth();
8985 inline bool StackBlown() { return maximum_depth_ - depth_ == kStackSize; }
8986 void Initialize(ConsString* cons_string, int offset);
8987 String* Continue(int* offset_out);
8988 String* NextLeaf(bool* blew_stack);
8989 String* Search(int* offset_out);
8991 // Stack must always contain only frames for which right traversal
8992 // has not yet been performed.
8993 ConsString* frames_[kStackSize];
8998 DISALLOW_COPY_AND_ASSIGN(ConsStringIterator);
9002 class StringCharacterStream {
9004 inline StringCharacterStream(String* string,
9006 inline uint16_t GetNext();
9007 inline bool HasMore();
9008 inline void Reset(String* string, int offset = 0);
9009 inline void VisitOneByteString(const uint8_t* chars, int length);
9010 inline void VisitTwoByteString(const uint16_t* chars, int length);
9013 ConsStringIterator iter_;
9016 const uint8_t* buffer8_;
9017 const uint16_t* buffer16_;
9019 const uint8_t* end_;
9020 DISALLOW_COPY_AND_ASSIGN(StringCharacterStream);
9024 template <typename T>
9025 class VectorIterator {
9027 VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
9028 explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
9029 T GetNext() { return data_[index_++]; }
9030 bool has_more() { return index_ < data_.length(); }
9032 Vector<const T> data_;
9037 // The Oddball describes objects null, undefined, true, and false.
9038 class Oddball: public HeapObject {
9040 // [to_string]: Cached to_string computed at startup.
9041 DECL_ACCESSORS(to_string, String)
9043 // [to_number]: Cached to_number computed at startup.
9044 DECL_ACCESSORS(to_number, Object)
9046 // [typeof]: Cached type_of computed at startup.
9047 DECL_ACCESSORS(type_of, String)
9049 inline byte kind() const;
9050 inline void set_kind(byte kind);
9052 DECLARE_CAST(Oddball)
9054 // Dispatched behavior.
9055 DECLARE_VERIFIER(Oddball)
9057 // Initialize the fields.
9058 static void Initialize(Isolate* isolate, Handle<Oddball> oddball,
9059 const char* to_string, Handle<Object> to_number,
9060 const char* type_of, byte kind);
9062 // Layout description.
9063 static const int kToStringOffset = HeapObject::kHeaderSize;
9064 static const int kToNumberOffset = kToStringOffset + kPointerSize;
9065 static const int kTypeOfOffset = kToNumberOffset + kPointerSize;
9066 static const int kKindOffset = kTypeOfOffset + kPointerSize;
9067 static const int kSize = kKindOffset + kPointerSize;
9069 static const byte kFalse = 0;
9070 static const byte kTrue = 1;
9071 static const byte kNotBooleanMask = ~1;
9072 static const byte kTheHole = 2;
9073 static const byte kNull = 3;
9074 static const byte kArgumentMarker = 4;
9075 static const byte kUndefined = 5;
9076 static const byte kUninitialized = 6;
9077 static const byte kOther = 7;
9078 static const byte kException = 8;
9080 typedef FixedBodyDescriptor<kToStringOffset, kTypeOfOffset + kPointerSize,
9081 kSize> BodyDescriptor;
9083 STATIC_ASSERT(kKindOffset == Internals::kOddballKindOffset);
9084 STATIC_ASSERT(kNull == Internals::kNullOddballKind);
9085 STATIC_ASSERT(kUndefined == Internals::kUndefinedOddballKind);
9088 DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
9092 class Cell: public HeapObject {
9094 // [value]: value of the cell.
9095 DECL_ACCESSORS(value, Object)
9099 static inline Cell* FromValueAddress(Address value) {
9100 Object* result = FromAddress(value - kValueOffset);
9101 return static_cast<Cell*>(result);
9104 inline Address ValueAddress() {
9105 return address() + kValueOffset;
9108 // Dispatched behavior.
9109 DECLARE_PRINTER(Cell)
9110 DECLARE_VERIFIER(Cell)
9112 // Layout description.
9113 static const int kValueOffset = HeapObject::kHeaderSize;
9114 static const int kSize = kValueOffset + kPointerSize;
9116 typedef FixedBodyDescriptor<kValueOffset,
9117 kValueOffset + kPointerSize,
9118 kSize> BodyDescriptor;
9121 DISALLOW_IMPLICIT_CONSTRUCTORS(Cell);
9125 class PropertyCell : public HeapObject {
9127 // [property_details]: details of the global property.
9128 DECL_ACCESSORS(property_details_raw, Object)
9129 // [value]: value of the global property.
9130 DECL_ACCESSORS(value, Object)
9131 // [dependent_code]: dependent code that depends on the type of the global
9133 DECL_ACCESSORS(dependent_code, DependentCode)
9135 inline PropertyDetails property_details();
9136 inline void set_property_details(PropertyDetails details);
9138 PropertyCellConstantType GetConstantType();
9140 // Computes the new type of the cell's contents for the given value, but
9141 // without actually modifying the details.
9142 static PropertyCellType UpdatedType(Handle<PropertyCell> cell,
9143 Handle<Object> value,
9144 PropertyDetails details);
9145 static void UpdateCell(Handle<GlobalDictionary> dictionary, int entry,
9146 Handle<Object> value, PropertyDetails details);
9148 static Handle<PropertyCell> InvalidateEntry(
9149 Handle<GlobalDictionary> dictionary, int entry);
9151 static void SetValueWithInvalidation(Handle<PropertyCell> cell,
9152 Handle<Object> new_value);
9154 DECLARE_CAST(PropertyCell)
9156 // Dispatched behavior.
9157 DECLARE_PRINTER(PropertyCell)
9158 DECLARE_VERIFIER(PropertyCell)
9160 // Layout description.
9161 static const int kDetailsOffset = HeapObject::kHeaderSize;
9162 static const int kValueOffset = kDetailsOffset + kPointerSize;
9163 static const int kDependentCodeOffset = kValueOffset + kPointerSize;
9164 static const int kSize = kDependentCodeOffset + kPointerSize;
9166 static const int kPointerFieldsBeginOffset = kValueOffset;
9167 static const int kPointerFieldsEndOffset = kSize;
9169 typedef FixedBodyDescriptor<kValueOffset,
9171 kSize> BodyDescriptor;
9174 DISALLOW_IMPLICIT_CONSTRUCTORS(PropertyCell);
9178 class WeakCell : public HeapObject {
9180 inline Object* value() const;
9182 // This should not be called by anyone except GC.
9183 inline void clear();
9185 // This should not be called by anyone except allocator.
9186 inline void initialize(HeapObject* value);
9188 inline bool cleared() const;
9190 DECL_ACCESSORS(next, Object)
9192 inline void clear_next(Heap* heap);
9194 inline bool next_cleared();
9196 DECLARE_CAST(WeakCell)
9198 DECLARE_PRINTER(WeakCell)
9199 DECLARE_VERIFIER(WeakCell)
9201 // Layout description.
9202 static const int kValueOffset = HeapObject::kHeaderSize;
9203 static const int kNextOffset = kValueOffset + kPointerSize;
9204 static const int kSize = kNextOffset + kPointerSize;
9206 typedef FixedBodyDescriptor<kValueOffset, kSize, kSize> BodyDescriptor;
9209 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakCell);
9213 // The JSProxy describes EcmaScript Harmony proxies
9214 class JSProxy: public JSReceiver {
9216 // [handler]: The handler property.
9217 DECL_ACCESSORS(handler, Object)
9219 // [hash]: The hash code property (undefined if not initialized yet).
9220 DECL_ACCESSORS(hash, Object)
9222 DECLARE_CAST(JSProxy)
9224 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithHandler(
9225 Handle<JSProxy> proxy,
9226 Handle<Object> receiver,
9229 // If the handler defines an accessor property with a setter, invoke it.
9230 // If it defines an accessor property without a setter, or a data property
9231 // that is read-only, throw. In all these cases set '*done' to true,
9232 // otherwise set it to false.
9234 static MaybeHandle<Object> SetPropertyViaPrototypesWithHandler(
9235 Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
9236 Handle<Object> value, LanguageMode language_mode, bool* done);
9238 MUST_USE_RESULT static Maybe<PropertyAttributes>
9239 GetPropertyAttributesWithHandler(Handle<JSProxy> proxy,
9240 Handle<Object> receiver,
9242 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithHandler(
9243 Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
9244 Handle<Object> value, LanguageMode language_mode);
9246 // Turn the proxy into an (empty) JSObject.
9247 static void Fix(Handle<JSProxy> proxy);
9249 // Initializes the body after the handler slot.
9250 inline void InitializeBody(int object_size, Object* value);
9252 // Invoke a trap by name. If the trap does not exist on this's handler,
9253 // but derived_trap is non-NULL, invoke that instead. May cause GC.
9254 MUST_USE_RESULT static MaybeHandle<Object> CallTrap(
9255 Handle<JSProxy> proxy,
9257 Handle<Object> derived_trap,
9259 Handle<Object> args[]);
9261 // Dispatched behavior.
9262 DECLARE_PRINTER(JSProxy)
9263 DECLARE_VERIFIER(JSProxy)
9265 // Layout description. We add padding so that a proxy has the same
9266 // size as a virgin JSObject. This is essential for becoming a JSObject
9268 static const int kHandlerOffset = HeapObject::kHeaderSize;
9269 static const int kHashOffset = kHandlerOffset + kPointerSize;
9270 static const int kPaddingOffset = kHashOffset + kPointerSize;
9271 static const int kSize = JSObject::kHeaderSize;
9272 static const int kHeaderSize = kPaddingOffset;
9273 static const int kPaddingSize = kSize - kPaddingOffset;
9275 STATIC_ASSERT(kPaddingSize >= 0);
9277 typedef FixedBodyDescriptor<kHandlerOffset,
9279 kSize> BodyDescriptor;
9282 friend class JSReceiver;
9284 MUST_USE_RESULT static Maybe<bool> HasPropertyWithHandler(
9285 Handle<JSProxy> proxy, Handle<Name> name);
9287 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithHandler(
9288 Handle<JSProxy> proxy, Handle<Name> name, LanguageMode language_mode);
9290 MUST_USE_RESULT Object* GetIdentityHash();
9292 static Handle<Smi> GetOrCreateIdentityHash(Handle<JSProxy> proxy);
9294 DISALLOW_IMPLICIT_CONSTRUCTORS(JSProxy);
9298 class JSFunctionProxy: public JSProxy {
9300 // [call_trap]: The call trap.
9301 DECL_ACCESSORS(call_trap, Object)
9303 // [construct_trap]: The construct trap.
9304 DECL_ACCESSORS(construct_trap, Object)
9306 DECLARE_CAST(JSFunctionProxy)
9308 // Dispatched behavior.
9309 DECLARE_PRINTER(JSFunctionProxy)
9310 DECLARE_VERIFIER(JSFunctionProxy)
9312 // Layout description.
9313 static const int kCallTrapOffset = JSProxy::kPaddingOffset;
9314 static const int kConstructTrapOffset = kCallTrapOffset + kPointerSize;
9315 static const int kPaddingOffset = kConstructTrapOffset + kPointerSize;
9316 static const int kSize = JSFunction::kSize;
9317 static const int kPaddingSize = kSize - kPaddingOffset;
9319 STATIC_ASSERT(kPaddingSize >= 0);
9321 typedef FixedBodyDescriptor<kHandlerOffset,
9322 kConstructTrapOffset + kPointerSize,
9323 kSize> BodyDescriptor;
9326 DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunctionProxy);
9330 class JSCollection : public JSObject {
9332 // [table]: the backing hash table
9333 DECL_ACCESSORS(table, Object)
9335 static const int kTableOffset = JSObject::kHeaderSize;
9336 static const int kSize = kTableOffset + kPointerSize;
9339 DISALLOW_IMPLICIT_CONSTRUCTORS(JSCollection);
9343 // The JSSet describes EcmaScript Harmony sets
9344 class JSSet : public JSCollection {
9348 static void Initialize(Handle<JSSet> set, Isolate* isolate);
9349 static void Clear(Handle<JSSet> set);
9351 // Dispatched behavior.
9352 DECLARE_PRINTER(JSSet)
9353 DECLARE_VERIFIER(JSSet)
9356 DISALLOW_IMPLICIT_CONSTRUCTORS(JSSet);
9360 // The JSMap describes EcmaScript Harmony maps
9361 class JSMap : public JSCollection {
9365 static void Initialize(Handle<JSMap> map, Isolate* isolate);
9366 static void Clear(Handle<JSMap> map);
9368 // Dispatched behavior.
9369 DECLARE_PRINTER(JSMap)
9370 DECLARE_VERIFIER(JSMap)
9373 DISALLOW_IMPLICIT_CONSTRUCTORS(JSMap);
9377 // OrderedHashTableIterator is an iterator that iterates over the keys and
9378 // values of an OrderedHashTable.
9380 // The iterator has a reference to the underlying OrderedHashTable data,
9381 // [table], as well as the current [index] the iterator is at.
9383 // When the OrderedHashTable is rehashed it adds a reference from the old table
9384 // to the new table as well as storing enough data about the changes so that the
9385 // iterator [index] can be adjusted accordingly.
9387 // When the [Next] result from the iterator is requested, the iterator checks if
9388 // there is a newer table that it needs to transition to.
9389 template<class Derived, class TableType>
9390 class OrderedHashTableIterator: public JSObject {
9392 // [table]: the backing hash table mapping keys to values.
9393 DECL_ACCESSORS(table, Object)
9395 // [index]: The index into the data table.
9396 DECL_ACCESSORS(index, Object)
9398 // [kind]: The kind of iteration this is. One of the [Kind] enum values.
9399 DECL_ACCESSORS(kind, Object)
9402 void OrderedHashTableIteratorPrint(std::ostream& os); // NOLINT
9405 static const int kTableOffset = JSObject::kHeaderSize;
9406 static const int kIndexOffset = kTableOffset + kPointerSize;
9407 static const int kKindOffset = kIndexOffset + kPointerSize;
9408 static const int kSize = kKindOffset + kPointerSize;
9416 // Whether the iterator has more elements. This needs to be called before
9417 // calling |CurrentKey| and/or |CurrentValue|.
9420 // Move the index forward one.
9422 set_index(Smi::FromInt(Smi::cast(index())->value() + 1));
9425 // Populates the array with the next key and value and then moves the iterator
9427 // This returns the |kind| or 0 if the iterator is already at the end.
9428 Smi* Next(JSArray* value_array);
9430 // Returns the current key of the iterator. This should only be called when
9431 // |HasMore| returns true.
9432 inline Object* CurrentKey();
9435 // Transitions the iterator to the non obsolete backing store. This is a NOP
9436 // if the [table] is not obsolete.
9439 DISALLOW_IMPLICIT_CONSTRUCTORS(OrderedHashTableIterator);
9443 class JSSetIterator: public OrderedHashTableIterator<JSSetIterator,
9446 // Dispatched behavior.
9447 DECLARE_PRINTER(JSSetIterator)
9448 DECLARE_VERIFIER(JSSetIterator)
9450 DECLARE_CAST(JSSetIterator)
9452 // Called by |Next| to populate the array. This allows the subclasses to
9453 // populate the array differently.
9454 inline void PopulateValueArray(FixedArray* array);
9457 DISALLOW_IMPLICIT_CONSTRUCTORS(JSSetIterator);
9461 class JSMapIterator: public OrderedHashTableIterator<JSMapIterator,
9464 // Dispatched behavior.
9465 DECLARE_PRINTER(JSMapIterator)
9466 DECLARE_VERIFIER(JSMapIterator)
9468 DECLARE_CAST(JSMapIterator)
9470 // Called by |Next| to populate the array. This allows the subclasses to
9471 // populate the array differently.
9472 inline void PopulateValueArray(FixedArray* array);
9475 // Returns the current value of the iterator. This should only be called when
9476 // |HasMore| returns true.
9477 inline Object* CurrentValue();
9479 DISALLOW_IMPLICIT_CONSTRUCTORS(JSMapIterator);
9483 // Base class for both JSWeakMap and JSWeakSet
9484 class JSWeakCollection: public JSObject {
9486 // [table]: the backing hash table mapping keys to values.
9487 DECL_ACCESSORS(table, Object)
9489 // [next]: linked list of encountered weak maps during GC.
9490 DECL_ACCESSORS(next, Object)
9492 static void Initialize(Handle<JSWeakCollection> collection, Isolate* isolate);
9493 static void Set(Handle<JSWeakCollection> collection, Handle<Object> key,
9494 Handle<Object> value, int32_t hash);
9495 static bool Delete(Handle<JSWeakCollection> collection, Handle<Object> key,
9498 static const int kTableOffset = JSObject::kHeaderSize;
9499 static const int kNextOffset = kTableOffset + kPointerSize;
9500 static const int kSize = kNextOffset + kPointerSize;
9503 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakCollection);
9507 // The JSWeakMap describes EcmaScript Harmony weak maps
9508 class JSWeakMap: public JSWeakCollection {
9510 DECLARE_CAST(JSWeakMap)
9512 // Dispatched behavior.
9513 DECLARE_PRINTER(JSWeakMap)
9514 DECLARE_VERIFIER(JSWeakMap)
9517 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakMap);
9521 // The JSWeakSet describes EcmaScript Harmony weak sets
9522 class JSWeakSet: public JSWeakCollection {
9524 DECLARE_CAST(JSWeakSet)
9526 // Dispatched behavior.
9527 DECLARE_PRINTER(JSWeakSet)
9528 DECLARE_VERIFIER(JSWeakSet)
9531 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakSet);
9535 // Whether a JSArrayBuffer is a SharedArrayBuffer or not.
9536 enum class SharedFlag { kNotShared, kShared };
9539 class JSArrayBuffer: public JSObject {
9541 // [backing_store]: backing memory for this array
9542 DECL_ACCESSORS(backing_store, void)
9544 // [byte_length]: length in bytes
9545 DECL_ACCESSORS(byte_length, Object)
9547 inline uint32_t bit_field() const;
9548 inline void set_bit_field(uint32_t bits);
9550 inline bool is_external();
9551 inline void set_is_external(bool value);
9553 inline bool is_neuterable();
9554 inline void set_is_neuterable(bool value);
9556 inline bool was_neutered();
9557 inline void set_was_neutered(bool value);
9559 inline bool is_shared();
9560 inline void set_is_shared(bool value);
9562 DECLARE_CAST(JSArrayBuffer)
9566 static void Setup(Handle<JSArrayBuffer> array_buffer, Isolate* isolate,
9567 bool is_external, void* data, size_t allocated_length,
9568 SharedFlag shared = SharedFlag::kNotShared);
9570 static bool SetupAllocatingData(Handle<JSArrayBuffer> array_buffer,
9571 Isolate* isolate, size_t allocated_length,
9572 bool initialize = true,
9573 SharedFlag shared = SharedFlag::kNotShared);
9575 // Dispatched behavior.
9576 DECLARE_PRINTER(JSArrayBuffer)
9577 DECLARE_VERIFIER(JSArrayBuffer)
9579 static const int kBackingStoreOffset = JSObject::kHeaderSize;
9580 static const int kByteLengthOffset = kBackingStoreOffset + kPointerSize;
9581 static const int kBitFieldSlot = kByteLengthOffset + kPointerSize;
9582 #if V8_TARGET_LITTLE_ENDIAN || !V8_HOST_ARCH_64_BIT
9583 static const int kBitFieldOffset = kBitFieldSlot;
9585 static const int kBitFieldOffset = kBitFieldSlot + kIntSize;
9587 static const int kSize = kBitFieldSlot + kPointerSize;
9589 static const int kSizeWithInternalFields =
9590 kSize + v8::ArrayBuffer::kInternalFieldCount * kPointerSize;
9592 class IsExternal : public BitField<bool, 1, 1> {};
9593 class IsNeuterable : public BitField<bool, 2, 1> {};
9594 class WasNeutered : public BitField<bool, 3, 1> {};
9595 class IsShared : public BitField<bool, 4, 1> {};
9598 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBuffer);
9602 class JSArrayBufferView: public JSObject {
9604 // [buffer]: ArrayBuffer that this typed array views.
9605 DECL_ACCESSORS(buffer, Object)
9607 // [byte_offset]: offset of typed array in bytes.
9608 DECL_ACCESSORS(byte_offset, Object)
9610 // [byte_length]: length of typed array in bytes.
9611 DECL_ACCESSORS(byte_length, Object)
9613 DECLARE_CAST(JSArrayBufferView)
9615 DECLARE_VERIFIER(JSArrayBufferView)
9617 inline bool WasNeutered() const;
9619 static const int kBufferOffset = JSObject::kHeaderSize;
9620 static const int kByteOffsetOffset = kBufferOffset + kPointerSize;
9621 static const int kByteLengthOffset = kByteOffsetOffset + kPointerSize;
9622 static const int kViewSize = kByteLengthOffset + kPointerSize;
9626 DECL_ACCESSORS(raw_byte_offset, Object)
9627 DECL_ACCESSORS(raw_byte_length, Object)
9630 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBufferView);
9634 class JSTypedArray: public JSArrayBufferView {
9636 // [length]: length of typed array in elements.
9637 DECL_ACCESSORS(length, Object)
9638 inline uint32_t length_value() const;
9640 DECLARE_CAST(JSTypedArray)
9642 ExternalArrayType type();
9643 size_t element_size();
9645 Handle<JSArrayBuffer> GetBuffer();
9647 // Dispatched behavior.
9648 DECLARE_PRINTER(JSTypedArray)
9649 DECLARE_VERIFIER(JSTypedArray)
9651 static const int kLengthOffset = kViewSize + kPointerSize;
9652 static const int kSize = kLengthOffset + kPointerSize;
9654 static const int kSizeWithInternalFields =
9655 kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
9658 static Handle<JSArrayBuffer> MaterializeArrayBuffer(
9659 Handle<JSTypedArray> typed_array);
9661 DECL_ACCESSORS(raw_length, Object)
9664 DISALLOW_IMPLICIT_CONSTRUCTORS(JSTypedArray);
9668 class JSDataView: public JSArrayBufferView {
9670 DECLARE_CAST(JSDataView)
9672 // Dispatched behavior.
9673 DECLARE_PRINTER(JSDataView)
9674 DECLARE_VERIFIER(JSDataView)
9676 static const int kSize = kViewSize;
9678 static const int kSizeWithInternalFields =
9679 kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
9682 DISALLOW_IMPLICIT_CONSTRUCTORS(JSDataView);
9686 // Foreign describes objects pointing from JavaScript to C structures.
9687 class Foreign: public HeapObject {
9689 // [address]: field containing the address.
9690 inline Address foreign_address();
9691 inline void set_foreign_address(Address value);
9693 DECLARE_CAST(Foreign)
9695 // Dispatched behavior.
9696 inline void ForeignIterateBody(ObjectVisitor* v);
9698 template<typename StaticVisitor>
9699 inline void ForeignIterateBody();
9701 // Dispatched behavior.
9702 DECLARE_PRINTER(Foreign)
9703 DECLARE_VERIFIER(Foreign)
9705 // Layout description.
9707 static const int kForeignAddressOffset = HeapObject::kHeaderSize;
9708 static const int kSize = kForeignAddressOffset + kPointerSize;
9710 STATIC_ASSERT(kForeignAddressOffset == Internals::kForeignAddressOffset);
9713 DISALLOW_IMPLICIT_CONSTRUCTORS(Foreign);
9717 // The JSArray describes JavaScript Arrays
9718 // Such an array can be in one of two modes:
9719 // - fast, backing storage is a FixedArray and length <= elements.length();
9720 // Please note: push and pop can be used to grow and shrink the array.
9721 // - slow, backing storage is a HashTable with numbers as keys.
9722 class JSArray: public JSObject {
9724 // [length]: The length property.
9725 DECL_ACCESSORS(length, Object)
9727 // Overload the length setter to skip write barrier when the length
9728 // is set to a smi. This matches the set function on FixedArray.
9729 inline void set_length(Smi* length);
9731 static bool HasReadOnlyLength(Handle<JSArray> array);
9732 static bool WouldChangeReadOnlyLength(Handle<JSArray> array, uint32_t index);
9733 static MaybeHandle<Object> ReadOnlyLengthError(Handle<JSArray> array);
9735 // Initialize the array with the given capacity. The function may
9736 // fail due to out-of-memory situations, but only if the requested
9737 // capacity is non-zero.
9738 static void Initialize(Handle<JSArray> array, int capacity, int length = 0);
9740 // If the JSArray has fast elements, and new_length would result in
9741 // normalization, returns true.
9742 bool SetLengthWouldNormalize(uint32_t new_length);
9743 static inline bool SetLengthWouldNormalize(Heap* heap, uint32_t new_length);
9745 // Initializes the array to a certain length.
9746 inline bool AllowsSetLength();
9748 static void SetLength(Handle<JSArray> array, uint32_t length);
9749 // Same as above but will also queue splice records if |array| is observed.
9750 static MaybeHandle<Object> ObservableSetLength(Handle<JSArray> array,
9753 // Set the content of the array to the content of storage.
9754 static inline void SetContent(Handle<JSArray> array,
9755 Handle<FixedArrayBase> storage);
9757 DECLARE_CAST(JSArray)
9759 // Dispatched behavior.
9760 DECLARE_PRINTER(JSArray)
9761 DECLARE_VERIFIER(JSArray)
9763 // Number of element slots to pre-allocate for an empty array.
9764 static const int kPreallocatedArrayElements = 4;
9766 // Layout description.
9767 static const int kLengthOffset = JSObject::kHeaderSize;
9768 static const int kSize = kLengthOffset + kPointerSize;
9771 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
9775 Handle<Object> CacheInitialJSArrayMaps(Handle<Context> native_context,
9776 Handle<Map> initial_map);
9779 // JSRegExpResult is just a JSArray with a specific initial map.
9780 // This initial map adds in-object properties for "index" and "input"
9781 // properties, as assigned by RegExp.prototype.exec, which allows
9782 // faster creation of RegExp exec results.
9783 // This class just holds constants used when creating the result.
9784 // After creation the result must be treated as a JSArray in all regards.
9785 class JSRegExpResult: public JSArray {
9787 // Offsets of object fields.
9788 static const int kIndexOffset = JSArray::kSize;
9789 static const int kInputOffset = kIndexOffset + kPointerSize;
9790 static const int kSize = kInputOffset + kPointerSize;
9791 // Indices of in-object properties.
9792 static const int kIndexIndex = 0;
9793 static const int kInputIndex = 1;
9795 DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
9799 class AccessorInfo: public Struct {
9801 DECL_ACCESSORS(name, Object)
9802 DECL_ACCESSORS(flag, Smi)
9803 DECL_ACCESSORS(expected_receiver_type, Object)
9805 inline bool all_can_read();
9806 inline void set_all_can_read(bool value);
9808 inline bool all_can_write();
9809 inline void set_all_can_write(bool value);
9811 inline bool is_special_data_property();
9812 inline void set_is_special_data_property(bool value);
9814 inline PropertyAttributes property_attributes();
9815 inline void set_property_attributes(PropertyAttributes attributes);
9817 // Checks whether the given receiver is compatible with this accessor.
9818 static bool IsCompatibleReceiverMap(Isolate* isolate,
9819 Handle<AccessorInfo> info,
9821 inline bool IsCompatibleReceiver(Object* receiver);
9823 DECLARE_CAST(AccessorInfo)
9825 // Dispatched behavior.
9826 DECLARE_VERIFIER(AccessorInfo)
9828 // Append all descriptors to the array that are not already there.
9829 // Return number added.
9830 static int AppendUnique(Handle<Object> descriptors,
9831 Handle<FixedArray> array,
9832 int valid_descriptors);
9834 static const int kNameOffset = HeapObject::kHeaderSize;
9835 static const int kFlagOffset = kNameOffset + kPointerSize;
9836 static const int kExpectedReceiverTypeOffset = kFlagOffset + kPointerSize;
9837 static const int kSize = kExpectedReceiverTypeOffset + kPointerSize;
9840 inline bool HasExpectedReceiverType();
9842 // Bit positions in flag.
9843 static const int kAllCanReadBit = 0;
9844 static const int kAllCanWriteBit = 1;
9845 static const int kSpecialDataProperty = 2;
9846 class AttributesField : public BitField<PropertyAttributes, 3, 3> {};
9848 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
9852 // An accessor must have a getter, but can have no setter.
9854 // When setting a property, V8 searches accessors in prototypes.
9855 // If an accessor was found and it does not have a setter,
9856 // the request is ignored.
9858 // If the accessor in the prototype has the READ_ONLY property attribute, then
9859 // a new value is added to the derived object when the property is set.
9860 // This shadows the accessor in the prototype.
9861 class ExecutableAccessorInfo: public AccessorInfo {
9863 DECL_ACCESSORS(getter, Object)
9864 DECL_ACCESSORS(setter, Object)
9865 DECL_ACCESSORS(data, Object)
9867 DECLARE_CAST(ExecutableAccessorInfo)
9869 // Dispatched behavior.
9870 DECLARE_PRINTER(ExecutableAccessorInfo)
9871 DECLARE_VERIFIER(ExecutableAccessorInfo)
9873 static const int kGetterOffset = AccessorInfo::kSize;
9874 static const int kSetterOffset = kGetterOffset + kPointerSize;
9875 static const int kDataOffset = kSetterOffset + kPointerSize;
9876 static const int kSize = kDataOffset + kPointerSize;
9878 static void ClearSetter(Handle<ExecutableAccessorInfo> info);
9881 DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutableAccessorInfo);
9885 // Support for JavaScript accessors: A pair of a getter and a setter. Each
9886 // accessor can either be
9887 // * a pointer to a JavaScript function or proxy: a real accessor
9888 // * undefined: considered an accessor by the spec, too, strangely enough
9889 // * the hole: an accessor which has not been set
9890 // * a pointer to a map: a transition used to ensure map sharing
9891 class AccessorPair: public Struct {
9893 DECL_ACCESSORS(getter, Object)
9894 DECL_ACCESSORS(setter, Object)
9896 DECLARE_CAST(AccessorPair)
9898 static Handle<AccessorPair> Copy(Handle<AccessorPair> pair);
9900 inline Object* get(AccessorComponent component);
9901 inline void set(AccessorComponent component, Object* value);
9903 // Note: Returns undefined instead in case of a hole.
9904 Object* GetComponent(AccessorComponent component);
9906 // Set both components, skipping arguments which are a JavaScript null.
9907 inline void SetComponents(Object* getter, Object* setter);
9909 inline bool Equals(AccessorPair* pair);
9910 inline bool Equals(Object* getter_value, Object* setter_value);
9912 inline bool ContainsAccessor();
9914 // Dispatched behavior.
9915 DECLARE_PRINTER(AccessorPair)
9916 DECLARE_VERIFIER(AccessorPair)
9918 static const int kGetterOffset = HeapObject::kHeaderSize;
9919 static const int kSetterOffset = kGetterOffset + kPointerSize;
9920 static const int kSize = kSetterOffset + kPointerSize;
9923 // Strangely enough, in addition to functions and harmony proxies, the spec
9924 // requires us to consider undefined as a kind of accessor, too:
9926 // Object.defineProperty(obj, "foo", {get: undefined});
9927 // assertTrue("foo" in obj);
9928 inline bool IsJSAccessor(Object* obj);
9930 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorPair);
9934 class AccessCheckInfo: public Struct {
9936 DECL_ACCESSORS(named_callback, Object)
9937 DECL_ACCESSORS(indexed_callback, Object)
9938 DECL_ACCESSORS(data, Object)
9940 DECLARE_CAST(AccessCheckInfo)
9942 // Dispatched behavior.
9943 DECLARE_PRINTER(AccessCheckInfo)
9944 DECLARE_VERIFIER(AccessCheckInfo)
9946 static const int kNamedCallbackOffset = HeapObject::kHeaderSize;
9947 static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
9948 static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
9949 static const int kSize = kDataOffset + kPointerSize;
9952 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
9956 class InterceptorInfo: public Struct {
9958 DECL_ACCESSORS(getter, Object)
9959 DECL_ACCESSORS(setter, Object)
9960 DECL_ACCESSORS(query, Object)
9961 DECL_ACCESSORS(deleter, Object)
9962 DECL_ACCESSORS(enumerator, Object)
9963 DECL_ACCESSORS(data, Object)
9964 DECL_BOOLEAN_ACCESSORS(can_intercept_symbols)
9965 DECL_BOOLEAN_ACCESSORS(all_can_read)
9966 DECL_BOOLEAN_ACCESSORS(non_masking)
9968 inline int flags() const;
9969 inline void set_flags(int flags);
9971 DECLARE_CAST(InterceptorInfo)
9973 // Dispatched behavior.
9974 DECLARE_PRINTER(InterceptorInfo)
9975 DECLARE_VERIFIER(InterceptorInfo)
9977 static const int kGetterOffset = HeapObject::kHeaderSize;
9978 static const int kSetterOffset = kGetterOffset + kPointerSize;
9979 static const int kQueryOffset = kSetterOffset + kPointerSize;
9980 static const int kDeleterOffset = kQueryOffset + kPointerSize;
9981 static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
9982 static const int kDataOffset = kEnumeratorOffset + kPointerSize;
9983 static const int kFlagsOffset = kDataOffset + kPointerSize;
9984 static const int kSize = kFlagsOffset + kPointerSize;
9986 static const int kCanInterceptSymbolsBit = 0;
9987 static const int kAllCanReadBit = 1;
9988 static const int kNonMasking = 2;
9991 DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
9995 class CallHandlerInfo: public Struct {
9997 DECL_ACCESSORS(callback, Object)
9998 DECL_ACCESSORS(data, Object)
10000 DECLARE_CAST(CallHandlerInfo)
10002 // Dispatched behavior.
10003 DECLARE_PRINTER(CallHandlerInfo)
10004 DECLARE_VERIFIER(CallHandlerInfo)
10006 static const int kCallbackOffset = HeapObject::kHeaderSize;
10007 static const int kDataOffset = kCallbackOffset + kPointerSize;
10008 static const int kSize = kDataOffset + kPointerSize;
10011 DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
10015 class TemplateInfo: public Struct {
10017 DECL_ACCESSORS(tag, Object)
10018 inline int number_of_properties() const;
10019 inline void set_number_of_properties(int value);
10020 DECL_ACCESSORS(property_list, Object)
10021 DECL_ACCESSORS(property_accessors, Object)
10023 DECLARE_VERIFIER(TemplateInfo)
10025 static const int kTagOffset = HeapObject::kHeaderSize;
10026 static const int kNumberOfProperties = kTagOffset + kPointerSize;
10027 static const int kPropertyListOffset = kNumberOfProperties + kPointerSize;
10028 static const int kPropertyAccessorsOffset =
10029 kPropertyListOffset + kPointerSize;
10030 static const int kHeaderSize = kPropertyAccessorsOffset + kPointerSize;
10033 DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
10037 class FunctionTemplateInfo: public TemplateInfo {
10039 DECL_ACCESSORS(serial_number, Object)
10040 DECL_ACCESSORS(call_code, Object)
10041 DECL_ACCESSORS(prototype_template, Object)
10042 DECL_ACCESSORS(parent_template, Object)
10043 DECL_ACCESSORS(named_property_handler, Object)
10044 DECL_ACCESSORS(indexed_property_handler, Object)
10045 DECL_ACCESSORS(instance_template, Object)
10046 DECL_ACCESSORS(class_name, Object)
10047 DECL_ACCESSORS(signature, Object)
10048 DECL_ACCESSORS(instance_call_handler, Object)
10049 DECL_ACCESSORS(access_check_info, Object)
10050 DECL_ACCESSORS(flag, Smi)
10052 inline int length() const;
10053 inline void set_length(int value);
10055 // Following properties use flag bits.
10056 DECL_BOOLEAN_ACCESSORS(hidden_prototype)
10057 DECL_BOOLEAN_ACCESSORS(undetectable)
10058 // If the bit is set, object instances created by this function
10059 // requires access check.
10060 DECL_BOOLEAN_ACCESSORS(needs_access_check)
10061 DECL_BOOLEAN_ACCESSORS(read_only_prototype)
10062 DECL_BOOLEAN_ACCESSORS(remove_prototype)
10063 DECL_BOOLEAN_ACCESSORS(do_not_cache)
10064 DECL_BOOLEAN_ACCESSORS(instantiated)
10065 DECL_BOOLEAN_ACCESSORS(accept_any_receiver)
10067 DECLARE_CAST(FunctionTemplateInfo)
10069 // Dispatched behavior.
10070 DECLARE_PRINTER(FunctionTemplateInfo)
10071 DECLARE_VERIFIER(FunctionTemplateInfo)
10073 static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
10074 static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
10075 static const int kPrototypeTemplateOffset =
10076 kCallCodeOffset + kPointerSize;
10077 static const int kParentTemplateOffset =
10078 kPrototypeTemplateOffset + kPointerSize;
10079 static const int kNamedPropertyHandlerOffset =
10080 kParentTemplateOffset + kPointerSize;
10081 static const int kIndexedPropertyHandlerOffset =
10082 kNamedPropertyHandlerOffset + kPointerSize;
10083 static const int kInstanceTemplateOffset =
10084 kIndexedPropertyHandlerOffset + kPointerSize;
10085 static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
10086 static const int kSignatureOffset = kClassNameOffset + kPointerSize;
10087 static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
10088 static const int kAccessCheckInfoOffset =
10089 kInstanceCallHandlerOffset + kPointerSize;
10090 static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
10091 static const int kLengthOffset = kFlagOffset + kPointerSize;
10092 static const int kSize = kLengthOffset + kPointerSize;
10094 // Returns true if |object| is an instance of this function template.
10095 bool IsTemplateFor(Object* object);
10096 bool IsTemplateFor(Map* map);
10098 // Returns the holder JSObject if the function can legally be called with this
10099 // receiver. Returns Heap::null_value() if the call is illegal.
10100 Object* GetCompatibleReceiver(Isolate* isolate, Object* receiver);
10103 // Bit position in the flag, from least significant bit position.
10104 static const int kHiddenPrototypeBit = 0;
10105 static const int kUndetectableBit = 1;
10106 static const int kNeedsAccessCheckBit = 2;
10107 static const int kReadOnlyPrototypeBit = 3;
10108 static const int kRemovePrototypeBit = 4;
10109 static const int kDoNotCacheBit = 5;
10110 static const int kInstantiatedBit = 6;
10111 static const int kAcceptAnyReceiver = 7;
10113 DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
10117 class ObjectTemplateInfo: public TemplateInfo {
10119 DECL_ACCESSORS(constructor, Object)
10120 DECL_ACCESSORS(internal_field_count, Object)
10122 DECLARE_CAST(ObjectTemplateInfo)
10124 // Dispatched behavior.
10125 DECLARE_PRINTER(ObjectTemplateInfo)
10126 DECLARE_VERIFIER(ObjectTemplateInfo)
10128 static const int kConstructorOffset = TemplateInfo::kHeaderSize;
10129 static const int kInternalFieldCountOffset =
10130 kConstructorOffset + kPointerSize;
10131 static const int kSize = kInternalFieldCountOffset + kPointerSize;
10135 class TypeSwitchInfo: public Struct {
10137 DECL_ACCESSORS(types, Object)
10139 DECLARE_CAST(TypeSwitchInfo)
10141 // Dispatched behavior.
10142 DECLARE_PRINTER(TypeSwitchInfo)
10143 DECLARE_VERIFIER(TypeSwitchInfo)
10145 static const int kTypesOffset = Struct::kHeaderSize;
10146 static const int kSize = kTypesOffset + kPointerSize;
10150 // The DebugInfo class holds additional information for a function being
10152 class DebugInfo: public Struct {
10154 // The shared function info for the source being debugged.
10155 DECL_ACCESSORS(shared, SharedFunctionInfo)
10156 // Code object for the patched code. This code object is the code object
10157 // currently active for the function.
10158 DECL_ACCESSORS(code, Code)
10159 // Fixed array holding status information for each active break point.
10160 DECL_ACCESSORS(break_points, FixedArray)
10162 // Check if there is a break point at a code position.
10163 bool HasBreakPoint(int code_position);
10164 // Get the break point info object for a code position.
10165 Object* GetBreakPointInfo(int code_position);
10166 // Clear a break point.
10167 static void ClearBreakPoint(Handle<DebugInfo> debug_info,
10169 Handle<Object> break_point_object);
10170 // Set a break point.
10171 static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
10172 int source_position, int statement_position,
10173 Handle<Object> break_point_object);
10174 // Get the break point objects for a code position.
10175 Handle<Object> GetBreakPointObjects(int code_position);
10176 // Find the break point info holding this break point object.
10177 static Handle<Object> FindBreakPointInfo(Handle<DebugInfo> debug_info,
10178 Handle<Object> break_point_object);
10179 // Get the number of break points for this function.
10180 int GetBreakPointCount();
10182 DECLARE_CAST(DebugInfo)
10184 // Dispatched behavior.
10185 DECLARE_PRINTER(DebugInfo)
10186 DECLARE_VERIFIER(DebugInfo)
10188 static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
10189 static const int kCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
10190 static const int kBreakPointsStateIndex = kCodeIndex + kPointerSize;
10191 static const int kSize = kBreakPointsStateIndex + kPointerSize;
10193 static const int kEstimatedNofBreakPointsInFunction = 16;
10196 static const int kNoBreakPointInfo = -1;
10198 // Lookup the index in the break_points array for a code position.
10199 int GetBreakPointInfoIndex(int code_position);
10201 DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
10205 // The BreakPointInfo class holds information for break points set in a
10206 // function. The DebugInfo object holds a BreakPointInfo object for each code
10207 // position with one or more break points.
10208 class BreakPointInfo: public Struct {
10210 // The position in the code for the break point.
10211 DECL_ACCESSORS(code_position, Smi)
10212 // The position in the source for the break position.
10213 DECL_ACCESSORS(source_position, Smi)
10214 // The position in the source for the last statement before this break
10216 DECL_ACCESSORS(statement_position, Smi)
10217 // List of related JavaScript break points.
10218 DECL_ACCESSORS(break_point_objects, Object)
10220 // Removes a break point.
10221 static void ClearBreakPoint(Handle<BreakPointInfo> info,
10222 Handle<Object> break_point_object);
10223 // Set a break point.
10224 static void SetBreakPoint(Handle<BreakPointInfo> info,
10225 Handle<Object> break_point_object);
10226 // Check if break point info has this break point object.
10227 static bool HasBreakPointObject(Handle<BreakPointInfo> info,
10228 Handle<Object> break_point_object);
10229 // Get the number of break points for this code position.
10230 int GetBreakPointCount();
10232 DECLARE_CAST(BreakPointInfo)
10234 // Dispatched behavior.
10235 DECLARE_PRINTER(BreakPointInfo)
10236 DECLARE_VERIFIER(BreakPointInfo)
10238 static const int kCodePositionIndex = Struct::kHeaderSize;
10239 static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
10240 static const int kStatementPositionIndex =
10241 kSourcePositionIndex + kPointerSize;
10242 static const int kBreakPointObjectsIndex =
10243 kStatementPositionIndex + kPointerSize;
10244 static const int kSize = kBreakPointObjectsIndex + kPointerSize;
10247 DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
10251 #undef DECL_BOOLEAN_ACCESSORS
10252 #undef DECL_ACCESSORS
10253 #undef DECLARE_CAST
10254 #undef DECLARE_VERIFIER
10256 #define VISITOR_SYNCHRONIZATION_TAGS_LIST(V) \
10257 V(kStringTable, "string_table", "(Internalized strings)") \
10258 V(kExternalStringsTable, "external_strings_table", "(External strings)") \
10259 V(kStrongRootList, "strong_root_list", "(Strong roots)") \
10260 V(kSmiRootList, "smi_root_list", "(Smi roots)") \
10261 V(kBootstrapper, "bootstrapper", "(Bootstrapper)") \
10262 V(kTop, "top", "(Isolate)") \
10263 V(kRelocatable, "relocatable", "(Relocatable)") \
10264 V(kDebug, "debug", "(Debugger)") \
10265 V(kCompilationCache, "compilationcache", "(Compilation cache)") \
10266 V(kHandleScope, "handlescope", "(Handle scope)") \
10267 V(kBuiltins, "builtins", "(Builtins)") \
10268 V(kGlobalHandles, "globalhandles", "(Global handles)") \
10269 V(kEternalHandles, "eternalhandles", "(Eternal handles)") \
10270 V(kThreadManager, "threadmanager", "(Thread manager)") \
10271 V(kStrongRoots, "strong roots", "(Strong roots)") \
10272 V(kExtensions, "Extensions", "(Extensions)")
10274 class VisitorSynchronization : public AllStatic {
10276 #define DECLARE_ENUM(enum_item, ignore1, ignore2) enum_item,
10278 VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_ENUM)
10281 #undef DECLARE_ENUM
10283 static const char* const kTags[kNumberOfSyncTags];
10284 static const char* const kTagNames[kNumberOfSyncTags];
10287 // Abstract base class for visiting, and optionally modifying, the
10288 // pointers contained in Objects. Used in GC and serialization/deserialization.
10289 class ObjectVisitor BASE_EMBEDDED {
10291 virtual ~ObjectVisitor() {}
10293 // Visits a contiguous arrays of pointers in the half-open range
10294 // [start, end). Any or all of the values may be modified on return.
10295 virtual void VisitPointers(Object** start, Object** end) = 0;
10297 // Handy shorthand for visiting a single pointer.
10298 virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
10300 // Visit weak next_code_link in Code object.
10301 virtual void VisitNextCodeLink(Object** p) { VisitPointers(p, p + 1); }
10303 // To allow lazy clearing of inline caches the visitor has
10304 // a rich interface for iterating over Code objects..
10306 // Visits a code target in the instruction stream.
10307 virtual void VisitCodeTarget(RelocInfo* rinfo);
10309 // Visits a code entry in a JS function.
10310 virtual void VisitCodeEntry(Address entry_address);
10312 // Visits a global property cell reference in the instruction stream.
10313 virtual void VisitCell(RelocInfo* rinfo);
10315 // Visits a runtime entry in the instruction stream.
10316 virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
10318 // Visits the resource of an one-byte or two-byte string.
10319 virtual void VisitExternalOneByteString(
10320 v8::String::ExternalOneByteStringResource** resource) {}
10321 virtual void VisitExternalTwoByteString(
10322 v8::String::ExternalStringResource** resource) {}
10324 // Visits a debug call target in the instruction stream.
10325 virtual void VisitDebugTarget(RelocInfo* rinfo);
10327 // Visits the byte sequence in a function's prologue that contains information
10328 // about the code's age.
10329 virtual void VisitCodeAgeSequence(RelocInfo* rinfo);
10331 // Visit pointer embedded into a code object.
10332 virtual void VisitEmbeddedPointer(RelocInfo* rinfo);
10334 // Visits an external reference embedded into a code object.
10335 virtual void VisitExternalReference(RelocInfo* rinfo);
10337 // Visits an external reference.
10338 virtual void VisitExternalReference(Address* p) {}
10340 // Visits an (encoded) internal reference.
10341 virtual void VisitInternalReference(RelocInfo* rinfo) {}
10343 // Visits a handle that has an embedder-assigned class ID.
10344 virtual void VisitEmbedderReference(Object** p, uint16_t class_id) {}
10346 // Intended for serialization/deserialization checking: insert, or
10347 // check for the presence of, a tag at this position in the stream.
10348 // Also used for marking up GC roots in heap snapshots.
10349 virtual void Synchronize(VisitorSynchronization::SyncTag tag) {}
10353 class StructBodyDescriptor : public
10354 FlexibleBodyDescriptor<HeapObject::kHeaderSize> {
10356 static inline int SizeOf(Map* map, HeapObject* object);
10360 // BooleanBit is a helper class for setting and getting a bit in an
10362 class BooleanBit : public AllStatic {
10364 static inline bool get(Smi* smi, int bit_position) {
10365 return get(smi->value(), bit_position);
10368 static inline bool get(int value, int bit_position) {
10369 return (value & (1 << bit_position)) != 0;
10372 static inline Smi* set(Smi* smi, int bit_position, bool v) {
10373 return Smi::FromInt(set(smi->value(), bit_position, v));
10376 static inline int set(int value, int bit_position, bool v) {
10378 value |= (1 << bit_position);
10380 value &= ~(1 << bit_position);
10386 } } // namespace v8::internal
10388 #endif // V8_OBJECTS_H_