1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
10 #include "src/allocation.h"
11 #include "src/assert-scope.h"
12 #include "src/bailout-reason.h"
13 #include "src/base/bits.h"
14 #include "src/base/smart-pointers.h"
15 #include "src/builtins.h"
16 #include "src/checks.h"
17 #include "src/elements-kind.h"
18 #include "src/field-index.h"
19 #include "src/flags.h"
21 #include "src/property-details.h"
22 #include "src/unicode.h"
23 #include "src/unicode-decoder.h"
26 #if V8_TARGET_ARCH_ARM
27 #include "src/arm/constants-arm.h" // NOLINT
28 #elif V8_TARGET_ARCH_ARM64
29 #include "src/arm64/constants-arm64.h" // NOLINT
30 #elif V8_TARGET_ARCH_MIPS
31 #include "src/mips/constants-mips.h" // NOLINT
32 #elif V8_TARGET_ARCH_MIPS64
33 #include "src/mips64/constants-mips64.h" // NOLINT
34 #elif V8_TARGET_ARCH_PPC
35 #include "src/ppc/constants-ppc.h" // NOLINT
40 // Most object types in the V8 JavaScript are described in this file.
42 // Inheritance hierarchy:
44 // - Smi (immediate small integer)
45 // - HeapObject (superclass for everything allocated in the heap)
46 // - JSReceiver (suitable for property access)
50 // - JSArrayBufferView
63 // - JSGeneratorObject
82 // - CompilationCacheTable
83 // - CodeCacheHashTable
89 // - TypeFeedbackVector
92 // - ScriptContextTable
103 // - ExternalOneByteString
104 // - ExternalTwoByteString
105 // - InternalizedString
106 // - SeqInternalizedString
107 // - SeqOneByteInternalizedString
108 // - SeqTwoByteInternalizedString
109 // - ConsInternalizedString
110 // - ExternalInternalizedString
111 // - ExternalOneByteInternalizedString
112 // - ExternalTwoByteInternalizedString
132 // - SharedFunctionInfo
136 // - ExecutableAccessorInfo
142 // - FunctionTemplateInfo
143 // - ObjectTemplateInfo
152 // Formats of Object*:
153 // Smi: [31 bit signed int] 0
154 // HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
159 enum KeyedAccessStoreMode {
161 STORE_TRANSITION_TO_OBJECT,
162 STORE_TRANSITION_TO_DOUBLE,
163 STORE_AND_GROW_NO_TRANSITION,
164 STORE_AND_GROW_TRANSITION_TO_OBJECT,
165 STORE_AND_GROW_TRANSITION_TO_DOUBLE,
166 STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS,
167 STORE_NO_TRANSITION_HANDLE_COW
171 // Valid hints for the abstract operation ToPrimitive,
172 // implemented according to ES6, section 7.1.1.
173 enum class ToPrimitiveHint { kDefault, kNumber, kString };
176 // Valid hints for the abstract operation OrdinaryToPrimitive,
177 // implemented according to ES6, section 7.1.1.
178 enum class OrdinaryToPrimitiveHint { kNumber, kString };
181 enum TypeofMode { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
190 enum ExternalArrayType {
191 kExternalInt8Array = 1,
194 kExternalUint16Array,
196 kExternalUint32Array,
197 kExternalFloat32Array,
198 kExternalFloat64Array,
199 kExternalUint8ClampedArray,
203 static inline bool IsTransitionStoreMode(KeyedAccessStoreMode store_mode) {
204 return store_mode == STORE_TRANSITION_TO_OBJECT ||
205 store_mode == STORE_TRANSITION_TO_DOUBLE ||
206 store_mode == STORE_AND_GROW_TRANSITION_TO_OBJECT ||
207 store_mode == STORE_AND_GROW_TRANSITION_TO_DOUBLE;
211 static inline KeyedAccessStoreMode GetNonTransitioningStoreMode(
212 KeyedAccessStoreMode store_mode) {
213 if (store_mode >= STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
216 if (store_mode >= STORE_AND_GROW_NO_TRANSITION) {
217 return STORE_AND_GROW_NO_TRANSITION;
219 return STANDARD_STORE;
223 static inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) {
224 return store_mode >= STORE_AND_GROW_NO_TRANSITION &&
225 store_mode <= STORE_AND_GROW_TRANSITION_TO_DOUBLE;
229 enum IcCheckType { ELEMENT, PROPERTY };
232 // SKIP_WRITE_BARRIER skips the write barrier.
233 // UPDATE_WEAK_WRITE_BARRIER skips the marking part of the write barrier and
234 // only performs the generational part.
235 // UPDATE_WRITE_BARRIER is doing the full barrier, marking and generational.
236 enum WriteBarrierMode {
238 UPDATE_WEAK_WRITE_BARRIER,
243 // Indicates whether a value can be loaded as a constant.
244 enum StoreMode { ALLOW_IN_DESCRIPTOR, FORCE_FIELD };
247 // PropertyNormalizationMode is used to specify whether to keep
248 // inobject properties when normalizing properties of a JSObject.
249 enum PropertyNormalizationMode {
250 CLEAR_INOBJECT_PROPERTIES,
251 KEEP_INOBJECT_PROPERTIES
255 // Indicates how aggressively the prototype should be optimized. FAST_PROTOTYPE
256 // will give the fastest result by tailoring the map to the prototype, but that
257 // will cause polymorphism with other objects. REGULAR_PROTOTYPE is to be used
258 // (at least for now) when dynamically modifying the prototype chain of an
259 // object using __proto__ or Object.setPrototypeOf.
260 enum PrototypeOptimizationMode { REGULAR_PROTOTYPE, FAST_PROTOTYPE };
263 // Indicates whether transitions can be added to a source map or not.
264 enum TransitionFlag {
270 // Indicates whether the transition is simple: the target map of the transition
271 // either extends the current map with a new property, or it modifies the
272 // property that was added last to the current map.
273 enum SimpleTransitionFlag {
274 SIMPLE_PROPERTY_TRANSITION,
280 // Indicates whether we are only interested in the descriptors of a particular
281 // map, or in all descriptors in the descriptor array.
282 enum DescriptorFlag {
287 // The GC maintains a bit of information, the MarkingParity, which toggles
288 // from odd to even and back every time marking is completed. Incremental
289 // marking can visit an object twice during a marking phase, so algorithms that
290 // that piggy-back on marking can use the parity to ensure that they only
291 // perform an operation on an object once per marking phase: they record the
292 // MarkingParity when they visit an object, and only re-visit the object when it
293 // is marked again and the MarkingParity changes.
300 // ICs store extra state in a Code object. The default extra state is
302 typedef int ExtraICState;
303 static const ExtraICState kNoExtraICState = 0;
305 // Instance size sentinel for objects of variable size.
306 const int kVariableSizeSentinel = 0;
308 // We may store the unsigned bit field as signed Smi value and do not
310 const int kStubMajorKeyBits = 7;
311 const int kStubMinorKeyBits = kSmiValueSize - kStubMajorKeyBits - 1;
313 // All Maps have a field instance_type containing a InstanceType.
314 // It describes the type of the instances.
316 // As an example, a JavaScript object is a heap object and its map
317 // instance_type is JS_OBJECT_TYPE.
319 // The names of the string instance types are intended to systematically
320 // mirror their encoding in the instance_type field of the map. The default
321 // encoding is considered TWO_BYTE. It is not mentioned in the name. ONE_BYTE
322 // encoding is mentioned explicitly in the name. Likewise, the default
323 // representation is considered sequential. It is not mentioned in the
324 // name. The other representations (e.g. CONS, EXTERNAL) are explicitly
325 // mentioned. Finally, the string is either a STRING_TYPE (if it is a normal
326 // string) or a INTERNALIZED_STRING_TYPE (if it is a internalized string).
328 // NOTE: The following things are some that depend on the string types having
329 // instance_types that are less than those of all other types:
330 // HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
333 // NOTE: Everything following JS_VALUE_TYPE is considered a
334 // JSObject for GC purposes. The first four entries here have typeof
335 // 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
336 #define INSTANCE_TYPE_LIST(V) \
338 V(ONE_BYTE_STRING_TYPE) \
339 V(CONS_STRING_TYPE) \
340 V(CONS_ONE_BYTE_STRING_TYPE) \
341 V(SLICED_STRING_TYPE) \
342 V(SLICED_ONE_BYTE_STRING_TYPE) \
343 V(EXTERNAL_STRING_TYPE) \
344 V(EXTERNAL_ONE_BYTE_STRING_TYPE) \
345 V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
346 V(SHORT_EXTERNAL_STRING_TYPE) \
347 V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE) \
348 V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
350 V(INTERNALIZED_STRING_TYPE) \
351 V(ONE_BYTE_INTERNALIZED_STRING_TYPE) \
352 V(EXTERNAL_INTERNALIZED_STRING_TYPE) \
353 V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
354 V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
355 V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE) \
356 V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
357 V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
360 V(SIMD128_VALUE_TYPE) \
366 V(PROPERTY_CELL_TYPE) \
368 V(HEAP_NUMBER_TYPE) \
369 V(MUTABLE_HEAP_NUMBER_TYPE) \
372 V(BYTECODE_ARRAY_TYPE) \
375 V(FIXED_INT8_ARRAY_TYPE) \
376 V(FIXED_UINT8_ARRAY_TYPE) \
377 V(FIXED_INT16_ARRAY_TYPE) \
378 V(FIXED_UINT16_ARRAY_TYPE) \
379 V(FIXED_INT32_ARRAY_TYPE) \
380 V(FIXED_UINT32_ARRAY_TYPE) \
381 V(FIXED_FLOAT32_ARRAY_TYPE) \
382 V(FIXED_FLOAT64_ARRAY_TYPE) \
383 V(FIXED_UINT8_CLAMPED_ARRAY_TYPE) \
387 V(DECLARED_ACCESSOR_DESCRIPTOR_TYPE) \
388 V(DECLARED_ACCESSOR_INFO_TYPE) \
389 V(EXECUTABLE_ACCESSOR_INFO_TYPE) \
390 V(ACCESSOR_PAIR_TYPE) \
391 V(ACCESS_CHECK_INFO_TYPE) \
392 V(INTERCEPTOR_INFO_TYPE) \
393 V(CALL_HANDLER_INFO_TYPE) \
394 V(FUNCTION_TEMPLATE_INFO_TYPE) \
395 V(OBJECT_TEMPLATE_INFO_TYPE) \
396 V(SIGNATURE_INFO_TYPE) \
397 V(TYPE_SWITCH_INFO_TYPE) \
398 V(ALLOCATION_MEMENTO_TYPE) \
399 V(ALLOCATION_SITE_TYPE) \
402 V(POLYMORPHIC_CODE_CACHE_TYPE) \
403 V(TYPE_FEEDBACK_INFO_TYPE) \
404 V(ALIASED_ARGUMENTS_ENTRY_TYPE) \
406 V(PROTOTYPE_INFO_TYPE) \
407 V(SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE) \
409 V(FIXED_ARRAY_TYPE) \
410 V(FIXED_DOUBLE_ARRAY_TYPE) \
411 V(SHARED_FUNCTION_INFO_TYPE) \
414 V(JS_MESSAGE_OBJECT_TYPE) \
419 V(JS_CONTEXT_EXTENSION_OBJECT_TYPE) \
420 V(JS_GENERATOR_OBJECT_TYPE) \
422 V(JS_GLOBAL_OBJECT_TYPE) \
423 V(JS_BUILTINS_OBJECT_TYPE) \
424 V(JS_GLOBAL_PROXY_TYPE) \
426 V(JS_ARRAY_BUFFER_TYPE) \
427 V(JS_TYPED_ARRAY_TYPE) \
428 V(JS_DATA_VIEW_TYPE) \
432 V(JS_SET_ITERATOR_TYPE) \
433 V(JS_MAP_ITERATOR_TYPE) \
434 V(JS_ITERATOR_RESULT_TYPE) \
435 V(JS_WEAK_MAP_TYPE) \
436 V(JS_WEAK_SET_TYPE) \
439 V(JS_FUNCTION_TYPE) \
440 V(JS_FUNCTION_PROXY_TYPE) \
442 V(BREAK_POINT_INFO_TYPE)
445 // Since string types are not consecutive, this macro is used to
446 // iterate over them.
447 #define STRING_TYPE_LIST(V) \
448 V(STRING_TYPE, kVariableSizeSentinel, string, String) \
449 V(ONE_BYTE_STRING_TYPE, kVariableSizeSentinel, one_byte_string, \
451 V(CONS_STRING_TYPE, ConsString::kSize, cons_string, ConsString) \
452 V(CONS_ONE_BYTE_STRING_TYPE, ConsString::kSize, cons_one_byte_string, \
454 V(SLICED_STRING_TYPE, SlicedString::kSize, sliced_string, SlicedString) \
455 V(SLICED_ONE_BYTE_STRING_TYPE, SlicedString::kSize, sliced_one_byte_string, \
456 SlicedOneByteString) \
457 V(EXTERNAL_STRING_TYPE, ExternalTwoByteString::kSize, external_string, \
459 V(EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kSize, \
460 external_one_byte_string, ExternalOneByteString) \
461 V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, ExternalTwoByteString::kSize, \
462 external_string_with_one_byte_data, ExternalStringWithOneByteData) \
463 V(SHORT_EXTERNAL_STRING_TYPE, ExternalTwoByteString::kShortSize, \
464 short_external_string, ShortExternalString) \
465 V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kShortSize, \
466 short_external_one_byte_string, ShortExternalOneByteString) \
467 V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, \
468 ExternalTwoByteString::kShortSize, \
469 short_external_string_with_one_byte_data, \
470 ShortExternalStringWithOneByteData) \
472 V(INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, internalized_string, \
473 InternalizedString) \
474 V(ONE_BYTE_INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, \
475 one_byte_internalized_string, OneByteInternalizedString) \
476 V(EXTERNAL_INTERNALIZED_STRING_TYPE, ExternalTwoByteString::kSize, \
477 external_internalized_string, ExternalInternalizedString) \
478 V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, ExternalOneByteString::kSize, \
479 external_one_byte_internalized_string, ExternalOneByteInternalizedString) \
480 V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
481 ExternalTwoByteString::kSize, \
482 external_internalized_string_with_one_byte_data, \
483 ExternalInternalizedStringWithOneByteData) \
484 V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE, \
485 ExternalTwoByteString::kShortSize, short_external_internalized_string, \
486 ShortExternalInternalizedString) \
487 V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, \
488 ExternalOneByteString::kShortSize, \
489 short_external_one_byte_internalized_string, \
490 ShortExternalOneByteInternalizedString) \
491 V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
492 ExternalTwoByteString::kShortSize, \
493 short_external_internalized_string_with_one_byte_data, \
494 ShortExternalInternalizedStringWithOneByteData)
496 // A struct is a simple object a set of object-valued fields. Including an
497 // object type in this causes the compiler to generate most of the boilerplate
498 // code for the class including allocation and garbage collection routines,
499 // casts and predicates. All you need to define is the class, methods and
500 // object verification routines. Easy, no?
502 // Note that for subtle reasons related to the ordering or numerical values of
503 // type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
505 #define STRUCT_LIST(V) \
507 V(EXECUTABLE_ACCESSOR_INFO, ExecutableAccessorInfo, \
508 executable_accessor_info) \
509 V(ACCESSOR_PAIR, AccessorPair, accessor_pair) \
510 V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \
511 V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \
512 V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info) \
513 V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \
514 V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \
515 V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info) \
516 V(SCRIPT, Script, script) \
517 V(ALLOCATION_SITE, AllocationSite, allocation_site) \
518 V(ALLOCATION_MEMENTO, AllocationMemento, allocation_memento) \
519 V(CODE_CACHE, CodeCache, code_cache) \
520 V(POLYMORPHIC_CODE_CACHE, PolymorphicCodeCache, polymorphic_code_cache) \
521 V(TYPE_FEEDBACK_INFO, TypeFeedbackInfo, type_feedback_info) \
522 V(ALIASED_ARGUMENTS_ENTRY, AliasedArgumentsEntry, aliased_arguments_entry) \
523 V(DEBUG_INFO, DebugInfo, debug_info) \
524 V(BREAK_POINT_INFO, BreakPointInfo, break_point_info) \
525 V(PROTOTYPE_INFO, PrototypeInfo, prototype_info) \
526 V(SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION, \
527 SloppyBlockWithEvalContextExtension, \
528 sloppy_block_with_eval_context_extension)
530 // We use the full 8 bits of the instance_type field to encode heap object
531 // instance types. The high-order bit (bit 7) is set if the object is not a
532 // string, and cleared if it is a string.
533 const uint32_t kIsNotStringMask = 0x80;
534 const uint32_t kStringTag = 0x0;
535 const uint32_t kNotStringTag = 0x80;
537 // Bit 6 indicates that the object is an internalized string (if set) or not.
538 // Bit 7 has to be clear as well.
539 const uint32_t kIsNotInternalizedMask = 0x40;
540 const uint32_t kNotInternalizedTag = 0x40;
541 const uint32_t kInternalizedTag = 0x0;
543 // If bit 7 is clear then bit 2 indicates whether the string consists of
544 // two-byte characters or one-byte characters.
545 const uint32_t kStringEncodingMask = 0x4;
546 const uint32_t kTwoByteStringTag = 0x0;
547 const uint32_t kOneByteStringTag = 0x4;
549 // If bit 7 is clear, the low-order 2 bits indicate the representation
551 const uint32_t kStringRepresentationMask = 0x03;
552 enum StringRepresentationTag {
554 kConsStringTag = 0x1,
555 kExternalStringTag = 0x2,
556 kSlicedStringTag = 0x3
558 const uint32_t kIsIndirectStringMask = 0x1;
559 const uint32_t kIsIndirectStringTag = 0x1;
560 STATIC_ASSERT((kSeqStringTag & kIsIndirectStringMask) == 0); // NOLINT
561 STATIC_ASSERT((kExternalStringTag & kIsIndirectStringMask) == 0); // NOLINT
562 STATIC_ASSERT((kConsStringTag &
563 kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
564 STATIC_ASSERT((kSlicedStringTag &
565 kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
567 // Use this mask to distinguish between cons and slice only after making
568 // sure that the string is one of the two (an indirect string).
569 const uint32_t kSlicedNotConsMask = kSlicedStringTag & ~kConsStringTag;
570 STATIC_ASSERT(IS_POWER_OF_TWO(kSlicedNotConsMask));
572 // If bit 7 is clear, then bit 3 indicates whether this two-byte
573 // string actually contains one byte data.
574 const uint32_t kOneByteDataHintMask = 0x08;
575 const uint32_t kOneByteDataHintTag = 0x08;
577 // If bit 7 is clear and string representation indicates an external string,
578 // then bit 4 indicates whether the data pointer is cached.
579 const uint32_t kShortExternalStringMask = 0x10;
580 const uint32_t kShortExternalStringTag = 0x10;
583 // A ConsString with an empty string as the right side is a candidate
584 // for being shortcut by the garbage collector. We don't allocate any
585 // non-flat internalized strings, so we do not shortcut them thereby
586 // avoiding turning internalized strings into strings. The bit-masks
587 // below contain the internalized bit as additional safety.
588 // See heap.cc, mark-compact.cc and objects-visiting.cc.
589 const uint32_t kShortcutTypeMask =
591 kIsNotInternalizedMask |
592 kStringRepresentationMask;
593 const uint32_t kShortcutTypeTag = kConsStringTag | kNotInternalizedTag;
595 static inline bool IsShortcutCandidate(int type) {
596 return ((type & kShortcutTypeMask) == kShortcutTypeTag);
602 INTERNALIZED_STRING_TYPE = kTwoByteStringTag | kSeqStringTag |
603 kInternalizedTag, // FIRST_PRIMITIVE_TYPE
604 ONE_BYTE_INTERNALIZED_STRING_TYPE =
605 kOneByteStringTag | kSeqStringTag | kInternalizedTag,
606 EXTERNAL_INTERNALIZED_STRING_TYPE =
607 kTwoByteStringTag | kExternalStringTag | kInternalizedTag,
608 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
609 kOneByteStringTag | kExternalStringTag | kInternalizedTag,
610 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
611 EXTERNAL_INTERNALIZED_STRING_TYPE | kOneByteDataHintTag |
613 SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE = EXTERNAL_INTERNALIZED_STRING_TYPE |
614 kShortExternalStringTag |
616 SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
617 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kShortExternalStringTag |
619 SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
620 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
621 kShortExternalStringTag | kInternalizedTag,
622 STRING_TYPE = INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
623 ONE_BYTE_STRING_TYPE =
624 ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
625 CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag | kNotInternalizedTag,
626 CONS_ONE_BYTE_STRING_TYPE =
627 kOneByteStringTag | kConsStringTag | kNotInternalizedTag,
629 kTwoByteStringTag | kSlicedStringTag | kNotInternalizedTag,
630 SLICED_ONE_BYTE_STRING_TYPE =
631 kOneByteStringTag | kSlicedStringTag | kNotInternalizedTag,
632 EXTERNAL_STRING_TYPE =
633 EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
634 EXTERNAL_ONE_BYTE_STRING_TYPE =
635 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
636 EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
637 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
639 SHORT_EXTERNAL_STRING_TYPE =
640 SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
641 SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE =
642 SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
643 SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
644 SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
648 SYMBOL_TYPE = kNotStringTag, // FIRST_NONSTRING_TYPE, LAST_NAME_TYPE
650 // Other primitives (cannot contain non-map-word pointers to heap objects).
653 ODDBALL_TYPE, // LAST_PRIMITIVE_TYPE
655 // Objects allocated in their own spaces (never in new space).
659 // "Data", objects that cannot contain non-map-word pointers to heap
661 MUTABLE_HEAP_NUMBER_TYPE,
666 FIXED_INT8_ARRAY_TYPE, // FIRST_FIXED_TYPED_ARRAY_TYPE
667 FIXED_UINT8_ARRAY_TYPE,
668 FIXED_INT16_ARRAY_TYPE,
669 FIXED_UINT16_ARRAY_TYPE,
670 FIXED_INT32_ARRAY_TYPE,
671 FIXED_UINT32_ARRAY_TYPE,
672 FIXED_FLOAT32_ARRAY_TYPE,
673 FIXED_FLOAT64_ARRAY_TYPE,
674 FIXED_UINT8_CLAMPED_ARRAY_TYPE, // LAST_FIXED_TYPED_ARRAY_TYPE
675 FIXED_DOUBLE_ARRAY_TYPE,
676 FILLER_TYPE, // LAST_DATA_TYPE
679 DECLARED_ACCESSOR_DESCRIPTOR_TYPE,
680 DECLARED_ACCESSOR_INFO_TYPE,
681 EXECUTABLE_ACCESSOR_INFO_TYPE,
683 ACCESS_CHECK_INFO_TYPE,
684 INTERCEPTOR_INFO_TYPE,
685 CALL_HANDLER_INFO_TYPE,
686 FUNCTION_TEMPLATE_INFO_TYPE,
687 OBJECT_TEMPLATE_INFO_TYPE,
689 TYPE_SWITCH_INFO_TYPE,
690 ALLOCATION_SITE_TYPE,
691 ALLOCATION_MEMENTO_TYPE,
694 POLYMORPHIC_CODE_CACHE_TYPE,
695 TYPE_FEEDBACK_INFO_TYPE,
696 ALIASED_ARGUMENTS_ENTRY_TYPE,
699 BREAK_POINT_INFO_TYPE,
701 SHARED_FUNCTION_INFO_TYPE,
706 SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE,
708 // All the following types are subtypes of JSReceiver, which corresponds to
709 // objects in the JS sense. The first and the last type in this range are
710 // the two forms of function. This organization enables using the same
711 // compares for checking the JS_RECEIVER/SPEC_OBJECT range and the
712 // NONCALLABLE_JS_OBJECT range.
713 JS_FUNCTION_PROXY_TYPE, // FIRST_JS_RECEIVER_TYPE, FIRST_JS_PROXY_TYPE
714 JS_PROXY_TYPE, // LAST_JS_PROXY_TYPE
715 JS_VALUE_TYPE, // FIRST_JS_OBJECT_TYPE
716 JS_MESSAGE_OBJECT_TYPE,
719 JS_CONTEXT_EXTENSION_OBJECT_TYPE,
720 JS_GENERATOR_OBJECT_TYPE,
722 JS_GLOBAL_OBJECT_TYPE,
723 JS_BUILTINS_OBJECT_TYPE,
724 JS_GLOBAL_PROXY_TYPE,
726 JS_ARRAY_BUFFER_TYPE,
731 JS_SET_ITERATOR_TYPE,
732 JS_MAP_ITERATOR_TYPE,
733 JS_ITERATOR_RESULT_TYPE,
737 JS_FUNCTION_TYPE, // LAST_JS_OBJECT_TYPE, LAST_JS_RECEIVER_TYPE
741 LAST_TYPE = JS_FUNCTION_TYPE,
742 FIRST_NAME_TYPE = FIRST_TYPE,
743 LAST_NAME_TYPE = SYMBOL_TYPE,
744 FIRST_UNIQUE_NAME_TYPE = INTERNALIZED_STRING_TYPE,
745 LAST_UNIQUE_NAME_TYPE = SYMBOL_TYPE,
746 FIRST_NONSTRING_TYPE = SYMBOL_TYPE,
747 FIRST_PRIMITIVE_TYPE = FIRST_NAME_TYPE,
748 LAST_PRIMITIVE_TYPE = ODDBALL_TYPE,
749 // Boundaries for testing for a fixed typed array.
750 FIRST_FIXED_TYPED_ARRAY_TYPE = FIXED_INT8_ARRAY_TYPE,
751 LAST_FIXED_TYPED_ARRAY_TYPE = FIXED_UINT8_CLAMPED_ARRAY_TYPE,
752 // Boundary for promotion to old space.
753 LAST_DATA_TYPE = FILLER_TYPE,
754 // Boundary for objects represented as JSReceiver (i.e. JSObject or JSProxy).
755 // Note that there is no range for JSObject or JSProxy, since their subtypes
756 // are not continuous in this enum! The enum ranges instead reflect the
757 // external class names, where proxies are treated as either ordinary objects,
759 FIRST_JS_RECEIVER_TYPE = JS_FUNCTION_PROXY_TYPE,
760 LAST_JS_RECEIVER_TYPE = LAST_TYPE,
761 // Boundaries for testing the types represented as JSObject
762 FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
763 LAST_JS_OBJECT_TYPE = LAST_TYPE,
764 // Boundaries for testing the types represented as JSProxy
765 FIRST_JS_PROXY_TYPE = JS_FUNCTION_PROXY_TYPE,
766 LAST_JS_PROXY_TYPE = JS_PROXY_TYPE,
767 // Boundaries for testing whether the type is a JavaScript object.
768 FIRST_SPEC_OBJECT_TYPE = FIRST_JS_RECEIVER_TYPE,
769 LAST_SPEC_OBJECT_TYPE = LAST_JS_RECEIVER_TYPE,
770 // Boundaries for testing the types for which typeof is "object".
771 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_PROXY_TYPE,
772 LAST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_REGEXP_TYPE,
773 // Note that the types for which typeof is "function" are not continuous.
774 // Define this so that we can put assertions on discrete checks.
775 NUM_OF_CALLABLE_SPEC_OBJECT_TYPES = 2
778 STATIC_ASSERT(JS_OBJECT_TYPE == Internals::kJSObjectType);
779 STATIC_ASSERT(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
780 STATIC_ASSERT(ODDBALL_TYPE == Internals::kOddballType);
781 STATIC_ASSERT(FOREIGN_TYPE == Internals::kForeignType);
784 #define FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(V) \
785 V(FAST_ELEMENTS_SUB_TYPE) \
786 V(DICTIONARY_ELEMENTS_SUB_TYPE) \
787 V(FAST_PROPERTIES_SUB_TYPE) \
788 V(DICTIONARY_PROPERTIES_SUB_TYPE) \
789 V(MAP_CODE_CACHE_SUB_TYPE) \
790 V(SCOPE_INFO_SUB_TYPE) \
791 V(STRING_TABLE_SUB_TYPE) \
792 V(DESCRIPTOR_ARRAY_SUB_TYPE) \
793 V(TRANSITION_ARRAY_SUB_TYPE)
795 enum FixedArraySubInstanceType {
796 #define DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE(name) name,
797 FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE)
798 #undef DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE
799 LAST_FIXED_ARRAY_SUB_TYPE = TRANSITION_ARRAY_SUB_TYPE
803 // TODO(bmeurer): Remove this in favor of the ComparisonResult below.
813 // Result of an abstract relational comparison of x and y, implemented according
814 // to ES6 section 7.2.11 Abstract Relational Comparison.
815 enum class ComparisonResult {
818 kGreaterThan, // x > x
819 kUndefined // at least one of x or y was undefined or NaN
823 #define DECL_BOOLEAN_ACCESSORS(name) \
824 inline bool name() const; \
825 inline void set_##name(bool value); \
828 #define DECL_ACCESSORS(name, type) \
829 inline type* name() const; \
830 inline void set_##name(type* value, \
831 WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
834 #define DECLARE_CAST(type) \
835 INLINE(static type* cast(Object* object)); \
836 INLINE(static const type* cast(const Object* object));
840 class AllocationSite;
841 class AllocationSiteCreationContext;
842 class AllocationSiteUsageContext;
845 class ElementsAccessor;
846 class FixedArrayBase;
847 class FunctionLiteral;
849 class JSBuiltinsObject;
850 class LayoutDescriptor;
851 class LookupIterator;
852 class ObjectHashTable;
855 class SafepointEntry;
856 class SharedFunctionInfo;
858 class TypeFeedbackInfo;
859 class TypeFeedbackVector;
862 // We cannot just say "class HeapType;" if it is created from a template... =8-?
863 template<class> class TypeImpl;
864 struct HeapTypeConfig;
865 typedef TypeImpl<HeapTypeConfig> HeapType;
868 // A template-ized version of the IsXXX functions.
869 template <class C> inline bool Is(Object* obj);
872 #define DECLARE_VERIFIER(Name) void Name##Verify();
874 #define DECLARE_VERIFIER(Name)
878 #define DECLARE_PRINTER(Name) void Name##Print(std::ostream& os); // NOLINT
880 #define DECLARE_PRINTER(Name)
884 #define OBJECT_TYPE_LIST(V) \
889 #define HEAP_OBJECT_TYPE_LIST(V) \
891 V(MutableHeapNumber) \
910 V(ExternalTwoByteString) \
911 V(ExternalOneByteString) \
912 V(SeqTwoByteString) \
913 V(SeqOneByteString) \
914 V(InternalizedString) \
917 V(FixedTypedArrayBase) \
920 V(FixedUint16Array) \
922 V(FixedUint32Array) \
924 V(FixedFloat32Array) \
925 V(FixedFloat64Array) \
926 V(FixedUint8ClampedArray) \
932 V(JSContextExtensionObject) \
933 V(JSGeneratorObject) \
935 V(LayoutDescriptor) \
939 V(TypeFeedbackVector) \
940 V(DeoptimizationInputData) \
941 V(DeoptimizationOutputData) \
945 V(FixedDoubleArray) \
949 V(ScriptContextTable) \
955 V(SharedFunctionInfo) \
964 V(JSArrayBufferView) \
973 V(JSIteratorResult) \
974 V(JSWeakCollection) \
981 V(NormalizedMapCache) \
982 V(CompilationCacheTable) \
983 V(CodeCacheHashTable) \
984 V(PolymorphicCodeCacheHashTable) \
989 V(JSBuiltinsObject) \
991 V(UndetectableObject) \
992 V(AccessCheckNeeded) \
1000 // Object is the abstract superclass for all classes in the
1001 // object hierarchy.
1002 // Object does not use any virtual functions to avoid the
1003 // allocation of the C++ vtable.
1004 // Since both Smi and HeapObject are subclasses of Object no
1005 // data members can be present in Object.
1009 bool IsObject() const { return true; }
1011 #define IS_TYPE_FUNCTION_DECL(type_) INLINE(bool Is##type_() const);
1012 OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
1013 HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
1014 #undef IS_TYPE_FUNCTION_DECL
1016 // A non-keyed store is of the form a.x = foo or a["x"] = foo whereas
1017 // a keyed store is of the form a[expression] = foo.
1018 enum StoreFromKeyed {
1019 MAY_BE_STORE_FROM_KEYED,
1020 CERTAINLY_NOT_STORE_FROM_KEYED
1023 INLINE(bool IsFixedArrayBase() const);
1024 INLINE(bool IsExternal() const);
1025 INLINE(bool IsAccessorInfo() const);
1027 INLINE(bool IsStruct() const);
1028 #define DECLARE_STRUCT_PREDICATE(NAME, Name, name) \
1029 INLINE(bool Is##Name() const);
1030 STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
1031 #undef DECLARE_STRUCT_PREDICATE
1033 // ES6, section 7.2.3 IsCallable.
1034 INLINE(bool IsCallable() const);
1036 INLINE(bool IsSpecObject()) const;
1037 // TODO(rossberg): IsSpecFunction should be removed in favor of IsCallable.
1038 INLINE(bool IsSpecFunction()) const;
1039 INLINE(bool IsTemplateInfo()) const;
1040 INLINE(bool IsNameDictionary() const);
1041 INLINE(bool IsGlobalDictionary() const);
1042 INLINE(bool IsSeededNumberDictionary() const);
1043 INLINE(bool IsUnseededNumberDictionary() const);
1044 INLINE(bool IsOrderedHashSet() const);
1045 INLINE(bool IsOrderedHashMap() const);
1046 static bool IsPromise(Handle<Object> object);
1049 INLINE(bool IsUndefined() const);
1050 INLINE(bool IsNull() const);
1051 INLINE(bool IsTheHole() const);
1052 INLINE(bool IsException() const);
1053 INLINE(bool IsUninitialized() const);
1054 INLINE(bool IsTrue() const);
1055 INLINE(bool IsFalse() const);
1056 INLINE(bool IsArgumentsMarker() const);
1058 // Filler objects (fillers and free space objects).
1059 INLINE(bool IsFiller() const);
1061 // Extract the number.
1062 inline double Number() const;
1063 INLINE(bool IsNaN() const);
1064 INLINE(bool IsMinusZero() const);
1065 bool ToInt32(int32_t* value);
1066 bool ToUint32(uint32_t* value);
1068 inline Representation OptimalRepresentation();
1070 inline ElementsKind OptimalElementsKind();
1072 inline bool FitsRepresentation(Representation representation);
1074 // Checks whether two valid primitive encodings of a property name resolve to
1075 // the same logical property. E.g., the smi 1, the string "1" and the double
1076 // 1 all refer to the same property, so this helper will return true.
1077 inline bool KeyEquals(Object* other);
1079 Handle<HeapType> OptimalType(Isolate* isolate, Representation representation);
1081 inline static Handle<Object> NewStorageFor(Isolate* isolate,
1082 Handle<Object> object,
1083 Representation representation);
1085 inline static Handle<Object> WrapForRead(Isolate* isolate,
1086 Handle<Object> object,
1087 Representation representation);
1089 // Returns true if the object is of the correct type to be used as a
1090 // implementation of a JSObject's elements.
1091 inline bool HasValidElements();
1093 inline bool HasSpecificClassOf(String* name);
1095 bool BooleanValue(); // ECMA-262 9.2.
1097 // ES6 section 7.2.11 Abstract Relational Comparison
1098 MUST_USE_RESULT static Maybe<ComparisonResult> Compare(
1099 Handle<Object> x, Handle<Object> y, Strength strength = Strength::WEAK);
1101 // ES6 section 7.2.12 Abstract Equality Comparison
1102 MUST_USE_RESULT static Maybe<bool> Equals(Handle<Object> x, Handle<Object> y);
1104 // ES6 section 7.2.13 Strict Equality Comparison
1105 bool StrictEquals(Object* that);
1107 // Convert to a JSObject if needed.
1108 // native_context is used when creating wrapper object.
1109 static inline MaybeHandle<JSReceiver> ToObject(Isolate* isolate,
1110 Handle<Object> object);
1111 MUST_USE_RESULT static MaybeHandle<JSReceiver> ToObject(
1112 Isolate* isolate, Handle<Object> object, Handle<Context> context);
1114 // ES6 section 7.1.14 ToPropertyKey
1115 MUST_USE_RESULT static inline MaybeHandle<Name> ToName(Isolate* isolate,
1116 Handle<Object> input);
1118 // ES6 section 7.1.1 ToPrimitive
1119 MUST_USE_RESULT static inline MaybeHandle<Object> ToPrimitive(
1120 Handle<Object> input, ToPrimitiveHint hint = ToPrimitiveHint::kDefault);
1122 // ES6 section 7.1.3 ToNumber
1123 MUST_USE_RESULT static MaybeHandle<Object> ToNumber(Handle<Object> input);
1125 // ES6 section 7.1.12 ToString
1126 MUST_USE_RESULT static MaybeHandle<String> ToString(Isolate* isolate,
1127 Handle<Object> input);
1129 // ES6 section 7.3.9 GetMethod
1130 MUST_USE_RESULT static MaybeHandle<Object> GetMethod(
1131 Handle<JSReceiver> receiver, Handle<Name> name);
1133 // ES6 section 12.5.6 The typeof Operator
1134 static Handle<String> TypeOf(Isolate* isolate, Handle<Object> object);
1136 // ES6 section 12.6 Multiplicative Operators
1137 MUST_USE_RESULT static MaybeHandle<Object> Multiply(
1138 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1139 Strength strength = Strength::WEAK);
1140 MUST_USE_RESULT static MaybeHandle<Object> Divide(
1141 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1142 Strength strength = Strength::WEAK);
1143 MUST_USE_RESULT static MaybeHandle<Object> Modulus(
1144 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1145 Strength strength = Strength::WEAK);
1147 // ES6 section 12.7 Additive Operators
1148 MUST_USE_RESULT static MaybeHandle<Object> Add(
1149 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1150 Strength strength = Strength::WEAK);
1151 MUST_USE_RESULT static MaybeHandle<Object> Subtract(
1152 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1153 Strength strength = Strength::WEAK);
1155 // ES6 section 12.8 Bitwise Shift Operators
1156 MUST_USE_RESULT static MaybeHandle<Object> ShiftLeft(
1157 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1158 Strength strength = Strength::WEAK);
1159 MUST_USE_RESULT static MaybeHandle<Object> ShiftRight(
1160 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1161 Strength strength = Strength::WEAK);
1162 MUST_USE_RESULT static MaybeHandle<Object> ShiftRightLogical(
1163 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1164 Strength strength = Strength::WEAK);
1166 // ES6 section 12.9 Relational Operators
1167 MUST_USE_RESULT static inline Maybe<bool> GreaterThan(
1168 Handle<Object> x, Handle<Object> y, Strength strength = Strength::WEAK);
1169 MUST_USE_RESULT static inline Maybe<bool> GreaterThanOrEqual(
1170 Handle<Object> x, Handle<Object> y, Strength strength = Strength::WEAK);
1171 MUST_USE_RESULT static inline Maybe<bool> LessThan(
1172 Handle<Object> x, Handle<Object> y, Strength strength = Strength::WEAK);
1173 MUST_USE_RESULT static inline Maybe<bool> LessThanOrEqual(
1174 Handle<Object> x, Handle<Object> y, Strength strength = Strength::WEAK);
1176 // ES6 section 12.11 Binary Bitwise Operators
1177 MUST_USE_RESULT static MaybeHandle<Object> BitwiseAnd(
1178 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1179 Strength strength = Strength::WEAK);
1180 MUST_USE_RESULT static MaybeHandle<Object> BitwiseOr(
1181 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1182 Strength strength = Strength::WEAK);
1183 MUST_USE_RESULT static MaybeHandle<Object> BitwiseXor(
1184 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1185 Strength strength = Strength::WEAK);
1187 MUST_USE_RESULT static MaybeHandle<Object> GetProperty(
1188 LookupIterator* it, LanguageMode language_mode = SLOPPY);
1190 // Implementation of [[Put]], ECMA-262 5th edition, section 8.12.5.
1191 MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
1192 Handle<Object> object, Handle<Name> name, Handle<Object> value,
1193 LanguageMode language_mode,
1194 StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED);
1196 MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
1197 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1198 StoreFromKeyed store_mode);
1200 MUST_USE_RESULT static MaybeHandle<Object> SetSuperProperty(
1201 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1202 StoreFromKeyed store_mode);
1204 MUST_USE_RESULT static MaybeHandle<Object> ReadAbsentProperty(
1205 LookupIterator* it, LanguageMode language_mode);
1206 MUST_USE_RESULT static MaybeHandle<Object> ReadAbsentProperty(
1207 Isolate* isolate, Handle<Object> receiver, Handle<Object> name,
1208 LanguageMode language_mode);
1209 MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyProperty(
1210 LookupIterator* it, Handle<Object> value, LanguageMode language_mode);
1211 MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyProperty(
1212 Isolate* isolate, Handle<Object> receiver, Handle<Object> name,
1213 Handle<Object> value, LanguageMode language_mode);
1214 MUST_USE_RESULT static MaybeHandle<Object> RedefineNonconfigurableProperty(
1215 Isolate* isolate, Handle<Object> name, Handle<Object> value,
1216 LanguageMode language_mode);
1217 MUST_USE_RESULT static MaybeHandle<Object> SetDataProperty(
1218 LookupIterator* it, Handle<Object> value);
1219 MUST_USE_RESULT static MaybeHandle<Object> AddDataProperty(
1220 LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
1221 LanguageMode language_mode, StoreFromKeyed store_mode);
1222 MUST_USE_RESULT static inline MaybeHandle<Object> GetPropertyOrElement(
1223 Handle<Object> object, Handle<Name> name,
1224 LanguageMode language_mode = SLOPPY);
1225 MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
1226 Isolate* isolate, Handle<Object> object, const char* key,
1227 LanguageMode language_mode = SLOPPY);
1228 MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
1229 Handle<Object> object, Handle<Name> name,
1230 LanguageMode language_mode = SLOPPY);
1232 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithAccessor(
1233 LookupIterator* it, LanguageMode language_mode);
1234 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithAccessor(
1235 LookupIterator* it, Handle<Object> value, LanguageMode language_mode);
1237 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithDefinedGetter(
1238 Handle<Object> receiver,
1239 Handle<JSReceiver> getter);
1240 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithDefinedSetter(
1241 Handle<Object> receiver,
1242 Handle<JSReceiver> setter,
1243 Handle<Object> value);
1245 MUST_USE_RESULT static inline MaybeHandle<Object> GetElement(
1246 Isolate* isolate, Handle<Object> object, uint32_t index,
1247 LanguageMode language_mode = SLOPPY);
1249 MUST_USE_RESULT static inline MaybeHandle<Object> SetElement(
1250 Isolate* isolate, Handle<Object> object, uint32_t index,
1251 Handle<Object> value, LanguageMode language_mode);
1253 static inline Handle<Object> GetPrototypeSkipHiddenPrototypes(
1254 Isolate* isolate, Handle<Object> receiver);
1256 bool HasInPrototypeChain(Isolate* isolate, Object* object);
1258 // Returns the permanent hash code associated with this object. May return
1259 // undefined if not yet created.
1262 // Returns undefined for JSObjects, but returns the hash code for simple
1263 // objects. This avoids a double lookup in the cases where we know we will
1264 // add the hash to the JSObject if it does not already exist.
1265 Object* GetSimpleHash();
1267 // Returns the permanent hash code associated with this object depending on
1268 // the actual object type. May create and store a hash code if needed and none
1270 static Handle<Smi> GetOrCreateHash(Isolate* isolate, Handle<Object> object);
1272 // Checks whether this object has the same value as the given one. This
1273 // function is implemented according to ES5, section 9.12 and can be used
1274 // to implement the Harmony "egal" function.
1275 bool SameValue(Object* other);
1277 // Checks whether this object has the same value as the given one.
1278 // +0 and -0 are treated equal. Everything else is the same as SameValue.
1279 // This function is implemented according to ES6, section 7.2.4 and is used
1280 // by ES6 Map and Set.
1281 bool SameValueZero(Object* other);
1283 // Tries to convert an object to an array length. Returns true and sets the
1284 // output parameter if it succeeds.
1285 inline bool ToArrayLength(uint32_t* index);
1287 // Tries to convert an object to an array index. Returns true and sets the
1288 // output parameter if it succeeds. Equivalent to ToArrayLength, but does not
1289 // allow kMaxUInt32.
1290 inline bool ToArrayIndex(uint32_t* index);
1292 // Returns true if this is a JSValue containing a string and the index is
1293 // < the length of the string. Used to implement [] on strings.
1294 inline bool IsStringObjectWithCharacterAt(uint32_t index);
1296 DECLARE_VERIFIER(Object)
1298 // Verify a pointer is a valid object pointer.
1299 static void VerifyPointer(Object* p);
1302 inline void VerifyApiCallResultType();
1304 // Prints this object without details.
1305 void ShortPrint(FILE* out = stdout);
1307 // Prints this object without details to a message accumulator.
1308 void ShortPrint(StringStream* accumulator);
1310 void ShortPrint(std::ostream& os); // NOLINT
1312 DECLARE_CAST(Object)
1314 // Layout description.
1315 static const int kHeaderSize = 0; // Object does not take up any space.
1318 // For our gdb macros, we should perhaps change these in the future.
1321 // Prints this object with details.
1322 void Print(std::ostream& os); // NOLINT
1324 void Print() { ShortPrint(); }
1325 void Print(std::ostream& os) { ShortPrint(os); } // NOLINT
1329 friend class LookupIterator;
1330 friend class PrototypeIterator;
1332 // Return the map of the root of object's prototype chain.
1333 Map* GetRootMap(Isolate* isolate);
1335 // Helper for SetProperty and SetSuperProperty.
1336 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyInternal(
1337 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1338 StoreFromKeyed store_mode, bool* found);
1340 DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
1344 // In objects.h to be usable without objects-inl.h inclusion.
1345 bool Object::IsSmi() const { return HAS_SMI_TAG(this); }
1346 bool Object::IsHeapObject() const { return Internals::HasHeapObjectTag(this); }
1350 explicit Brief(const Object* const v) : value(v) {}
1351 const Object* value;
1355 std::ostream& operator<<(std::ostream& os, const Brief& v);
1358 // Smi represents integer Numbers that can be stored in 31 bits.
1359 // Smis are immediate which means they are NOT allocated in the heap.
1360 // The this pointer has the following format: [31 bit signed int] 0
1361 // For long smis it has the following format:
1362 // [32 bit signed int] [31 bits zero padding] 0
1363 // Smi stands for small integer.
1364 class Smi: public Object {
1366 // Returns the integer value.
1367 inline int value() const { return Internals::SmiValue(this); }
1369 // Convert a value to a Smi object.
1370 static inline Smi* FromInt(int value) {
1371 DCHECK(Smi::IsValid(value));
1372 return reinterpret_cast<Smi*>(Internals::IntToSmi(value));
1375 static inline Smi* FromIntptr(intptr_t value) {
1376 DCHECK(Smi::IsValid(value));
1377 int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
1378 return reinterpret_cast<Smi*>((value << smi_shift_bits) | kSmiTag);
1381 // Returns whether value can be represented in a Smi.
1382 static inline bool IsValid(intptr_t value) {
1383 bool result = Internals::IsValidSmi(value);
1384 DCHECK_EQ(result, value >= kMinValue && value <= kMaxValue);
1390 // Dispatched behavior.
1391 void SmiPrint(std::ostream& os) const; // NOLINT
1392 DECLARE_VERIFIER(Smi)
1394 static const int kMinValue =
1395 (static_cast<unsigned int>(-1)) << (kSmiValueSize - 1);
1396 static const int kMaxValue = -(kMinValue + 1);
1399 DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
1403 // Heap objects typically have a map pointer in their first word. However,
1404 // during GC other data (e.g. mark bits, forwarding addresses) is sometimes
1405 // encoded in the first word. The class MapWord is an abstraction of the
1406 // value in a heap object's first word.
1407 class MapWord BASE_EMBEDDED {
1409 // Normal state: the map word contains a map pointer.
1411 // Create a map word from a map pointer.
1412 static inline MapWord FromMap(const Map* map);
1414 // View this map word as a map pointer.
1415 inline Map* ToMap();
1418 // Scavenge collection: the map word of live objects in the from space
1419 // contains a forwarding address (a heap object pointer in the to space).
1421 // True if this map word is a forwarding address for a scavenge
1422 // collection. Only valid during a scavenge collection (specifically,
1423 // when all map words are heap object pointers, i.e. not during a full GC).
1424 inline bool IsForwardingAddress();
1426 // Create a map word from a forwarding address.
1427 static inline MapWord FromForwardingAddress(HeapObject* object);
1429 // View this map word as a forwarding address.
1430 inline HeapObject* ToForwardingAddress();
1432 static inline MapWord FromRawValue(uintptr_t value) {
1433 return MapWord(value);
1436 inline uintptr_t ToRawValue() {
1441 // HeapObject calls the private constructor and directly reads the value.
1442 friend class HeapObject;
1444 explicit MapWord(uintptr_t value) : value_(value) {}
1450 // The content of an heap object (except for the map pointer). kTaggedValues
1451 // objects can contain both heap pointers and Smis, kMixedValues can contain
1452 // heap pointers, Smis, and raw values (e.g. doubles or strings), and kRawValues
1453 // objects can contain raw values and Smis.
1454 enum class HeapObjectContents { kTaggedValues, kMixedValues, kRawValues };
1457 // HeapObject is the superclass for all classes describing heap allocated
1459 class HeapObject: public Object {
1461 // [map]: Contains a map which contains the object's reflective
1463 inline Map* map() const;
1464 inline void set_map(Map* value);
1465 // The no-write-barrier version. This is OK if the object is white and in
1466 // new space, or if the value is an immortal immutable object, like the maps
1467 // of primitive (non-JS) objects like strings, heap numbers etc.
1468 inline void set_map_no_write_barrier(Map* value);
1470 // Get the map using acquire load.
1471 inline Map* synchronized_map();
1472 inline MapWord synchronized_map_word() const;
1474 // Set the map using release store
1475 inline void synchronized_set_map(Map* value);
1476 inline void synchronized_set_map_no_write_barrier(Map* value);
1477 inline void synchronized_set_map_word(MapWord map_word);
1479 // During garbage collection, the map word of a heap object does not
1480 // necessarily contain a map pointer.
1481 inline MapWord map_word() const;
1482 inline void set_map_word(MapWord map_word);
1484 // The Heap the object was allocated in. Used also to access Isolate.
1485 inline Heap* GetHeap() const;
1487 // Convenience method to get current isolate.
1488 inline Isolate* GetIsolate() const;
1490 // Converts an address to a HeapObject pointer.
1491 static inline HeapObject* FromAddress(Address address) {
1492 DCHECK_TAG_ALIGNED(address);
1493 return reinterpret_cast<HeapObject*>(address + kHeapObjectTag);
1496 // Returns the address of this HeapObject.
1497 inline Address address() {
1498 return reinterpret_cast<Address>(this) - kHeapObjectTag;
1501 // Iterates over pointers contained in the object (including the Map)
1502 void Iterate(ObjectVisitor* v);
1504 // Iterates over all pointers contained in the object except the
1505 // first map pointer. The object type is given in the first
1506 // parameter. This function does not access the map pointer in the
1507 // object, and so is safe to call while the map pointer is modified.
1508 void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
1510 // Returns the heap object's size in bytes
1513 // Indicates what type of values this heap object may contain.
1514 inline HeapObjectContents ContentType();
1516 // Given a heap object's map pointer, returns the heap size in bytes
1517 // Useful when the map pointer field is used for other purposes.
1519 inline int SizeFromMap(Map* map);
1521 // Returns the field at offset in obj, as a read/write Object* reference.
1522 // Does no checking, and is safe to use during GC, while maps are invalid.
1523 // Does not invoke write barrier, so should only be assigned to
1524 // during marking GC.
1525 static inline Object** RawField(HeapObject* obj, int offset);
1527 // Adds the |code| object related to |name| to the code cache of this map. If
1528 // this map is a dictionary map that is shared, the map copied and installed
1530 static void UpdateMapCodeCache(Handle<HeapObject> object,
1534 DECLARE_CAST(HeapObject)
1536 // Return the write barrier mode for this. Callers of this function
1537 // must be able to present a reference to an DisallowHeapAllocation
1538 // object as a sign that they are not going to use this function
1539 // from code that allocates and thus invalidates the returned write
1541 inline WriteBarrierMode GetWriteBarrierMode(
1542 const DisallowHeapAllocation& promise);
1544 // Dispatched behavior.
1545 void HeapObjectShortPrint(std::ostream& os); // NOLINT
1547 void PrintHeader(std::ostream& os, const char* id); // NOLINT
1549 DECLARE_PRINTER(HeapObject)
1550 DECLARE_VERIFIER(HeapObject)
1552 inline void VerifyObjectField(int offset);
1553 inline void VerifySmiField(int offset);
1555 // Verify a pointer is a valid HeapObject pointer that points to object
1556 // areas in the heap.
1557 static void VerifyHeapPointer(Object* p);
1560 inline AllocationAlignment RequiredAlignment();
1562 // Layout description.
1563 // First field in a heap object is map.
1564 static const int kMapOffset = Object::kHeaderSize;
1565 static const int kHeaderSize = kMapOffset + kPointerSize;
1567 STATIC_ASSERT(kMapOffset == Internals::kHeapObjectMapOffset);
1570 // helpers for calling an ObjectVisitor to iterate over pointers in the
1571 // half-open range [start, end) specified as integer offsets
1572 inline void IteratePointers(ObjectVisitor* v, int start, int end);
1573 // as above, for the single element at "offset"
1574 inline void IteratePointer(ObjectVisitor* v, int offset);
1575 // as above, for the next code link of a code object.
1576 inline void IterateNextCodeLink(ObjectVisitor* v, int offset);
1579 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1583 // This class describes a body of an object of a fixed size
1584 // in which all pointer fields are located in the [start_offset, end_offset)
1586 template<int start_offset, int end_offset, int size>
1587 class FixedBodyDescriptor {
1589 static const int kStartOffset = start_offset;
1590 static const int kEndOffset = end_offset;
1591 static const int kSize = size;
1593 static inline void IterateBody(HeapObject* obj, ObjectVisitor* v);
1595 template<typename StaticVisitor>
1596 static inline void IterateBody(HeapObject* obj) {
1597 StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
1598 HeapObject::RawField(obj, end_offset));
1603 // This class describes a body of an object of a variable size
1604 // in which all pointer fields are located in the [start_offset, object_size)
1606 template<int start_offset>
1607 class FlexibleBodyDescriptor {
1609 static const int kStartOffset = start_offset;
1611 static inline void IterateBody(HeapObject* obj,
1615 template<typename StaticVisitor>
1616 static inline void IterateBody(HeapObject* obj, int object_size) {
1617 StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
1618 HeapObject::RawField(obj, object_size));
1623 // The HeapNumber class describes heap allocated numbers that cannot be
1624 // represented in a Smi (small integer)
1625 class HeapNumber: public HeapObject {
1627 // [value]: number value.
1628 inline double value() const;
1629 inline void set_value(double value);
1631 DECLARE_CAST(HeapNumber)
1633 // Dispatched behavior.
1634 bool HeapNumberBooleanValue();
1636 void HeapNumberPrint(std::ostream& os); // NOLINT
1637 DECLARE_VERIFIER(HeapNumber)
1639 inline int get_exponent();
1640 inline int get_sign();
1642 // Layout description.
1643 static const int kValueOffset = HeapObject::kHeaderSize;
1644 // IEEE doubles are two 32 bit words. The first is just mantissa, the second
1645 // is a mixture of sign, exponent and mantissa. The offsets of two 32 bit
1646 // words within double numbers are endian dependent and they are set
1648 #if defined(V8_TARGET_LITTLE_ENDIAN)
1649 static const int kMantissaOffset = kValueOffset;
1650 static const int kExponentOffset = kValueOffset + 4;
1651 #elif defined(V8_TARGET_BIG_ENDIAN)
1652 static const int kMantissaOffset = kValueOffset + 4;
1653 static const int kExponentOffset = kValueOffset;
1655 #error Unknown byte ordering
1658 static const int kSize = kValueOffset + kDoubleSize;
1659 static const uint32_t kSignMask = 0x80000000u;
1660 static const uint32_t kExponentMask = 0x7ff00000u;
1661 static const uint32_t kMantissaMask = 0xfffffu;
1662 static const int kMantissaBits = 52;
1663 static const int kExponentBits = 11;
1664 static const int kExponentBias = 1023;
1665 static const int kExponentShift = 20;
1666 static const int kInfinityOrNanExponent =
1667 (kExponentMask >> kExponentShift) - kExponentBias;
1668 static const int kMantissaBitsInTopWord = 20;
1669 static const int kNonMantissaBitsInTopWord = 12;
1672 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1676 // The Simd128Value class describes heap allocated 128 bit SIMD values.
1677 class Simd128Value : public HeapObject {
1679 DECLARE_CAST(Simd128Value)
1681 DECLARE_PRINTER(Simd128Value)
1682 DECLARE_VERIFIER(Simd128Value)
1684 static Handle<String> ToString(Handle<Simd128Value> input);
1686 // Equality operations.
1687 inline bool Equals(Simd128Value* that);
1688 static inline bool Equals(Handle<Simd128Value> one, Handle<Simd128Value> two);
1690 // Checks that another instance is bit-wise equal.
1691 bool BitwiseEquals(const Simd128Value* other) const;
1692 // Computes a hash from the 128 bit value, viewed as 4 32-bit integers.
1693 uint32_t Hash() const;
1694 // Copies the 16 bytes of SIMD data to the destination address.
1695 void CopyBits(void* destination) const;
1697 // Layout description.
1698 static const int kValueOffset = HeapObject::kHeaderSize;
1699 static const int kSize = kValueOffset + kSimd128Size;
1702 DISALLOW_IMPLICIT_CONSTRUCTORS(Simd128Value);
1706 // V has parameters (TYPE, Type, type, lane count, lane type)
1707 #define SIMD128_TYPES(V) \
1708 V(FLOAT32X4, Float32x4, float32x4, 4, float) \
1709 V(INT32X4, Int32x4, int32x4, 4, int32_t) \
1710 V(UINT32X4, Uint32x4, uint32x4, 4, uint32_t) \
1711 V(BOOL32X4, Bool32x4, bool32x4, 4, bool) \
1712 V(INT16X8, Int16x8, int16x8, 8, int16_t) \
1713 V(UINT16X8, Uint16x8, uint16x8, 8, uint16_t) \
1714 V(BOOL16X8, Bool16x8, bool16x8, 8, bool) \
1715 V(INT8X16, Int8x16, int8x16, 16, int8_t) \
1716 V(UINT8X16, Uint8x16, uint8x16, 16, uint8_t) \
1717 V(BOOL8X16, Bool8x16, bool8x16, 16, bool)
1719 #define SIMD128_VALUE_CLASS(TYPE, Type, type, lane_count, lane_type) \
1720 class Type final : public Simd128Value { \
1722 inline lane_type get_lane(int lane) const; \
1723 inline void set_lane(int lane, lane_type value); \
1725 DECLARE_CAST(Type) \
1727 DECLARE_PRINTER(Type) \
1729 static Handle<String> ToString(Handle<Type> input); \
1731 inline bool Equals(Type* that); \
1734 DISALLOW_IMPLICIT_CONSTRUCTORS(Type); \
1736 SIMD128_TYPES(SIMD128_VALUE_CLASS)
1737 #undef SIMD128_VALUE_CLASS
1740 enum EnsureElementsMode {
1741 DONT_ALLOW_DOUBLE_ELEMENTS,
1742 ALLOW_COPIED_DOUBLE_ELEMENTS,
1743 ALLOW_CONVERTED_DOUBLE_ELEMENTS
1747 // Indicator for one component of an AccessorPair.
1748 enum AccessorComponent {
1754 // JSReceiver includes types on which properties can be defined, i.e.,
1755 // JSObject and JSProxy.
1756 class JSReceiver: public HeapObject {
1758 DECLARE_CAST(JSReceiver)
1760 // ES6 section 7.1.1 ToPrimitive
1761 MUST_USE_RESULT static MaybeHandle<Object> ToPrimitive(
1762 Handle<JSReceiver> receiver,
1763 ToPrimitiveHint hint = ToPrimitiveHint::kDefault);
1764 MUST_USE_RESULT static MaybeHandle<Object> OrdinaryToPrimitive(
1765 Handle<JSReceiver> receiver, OrdinaryToPrimitiveHint hint);
1767 // Implementation of [[HasProperty]], ECMA-262 5th edition, section 8.12.6.
1768 MUST_USE_RESULT static inline Maybe<bool> HasProperty(
1769 Handle<JSReceiver> object, Handle<Name> name);
1770 MUST_USE_RESULT static inline Maybe<bool> HasOwnProperty(Handle<JSReceiver>,
1772 MUST_USE_RESULT static inline Maybe<bool> HasElement(
1773 Handle<JSReceiver> object, uint32_t index);
1774 MUST_USE_RESULT static inline Maybe<bool> HasOwnElement(
1775 Handle<JSReceiver> object, uint32_t index);
1777 // Implementation of [[Delete]], ECMA-262 5th edition, section 8.12.7.
1778 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyOrElement(
1779 Handle<JSReceiver> object, Handle<Name> name,
1780 LanguageMode language_mode = SLOPPY);
1781 MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
1782 Handle<JSReceiver> object, Handle<Name> name,
1783 LanguageMode language_mode = SLOPPY);
1784 MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
1785 LookupIterator* it, LanguageMode language_mode);
1786 MUST_USE_RESULT static MaybeHandle<Object> DeleteElement(
1787 Handle<JSReceiver> object, uint32_t index,
1788 LanguageMode language_mode = SLOPPY);
1790 // Tests for the fast common case for property enumeration.
1791 bool IsSimpleEnum();
1793 // Returns the class name ([[Class]] property in the specification).
1794 String* class_name();
1796 // Returns the constructor name (the name (possibly, inferred name) of the
1797 // function that was used to instantiate the object).
1798 String* constructor_name();
1800 MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetPropertyAttributes(
1801 Handle<JSReceiver> object, Handle<Name> name);
1802 MUST_USE_RESULT static inline Maybe<PropertyAttributes>
1803 GetOwnPropertyAttributes(Handle<JSReceiver> object, Handle<Name> name);
1805 MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetElementAttributes(
1806 Handle<JSReceiver> object, uint32_t index);
1807 MUST_USE_RESULT static inline Maybe<PropertyAttributes>
1808 GetOwnElementAttributes(Handle<JSReceiver> object, uint32_t index);
1810 MUST_USE_RESULT static Maybe<PropertyAttributes> GetPropertyAttributes(
1811 LookupIterator* it);
1814 static Handle<Object> GetDataProperty(Handle<JSReceiver> object,
1816 static Handle<Object> GetDataProperty(LookupIterator* it);
1819 // Retrieves a permanent object identity hash code. The undefined value might
1820 // be returned in case no hash was created yet.
1821 inline Object* GetIdentityHash();
1823 // Retrieves a permanent object identity hash code. May create and store a
1824 // hash code if needed and none exists.
1825 inline static Handle<Smi> GetOrCreateIdentityHash(
1826 Handle<JSReceiver> object);
1828 enum KeyCollectionType { OWN_ONLY, INCLUDE_PROTOS };
1830 // Computes the enumerable keys for a JSObject. Used for implementing
1831 // "for (n in object) { }".
1832 MUST_USE_RESULT static MaybeHandle<FixedArray> GetKeys(
1833 Handle<JSReceiver> object,
1834 KeyCollectionType type);
1837 DISALLOW_IMPLICIT_CONSTRUCTORS(JSReceiver);
1841 // The JSObject describes real heap allocated JavaScript objects with
1843 // Note that the map of JSObject changes during execution to enable inline
1845 class JSObject: public JSReceiver {
1847 // [properties]: Backing storage for properties.
1848 // properties is a FixedArray in the fast case and a Dictionary in the
1850 DECL_ACCESSORS(properties, FixedArray) // Get and set fast properties.
1851 inline void initialize_properties();
1852 inline bool HasFastProperties();
1853 // Gets slow properties for non-global objects.
1854 inline NameDictionary* property_dictionary();
1855 // Gets global object properties.
1856 inline GlobalDictionary* global_dictionary();
1858 // [elements]: The elements (properties with names that are integers).
1860 // Elements can be in two general modes: fast and slow. Each mode
1861 // corrensponds to a set of object representations of elements that
1862 // have something in common.
1864 // In the fast mode elements is a FixedArray and so each element can
1865 // be quickly accessed. This fact is used in the generated code. The
1866 // elements array can have one of three maps in this mode:
1867 // fixed_array_map, sloppy_arguments_elements_map or
1868 // fixed_cow_array_map (for copy-on-write arrays). In the latter case
1869 // the elements array may be shared by a few objects and so before
1870 // writing to any element the array must be copied. Use
1871 // EnsureWritableFastElements in this case.
1873 // In the slow mode the elements is either a NumberDictionary, a
1874 // FixedArray parameter map for a (sloppy) arguments object.
1875 DECL_ACCESSORS(elements, FixedArrayBase)
1876 inline void initialize_elements();
1877 static void ResetElements(Handle<JSObject> object);
1878 static inline void SetMapAndElements(Handle<JSObject> object,
1880 Handle<FixedArrayBase> elements);
1881 inline ElementsKind GetElementsKind();
1882 ElementsAccessor* GetElementsAccessor();
1883 // Returns true if an object has elements of FAST_SMI_ELEMENTS ElementsKind.
1884 inline bool HasFastSmiElements();
1885 // Returns true if an object has elements of FAST_ELEMENTS ElementsKind.
1886 inline bool HasFastObjectElements();
1887 // Returns true if an object has elements of FAST_ELEMENTS or
1888 // FAST_SMI_ONLY_ELEMENTS.
1889 inline bool HasFastSmiOrObjectElements();
1890 // Returns true if an object has any of the fast elements kinds.
1891 inline bool HasFastElements();
1892 // Returns true if an object has elements of FAST_DOUBLE_ELEMENTS
1894 inline bool HasFastDoubleElements();
1895 // Returns true if an object has elements of FAST_HOLEY_*_ELEMENTS
1897 inline bool HasFastHoleyElements();
1898 inline bool HasSloppyArgumentsElements();
1899 inline bool HasDictionaryElements();
1901 inline bool HasFixedTypedArrayElements();
1903 inline bool HasFixedUint8ClampedElements();
1904 inline bool HasFixedArrayElements();
1905 inline bool HasFixedInt8Elements();
1906 inline bool HasFixedUint8Elements();
1907 inline bool HasFixedInt16Elements();
1908 inline bool HasFixedUint16Elements();
1909 inline bool HasFixedInt32Elements();
1910 inline bool HasFixedUint32Elements();
1911 inline bool HasFixedFloat32Elements();
1912 inline bool HasFixedFloat64Elements();
1914 inline bool HasFastArgumentsElements();
1915 inline bool HasSlowArgumentsElements();
1916 inline SeededNumberDictionary* element_dictionary(); // Gets slow elements.
1918 // Requires: HasFastElements().
1919 static Handle<FixedArray> EnsureWritableFastElements(
1920 Handle<JSObject> object);
1922 // Collects elements starting at index 0.
1923 // Undefined values are placed after non-undefined values.
1924 // Returns the number of non-undefined values.
1925 static Handle<Object> PrepareElementsForSort(Handle<JSObject> object,
1927 // As PrepareElementsForSort, but only on objects where elements is
1928 // a dictionary, and it will stay a dictionary. Collates undefined and
1929 // unexisting elements below limit from position zero of the elements.
1930 static Handle<Object> PrepareSlowElementsForSort(Handle<JSObject> object,
1933 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithInterceptor(
1934 LookupIterator* it, Handle<Object> value);
1936 // SetLocalPropertyIgnoreAttributes converts callbacks to fields. We need to
1937 // grant an exemption to ExecutableAccessor callbacks in some cases.
1938 enum ExecutableAccessorInfoHandling { DEFAULT_HANDLING, DONT_FORCE_FIELD };
1940 MUST_USE_RESULT static MaybeHandle<Object> DefineOwnPropertyIgnoreAttributes(
1941 LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
1942 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1944 MUST_USE_RESULT static MaybeHandle<Object> SetOwnPropertyIgnoreAttributes(
1945 Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
1946 PropertyAttributes attributes,
1947 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1949 MUST_USE_RESULT static MaybeHandle<Object> SetOwnElementIgnoreAttributes(
1950 Handle<JSObject> object, uint32_t index, Handle<Object> value,
1951 PropertyAttributes attributes,
1952 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1954 // Equivalent to one of the above depending on whether |name| can be converted
1955 // to an array index.
1956 MUST_USE_RESULT static MaybeHandle<Object>
1957 DefinePropertyOrElementIgnoreAttributes(
1958 Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
1959 PropertyAttributes attributes = NONE,
1960 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1962 // Adds or reconfigures a property to attributes NONE. It will fail when it
1964 MUST_USE_RESULT static Maybe<bool> CreateDataProperty(LookupIterator* it,
1965 Handle<Object> value);
1967 static void AddProperty(Handle<JSObject> object, Handle<Name> name,
1968 Handle<Object> value, PropertyAttributes attributes);
1970 MUST_USE_RESULT static MaybeHandle<Object> AddDataElement(
1971 Handle<JSObject> receiver, uint32_t index, Handle<Object> value,
1972 PropertyAttributes attributes);
1974 // Extend the receiver with a single fast property appeared first in the
1975 // passed map. This also extends the property backing store if necessary.
1976 static void AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map);
1978 // Migrates the given object to a map whose field representations are the
1979 // lowest upper bound of all known representations for that field.
1980 static void MigrateInstance(Handle<JSObject> instance);
1982 // Migrates the given object only if the target map is already available,
1983 // or returns false if such a map is not yet available.
1984 static bool TryMigrateInstance(Handle<JSObject> instance);
1986 // Sets the property value in a normalized object given (key, value, details).
1987 // Handles the special representation of JS global objects.
1988 static void SetNormalizedProperty(Handle<JSObject> object, Handle<Name> name,
1989 Handle<Object> value,
1990 PropertyDetails details);
1991 static void SetDictionaryElement(Handle<JSObject> object, uint32_t index,
1992 Handle<Object> value,
1993 PropertyAttributes attributes);
1994 static void SetDictionaryArgumentsElement(Handle<JSObject> object,
1996 Handle<Object> value,
1997 PropertyAttributes attributes);
1999 static void OptimizeAsPrototype(Handle<JSObject> object,
2000 PrototypeOptimizationMode mode);
2001 static void ReoptimizeIfPrototype(Handle<JSObject> object);
2002 static void LazyRegisterPrototypeUser(Handle<Map> user, Isolate* isolate);
2003 static bool UnregisterPrototypeUser(Handle<Map> user, Isolate* isolate);
2004 static void InvalidatePrototypeChains(Map* map);
2006 // Alternative implementation of WeakFixedArray::NullCallback.
2007 class PrototypeRegistryCompactionCallback {
2009 static void Callback(Object* value, int old_index, int new_index);
2012 // Retrieve interceptors.
2013 InterceptorInfo* GetNamedInterceptor();
2014 InterceptorInfo* GetIndexedInterceptor();
2016 // Used from JSReceiver.
2017 MUST_USE_RESULT static Maybe<PropertyAttributes>
2018 GetPropertyAttributesWithInterceptor(LookupIterator* it);
2019 MUST_USE_RESULT static Maybe<PropertyAttributes>
2020 GetPropertyAttributesWithFailedAccessCheck(LookupIterator* it);
2022 // Retrieves an AccessorPair property from the given object. Might return
2023 // undefined if the property doesn't exist or is of a different kind.
2024 MUST_USE_RESULT static MaybeHandle<Object> GetAccessor(
2025 Handle<JSObject> object,
2027 AccessorComponent component);
2029 // Defines an AccessorPair property on the given object.
2030 // TODO(mstarzinger): Rename to SetAccessor().
2031 static MaybeHandle<Object> DefineAccessor(Handle<JSObject> object,
2033 Handle<Object> getter,
2034 Handle<Object> setter,
2035 PropertyAttributes attributes);
2037 // Defines an AccessorInfo property on the given object.
2038 MUST_USE_RESULT static MaybeHandle<Object> SetAccessor(
2039 Handle<JSObject> object,
2040 Handle<AccessorInfo> info);
2042 // The result must be checked first for exceptions. If there's no exception,
2043 // the output parameter |done| indicates whether the interceptor has a result
2045 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithInterceptor(
2046 LookupIterator* it, bool* done);
2048 // Accessors for hidden properties object.
2050 // Hidden properties are not own properties of the object itself.
2051 // Instead they are stored in an auxiliary structure kept as an own
2052 // property with a special name Heap::hidden_string(). But if the
2053 // receiver is a JSGlobalProxy then the auxiliary object is a property
2054 // of its prototype, and if it's a detached proxy, then you can't have
2055 // hidden properties.
2057 // Sets a hidden property on this object. Returns this object if successful,
2058 // undefined if called on a detached proxy.
2059 static Handle<Object> SetHiddenProperty(Handle<JSObject> object,
2061 Handle<Object> value);
2062 // Gets the value of a hidden property with the given key. Returns the hole
2063 // if the property doesn't exist (or if called on a detached proxy),
2064 // otherwise returns the value set for the key.
2065 Object* GetHiddenProperty(Handle<Name> key);
2066 // Deletes a hidden property. Deleting a non-existing property is
2067 // considered successful.
2068 static void DeleteHiddenProperty(Handle<JSObject> object,
2070 // Returns true if the object has a property with the hidden string as name.
2071 static bool HasHiddenProperties(Handle<JSObject> object);
2073 static void SetIdentityHash(Handle<JSObject> object, Handle<Smi> hash);
2075 static void ValidateElements(Handle<JSObject> object);
2077 // Makes sure that this object can contain HeapObject as elements.
2078 static inline void EnsureCanContainHeapObjectElements(Handle<JSObject> obj);
2080 // Makes sure that this object can contain the specified elements.
2081 static inline void EnsureCanContainElements(
2082 Handle<JSObject> object,
2085 EnsureElementsMode mode);
2086 static inline void EnsureCanContainElements(
2087 Handle<JSObject> object,
2088 Handle<FixedArrayBase> elements,
2090 EnsureElementsMode mode);
2091 static void EnsureCanContainElements(
2092 Handle<JSObject> object,
2093 Arguments* arguments,
2096 EnsureElementsMode mode);
2098 // Would we convert a fast elements array to dictionary mode given
2099 // an access at key?
2100 bool WouldConvertToSlowElements(uint32_t index);
2102 // Computes the new capacity when expanding the elements of a JSObject.
2103 static uint32_t NewElementsCapacity(uint32_t old_capacity) {
2104 // (old_capacity + 50%) + 16
2105 return old_capacity + (old_capacity >> 1) + 16;
2108 // These methods do not perform access checks!
2109 static void UpdateAllocationSite(Handle<JSObject> object,
2110 ElementsKind to_kind);
2112 // Lookup interceptors are used for handling properties controlled by host
2114 inline bool HasNamedInterceptor();
2115 inline bool HasIndexedInterceptor();
2117 // Computes the enumerable keys from interceptors. Used for debug mirrors and
2118 // by JSReceiver::GetKeys.
2119 MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForNamedInterceptor(
2120 Handle<JSObject> object,
2121 Handle<JSReceiver> receiver);
2122 MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForIndexedInterceptor(
2123 Handle<JSObject> object,
2124 Handle<JSReceiver> receiver);
2126 // Support functions for v8 api (needed for correct interceptor behavior).
2127 MUST_USE_RESULT static Maybe<bool> HasRealNamedProperty(
2128 Handle<JSObject> object, Handle<Name> name);
2129 MUST_USE_RESULT static Maybe<bool> HasRealElementProperty(
2130 Handle<JSObject> object, uint32_t index);
2131 MUST_USE_RESULT static Maybe<bool> HasRealNamedCallbackProperty(
2132 Handle<JSObject> object, Handle<Name> name);
2134 // Get the header size for a JSObject. Used to compute the index of
2135 // internal fields as well as the number of internal fields.
2136 inline int GetHeaderSize();
2138 inline int GetInternalFieldCount();
2139 inline int GetInternalFieldOffset(int index);
2140 inline Object* GetInternalField(int index);
2141 inline void SetInternalField(int index, Object* value);
2142 inline void SetInternalField(int index, Smi* value);
2144 // Returns the number of properties on this object filtering out properties
2145 // with the specified attributes (ignoring interceptors).
2146 int NumberOfOwnProperties(PropertyAttributes filter = NONE);
2147 // Fill in details for properties into storage starting at the specified
2148 // index. Returns the number of properties added.
2149 int GetOwnPropertyNames(FixedArray* storage, int index,
2150 PropertyAttributes filter = NONE);
2152 // Returns the number of properties on this object filtering out properties
2153 // with the specified attributes (ignoring interceptors).
2154 int NumberOfOwnElements(PropertyAttributes filter);
2155 // Returns the number of enumerable elements (ignoring interceptors).
2156 int NumberOfEnumElements();
2157 // Returns the number of elements on this object filtering out elements
2158 // with the specified attributes (ignoring interceptors).
2159 int GetOwnElementKeys(FixedArray* storage, PropertyAttributes filter);
2160 // Count and fill in the enumerable elements into storage.
2161 // (storage->length() == NumberOfEnumElements()).
2162 // If storage is NULL, will count the elements without adding
2163 // them to any storage.
2164 // Returns the number of enumerable elements.
2165 int GetEnumElementKeys(FixedArray* storage);
2167 static Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
2170 // Returns a new map with all transitions dropped from the object's current
2171 // map and the ElementsKind set.
2172 static Handle<Map> GetElementsTransitionMap(Handle<JSObject> object,
2173 ElementsKind to_kind);
2174 static void TransitionElementsKind(Handle<JSObject> object,
2175 ElementsKind to_kind);
2177 // Always use this to migrate an object to a new map.
2178 // |expected_additional_properties| is only used for fast-to-slow transitions
2179 // and ignored otherwise.
2180 static void MigrateToMap(Handle<JSObject> object, Handle<Map> new_map,
2181 int expected_additional_properties = 0);
2183 // Convert the object to use the canonical dictionary
2184 // representation. If the object is expected to have additional properties
2185 // added this number can be indicated to have the backing store allocated to
2186 // an initial capacity for holding these properties.
2187 static void NormalizeProperties(Handle<JSObject> object,
2188 PropertyNormalizationMode mode,
2189 int expected_additional_properties,
2190 const char* reason);
2192 // Convert and update the elements backing store to be a
2193 // SeededNumberDictionary dictionary. Returns the backing after conversion.
2194 static Handle<SeededNumberDictionary> NormalizeElements(
2195 Handle<JSObject> object);
2197 void RequireSlowElements(SeededNumberDictionary* dictionary);
2199 // Transform slow named properties to fast variants.
2200 static void MigrateSlowToFast(Handle<JSObject> object,
2201 int unused_property_fields, const char* reason);
2203 inline bool IsUnboxedDoubleField(FieldIndex index);
2205 // Access fast-case object properties at index.
2206 static Handle<Object> FastPropertyAt(Handle<JSObject> object,
2207 Representation representation,
2209 inline Object* RawFastPropertyAt(FieldIndex index);
2210 inline double RawFastDoublePropertyAt(FieldIndex index);
2212 inline void FastPropertyAtPut(FieldIndex index, Object* value);
2213 inline void RawFastPropertyAtPut(FieldIndex index, Object* value);
2214 inline void RawFastDoublePropertyAtPut(FieldIndex index, double value);
2215 inline void WriteToField(int descriptor, Object* value);
2217 // Access to in object properties.
2218 inline int GetInObjectPropertyOffset(int index);
2219 inline Object* InObjectPropertyAt(int index);
2220 inline Object* InObjectPropertyAtPut(int index,
2222 WriteBarrierMode mode
2223 = UPDATE_WRITE_BARRIER);
2225 // Set the object's prototype (only JSReceiver and null are allowed values).
2226 MUST_USE_RESULT static MaybeHandle<Object> SetPrototype(
2227 Handle<JSObject> object, Handle<Object> value, bool from_javascript);
2229 // Initializes the body after properties slot, properties slot is
2230 // initialized by set_properties. Fill the pre-allocated fields with
2231 // pre_allocated_value and the rest with filler_value.
2232 // Note: this call does not update write barrier, the caller is responsible
2233 // to ensure that |filler_value| can be collected without WB here.
2234 inline void InitializeBody(Map* map,
2235 Object* pre_allocated_value,
2236 Object* filler_value);
2238 // Check whether this object references another object
2239 bool ReferencesObject(Object* obj);
2241 // Disalow further properties to be added to the oject.
2242 MUST_USE_RESULT static MaybeHandle<Object> PreventExtensions(
2243 Handle<JSObject> object);
2245 bool IsExtensible();
2248 MUST_USE_RESULT static MaybeHandle<Object> Seal(Handle<JSObject> object);
2250 // ES5 Object.freeze
2251 MUST_USE_RESULT static MaybeHandle<Object> Freeze(Handle<JSObject> object);
2253 // Called the first time an object is observed with ES7 Object.observe.
2254 static void SetObserved(Handle<JSObject> object);
2257 enum DeepCopyHints { kNoHints = 0, kObjectIsShallow = 1 };
2259 MUST_USE_RESULT static MaybeHandle<JSObject> DeepCopy(
2260 Handle<JSObject> object,
2261 AllocationSiteUsageContext* site_context,
2262 DeepCopyHints hints = kNoHints);
2263 MUST_USE_RESULT static MaybeHandle<JSObject> DeepWalk(
2264 Handle<JSObject> object,
2265 AllocationSiteCreationContext* site_context);
2267 DECLARE_CAST(JSObject)
2269 // Dispatched behavior.
2270 void JSObjectShortPrint(StringStream* accumulator);
2271 DECLARE_PRINTER(JSObject)
2272 DECLARE_VERIFIER(JSObject)
2274 void PrintProperties(std::ostream& os); // NOLINT
2275 void PrintElements(std::ostream& os); // NOLINT
2277 #if defined(DEBUG) || defined(OBJECT_PRINT)
2278 void PrintTransitions(std::ostream& os); // NOLINT
2281 static void PrintElementsTransition(
2282 FILE* file, Handle<JSObject> object,
2283 ElementsKind from_kind, Handle<FixedArrayBase> from_elements,
2284 ElementsKind to_kind, Handle<FixedArrayBase> to_elements);
2286 void PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map);
2289 // Structure for collecting spill information about JSObjects.
2290 class SpillInformation {
2294 int number_of_objects_;
2295 int number_of_objects_with_fast_properties_;
2296 int number_of_objects_with_fast_elements_;
2297 int number_of_fast_used_fields_;
2298 int number_of_fast_unused_fields_;
2299 int number_of_slow_used_properties_;
2300 int number_of_slow_unused_properties_;
2301 int number_of_fast_used_elements_;
2302 int number_of_fast_unused_elements_;
2303 int number_of_slow_used_elements_;
2304 int number_of_slow_unused_elements_;
2307 void IncrementSpillStatistics(SpillInformation* info);
2311 // If a GC was caused while constructing this object, the elements pointer
2312 // may point to a one pointer filler map. The object won't be rooted, but
2313 // our heap verification code could stumble across it.
2314 bool ElementsAreSafeToExamine();
2317 Object* SlowReverseLookup(Object* value);
2319 // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
2320 // Also maximal value of JSArray's length property.
2321 static const uint32_t kMaxElementCount = 0xffffffffu;
2323 // Constants for heuristics controlling conversion of fast elements
2324 // to slow elements.
2326 // Maximal gap that can be introduced by adding an element beyond
2327 // the current elements length.
2328 static const uint32_t kMaxGap = 1024;
2330 // Maximal length of fast elements array that won't be checked for
2331 // being dense enough on expansion.
2332 static const int kMaxUncheckedFastElementsLength = 5000;
2334 // Same as above but for old arrays. This limit is more strict. We
2335 // don't want to be wasteful with long lived objects.
2336 static const int kMaxUncheckedOldFastElementsLength = 500;
2338 // Note that Page::kMaxRegularHeapObjectSize puts a limit on
2339 // permissible values (see the DCHECK in heap.cc).
2340 static const int kInitialMaxFastElementArray = 100000;
2342 // This constant applies only to the initial map of "global.Object" and
2343 // not to arbitrary other JSObject maps.
2344 static const int kInitialGlobalObjectUnusedPropertiesCount = 4;
2346 static const int kMaxInstanceSize = 255 * kPointerSize;
2347 // When extending the backing storage for property values, we increase
2348 // its size by more than the 1 entry necessary, so sequentially adding fields
2349 // to the same object requires fewer allocations and copies.
2350 static const int kFieldsAdded = 3;
2352 // Layout description.
2353 static const int kPropertiesOffset = HeapObject::kHeaderSize;
2354 static const int kElementsOffset = kPropertiesOffset + kPointerSize;
2355 static const int kHeaderSize = kElementsOffset + kPointerSize;
2357 STATIC_ASSERT(kHeaderSize == Internals::kJSObjectHeaderSize);
2359 class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> {
2361 static inline int SizeOf(Map* map, HeapObject* object);
2364 Context* GetCreationContext();
2366 // Enqueue change record for Object.observe. May cause GC.
2367 MUST_USE_RESULT static MaybeHandle<Object> EnqueueChangeRecord(
2368 Handle<JSObject> object, const char* type, Handle<Name> name,
2369 Handle<Object> old_value);
2371 // Gets the number of currently used elements.
2372 int GetFastElementsUsage();
2374 // Deletes an existing named property in a normalized object.
2375 static void DeleteNormalizedProperty(Handle<JSObject> object,
2376 Handle<Name> name, int entry);
2378 static bool AllCanRead(LookupIterator* it);
2379 static bool AllCanWrite(LookupIterator* it);
2382 friend class JSReceiver;
2383 friend class Object;
2385 static void MigrateFastToFast(Handle<JSObject> object, Handle<Map> new_map);
2386 static void MigrateFastToSlow(Handle<JSObject> object,
2387 Handle<Map> new_map,
2388 int expected_additional_properties);
2390 // Used from Object::GetProperty().
2391 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithFailedAccessCheck(
2392 LookupIterator* it);
2394 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithFailedAccessCheck(
2395 LookupIterator* it, Handle<Object> value);
2397 // Add a property to a slow-case object.
2398 static void AddSlowProperty(Handle<JSObject> object,
2400 Handle<Object> value,
2401 PropertyAttributes attributes);
2403 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithInterceptor(
2404 LookupIterator* it);
2406 bool ReferencesObjectFromElements(FixedArray* elements,
2410 // Return the hash table backing store or the inline stored identity hash,
2411 // whatever is found.
2412 MUST_USE_RESULT Object* GetHiddenPropertiesHashTable();
2414 // Return the hash table backing store for hidden properties. If there is no
2415 // backing store, allocate one.
2416 static Handle<ObjectHashTable> GetOrCreateHiddenPropertiesHashtable(
2417 Handle<JSObject> object);
2419 // Set the hidden property backing store to either a hash table or
2420 // the inline-stored identity hash.
2421 static Handle<Object> SetHiddenPropertiesHashTable(
2422 Handle<JSObject> object,
2423 Handle<Object> value);
2425 MUST_USE_RESULT Object* GetIdentityHash();
2427 static Handle<Smi> GetOrCreateIdentityHash(Handle<JSObject> object);
2429 static Handle<SeededNumberDictionary> GetNormalizedElementDictionary(
2430 Handle<JSObject> object, Handle<FixedArrayBase> elements);
2432 // Helper for fast versions of preventExtensions, seal, and freeze.
2433 // attrs is one of NONE, SEALED, or FROZEN (depending on the operation).
2434 template <PropertyAttributes attrs>
2435 MUST_USE_RESULT static MaybeHandle<Object> PreventExtensionsWithTransition(
2436 Handle<JSObject> object);
2438 DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
2442 // Common superclass for FixedArrays that allow implementations to share
2443 // common accessors and some code paths.
2444 class FixedArrayBase: public HeapObject {
2446 // [length]: length of the array.
2447 inline int length() const;
2448 inline void set_length(int value);
2450 // Get and set the length using acquire loads and release stores.
2451 inline int synchronized_length() const;
2452 inline void synchronized_set_length(int value);
2454 DECLARE_CAST(FixedArrayBase)
2456 // Layout description.
2457 // Length is smi tagged when it is stored.
2458 static const int kLengthOffset = HeapObject::kHeaderSize;
2459 static const int kHeaderSize = kLengthOffset + kPointerSize;
2463 class FixedDoubleArray;
2464 class IncrementalMarking;
2467 // FixedArray describes fixed-sized arrays with element type Object*.
2468 class FixedArray: public FixedArrayBase {
2470 // Setter and getter for elements.
2471 inline Object* get(int index) const;
2472 static inline Handle<Object> get(Handle<FixedArray> array, int index);
2473 // Setter that uses write barrier.
2474 inline void set(int index, Object* value);
2475 inline bool is_the_hole(int index);
2477 // Setter that doesn't need write barrier.
2478 inline void set(int index, Smi* value);
2479 // Setter with explicit barrier mode.
2480 inline void set(int index, Object* value, WriteBarrierMode mode);
2482 // Setters for frequently used oddballs located in old space.
2483 inline void set_undefined(int index);
2484 inline void set_null(int index);
2485 inline void set_the_hole(int index);
2487 inline Object** GetFirstElementAddress();
2488 inline bool ContainsOnlySmisOrHoles();
2490 // Gives access to raw memory which stores the array's data.
2491 inline Object** data_start();
2493 inline void FillWithHoles(int from, int to);
2495 // Shrink length and insert filler objects.
2496 void Shrink(int length);
2498 enum KeyFilter { ALL_KEYS, NON_SYMBOL_KEYS };
2500 // Copy a sub array from the receiver to dest.
2501 void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
2503 // Garbage collection support.
2504 static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
2506 // Code Generation support.
2507 static int OffsetOfElementAt(int index) { return SizeFor(index); }
2509 // Garbage collection support.
2510 inline Object** RawFieldOfElementAt(int index);
2512 DECLARE_CAST(FixedArray)
2514 // Maximal allowed size, in bytes, of a single FixedArray.
2515 // Prevents overflowing size computations, as well as extreme memory
2517 static const int kMaxSize = 128 * MB * kPointerSize;
2518 // Maximally allowed length of a FixedArray.
2519 static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
2521 // Dispatched behavior.
2522 DECLARE_PRINTER(FixedArray)
2523 DECLARE_VERIFIER(FixedArray)
2525 // Checks if two FixedArrays have identical contents.
2526 bool IsEqualTo(FixedArray* other);
2529 // Swap two elements in a pair of arrays. If this array and the
2530 // numbers array are the same object, the elements are only swapped
2532 void SwapPairs(FixedArray* numbers, int i, int j);
2534 // Sort prefix of this array and the numbers array as pairs wrt. the
2535 // numbers. If the numbers array and the this array are the same
2536 // object, the prefix of this array is sorted.
2537 void SortPairs(FixedArray* numbers, uint32_t len);
2539 class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> {
2541 static inline int SizeOf(Map* map, HeapObject* object);
2545 // Set operation on FixedArray without using write barriers. Can
2546 // only be used for storing old space objects or smis.
2547 static inline void NoWriteBarrierSet(FixedArray* array,
2551 // Set operation on FixedArray without incremental write barrier. Can
2552 // only be used if the object is guaranteed to be white (whiteness witness
2554 static inline void NoIncrementalWriteBarrierSet(FixedArray* array,
2559 STATIC_ASSERT(kHeaderSize == Internals::kFixedArrayHeaderSize);
2561 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
2565 // FixedDoubleArray describes fixed-sized arrays with element type double.
2566 class FixedDoubleArray: public FixedArrayBase {
2568 // Setter and getter for elements.
2569 inline double get_scalar(int index);
2570 inline uint64_t get_representation(int index);
2571 static inline Handle<Object> get(Handle<FixedDoubleArray> array, int index);
2572 inline void set(int index, double value);
2573 inline void set_the_hole(int index);
2575 // Checking for the hole.
2576 inline bool is_the_hole(int index);
2578 // Garbage collection support.
2579 inline static int SizeFor(int length) {
2580 return kHeaderSize + length * kDoubleSize;
2583 // Gives access to raw memory which stores the array's data.
2584 inline double* data_start();
2586 inline void FillWithHoles(int from, int to);
2588 // Code Generation support.
2589 static int OffsetOfElementAt(int index) { return SizeFor(index); }
2591 DECLARE_CAST(FixedDoubleArray)
2593 // Maximal allowed size, in bytes, of a single FixedDoubleArray.
2594 // Prevents overflowing size computations, as well as extreme memory
2596 static const int kMaxSize = 512 * MB;
2597 // Maximally allowed length of a FixedArray.
2598 static const int kMaxLength = (kMaxSize - kHeaderSize) / kDoubleSize;
2600 // Dispatched behavior.
2601 DECLARE_PRINTER(FixedDoubleArray)
2602 DECLARE_VERIFIER(FixedDoubleArray)
2605 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedDoubleArray);
2609 class WeakFixedArray : public FixedArray {
2611 // If |maybe_array| is not a WeakFixedArray, a fresh one will be allocated.
2612 // This function does not check if the value exists already, callers must
2613 // ensure this themselves if necessary.
2614 static Handle<WeakFixedArray> Add(Handle<Object> maybe_array,
2615 Handle<HeapObject> value,
2616 int* assigned_index = NULL);
2618 // Returns true if an entry was found and removed.
2619 bool Remove(Handle<HeapObject> value);
2621 class NullCallback {
2623 static void Callback(Object* value, int old_index, int new_index) {}
2626 template <class CompactionCallback>
2629 inline Object* Get(int index) const;
2630 inline void Clear(int index);
2631 inline int Length() const;
2633 inline bool IsEmptySlot(int index) const;
2634 static Object* Empty() { return Smi::FromInt(0); }
2638 explicit Iterator(Object* maybe_array) : list_(NULL) { Reset(maybe_array); }
2639 void Reset(Object* maybe_array);
2646 WeakFixedArray* list_;
2648 int last_used_index_;
2649 DisallowHeapAllocation no_gc_;
2651 DISALLOW_COPY_AND_ASSIGN(Iterator);
2654 DECLARE_CAST(WeakFixedArray)
2657 static const int kLastUsedIndexIndex = 0;
2658 static const int kFirstIndex = 1;
2660 static Handle<WeakFixedArray> Allocate(
2661 Isolate* isolate, int size, Handle<WeakFixedArray> initialize_from);
2663 static void Set(Handle<WeakFixedArray> array, int index,
2664 Handle<HeapObject> value);
2665 inline void clear(int index);
2667 inline int last_used_index() const;
2668 inline void set_last_used_index(int index);
2670 // Disallow inherited setters.
2671 void set(int index, Smi* value);
2672 void set(int index, Object* value);
2673 void set(int index, Object* value, WriteBarrierMode mode);
2674 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakFixedArray);
2678 // Generic array grows dynamically with O(1) amortized insertion.
2679 class ArrayList : public FixedArray {
2683 // Use this if GC can delete elements from the array.
2684 kReloadLengthAfterAllocation,
2686 static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj,
2687 AddMode mode = kNone);
2688 static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj1,
2689 Handle<Object> obj2, AddMode = kNone);
2690 inline int Length();
2691 inline void SetLength(int length);
2692 inline Object* Get(int index);
2693 inline Object** Slot(int index);
2694 inline void Set(int index, Object* obj);
2695 inline void Clear(int index, Object* undefined);
2696 DECLARE_CAST(ArrayList)
2699 static Handle<ArrayList> EnsureSpace(Handle<ArrayList> array, int length);
2700 static const int kLengthIndex = 0;
2701 static const int kFirstIndex = 1;
2702 DISALLOW_IMPLICIT_CONSTRUCTORS(ArrayList);
2706 // DescriptorArrays are fixed arrays used to hold instance descriptors.
2707 // The format of the these objects is:
2708 // [0]: Number of descriptors
2709 // [1]: Either Smi(0) if uninitialized, or a pointer to small fixed array:
2710 // [0]: pointer to fixed array with enum cache
2711 // [1]: either Smi(0) or pointer to fixed array with indices
2713 // [2 + number of descriptors * kDescriptorSize]: start of slack
2714 class DescriptorArray: public FixedArray {
2716 // Returns true for both shared empty_descriptor_array and for smis, which the
2717 // map uses to encode additional bit fields when the descriptor array is not
2719 inline bool IsEmpty();
2721 // Returns the number of descriptors in the array.
2722 inline int number_of_descriptors();
2724 inline int number_of_descriptors_storage();
2726 inline int NumberOfSlackDescriptors();
2728 inline void SetNumberOfDescriptors(int number_of_descriptors);
2729 inline int number_of_entries();
2731 inline bool HasEnumCache();
2733 inline void CopyEnumCacheFrom(DescriptorArray* array);
2735 inline FixedArray* GetEnumCache();
2737 inline bool HasEnumIndicesCache();
2739 inline FixedArray* GetEnumIndicesCache();
2741 inline Object** GetEnumCacheSlot();
2743 void ClearEnumCache();
2745 // Initialize or change the enum cache,
2746 // using the supplied storage for the small "bridge".
2747 void SetEnumCache(FixedArray* bridge_storage,
2748 FixedArray* new_cache,
2749 Object* new_index_cache);
2751 bool CanHoldValue(int descriptor, Object* value);
2753 // Accessors for fetching instance descriptor at descriptor number.
2754 inline Name* GetKey(int descriptor_number);
2755 inline Object** GetKeySlot(int descriptor_number);
2756 inline Object* GetValue(int descriptor_number);
2757 inline void SetValue(int descriptor_number, Object* value);
2758 inline Object** GetValueSlot(int descriptor_number);
2759 static inline int GetValueOffset(int descriptor_number);
2760 inline Object** GetDescriptorStartSlot(int descriptor_number);
2761 inline Object** GetDescriptorEndSlot(int descriptor_number);
2762 inline PropertyDetails GetDetails(int descriptor_number);
2763 inline PropertyType GetType(int descriptor_number);
2764 inline int GetFieldIndex(int descriptor_number);
2765 inline HeapType* GetFieldType(int descriptor_number);
2766 inline Object* GetConstant(int descriptor_number);
2767 inline Object* GetCallbacksObject(int descriptor_number);
2768 inline AccessorDescriptor* GetCallbacks(int descriptor_number);
2770 inline Name* GetSortedKey(int descriptor_number);
2771 inline int GetSortedKeyIndex(int descriptor_number);
2772 inline void SetSortedKey(int pointer, int descriptor_number);
2773 inline void SetRepresentation(int descriptor_number,
2774 Representation representation);
2776 // Accessor for complete descriptor.
2777 inline void Get(int descriptor_number, Descriptor* desc);
2778 inline void Set(int descriptor_number, Descriptor* desc);
2779 void Replace(int descriptor_number, Descriptor* descriptor);
2781 // Append automatically sets the enumeration index. This should only be used
2782 // to add descriptors in bulk at the end, followed by sorting the descriptor
2784 inline void Append(Descriptor* desc);
2786 static Handle<DescriptorArray> CopyUpTo(Handle<DescriptorArray> desc,
2787 int enumeration_index,
2790 static Handle<DescriptorArray> CopyUpToAddAttributes(
2791 Handle<DescriptorArray> desc,
2792 int enumeration_index,
2793 PropertyAttributes attributes,
2796 // Sort the instance descriptors by the hash codes of their keys.
2799 // Search the instance descriptors for given name.
2800 INLINE(int Search(Name* name, int number_of_own_descriptors));
2802 // As the above, but uses DescriptorLookupCache and updates it when
2804 INLINE(int SearchWithCache(Name* name, Map* map));
2806 // Allocates a DescriptorArray, but returns the singleton
2807 // empty descriptor array object if number_of_descriptors is 0.
2808 static Handle<DescriptorArray> Allocate(Isolate* isolate,
2809 int number_of_descriptors,
2812 DECLARE_CAST(DescriptorArray)
2814 // Constant for denoting key was not found.
2815 static const int kNotFound = -1;
2817 static const int kDescriptorLengthIndex = 0;
2818 static const int kEnumCacheIndex = 1;
2819 static const int kFirstIndex = 2;
2821 // The length of the "bridge" to the enum cache.
2822 static const int kEnumCacheBridgeLength = 2;
2823 static const int kEnumCacheBridgeCacheIndex = 0;
2824 static const int kEnumCacheBridgeIndicesCacheIndex = 1;
2826 // Layout description.
2827 static const int kDescriptorLengthOffset = FixedArray::kHeaderSize;
2828 static const int kEnumCacheOffset = kDescriptorLengthOffset + kPointerSize;
2829 static const int kFirstOffset = kEnumCacheOffset + kPointerSize;
2831 // Layout description for the bridge array.
2832 static const int kEnumCacheBridgeCacheOffset = FixedArray::kHeaderSize;
2834 // Layout of descriptor.
2835 static const int kDescriptorKey = 0;
2836 static const int kDescriptorDetails = 1;
2837 static const int kDescriptorValue = 2;
2838 static const int kDescriptorSize = 3;
2840 #if defined(DEBUG) || defined(OBJECT_PRINT)
2841 // For our gdb macros, we should perhaps change these in the future.
2844 // Print all the descriptors.
2845 void PrintDescriptors(std::ostream& os); // NOLINT
2849 // Is the descriptor array sorted and without duplicates?
2850 bool IsSortedNoDuplicates(int valid_descriptors = -1);
2852 // Is the descriptor array consistent with the back pointers in targets?
2853 bool IsConsistentWithBackPointers(Map* current_map);
2855 // Are two DescriptorArrays equal?
2856 bool IsEqualTo(DescriptorArray* other);
2859 // Returns the fixed array length required to hold number_of_descriptors
2861 static int LengthFor(int number_of_descriptors) {
2862 return ToKeyIndex(number_of_descriptors);
2866 // WhitenessWitness is used to prove that a descriptor array is white
2867 // (unmarked), so incremental write barriers can be skipped because the
2868 // marking invariant cannot be broken and slots pointing into evacuation
2869 // candidates will be discovered when the object is scanned. A witness is
2870 // always stack-allocated right after creating an array. By allocating a
2871 // witness, incremental marking is globally disabled. The witness is then
2872 // passed along wherever needed to statically prove that the array is known to
2874 class WhitenessWitness {
2876 inline explicit WhitenessWitness(DescriptorArray* array);
2877 inline ~WhitenessWitness();
2880 IncrementalMarking* marking_;
2883 // An entry in a DescriptorArray, represented as an (array, index) pair.
2886 inline explicit Entry(DescriptorArray* descs, int index) :
2887 descs_(descs), index_(index) { }
2889 inline PropertyType type();
2890 inline Object* GetCallbackObject();
2893 DescriptorArray* descs_;
2897 // Conversion from descriptor number to array indices.
2898 static int ToKeyIndex(int descriptor_number) {
2899 return kFirstIndex +
2900 (descriptor_number * kDescriptorSize) +
2904 static int ToDetailsIndex(int descriptor_number) {
2905 return kFirstIndex +
2906 (descriptor_number * kDescriptorSize) +
2910 static int ToValueIndex(int descriptor_number) {
2911 return kFirstIndex +
2912 (descriptor_number * kDescriptorSize) +
2916 // Transfer a complete descriptor from the src descriptor array to this
2917 // descriptor array.
2918 void CopyFrom(int index, DescriptorArray* src, const WhitenessWitness&);
2920 inline void Set(int descriptor_number,
2922 const WhitenessWitness&);
2924 // Swap first and second descriptor.
2925 inline void SwapSortedKeys(int first, int second);
2927 DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
2931 enum SearchMode { ALL_ENTRIES, VALID_ENTRIES };
2933 template <SearchMode search_mode, typename T>
2934 inline int Search(T* array, Name* name, int valid_entries = 0,
2935 int* out_insertion_index = NULL);
2938 // HashTable is a subclass of FixedArray that implements a hash table
2939 // that uses open addressing and quadratic probing.
2941 // In order for the quadratic probing to work, elements that have not
2942 // yet been used and elements that have been deleted are
2943 // distinguished. Probing continues when deleted elements are
2944 // encountered and stops when unused elements are encountered.
2946 // - Elements with key == undefined have not been used yet.
2947 // - Elements with key == the_hole have been deleted.
2949 // The hash table class is parameterized with a Shape and a Key.
2950 // Shape must be a class with the following interface:
2951 // class ExampleShape {
2953 // // Tells whether key matches other.
2954 // static bool IsMatch(Key key, Object* other);
2955 // // Returns the hash value for key.
2956 // static uint32_t Hash(Key key);
2957 // // Returns the hash value for object.
2958 // static uint32_t HashForObject(Key key, Object* object);
2959 // // Convert key to an object.
2960 // static inline Handle<Object> AsHandle(Isolate* isolate, Key key);
2961 // // The prefix size indicates number of elements in the beginning
2962 // // of the backing storage.
2963 // static const int kPrefixSize = ..;
2964 // // The Element size indicates number of elements per entry.
2965 // static const int kEntrySize = ..;
2967 // The prefix size indicates an amount of memory in the
2968 // beginning of the backing storage that can be used for non-element
2969 // information by subclasses.
2971 template<typename Key>
2974 static const bool UsesSeed = false;
2975 static uint32_t Hash(Key key) { return 0; }
2976 static uint32_t SeededHash(Key key, uint32_t seed) {
2980 static uint32_t HashForObject(Key key, Object* object) { return 0; }
2981 static uint32_t SeededHashForObject(Key key, uint32_t seed, Object* object) {
2983 return HashForObject(key, object);
2988 class HashTableBase : public FixedArray {
2990 // Returns the number of elements in the hash table.
2991 inline int NumberOfElements();
2993 // Returns the number of deleted elements in the hash table.
2994 inline int NumberOfDeletedElements();
2996 // Returns the capacity of the hash table.
2997 inline int Capacity();
2999 // ElementAdded should be called whenever an element is added to a
3001 inline void ElementAdded();
3003 // ElementRemoved should be called whenever an element is removed from
3005 inline void ElementRemoved();
3006 inline void ElementsRemoved(int n);
3008 // Computes the required capacity for a table holding the given
3009 // number of elements. May be more than HashTable::kMaxCapacity.
3010 static inline int ComputeCapacity(int at_least_space_for);
3012 // Tells whether k is a real key. The hole and undefined are not allowed
3013 // as keys and can be used to indicate missing or deleted elements.
3014 inline bool IsKey(Object* k);
3016 // Compute the probe offset (quadratic probing).
3017 INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
3018 return (n + n * n) >> 1;
3021 static const int kNumberOfElementsIndex = 0;
3022 static const int kNumberOfDeletedElementsIndex = 1;
3023 static const int kCapacityIndex = 2;
3024 static const int kPrefixStartIndex = 3;
3026 // Constant used for denoting a absent entry.
3027 static const int kNotFound = -1;
3030 // Update the number of elements in the hash table.
3031 inline void SetNumberOfElements(int nof);
3033 // Update the number of deleted elements in the hash table.
3034 inline void SetNumberOfDeletedElements(int nod);
3036 // Returns probe entry.
3037 static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
3038 DCHECK(base::bits::IsPowerOfTwo32(size));
3039 return (hash + GetProbeOffset(number)) & (size - 1);
3042 inline static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
3043 return hash & (size - 1);
3046 inline static uint32_t NextProbe(
3047 uint32_t last, uint32_t number, uint32_t size) {
3048 return (last + number) & (size - 1);
3053 template <typename Derived, typename Shape, typename Key>
3054 class HashTable : public HashTableBase {
3057 inline uint32_t Hash(Key key) {
3058 if (Shape::UsesSeed) {
3059 return Shape::SeededHash(key, GetHeap()->HashSeed());
3061 return Shape::Hash(key);
3065 inline uint32_t HashForObject(Key key, Object* object) {
3066 if (Shape::UsesSeed) {
3067 return Shape::SeededHashForObject(key, GetHeap()->HashSeed(), object);
3069 return Shape::HashForObject(key, object);
3073 // Returns a new HashTable object.
3074 MUST_USE_RESULT static Handle<Derived> New(
3075 Isolate* isolate, int at_least_space_for,
3076 MinimumCapacity capacity_option = USE_DEFAULT_MINIMUM_CAPACITY,
3077 PretenureFlag pretenure = NOT_TENURED);
3079 DECLARE_CAST(HashTable)
3081 // Garbage collection support.
3082 void IteratePrefix(ObjectVisitor* visitor);
3083 void IterateElements(ObjectVisitor* visitor);
3085 // Find entry for key otherwise return kNotFound.
3086 inline int FindEntry(Key key);
3087 inline int FindEntry(Isolate* isolate, Key key, int32_t hash);
3088 int FindEntry(Isolate* isolate, Key key);
3090 // Rehashes the table in-place.
3091 void Rehash(Key key);
3093 // Returns the key at entry.
3094 Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
3096 static const int kElementsStartIndex = kPrefixStartIndex + Shape::kPrefixSize;
3097 static const int kEntrySize = Shape::kEntrySize;
3098 static const int kElementsStartOffset =
3099 kHeaderSize + kElementsStartIndex * kPointerSize;
3100 static const int kCapacityOffset =
3101 kHeaderSize + kCapacityIndex * kPointerSize;
3103 // Returns the index for an entry (of the key)
3104 static inline int EntryToIndex(int entry) {
3105 return (entry * kEntrySize) + kElementsStartIndex;
3109 friend class ObjectHashTable;
3111 // Find the entry at which to insert element with the given key that
3112 // has the given hash value.
3113 uint32_t FindInsertionEntry(uint32_t hash);
3115 // Attempt to shrink hash table after removal of key.
3116 MUST_USE_RESULT static Handle<Derived> Shrink(Handle<Derived> table, Key key);
3118 // Ensure enough space for n additional elements.
3119 MUST_USE_RESULT static Handle<Derived> EnsureCapacity(
3120 Handle<Derived> table,
3123 PretenureFlag pretenure = NOT_TENURED);
3125 // Sets the capacity of the hash table.
3126 void SetCapacity(int capacity) {
3127 // To scale a computed hash code to fit within the hash table, we
3128 // use bit-wise AND with a mask, so the capacity must be positive
3130 DCHECK(capacity > 0);
3131 DCHECK(capacity <= kMaxCapacity);
3132 set(kCapacityIndex, Smi::FromInt(capacity));
3135 // Maximal capacity of HashTable. Based on maximal length of underlying
3136 // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
3138 static const int kMaxCapacity =
3139 (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
3142 // Returns _expected_ if one of entries given by the first _probe_ probes is
3143 // equal to _expected_. Otherwise, returns the entry given by the probe
3145 uint32_t EntryForProbe(Key key, Object* k, int probe, uint32_t expected);
3147 void Swap(uint32_t entry1, uint32_t entry2, WriteBarrierMode mode);
3149 // Rehashes this hash-table into the new table.
3150 void Rehash(Handle<Derived> new_table, Key key);
3154 // HashTableKey is an abstract superclass for virtual key behavior.
3155 class HashTableKey {
3157 // Returns whether the other object matches this key.
3158 virtual bool IsMatch(Object* other) = 0;
3159 // Returns the hash value for this key.
3160 virtual uint32_t Hash() = 0;
3161 // Returns the hash value for object.
3162 virtual uint32_t HashForObject(Object* key) = 0;
3163 // Returns the key object for storing into the hash table.
3164 MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate) = 0;
3166 virtual ~HashTableKey() {}
3170 class StringTableShape : public BaseShape<HashTableKey*> {
3172 static inline bool IsMatch(HashTableKey* key, Object* value) {
3173 return key->IsMatch(value);
3176 static inline uint32_t Hash(HashTableKey* key) {
3180 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3181 return key->HashForObject(object);
3184 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
3186 static const int kPrefixSize = 0;
3187 static const int kEntrySize = 1;
3190 class SeqOneByteString;
3194 // No special elements in the prefix and the element size is 1
3195 // because only the string itself (the key) needs to be stored.
3196 class StringTable: public HashTable<StringTable,
3200 // Find string in the string table. If it is not there yet, it is
3201 // added. The return value is the string found.
3202 static Handle<String> LookupString(Isolate* isolate, Handle<String> key);
3203 static Handle<String> LookupKey(Isolate* isolate, HashTableKey* key);
3204 static String* LookupKeyIfExists(Isolate* isolate, HashTableKey* key);
3206 // Tries to internalize given string and returns string handle on success
3207 // or an empty handle otherwise.
3208 MUST_USE_RESULT static MaybeHandle<String> InternalizeStringIfExists(
3210 Handle<String> string);
3212 // Looks up a string that is equal to the given string and returns
3213 // string handle if it is found, or an empty handle otherwise.
3214 MUST_USE_RESULT static MaybeHandle<String> LookupStringIfExists(
3216 Handle<String> str);
3217 MUST_USE_RESULT static MaybeHandle<String> LookupTwoCharsStringIfExists(
3222 static void EnsureCapacityForDeserialization(Isolate* isolate, int expected);
3224 DECLARE_CAST(StringTable)
3227 template <bool seq_one_byte>
3228 friend class JsonParser;
3230 DISALLOW_IMPLICIT_CONSTRUCTORS(StringTable);
3234 template <typename Derived, typename Shape, typename Key>
3235 class Dictionary: public HashTable<Derived, Shape, Key> {
3236 typedef HashTable<Derived, Shape, Key> DerivedHashTable;
3239 // Returns the value at entry.
3240 Object* ValueAt(int entry) {
3241 return this->get(Derived::EntryToIndex(entry) + 1);
3244 // Set the value for entry.
3245 void ValueAtPut(int entry, Object* value) {
3246 this->set(Derived::EntryToIndex(entry) + 1, value);
3249 // Returns the property details for the property at entry.
3250 PropertyDetails DetailsAt(int entry) {
3251 return Shape::DetailsAt(static_cast<Derived*>(this), entry);
3254 // Set the details for entry.
3255 void DetailsAtPut(int entry, PropertyDetails value) {
3256 Shape::DetailsAtPut(static_cast<Derived*>(this), entry, value);
3259 // Returns true if property at given entry is deleted.
3260 bool IsDeleted(int entry) {
3261 return Shape::IsDeleted(static_cast<Derived*>(this), entry);
3264 // Delete a property from the dictionary.
3265 static Handle<Object> DeleteProperty(Handle<Derived> dictionary, int entry);
3267 // Attempt to shrink the dictionary after deletion of key.
3268 MUST_USE_RESULT static inline Handle<Derived> Shrink(
3269 Handle<Derived> dictionary,
3271 return DerivedHashTable::Shrink(dictionary, key);
3275 // TODO(dcarney): templatize or move to SeededNumberDictionary
3276 void CopyValuesTo(FixedArray* elements);
3278 // Returns the number of elements in the dictionary filtering out properties
3279 // with the specified attributes.
3280 int NumberOfElementsFilterAttributes(PropertyAttributes filter);
3282 // Returns the number of enumerable elements in the dictionary.
3283 int NumberOfEnumElements() {
3284 return NumberOfElementsFilterAttributes(
3285 static_cast<PropertyAttributes>(DONT_ENUM | SYMBOLIC));
3288 // Returns true if the dictionary contains any elements that are non-writable,
3289 // non-configurable, non-enumerable, or have getters/setters.
3290 bool HasComplexElements();
3292 enum SortMode { UNSORTED, SORTED };
3294 // Fill in details for properties into storage.
3295 // Returns the number of properties added.
3296 int CopyKeysTo(FixedArray* storage, int index, PropertyAttributes filter,
3297 SortMode sort_mode);
3299 // Copies enumerable keys to preallocated fixed array.
3300 void CopyEnumKeysTo(FixedArray* storage);
3302 // Accessors for next enumeration index.
3303 void SetNextEnumerationIndex(int index) {
3305 this->set(kNextEnumerationIndexIndex, Smi::FromInt(index));
3308 int NextEnumerationIndex() {
3309 return Smi::cast(this->get(kNextEnumerationIndexIndex))->value();
3312 // Creates a new dictionary.
3313 MUST_USE_RESULT static Handle<Derived> New(
3315 int at_least_space_for,
3316 PretenureFlag pretenure = NOT_TENURED);
3318 // Ensure enough space for n additional elements.
3319 static Handle<Derived> EnsureCapacity(Handle<Derived> obj, int n, Key key);
3322 void Print(std::ostream& os); // NOLINT
3324 // Returns the key (slow).
3325 Object* SlowReverseLookup(Object* value);
3327 // Sets the entry to (key, value) pair.
3328 inline void SetEntry(int entry,
3330 Handle<Object> value);
3331 inline void SetEntry(int entry,
3333 Handle<Object> value,
3334 PropertyDetails details);
3336 MUST_USE_RESULT static Handle<Derived> Add(
3337 Handle<Derived> dictionary,
3339 Handle<Object> value,
3340 PropertyDetails details);
3342 // Returns iteration indices array for the |dictionary|.
3343 // Values are direct indices in the |HashTable| array.
3344 static Handle<FixedArray> BuildIterationIndicesArray(
3345 Handle<Derived> dictionary);
3348 // Generic at put operation.
3349 MUST_USE_RESULT static Handle<Derived> AtPut(
3350 Handle<Derived> dictionary,
3352 Handle<Object> value);
3354 // Add entry to dictionary.
3355 static void AddEntry(
3356 Handle<Derived> dictionary,
3358 Handle<Object> value,
3359 PropertyDetails details,
3362 // Generate new enumeration indices to avoid enumeration index overflow.
3363 // Returns iteration indices array for the |dictionary|.
3364 static Handle<FixedArray> GenerateNewEnumerationIndices(
3365 Handle<Derived> dictionary);
3366 static const int kMaxNumberKeyIndex = DerivedHashTable::kPrefixStartIndex;
3367 static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
3371 template <typename Derived, typename Shape>
3372 class NameDictionaryBase : public Dictionary<Derived, Shape, Handle<Name> > {
3373 typedef Dictionary<Derived, Shape, Handle<Name> > DerivedDictionary;
3376 // Find entry for key, otherwise return kNotFound. Optimized version of
3377 // HashTable::FindEntry.
3378 int FindEntry(Handle<Name> key);
3382 template <typename Key>
3383 class BaseDictionaryShape : public BaseShape<Key> {
3385 template <typename Dictionary>
3386 static inline PropertyDetails DetailsAt(Dictionary* dict, int entry) {
3387 STATIC_ASSERT(Dictionary::kEntrySize == 3);
3388 DCHECK(entry >= 0); // Not found is -1, which is not caught by get().
3389 return PropertyDetails(
3390 Smi::cast(dict->get(Dictionary::EntryToIndex(entry) + 2)));
3393 template <typename Dictionary>
3394 static inline void DetailsAtPut(Dictionary* dict, int entry,
3395 PropertyDetails value) {
3396 STATIC_ASSERT(Dictionary::kEntrySize == 3);
3397 dict->set(Dictionary::EntryToIndex(entry) + 2, value.AsSmi());
3400 template <typename Dictionary>
3401 static bool IsDeleted(Dictionary* dict, int entry) {
3405 template <typename Dictionary>
3406 static inline void SetEntry(Dictionary* dict, int entry, Handle<Object> key,
3407 Handle<Object> value, PropertyDetails details);
3411 class NameDictionaryShape : public BaseDictionaryShape<Handle<Name> > {
3413 static inline bool IsMatch(Handle<Name> key, Object* other);
3414 static inline uint32_t Hash(Handle<Name> key);
3415 static inline uint32_t HashForObject(Handle<Name> key, Object* object);
3416 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Name> key);
3417 static const int kPrefixSize = 2;
3418 static const int kEntrySize = 3;
3419 static const bool kIsEnumerable = true;
3423 class NameDictionary
3424 : public NameDictionaryBase<NameDictionary, NameDictionaryShape> {
3425 typedef NameDictionaryBase<NameDictionary, NameDictionaryShape>
3429 DECLARE_CAST(NameDictionary)
3431 inline static Handle<FixedArray> DoGenerateNewEnumerationIndices(
3432 Handle<NameDictionary> dictionary);
3436 class GlobalDictionaryShape : public NameDictionaryShape {
3438 static const int kEntrySize = 2; // Overrides NameDictionaryShape::kEntrySize
3440 template <typename Dictionary>
3441 static inline PropertyDetails DetailsAt(Dictionary* dict, int entry);
3443 template <typename Dictionary>
3444 static inline void DetailsAtPut(Dictionary* dict, int entry,
3445 PropertyDetails value);
3447 template <typename Dictionary>
3448 static bool IsDeleted(Dictionary* dict, int entry);
3450 template <typename Dictionary>
3451 static inline void SetEntry(Dictionary* dict, int entry, Handle<Object> key,
3452 Handle<Object> value, PropertyDetails details);
3456 class GlobalDictionary
3457 : public NameDictionaryBase<GlobalDictionary, GlobalDictionaryShape> {
3459 DECLARE_CAST(GlobalDictionary)
3463 class NumberDictionaryShape : public BaseDictionaryShape<uint32_t> {
3465 static inline bool IsMatch(uint32_t key, Object* other);
3466 static inline Handle<Object> AsHandle(Isolate* isolate, uint32_t key);
3467 static const int kEntrySize = 3;
3468 static const bool kIsEnumerable = false;
3472 class SeededNumberDictionaryShape : public NumberDictionaryShape {
3474 static const bool UsesSeed = true;
3475 static const int kPrefixSize = 2;
3477 static inline uint32_t SeededHash(uint32_t key, uint32_t seed);
3478 static inline uint32_t SeededHashForObject(uint32_t key,
3484 class UnseededNumberDictionaryShape : public NumberDictionaryShape {
3486 static const int kPrefixSize = 0;
3488 static inline uint32_t Hash(uint32_t key);
3489 static inline uint32_t HashForObject(uint32_t key, Object* object);
3493 class SeededNumberDictionary
3494 : public Dictionary<SeededNumberDictionary,
3495 SeededNumberDictionaryShape,
3498 DECLARE_CAST(SeededNumberDictionary)
3500 // Type specific at put (default NONE attributes is used when adding).
3501 MUST_USE_RESULT static Handle<SeededNumberDictionary> AtNumberPut(
3502 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3503 Handle<Object> value, bool used_as_prototype);
3504 MUST_USE_RESULT static Handle<SeededNumberDictionary> AddNumberEntry(
3505 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3506 Handle<Object> value, PropertyDetails details, bool used_as_prototype);
3508 // Set an existing entry or add a new one if needed.
3509 // Return the updated dictionary.
3510 MUST_USE_RESULT static Handle<SeededNumberDictionary> Set(
3511 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3512 Handle<Object> value, PropertyDetails details, bool used_as_prototype);
3514 void UpdateMaxNumberKey(uint32_t key, bool used_as_prototype);
3516 // If slow elements are required we will never go back to fast-case
3517 // for the elements kept in this dictionary. We require slow
3518 // elements if an element has been added at an index larger than
3519 // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
3520 // when defining a getter or setter with a number key.
3521 inline bool requires_slow_elements();
3522 inline void set_requires_slow_elements();
3524 // Get the value of the max number key that has been added to this
3525 // dictionary. max_number_key can only be called if
3526 // requires_slow_elements returns false.
3527 inline uint32_t max_number_key();
3530 static const int kRequiresSlowElementsMask = 1;
3531 static const int kRequiresSlowElementsTagSize = 1;
3532 static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
3536 class UnseededNumberDictionary
3537 : public Dictionary<UnseededNumberDictionary,
3538 UnseededNumberDictionaryShape,
3541 DECLARE_CAST(UnseededNumberDictionary)
3543 // Type specific at put (default NONE attributes is used when adding).
3544 MUST_USE_RESULT static Handle<UnseededNumberDictionary> AtNumberPut(
3545 Handle<UnseededNumberDictionary> dictionary,
3547 Handle<Object> value);
3548 MUST_USE_RESULT static Handle<UnseededNumberDictionary> AddNumberEntry(
3549 Handle<UnseededNumberDictionary> dictionary,
3551 Handle<Object> value);
3553 // Set an existing entry or add a new one if needed.
3554 // Return the updated dictionary.
3555 MUST_USE_RESULT static Handle<UnseededNumberDictionary> Set(
3556 Handle<UnseededNumberDictionary> dictionary,
3558 Handle<Object> value);
3562 class ObjectHashTableShape : public BaseShape<Handle<Object> > {
3564 static inline bool IsMatch(Handle<Object> key, Object* other);
3565 static inline uint32_t Hash(Handle<Object> key);
3566 static inline uint32_t HashForObject(Handle<Object> key, Object* object);
3567 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
3568 static const int kPrefixSize = 0;
3569 static const int kEntrySize = 2;
3573 // ObjectHashTable maps keys that are arbitrary objects to object values by
3574 // using the identity hash of the key for hashing purposes.
3575 class ObjectHashTable: public HashTable<ObjectHashTable,
3576 ObjectHashTableShape,
3579 ObjectHashTable, ObjectHashTableShape, Handle<Object> > DerivedHashTable;
3581 DECLARE_CAST(ObjectHashTable)
3583 // Attempt to shrink hash table after removal of key.
3584 MUST_USE_RESULT static inline Handle<ObjectHashTable> Shrink(
3585 Handle<ObjectHashTable> table,
3586 Handle<Object> key);
3588 // Looks up the value associated with the given key. The hole value is
3589 // returned in case the key is not present.
3590 Object* Lookup(Handle<Object> key);
3591 Object* Lookup(Handle<Object> key, int32_t hash);
3592 Object* Lookup(Isolate* isolate, Handle<Object> key, int32_t hash);
3594 // Adds (or overwrites) the value associated with the given key.
3595 static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
3597 Handle<Object> value);
3598 static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
3599 Handle<Object> key, Handle<Object> value,
3602 // Returns an ObjectHashTable (possibly |table|) where |key| has been removed.
3603 static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
3606 static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
3607 Handle<Object> key, bool* was_present,
3611 friend class MarkCompactCollector;
3613 void AddEntry(int entry, Object* key, Object* value);
3614 void RemoveEntry(int entry);
3616 // Returns the index to the value of an entry.
3617 static inline int EntryToValueIndex(int entry) {
3618 return EntryToIndex(entry) + 1;
3623 // OrderedHashTable is a HashTable with Object keys that preserves
3624 // insertion order. There are Map and Set interfaces (OrderedHashMap
3625 // and OrderedHashTable, below). It is meant to be used by JSMap/JSSet.
3627 // Only Object* keys are supported, with Object::SameValueZero() used as the
3628 // equality operator and Object::GetHash() for the hash function.
3630 // Based on the "Deterministic Hash Table" as described by Jason Orendorff at
3631 // https://wiki.mozilla.org/User:Jorend/Deterministic_hash_tables
3632 // Originally attributed to Tyler Close.
3635 // [0]: bucket count
3636 // [1]: element count
3637 // [2]: deleted element count
3638 // [3..(3 + NumberOfBuckets() - 1)]: "hash table", where each item is an
3639 // offset into the data table (see below) where the
3640 // first item in this bucket is stored.
3641 // [3 + NumberOfBuckets()..length]: "data table", an array of length
3642 // Capacity() * kEntrySize, where the first entrysize
3643 // items are handled by the derived class and the
3644 // item at kChainOffset is another entry into the
3645 // data table indicating the next entry in this hash
3648 // When we transition the table to a new version we obsolete it and reuse parts
3649 // of the memory to store information how to transition an iterator to the new
3652 // Memory layout for obsolete table:
3653 // [0]: bucket count
3654 // [1]: Next newer table
3655 // [2]: Number of removed holes or -1 when the table was cleared.
3656 // [3..(3 + NumberOfRemovedHoles() - 1)]: The indexes of the removed holes.
3657 // [3 + NumberOfRemovedHoles()..length]: Not used
3659 template<class Derived, class Iterator, int entrysize>
3660 class OrderedHashTable: public FixedArray {
3662 // Returns an OrderedHashTable with a capacity of at least |capacity|.
3663 static Handle<Derived> Allocate(
3664 Isolate* isolate, int capacity, PretenureFlag pretenure = NOT_TENURED);
3666 // Returns an OrderedHashTable (possibly |table|) with enough space
3667 // to add at least one new element.
3668 static Handle<Derived> EnsureGrowable(Handle<Derived> table);
3670 // Returns an OrderedHashTable (possibly |table|) that's shrunken
3672 static Handle<Derived> Shrink(Handle<Derived> table);
3674 // Returns a new empty OrderedHashTable and records the clearing so that
3675 // exisiting iterators can be updated.
3676 static Handle<Derived> Clear(Handle<Derived> table);
3678 // Returns a true if the OrderedHashTable contains the key
3679 static bool HasKey(Handle<Derived> table, Handle<Object> key);
3681 int NumberOfElements() {
3682 return Smi::cast(get(kNumberOfElementsIndex))->value();
3685 int NumberOfDeletedElements() {
3686 return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
3689 int UsedCapacity() { return NumberOfElements() + NumberOfDeletedElements(); }
3691 int NumberOfBuckets() {
3692 return Smi::cast(get(kNumberOfBucketsIndex))->value();
3695 // Returns an index into |this| for the given entry.
3696 int EntryToIndex(int entry) {
3697 return kHashTableStartIndex + NumberOfBuckets() + (entry * kEntrySize);
3700 int HashToBucket(int hash) { return hash & (NumberOfBuckets() - 1); }
3702 int HashToEntry(int hash) {
3703 int bucket = HashToBucket(hash);
3704 Object* entry = this->get(kHashTableStartIndex + bucket);
3705 return Smi::cast(entry)->value();
3708 int KeyToFirstEntry(Object* key) {
3709 Object* hash = key->GetHash();
3710 // If the object does not have an identity hash, it was never used as a key
3711 if (hash->IsUndefined()) return kNotFound;
3712 return HashToEntry(Smi::cast(hash)->value());
3715 int NextChainEntry(int entry) {
3716 Object* next_entry = get(EntryToIndex(entry) + kChainOffset);
3717 return Smi::cast(next_entry)->value();
3720 Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
3723 return !get(kNextTableIndex)->IsSmi();
3726 // The next newer table. This is only valid if the table is obsolete.
3727 Derived* NextTable() {
3728 return Derived::cast(get(kNextTableIndex));
3731 // When the table is obsolete we store the indexes of the removed holes.
3732 int RemovedIndexAt(int index) {
3733 return Smi::cast(get(kRemovedHolesIndex + index))->value();
3736 static const int kNotFound = -1;
3737 static const int kMinCapacity = 4;
3739 static const int kNumberOfBucketsIndex = 0;
3740 static const int kNumberOfElementsIndex = kNumberOfBucketsIndex + 1;
3741 static const int kNumberOfDeletedElementsIndex = kNumberOfElementsIndex + 1;
3742 static const int kHashTableStartIndex = kNumberOfDeletedElementsIndex + 1;
3743 static const int kNextTableIndex = kNumberOfElementsIndex;
3745 static const int kNumberOfBucketsOffset =
3746 kHeaderSize + kNumberOfBucketsIndex * kPointerSize;
3747 static const int kNumberOfElementsOffset =
3748 kHeaderSize + kNumberOfElementsIndex * kPointerSize;
3749 static const int kNumberOfDeletedElementsOffset =
3750 kHeaderSize + kNumberOfDeletedElementsIndex * kPointerSize;
3751 static const int kHashTableStartOffset =
3752 kHeaderSize + kHashTableStartIndex * kPointerSize;
3753 static const int kNextTableOffset =
3754 kHeaderSize + kNextTableIndex * kPointerSize;
3756 static const int kEntrySize = entrysize + 1;
3757 static const int kChainOffset = entrysize;
3759 static const int kLoadFactor = 2;
3761 // NumberOfDeletedElements is set to kClearedTableSentinel when
3762 // the table is cleared, which allows iterator transitions to
3763 // optimize that case.
3764 static const int kClearedTableSentinel = -1;
3767 static Handle<Derived> Rehash(Handle<Derived> table, int new_capacity);
3769 void SetNumberOfBuckets(int num) {
3770 set(kNumberOfBucketsIndex, Smi::FromInt(num));
3773 void SetNumberOfElements(int num) {
3774 set(kNumberOfElementsIndex, Smi::FromInt(num));
3777 void SetNumberOfDeletedElements(int num) {
3778 set(kNumberOfDeletedElementsIndex, Smi::FromInt(num));
3782 return NumberOfBuckets() * kLoadFactor;
3785 void SetNextTable(Derived* next_table) {
3786 set(kNextTableIndex, next_table);
3789 void SetRemovedIndexAt(int index, int removed_index) {
3790 return set(kRemovedHolesIndex + index, Smi::FromInt(removed_index));
3793 static const int kRemovedHolesIndex = kHashTableStartIndex;
3795 static const int kMaxCapacity =
3796 (FixedArray::kMaxLength - kHashTableStartIndex)
3797 / (1 + (kEntrySize * kLoadFactor));
3801 class JSSetIterator;
3804 class OrderedHashSet: public OrderedHashTable<
3805 OrderedHashSet, JSSetIterator, 1> {
3807 DECLARE_CAST(OrderedHashSet)
3809 static Handle<OrderedHashSet> Add(Handle<OrderedHashSet> table,
3810 Handle<Object> value);
3814 class JSMapIterator;
3817 class OrderedHashMap
3818 : public OrderedHashTable<OrderedHashMap, JSMapIterator, 2> {
3820 DECLARE_CAST(OrderedHashMap)
3822 inline Object* ValueAt(int entry);
3824 static const int kValueOffset = 1;
3828 template <int entrysize>
3829 class WeakHashTableShape : public BaseShape<Handle<Object> > {
3831 static inline bool IsMatch(Handle<Object> key, Object* other);
3832 static inline uint32_t Hash(Handle<Object> key);
3833 static inline uint32_t HashForObject(Handle<Object> key, Object* object);
3834 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
3835 static const int kPrefixSize = 0;
3836 static const int kEntrySize = entrysize;
3840 // WeakHashTable maps keys that are arbitrary heap objects to heap object
3841 // values. The table wraps the keys in weak cells and store values directly.
3842 // Thus it references keys weakly and values strongly.
3843 class WeakHashTable: public HashTable<WeakHashTable,
3844 WeakHashTableShape<2>,
3847 WeakHashTable, WeakHashTableShape<2>, Handle<Object> > DerivedHashTable;
3849 DECLARE_CAST(WeakHashTable)
3851 // Looks up the value associated with the given key. The hole value is
3852 // returned in case the key is not present.
3853 Object* Lookup(Handle<HeapObject> key);
3855 // Adds (or overwrites) the value associated with the given key. Mapping a
3856 // key to the hole value causes removal of the whole entry.
3857 MUST_USE_RESULT static Handle<WeakHashTable> Put(Handle<WeakHashTable> table,
3858 Handle<HeapObject> key,
3859 Handle<HeapObject> value);
3861 static Handle<FixedArray> GetValues(Handle<WeakHashTable> table);
3864 friend class MarkCompactCollector;
3866 void AddEntry(int entry, Handle<WeakCell> key, Handle<HeapObject> value);
3868 // Returns the index to the value of an entry.
3869 static inline int EntryToValueIndex(int entry) {
3870 return EntryToIndex(entry) + 1;
3875 // ScopeInfo represents information about different scopes of a source
3876 // program and the allocation of the scope's variables. Scope information
3877 // is stored in a compressed form in ScopeInfo objects and is used
3878 // at runtime (stack dumps, deoptimization, etc.).
3880 // This object provides quick access to scope info details for runtime
3882 class ScopeInfo : public FixedArray {
3884 DECLARE_CAST(ScopeInfo)
3886 // Return the type of this scope.
3887 ScopeType scope_type();
3889 // Does this scope call eval?
3892 // Return the language mode of this scope.
3893 LanguageMode language_mode();
3895 // True if this scope is a (var) declaration scope.
3896 bool is_declaration_scope();
3898 // Does this scope make a sloppy eval call?
3899 bool CallsSloppyEval() { return CallsEval() && is_sloppy(language_mode()); }
3901 // Return the total number of locals allocated on the stack and in the
3902 // context. This includes the parameters that are allocated in the context.
3905 // Return the number of stack slots for code. This number consists of two
3907 // 1. One stack slot per stack allocated local.
3908 // 2. One stack slot for the function name if it is stack allocated.
3909 int StackSlotCount();
3911 // Return the number of context slots for code if a context is allocated. This
3912 // number consists of three parts:
3913 // 1. Size of fixed header for every context: Context::MIN_CONTEXT_SLOTS
3914 // 2. One context slot per context allocated local.
3915 // 3. One context slot for the function name if it is context allocated.
3916 // Parameters allocated in the context count as context allocated locals. If
3917 // no contexts are allocated for this scope ContextLength returns 0.
3918 int ContextLength();
3920 // Does this scope declare a "this" binding?
3923 // Does this scope declare a "this" binding, and the "this" binding is stack-
3924 // or context-allocated?
3925 bool HasAllocatedReceiver();
3927 // Is this scope the scope of a named function expression?
3928 bool HasFunctionName();
3930 // Return if this has context allocated locals.
3931 bool HasHeapAllocatedLocals();
3933 // Return if contexts are allocated for this scope.
3936 // Return if this is a function scope with "use asm".
3937 inline bool IsAsmModule();
3939 // Return if this is a nested function within an asm module scope.
3940 inline bool IsAsmFunction();
3942 inline bool HasSimpleParameters();
3944 // Return the function_name if present.
3945 String* FunctionName();
3947 // Return the name of the given parameter.
3948 String* ParameterName(int var);
3950 // Return the name of the given local.
3951 String* LocalName(int var);
3953 // Return the name of the given stack local.
3954 String* StackLocalName(int var);
3956 // Return the name of the given stack local.
3957 int StackLocalIndex(int var);
3959 // Return the name of the given context local.
3960 String* ContextLocalName(int var);
3962 // Return the mode of the given context local.
3963 VariableMode ContextLocalMode(int var);
3965 // Return the initialization flag of the given context local.
3966 InitializationFlag ContextLocalInitFlag(int var);
3968 // Return the initialization flag of the given context local.
3969 MaybeAssignedFlag ContextLocalMaybeAssignedFlag(int var);
3971 // Return true if this local was introduced by the compiler, and should not be
3972 // exposed to the user in a debugger.
3973 bool LocalIsSynthetic(int var);
3975 String* StrongModeFreeVariableName(int var);
3976 int StrongModeFreeVariableStartPosition(int var);
3977 int StrongModeFreeVariableEndPosition(int var);
3979 // Lookup support for serialized scope info. Returns the
3980 // the stack slot index for a given slot name if the slot is
3981 // present; otherwise returns a value < 0. The name must be an internalized
3983 int StackSlotIndex(String* name);
3985 // Lookup support for serialized scope info. Returns the local context slot
3986 // index for a given slot name if the slot is present; otherwise
3987 // returns a value < 0. The name must be an internalized string.
3988 // If the slot is present and mode != NULL, sets *mode to the corresponding
3989 // mode for that variable.
3990 static int ContextSlotIndex(Handle<ScopeInfo> scope_info, Handle<String> name,
3991 VariableMode* mode, InitializationFlag* init_flag,
3992 MaybeAssignedFlag* maybe_assigned_flag);
3994 // Similar to ContextSlotIndex() but this method searches only among
3995 // global slots of the serialized scope info. Returns the context slot index
3996 // for a given slot name if the slot is present; otherwise returns a
3997 // value < 0. The name must be an internalized string. If the slot is present
3998 // and mode != NULL, sets *mode to the corresponding mode for that variable.
3999 static int ContextGlobalSlotIndex(Handle<ScopeInfo> scope_info,
4000 Handle<String> name, VariableMode* mode,
4001 InitializationFlag* init_flag,
4002 MaybeAssignedFlag* maybe_assigned_flag);
4004 // Lookup the name of a certain context slot by its index.
4005 String* ContextSlotName(int slot_index);
4007 // Lookup support for serialized scope info. Returns the
4008 // parameter index for a given parameter name if the parameter is present;
4009 // otherwise returns a value < 0. The name must be an internalized string.
4010 int ParameterIndex(String* name);
4012 // Lookup support for serialized scope info. Returns the function context
4013 // slot index if the function name is present and context-allocated (named
4014 // function expressions, only), otherwise returns a value < 0. The name
4015 // must be an internalized string.
4016 int FunctionContextSlotIndex(String* name, VariableMode* mode);
4018 // Lookup support for serialized scope info. Returns the receiver context
4019 // slot index if scope has a "this" binding, and the binding is
4020 // context-allocated. Otherwise returns a value < 0.
4021 int ReceiverContextSlotIndex();
4023 FunctionKind function_kind();
4025 static Handle<ScopeInfo> Create(Isolate* isolate, Zone* zone, Scope* scope);
4026 static Handle<ScopeInfo> CreateGlobalThisBinding(Isolate* isolate);
4028 // Serializes empty scope info.
4029 static ScopeInfo* Empty(Isolate* isolate);
4035 // The layout of the static part of a ScopeInfo is as follows. Each entry is
4036 // numeric and occupies one array slot.
4037 // 1. A set of properties of the scope
4038 // 2. The number of parameters. This only applies to function scopes. For
4039 // non-function scopes this is 0.
4040 // 3. The number of non-parameter variables allocated on the stack.
4041 // 4. The number of non-parameter and parameter variables allocated in the
4043 #define FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(V) \
4046 V(StackLocalCount) \
4047 V(ContextLocalCount) \
4048 V(ContextGlobalCount) \
4049 V(StrongModeFreeVariableCount)
4051 #define FIELD_ACCESSORS(name) \
4052 inline void Set##name(int value); \
4054 FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(FIELD_ACCESSORS)
4055 #undef FIELD_ACCESSORS
4059 #define DECL_INDEX(name) k##name,
4060 FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(DECL_INDEX)
4065 // The layout of the variable part of a ScopeInfo is as follows:
4066 // 1. ParameterEntries:
4067 // This part stores the names of the parameters for function scopes. One
4068 // slot is used per parameter, so in total this part occupies
4069 // ParameterCount() slots in the array. For other scopes than function
4070 // scopes ParameterCount() is 0.
4071 // 2. StackLocalFirstSlot:
4072 // Index of a first stack slot for stack local. Stack locals belonging to
4073 // this scope are located on a stack at slots starting from this index.
4074 // 3. StackLocalEntries:
4075 // Contains the names of local variables that are allocated on the stack,
4076 // in increasing order of the stack slot index. First local variable has
4077 // a stack slot index defined in StackLocalFirstSlot (point 2 above).
4078 // One slot is used per stack local, so in total this part occupies
4079 // StackLocalCount() slots in the array.
4080 // 4. ContextLocalNameEntries:
4081 // Contains the names of local variables and parameters that are allocated
4082 // in the context. They are stored in increasing order of the context slot
4083 // index starting with Context::MIN_CONTEXT_SLOTS. One slot is used per
4084 // context local, so in total this part occupies ContextLocalCount() slots
4086 // 5. ContextLocalInfoEntries:
4087 // Contains the variable modes and initialization flags corresponding to
4088 // the context locals in ContextLocalNameEntries. One slot is used per
4089 // context local, so in total this part occupies ContextLocalCount()
4090 // slots in the array.
4091 // 6. StrongModeFreeVariableNameEntries:
4092 // Stores the names of strong mode free variables.
4093 // 7. StrongModeFreeVariablePositionEntries:
4094 // Stores the locations (start and end position) of strong mode free
4096 // 8. RecieverEntryIndex:
4097 // If the scope binds a "this" value, one slot is reserved to hold the
4098 // context or stack slot index for the variable.
4099 // 9. FunctionNameEntryIndex:
4100 // If the scope belongs to a named function expression this part contains
4101 // information about the function variable. It always occupies two array
4102 // slots: a. The name of the function variable.
4103 // b. The context or stack slot index for the variable.
4104 int ParameterEntriesIndex();
4105 int StackLocalFirstSlotIndex();
4106 int StackLocalEntriesIndex();
4107 int ContextLocalNameEntriesIndex();
4108 int ContextGlobalNameEntriesIndex();
4109 int ContextLocalInfoEntriesIndex();
4110 int ContextGlobalInfoEntriesIndex();
4111 int StrongModeFreeVariableNameEntriesIndex();
4112 int StrongModeFreeVariablePositionEntriesIndex();
4113 int ReceiverEntryIndex();
4114 int FunctionNameEntryIndex();
4116 int Lookup(Handle<String> name, int start, int end, VariableMode* mode,
4117 VariableLocation* location, InitializationFlag* init_flag,
4118 MaybeAssignedFlag* maybe_assigned_flag);
4120 // Used for the function name variable for named function expressions, and for
4122 enum VariableAllocationInfo { NONE, STACK, CONTEXT, UNUSED };
4124 // Properties of scopes.
4125 class ScopeTypeField : public BitField<ScopeType, 0, 4> {};
4126 class CallsEvalField : public BitField<bool, ScopeTypeField::kNext, 1> {};
4127 STATIC_ASSERT(LANGUAGE_END == 3);
4128 class LanguageModeField
4129 : public BitField<LanguageMode, CallsEvalField::kNext, 2> {};
4130 class DeclarationScopeField
4131 : public BitField<bool, LanguageModeField::kNext, 1> {};
4132 class ReceiverVariableField
4133 : public BitField<VariableAllocationInfo, DeclarationScopeField::kNext,
4135 class FunctionVariableField
4136 : public BitField<VariableAllocationInfo, ReceiverVariableField::kNext,
4138 class FunctionVariableMode
4139 : public BitField<VariableMode, FunctionVariableField::kNext, 3> {};
4140 class AsmModuleField : public BitField<bool, FunctionVariableMode::kNext, 1> {
4142 class AsmFunctionField : public BitField<bool, AsmModuleField::kNext, 1> {};
4143 class HasSimpleParametersField
4144 : public BitField<bool, AsmFunctionField::kNext, 1> {};
4145 class FunctionKindField
4146 : public BitField<FunctionKind, HasSimpleParametersField::kNext, 8> {};
4148 // BitFields representing the encoded information for context locals in the
4149 // ContextLocalInfoEntries part.
4150 class ContextLocalMode: public BitField<VariableMode, 0, 3> {};
4151 class ContextLocalInitFlag: public BitField<InitializationFlag, 3, 1> {};
4152 class ContextLocalMaybeAssignedFlag
4153 : public BitField<MaybeAssignedFlag, 4, 1> {};
4155 friend class ScopeIterator;
4159 // The cache for maps used by normalized (dictionary mode) objects.
4160 // Such maps do not have property descriptors, so a typical program
4161 // needs very limited number of distinct normalized maps.
4162 class NormalizedMapCache: public FixedArray {
4164 static Handle<NormalizedMapCache> New(Isolate* isolate);
4166 MUST_USE_RESULT MaybeHandle<Map> Get(Handle<Map> fast_map,
4167 PropertyNormalizationMode mode);
4168 void Set(Handle<Map> fast_map, Handle<Map> normalized_map);
4172 DECLARE_CAST(NormalizedMapCache)
4174 static inline bool IsNormalizedMapCache(const Object* obj);
4176 DECLARE_VERIFIER(NormalizedMapCache)
4178 static const int kEntries = 64;
4180 static inline int GetIndex(Handle<Map> map);
4182 // The following declarations hide base class methods.
4183 Object* get(int index);
4184 void set(int index, Object* value);
4188 // ByteArray represents fixed sized byte arrays. Used for the relocation info
4189 // that is attached to code objects.
4190 class ByteArray: public FixedArrayBase {
4194 // Setter and getter.
4195 inline byte get(int index);
4196 inline void set(int index, byte value);
4198 // Treat contents as an int array.
4199 inline int get_int(int index);
4201 static int SizeFor(int length) {
4202 return OBJECT_POINTER_ALIGN(kHeaderSize + length);
4204 // We use byte arrays for free blocks in the heap. Given a desired size in
4205 // bytes that is a multiple of the word size and big enough to hold a byte
4206 // array, this function returns the number of elements a byte array should
4208 static int LengthFor(int size_in_bytes) {
4209 DCHECK(IsAligned(size_in_bytes, kPointerSize));
4210 DCHECK(size_in_bytes >= kHeaderSize);
4211 return size_in_bytes - kHeaderSize;
4214 // Returns data start address.
4215 inline Address GetDataStartAddress();
4217 // Returns a pointer to the ByteArray object for a given data start address.
4218 static inline ByteArray* FromDataStartAddress(Address address);
4220 DECLARE_CAST(ByteArray)
4222 // Dispatched behavior.
4223 inline int ByteArraySize();
4224 DECLARE_PRINTER(ByteArray)
4225 DECLARE_VERIFIER(ByteArray)
4227 // Layout description.
4228 static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
4230 // Maximal memory consumption for a single ByteArray.
4231 static const int kMaxSize = 512 * MB;
4232 // Maximal length of a single ByteArray.
4233 static const int kMaxLength = kMaxSize - kHeaderSize;
4236 DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
4240 // BytecodeArray represents a sequence of interpreter bytecodes.
4241 class BytecodeArray : public FixedArrayBase {
4243 static int SizeFor(int length) {
4244 return OBJECT_POINTER_ALIGN(kHeaderSize + length);
4247 // Setter and getter
4248 inline byte get(int index);
4249 inline void set(int index, byte value);
4251 // Returns data start address.
4252 inline Address GetFirstBytecodeAddress();
4254 // Accessors for frame size.
4255 inline int frame_size() const;
4256 inline void set_frame_size(int frame_size);
4258 // Accessor for register count (derived from frame_size).
4259 inline int register_count() const;
4261 // Accessors for parameter count (including implicit 'this' receiver).
4262 inline int parameter_count() const;
4263 inline void set_parameter_count(int number_of_parameters);
4265 // Accessors for the constant pool.
4266 DECL_ACCESSORS(constant_pool, FixedArray)
4268 DECLARE_CAST(BytecodeArray)
4270 // Dispatched behavior.
4271 inline int BytecodeArraySize();
4272 inline void BytecodeArrayIterateBody(ObjectVisitor* v);
4274 DECLARE_PRINTER(BytecodeArray)
4275 DECLARE_VERIFIER(BytecodeArray)
4277 void Disassemble(std::ostream& os);
4279 // Layout description.
4280 static const int kFrameSizeOffset = FixedArrayBase::kHeaderSize;
4281 static const int kParameterSizeOffset = kFrameSizeOffset + kIntSize;
4282 static const int kConstantPoolOffset = kParameterSizeOffset + kIntSize;
4283 static const int kHeaderSize = kConstantPoolOffset + kPointerSize;
4285 static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
4287 // Maximal memory consumption for a single BytecodeArray.
4288 static const int kMaxSize = 512 * MB;
4289 // Maximal length of a single BytecodeArray.
4290 static const int kMaxLength = kMaxSize - kHeaderSize;
4293 DISALLOW_IMPLICIT_CONSTRUCTORS(BytecodeArray);
4297 // FreeSpace are fixed-size free memory blocks used by the heap and GC.
4298 // They look like heap objects (are heap object tagged and have a map) so that
4299 // the heap remains iterable. They have a size and a next pointer.
4300 // The next pointer is the raw address of the next FreeSpace object (or NULL)
4301 // in the free list.
4302 class FreeSpace: public HeapObject {
4304 // [size]: size of the free space including the header.
4305 inline int size() const;
4306 inline void set_size(int value);
4308 inline int nobarrier_size() const;
4309 inline void nobarrier_set_size(int value);
4313 // Accessors for the next field.
4314 inline FreeSpace* next();
4315 inline FreeSpace** next_address();
4316 inline void set_next(FreeSpace* next);
4318 inline static FreeSpace* cast(HeapObject* obj);
4320 // Dispatched behavior.
4321 DECLARE_PRINTER(FreeSpace)
4322 DECLARE_VERIFIER(FreeSpace)
4324 // Layout description.
4325 // Size is smi tagged when it is stored.
4326 static const int kSizeOffset = HeapObject::kHeaderSize;
4327 static const int kNextOffset = POINTER_SIZE_ALIGN(kSizeOffset + kPointerSize);
4330 DISALLOW_IMPLICIT_CONSTRUCTORS(FreeSpace);
4334 // V has parameters (Type, type, TYPE, C type, element_size)
4335 #define TYPED_ARRAYS(V) \
4336 V(Uint8, uint8, UINT8, uint8_t, 1) \
4337 V(Int8, int8, INT8, int8_t, 1) \
4338 V(Uint16, uint16, UINT16, uint16_t, 2) \
4339 V(Int16, int16, INT16, int16_t, 2) \
4340 V(Uint32, uint32, UINT32, uint32_t, 4) \
4341 V(Int32, int32, INT32, int32_t, 4) \
4342 V(Float32, float32, FLOAT32, float, 4) \
4343 V(Float64, float64, FLOAT64, double, 8) \
4344 V(Uint8Clamped, uint8_clamped, UINT8_CLAMPED, uint8_t, 1)
4347 class FixedTypedArrayBase: public FixedArrayBase {
4349 // [base_pointer]: Either points to the FixedTypedArrayBase itself or nullptr.
4350 DECL_ACCESSORS(base_pointer, Object)
4352 // [external_pointer]: Contains the offset between base_pointer and the start
4353 // of the data. If the base_pointer is a nullptr, the external_pointer
4354 // therefore points to the actual backing store.
4355 DECL_ACCESSORS(external_pointer, void)
4357 // Dispatched behavior.
4358 inline void FixedTypedArrayBaseIterateBody(ObjectVisitor* v);
4360 template <typename StaticVisitor>
4361 inline void FixedTypedArrayBaseIterateBody();
4363 DECLARE_CAST(FixedTypedArrayBase)
4365 static const int kBasePointerOffset = FixedArrayBase::kHeaderSize;
4366 static const int kExternalPointerOffset = kBasePointerOffset + kPointerSize;
4367 static const int kHeaderSize =
4368 DOUBLE_POINTER_ALIGN(kExternalPointerOffset + kPointerSize);
4370 static const int kDataOffset = kHeaderSize;
4374 static inline int TypedArraySize(InstanceType type, int length);
4375 inline int TypedArraySize(InstanceType type);
4377 // Use with care: returns raw pointer into heap.
4378 inline void* DataPtr();
4380 inline int DataSize();
4383 static inline int ElementSize(InstanceType type);
4385 inline int DataSize(InstanceType type);
4387 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArrayBase);
4391 template <class Traits>
4392 class FixedTypedArray: public FixedTypedArrayBase {
4394 typedef typename Traits::ElementType ElementType;
4395 static const InstanceType kInstanceType = Traits::kInstanceType;
4397 DECLARE_CAST(FixedTypedArray<Traits>)
4399 inline ElementType get_scalar(int index);
4400 static inline Handle<Object> get(Handle<FixedTypedArray> array, int index);
4401 inline void set(int index, ElementType value);
4403 static inline ElementType from_int(int value);
4404 static inline ElementType from_double(double value);
4406 // This accessor applies the correct conversion from Smi, HeapNumber
4408 inline void SetValue(uint32_t index, Object* value);
4410 DECLARE_PRINTER(FixedTypedArray)
4411 DECLARE_VERIFIER(FixedTypedArray)
4414 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArray);
4417 #define FIXED_TYPED_ARRAY_TRAITS(Type, type, TYPE, elementType, size) \
4418 class Type##ArrayTraits { \
4419 public: /* NOLINT */ \
4420 typedef elementType ElementType; \
4421 static const InstanceType kInstanceType = FIXED_##TYPE##_ARRAY_TYPE; \
4422 static const char* Designator() { return #type " array"; } \
4423 static inline Handle<Object> ToHandle(Isolate* isolate, \
4424 elementType scalar); \
4425 static inline elementType defaultValue(); \
4428 typedef FixedTypedArray<Type##ArrayTraits> Fixed##Type##Array;
4430 TYPED_ARRAYS(FIXED_TYPED_ARRAY_TRAITS)
4432 #undef FIXED_TYPED_ARRAY_TRAITS
4435 // DeoptimizationInputData is a fixed array used to hold the deoptimization
4436 // data for code generated by the Hydrogen/Lithium compiler. It also
4437 // contains information about functions that were inlined. If N different
4438 // functions were inlined then first N elements of the literal array will
4439 // contain these functions.
4442 class DeoptimizationInputData: public FixedArray {
4444 // Layout description. Indices in the array.
4445 static const int kTranslationByteArrayIndex = 0;
4446 static const int kInlinedFunctionCountIndex = 1;
4447 static const int kLiteralArrayIndex = 2;
4448 static const int kOsrAstIdIndex = 3;
4449 static const int kOsrPcOffsetIndex = 4;
4450 static const int kOptimizationIdIndex = 5;
4451 static const int kSharedFunctionInfoIndex = 6;
4452 static const int kWeakCellCacheIndex = 7;
4453 static const int kFirstDeoptEntryIndex = 8;
4455 // Offsets of deopt entry elements relative to the start of the entry.
4456 static const int kAstIdRawOffset = 0;
4457 static const int kTranslationIndexOffset = 1;
4458 static const int kArgumentsStackHeightOffset = 2;
4459 static const int kPcOffset = 3;
4460 static const int kDeoptEntrySize = 4;
4462 // Simple element accessors.
4463 #define DECLARE_ELEMENT_ACCESSORS(name, type) \
4464 inline type* name(); \
4465 inline void Set##name(type* value);
4467 DECLARE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
4468 DECLARE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
4469 DECLARE_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
4470 DECLARE_ELEMENT_ACCESSORS(OsrAstId, Smi)
4471 DECLARE_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
4472 DECLARE_ELEMENT_ACCESSORS(OptimizationId, Smi)
4473 DECLARE_ELEMENT_ACCESSORS(SharedFunctionInfo, Object)
4474 DECLARE_ELEMENT_ACCESSORS(WeakCellCache, Object)
4476 #undef DECLARE_ELEMENT_ACCESSORS
4478 // Accessors for elements of the ith deoptimization entry.
4479 #define DECLARE_ENTRY_ACCESSORS(name, type) \
4480 inline type* name(int i); \
4481 inline void Set##name(int i, type* value);
4483 DECLARE_ENTRY_ACCESSORS(AstIdRaw, Smi)
4484 DECLARE_ENTRY_ACCESSORS(TranslationIndex, Smi)
4485 DECLARE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi)
4486 DECLARE_ENTRY_ACCESSORS(Pc, Smi)
4488 #undef DECLARE_ENTRY_ACCESSORS
4490 inline BailoutId AstId(int i);
4492 inline void SetAstId(int i, BailoutId value);
4494 inline int DeoptCount();
4496 // Allocates a DeoptimizationInputData.
4497 static Handle<DeoptimizationInputData> New(Isolate* isolate,
4498 int deopt_entry_count,
4499 PretenureFlag pretenure);
4501 DECLARE_CAST(DeoptimizationInputData)
4503 #ifdef ENABLE_DISASSEMBLER
4504 void DeoptimizationInputDataPrint(std::ostream& os); // NOLINT
4508 static int IndexForEntry(int i) {
4509 return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
4513 static int LengthFor(int entry_count) { return IndexForEntry(entry_count); }
4517 // DeoptimizationOutputData is a fixed array used to hold the deoptimization
4518 // data for code generated by the full compiler.
4519 // The format of the these objects is
4520 // [i * 2]: Ast ID for ith deoptimization.
4521 // [i * 2 + 1]: PC and state of ith deoptimization
4522 class DeoptimizationOutputData: public FixedArray {
4524 inline int DeoptPoints();
4526 inline BailoutId AstId(int index);
4528 inline void SetAstId(int index, BailoutId id);
4530 inline Smi* PcAndState(int index);
4531 inline void SetPcAndState(int index, Smi* offset);
4533 static int LengthOfFixedArray(int deopt_points) {
4534 return deopt_points * 2;
4537 // Allocates a DeoptimizationOutputData.
4538 static Handle<DeoptimizationOutputData> New(Isolate* isolate,
4539 int number_of_deopt_points,
4540 PretenureFlag pretenure);
4542 DECLARE_CAST(DeoptimizationOutputData)
4544 #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
4545 void DeoptimizationOutputDataPrint(std::ostream& os); // NOLINT
4550 // HandlerTable is a fixed array containing entries for exception handlers in
4551 // the code object it is associated with. The tables comes in two flavors:
4552 // 1) Based on ranges: Used for unoptimized code. Contains one entry per
4553 // exception handler and a range representing the try-block covered by that
4554 // handler. Layout looks as follows:
4555 // [ range-start , range-end , handler-offset , stack-depth ]
4556 // 2) Based on return addresses: Used for turbofanned code. Contains one entry
4557 // per call-site that could throw an exception. Layout looks as follows:
4558 // [ return-address-offset , handler-offset ]
4559 class HandlerTable : public FixedArray {
4561 // Conservative prediction whether a given handler will locally catch an
4562 // exception or cause a re-throw to outside the code boundary. Since this is
4563 // undecidable it is merely an approximation (e.g. useful for debugger).
4564 enum CatchPrediction { UNCAUGHT, CAUGHT };
4566 // Accessors for handler table based on ranges.
4567 inline void SetRangeStart(int index, int value);
4568 inline void SetRangeEnd(int index, int value);
4569 inline void SetRangeHandler(int index, int offset, CatchPrediction pred);
4570 inline void SetRangeDepth(int index, int value);
4572 // Accessors for handler table based on return addresses.
4573 inline void SetReturnOffset(int index, int value);
4574 inline void SetReturnHandler(int index, int offset, CatchPrediction pred);
4576 // Lookup handler in a table based on ranges.
4577 int LookupRange(int pc_offset, int* stack_depth, CatchPrediction* prediction);
4579 // Lookup handler in a table based on return addresses.
4580 int LookupReturn(int pc_offset, CatchPrediction* prediction);
4582 // Returns the required length of the underlying fixed array.
4583 static int LengthForRange(int entries) { return entries * kRangeEntrySize; }
4584 static int LengthForReturn(int entries) { return entries * kReturnEntrySize; }
4586 DECLARE_CAST(HandlerTable)
4588 #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
4589 void HandlerTableRangePrint(std::ostream& os); // NOLINT
4590 void HandlerTableReturnPrint(std::ostream& os); // NOLINT
4594 // Layout description for handler table based on ranges.
4595 static const int kRangeStartIndex = 0;
4596 static const int kRangeEndIndex = 1;
4597 static const int kRangeHandlerIndex = 2;
4598 static const int kRangeDepthIndex = 3;
4599 static const int kRangeEntrySize = 4;
4601 // Layout description for handler table based on return addresses.
4602 static const int kReturnOffsetIndex = 0;
4603 static const int kReturnHandlerIndex = 1;
4604 static const int kReturnEntrySize = 2;
4606 // Encoding of the {handler} field.
4607 class HandlerPredictionField : public BitField<CatchPrediction, 0, 1> {};
4608 class HandlerOffsetField : public BitField<int, 1, 30> {};
4612 // Code describes objects with on-the-fly generated machine code.
4613 class Code: public HeapObject {
4615 // Opaque data type for encapsulating code flags like kind, inline
4616 // cache state, and arguments count.
4617 typedef uint32_t Flags;
4619 #define NON_IC_KIND_LIST(V) \
4621 V(OPTIMIZED_FUNCTION) \
4628 #define IC_KIND_LIST(V) \
4639 #define CODE_KIND_LIST(V) \
4640 NON_IC_KIND_LIST(V) \
4644 #define DEFINE_CODE_KIND_ENUM(name) name,
4645 CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM)
4646 #undef DEFINE_CODE_KIND_ENUM
4650 // No more than 16 kinds. The value is currently encoded in four bits in
4652 STATIC_ASSERT(NUMBER_OF_KINDS <= 16);
4654 static const char* Kind2String(Kind kind);
4662 static const int kPrologueOffsetNotSet = -1;
4664 #ifdef ENABLE_DISASSEMBLER
4666 static const char* ICState2String(InlineCacheState state);
4667 static const char* StubType2String(StubType type);
4668 static void PrintExtraICState(std::ostream& os, // NOLINT
4669 Kind kind, ExtraICState extra);
4670 void Disassemble(const char* name, std::ostream& os); // NOLINT
4671 #endif // ENABLE_DISASSEMBLER
4673 // [instruction_size]: Size of the native instructions
4674 inline int instruction_size() const;
4675 inline void set_instruction_size(int value);
4677 // [relocation_info]: Code relocation information
4678 DECL_ACCESSORS(relocation_info, ByteArray)
4679 void InvalidateRelocation();
4680 void InvalidateEmbeddedObjects();
4682 // [handler_table]: Fixed array containing offsets of exception handlers.
4683 DECL_ACCESSORS(handler_table, FixedArray)
4685 // [deoptimization_data]: Array containing data for deopt.
4686 DECL_ACCESSORS(deoptimization_data, FixedArray)
4688 // [raw_type_feedback_info]: This field stores various things, depending on
4689 // the kind of the code object.
4690 // FUNCTION => type feedback information.
4691 // STUB and ICs => major/minor key as Smi.
4692 DECL_ACCESSORS(raw_type_feedback_info, Object)
4693 inline Object* type_feedback_info();
4694 inline void set_type_feedback_info(
4695 Object* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4696 inline uint32_t stub_key();
4697 inline void set_stub_key(uint32_t key);
4699 // [next_code_link]: Link for lists of optimized or deoptimized code.
4700 // Note that storage for this field is overlapped with typefeedback_info.
4701 DECL_ACCESSORS(next_code_link, Object)
4703 // [gc_metadata]: Field used to hold GC related metadata. The contents of this
4704 // field does not have to be traced during garbage collection since
4705 // it is only used by the garbage collector itself.
4706 DECL_ACCESSORS(gc_metadata, Object)
4708 // [ic_age]: Inline caching age: the value of the Heap::global_ic_age
4709 // at the moment when this object was created.
4710 inline void set_ic_age(int count);
4711 inline int ic_age() const;
4713 // [prologue_offset]: Offset of the function prologue, used for aging
4714 // FUNCTIONs and OPTIMIZED_FUNCTIONs.
4715 inline int prologue_offset() const;
4716 inline void set_prologue_offset(int offset);
4718 // [constant_pool offset]: Offset of the constant pool.
4719 // Valid for FLAG_enable_embedded_constant_pool only
4720 inline int constant_pool_offset() const;
4721 inline void set_constant_pool_offset(int offset);
4723 // Unchecked accessors to be used during GC.
4724 inline ByteArray* unchecked_relocation_info();
4726 inline int relocation_size();
4728 // [flags]: Various code flags.
4729 inline Flags flags();
4730 inline void set_flags(Flags flags);
4732 // [flags]: Access to specific code flags.
4734 inline InlineCacheState ic_state(); // Only valid for IC stubs.
4735 inline ExtraICState extra_ic_state(); // Only valid for IC stubs.
4737 inline StubType type(); // Only valid for monomorphic IC stubs.
4739 // Testers for IC stub kinds.
4740 inline bool is_inline_cache_stub();
4741 inline bool is_debug_stub();
4742 inline bool is_handler();
4743 inline bool is_load_stub();
4744 inline bool is_keyed_load_stub();
4745 inline bool is_store_stub();
4746 inline bool is_keyed_store_stub();
4747 inline bool is_call_stub();
4748 inline bool is_binary_op_stub();
4749 inline bool is_compare_ic_stub();
4750 inline bool is_compare_nil_ic_stub();
4751 inline bool is_to_boolean_ic_stub();
4752 inline bool is_keyed_stub();
4753 inline bool is_optimized_code();
4754 inline bool embeds_maps_weakly();
4756 inline bool IsCodeStubOrIC();
4757 inline bool IsJavaScriptCode();
4759 inline void set_raw_kind_specific_flags1(int value);
4760 inline void set_raw_kind_specific_flags2(int value);
4762 // [is_crankshafted]: For kind STUB or ICs, tells whether or not a code
4763 // object was generated by either the hydrogen or the TurboFan optimizing
4764 // compiler (but it may not be an optimized function).
4765 inline bool is_crankshafted();
4766 inline bool is_hydrogen_stub(); // Crankshafted, but not a function.
4767 inline void set_is_crankshafted(bool value);
4769 // [is_turbofanned]: For kind STUB or OPTIMIZED_FUNCTION, tells whether the
4770 // code object was generated by the TurboFan optimizing compiler.
4771 inline bool is_turbofanned();
4772 inline void set_is_turbofanned(bool value);
4774 // [can_have_weak_objects]: For kind OPTIMIZED_FUNCTION, tells whether the
4775 // embedded objects in code should be treated weakly.
4776 inline bool can_have_weak_objects();
4777 inline void set_can_have_weak_objects(bool value);
4779 // [has_deoptimization_support]: For FUNCTION kind, tells if it has
4780 // deoptimization support.
4781 inline bool has_deoptimization_support();
4782 inline void set_has_deoptimization_support(bool value);
4784 // [has_debug_break_slots]: For FUNCTION kind, tells if it has
4785 // been compiled with debug break slots.
4786 inline bool has_debug_break_slots();
4787 inline void set_has_debug_break_slots(bool value);
4789 // [has_reloc_info_for_serialization]: For FUNCTION kind, tells if its
4790 // reloc info includes runtime and external references to support
4791 // serialization/deserialization.
4792 inline bool has_reloc_info_for_serialization();
4793 inline void set_has_reloc_info_for_serialization(bool value);
4795 // [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for
4796 // how long the function has been marked for OSR and therefore which
4797 // level of loop nesting we are willing to do on-stack replacement
4799 inline void set_allow_osr_at_loop_nesting_level(int level);
4800 inline int allow_osr_at_loop_nesting_level();
4802 // [profiler_ticks]: For FUNCTION kind, tells for how many profiler ticks
4803 // the code object was seen on the stack with no IC patching going on.
4804 inline int profiler_ticks();
4805 inline void set_profiler_ticks(int ticks);
4807 // [builtin_index]: For BUILTIN kind, tells which builtin index it has.
4808 // For builtins, tells which builtin index it has.
4809 // Note that builtins can have a code kind other than BUILTIN, which means
4810 // that for arbitrary code objects, this index value may be random garbage.
4811 // To verify in that case, compare the code object to the indexed builtin.
4812 inline int builtin_index();
4813 inline void set_builtin_index(int id);
4815 // [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots
4816 // reserved in the code prologue.
4817 inline unsigned stack_slots();
4818 inline void set_stack_slots(unsigned slots);
4820 // [safepoint_table_start]: For kind OPTIMIZED_FUNCTION, the offset in
4821 // the instruction stream where the safepoint table starts.
4822 inline unsigned safepoint_table_offset();
4823 inline void set_safepoint_table_offset(unsigned offset);
4825 // [back_edge_table_start]: For kind FUNCTION, the offset in the
4826 // instruction stream where the back edge table starts.
4827 inline unsigned back_edge_table_offset();
4828 inline void set_back_edge_table_offset(unsigned offset);
4830 inline bool back_edges_patched_for_osr();
4832 // [to_boolean_foo]: For kind TO_BOOLEAN_IC tells what state the stub is in.
4833 inline uint16_t to_boolean_state();
4835 // [has_function_cache]: For kind STUB tells whether there is a function
4836 // cache is passed to the stub.
4837 inline bool has_function_cache();
4838 inline void set_has_function_cache(bool flag);
4841 // [marked_for_deoptimization]: For kind OPTIMIZED_FUNCTION tells whether
4842 // the code is going to be deoptimized because of dead embedded maps.
4843 inline bool marked_for_deoptimization();
4844 inline void set_marked_for_deoptimization(bool flag);
4846 // [constant_pool]: The constant pool for this function.
4847 inline Address constant_pool();
4849 // Get the safepoint entry for the given pc.
4850 SafepointEntry GetSafepointEntry(Address pc);
4852 // Find an object in a stub with a specified map
4853 Object* FindNthObject(int n, Map* match_map);
4855 // Find the first allocation site in an IC stub.
4856 AllocationSite* FindFirstAllocationSite();
4858 // Find the first map in an IC stub.
4859 Map* FindFirstMap();
4860 void FindAllMaps(MapHandleList* maps);
4862 // Find the first handler in an IC stub.
4863 Code* FindFirstHandler();
4865 // Find |length| handlers and put them into |code_list|. Returns false if not
4866 // enough handlers can be found.
4867 bool FindHandlers(CodeHandleList* code_list, int length = -1);
4869 // Find the handler for |map|.
4870 MaybeHandle<Code> FindHandlerForMap(Map* map);
4872 // Find the first name in an IC stub.
4873 Name* FindFirstName();
4875 class FindAndReplacePattern;
4876 // For each (map-to-find, object-to-replace) pair in the pattern, this
4877 // function replaces the corresponding placeholder in the code with the
4878 // object-to-replace. The function assumes that pairs in the pattern come in
4879 // the same order as the placeholders in the code.
4880 // If the placeholder is a weak cell, then the value of weak cell is matched
4881 // against the map-to-find.
4882 void FindAndReplace(const FindAndReplacePattern& pattern);
4884 // The entire code object including its header is copied verbatim to the
4885 // snapshot so that it can be written in one, fast, memcpy during
4886 // deserialization. The deserializer will overwrite some pointers, rather
4887 // like a runtime linker, but the random allocation addresses used in the
4888 // mksnapshot process would still be present in the unlinked snapshot data,
4889 // which would make snapshot production non-reproducible. This method wipes
4890 // out the to-be-overwritten header data for reproducible snapshots.
4891 inline void WipeOutHeader();
4893 // Flags operations.
4894 static inline Flags ComputeFlags(
4895 Kind kind, InlineCacheState ic_state = UNINITIALIZED,
4896 ExtraICState extra_ic_state = kNoExtraICState, StubType type = NORMAL,
4897 CacheHolderFlag holder = kCacheOnReceiver);
4899 static inline Flags ComputeMonomorphicFlags(
4900 Kind kind, ExtraICState extra_ic_state = kNoExtraICState,
4901 CacheHolderFlag holder = kCacheOnReceiver, StubType type = NORMAL);
4903 static inline Flags ComputeHandlerFlags(
4904 Kind handler_kind, StubType type = NORMAL,
4905 CacheHolderFlag holder = kCacheOnReceiver);
4907 static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
4908 static inline StubType ExtractTypeFromFlags(Flags flags);
4909 static inline CacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
4910 static inline Kind ExtractKindFromFlags(Flags flags);
4911 static inline ExtraICState ExtractExtraICStateFromFlags(Flags flags);
4913 static inline Flags RemoveTypeFromFlags(Flags flags);
4914 static inline Flags RemoveTypeAndHolderFromFlags(Flags flags);
4916 // Convert a target address into a code object.
4917 static inline Code* GetCodeFromTargetAddress(Address address);
4919 // Convert an entry address into an object.
4920 static inline Object* GetObjectFromEntryAddress(Address location_of_address);
4922 // Returns the address of the first instruction.
4923 inline byte* instruction_start();
4925 // Returns the address right after the last instruction.
4926 inline byte* instruction_end();
4928 // Returns the size of the instructions, padding, and relocation information.
4929 inline int body_size();
4931 // Returns the address of the first relocation info (read backwards!).
4932 inline byte* relocation_start();
4934 // Code entry point.
4935 inline byte* entry();
4937 // Returns true if pc is inside this object's instructions.
4938 inline bool contains(byte* pc);
4940 // Relocate the code by delta bytes. Called to signal that this code
4941 // object has been moved by delta bytes.
4942 void Relocate(intptr_t delta);
4944 // Migrate code described by desc.
4945 void CopyFrom(const CodeDesc& desc);
4947 // Returns the object size for a given body (used for allocation).
4948 static int SizeFor(int body_size) {
4949 DCHECK_SIZE_TAG_ALIGNED(body_size);
4950 return RoundUp(kHeaderSize + body_size, kCodeAlignment);
4953 // Calculate the size of the code object to report for log events. This takes
4954 // the layout of the code object into account.
4955 inline int ExecutableSize();
4957 // Locating source position.
4958 int SourcePosition(Address pc);
4959 int SourceStatementPosition(Address pc);
4963 // Dispatched behavior.
4964 inline int CodeSize();
4965 inline void CodeIterateBody(ObjectVisitor* v);
4967 template<typename StaticVisitor>
4968 inline void CodeIterateBody(Heap* heap);
4970 DECLARE_PRINTER(Code)
4971 DECLARE_VERIFIER(Code)
4973 void ClearInlineCaches();
4974 void ClearInlineCaches(Kind kind);
4976 BailoutId TranslatePcOffsetToAstId(uint32_t pc_offset);
4977 uint32_t TranslateAstIdToPcOffset(BailoutId ast_id);
4979 #define DECLARE_CODE_AGE_ENUM(X) k##X##CodeAge,
4981 kToBeExecutedOnceCodeAge = -3,
4982 kNotExecutedCodeAge = -2,
4983 kExecutedOnceCodeAge = -1,
4985 CODE_AGE_LIST(DECLARE_CODE_AGE_ENUM)
4987 kFirstCodeAge = kToBeExecutedOnceCodeAge,
4988 kLastCodeAge = kAfterLastCodeAge - 1,
4989 kCodeAgeCount = kAfterLastCodeAge - kFirstCodeAge - 1,
4990 kIsOldCodeAge = kSexagenarianCodeAge,
4991 kPreAgedCodeAge = kIsOldCodeAge - 1
4993 #undef DECLARE_CODE_AGE_ENUM
4995 // Code aging. Indicates how many full GCs this code has survived without
4996 // being entered through the prologue. Used to determine when it is
4997 // relatively safe to flush this code object and replace it with the lazy
4998 // compilation stub.
4999 static void MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate);
5000 static void MarkCodeAsExecuted(byte* sequence, Isolate* isolate);
5001 void MakeYoung(Isolate* isolate);
5002 void MarkToBeExecutedOnce(Isolate* isolate);
5003 void MakeOlder(MarkingParity);
5004 static bool IsYoungSequence(Isolate* isolate, byte* sequence);
5007 static inline Code* GetPreAgedCodeAgeStub(Isolate* isolate) {
5008 return GetCodeAgeStub(isolate, kNotExecutedCodeAge, NO_MARKING_PARITY);
5011 void PrintDeoptLocation(FILE* out, Address pc);
5012 bool CanDeoptAt(Address pc);
5015 void VerifyEmbeddedObjectsDependency();
5019 enum VerifyMode { kNoContextSpecificPointers, kNoContextRetainingPointers };
5020 void VerifyEmbeddedObjects(VerifyMode mode = kNoContextRetainingPointers);
5021 static void VerifyRecompiledCode(Code* old_code, Code* new_code);
5024 inline bool CanContainWeakObjects();
5026 inline bool IsWeakObject(Object* object);
5028 static inline bool IsWeakObjectInOptimizedCode(Object* object);
5030 static Handle<WeakCell> WeakCellFor(Handle<Code> code);
5031 WeakCell* CachedWeakCell();
5033 // Max loop nesting marker used to postpose OSR. We don't take loop
5034 // nesting that is deeper than 5 levels into account.
5035 static const int kMaxLoopNestingMarker = 6;
5037 static const int kConstantPoolSize =
5038 FLAG_enable_embedded_constant_pool ? kIntSize : 0;
5040 // Layout description.
5041 static const int kRelocationInfoOffset = HeapObject::kHeaderSize;
5042 static const int kHandlerTableOffset = kRelocationInfoOffset + kPointerSize;
5043 static const int kDeoptimizationDataOffset =
5044 kHandlerTableOffset + kPointerSize;
5045 // For FUNCTION kind, we store the type feedback info here.
5046 static const int kTypeFeedbackInfoOffset =
5047 kDeoptimizationDataOffset + kPointerSize;
5048 static const int kNextCodeLinkOffset = kTypeFeedbackInfoOffset + kPointerSize;
5049 static const int kGCMetadataOffset = kNextCodeLinkOffset + kPointerSize;
5050 static const int kInstructionSizeOffset = kGCMetadataOffset + kPointerSize;
5051 static const int kICAgeOffset = kInstructionSizeOffset + kIntSize;
5052 static const int kFlagsOffset = kICAgeOffset + kIntSize;
5053 static const int kKindSpecificFlags1Offset = kFlagsOffset + kIntSize;
5054 static const int kKindSpecificFlags2Offset =
5055 kKindSpecificFlags1Offset + kIntSize;
5056 // Note: We might be able to squeeze this into the flags above.
5057 static const int kPrologueOffset = kKindSpecificFlags2Offset + kIntSize;
5058 static const int kConstantPoolOffset = kPrologueOffset + kIntSize;
5059 static const int kHeaderPaddingStart =
5060 kConstantPoolOffset + kConstantPoolSize;
5062 // Add padding to align the instruction start following right after
5063 // the Code object header.
5064 static const int kHeaderSize =
5065 (kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;
5067 // Byte offsets within kKindSpecificFlags1Offset.
5068 static const int kFullCodeFlags = kKindSpecificFlags1Offset;
5069 class FullCodeFlagsHasDeoptimizationSupportField:
5070 public BitField<bool, 0, 1> {}; // NOLINT
5071 class FullCodeFlagsHasDebugBreakSlotsField: public BitField<bool, 1, 1> {};
5072 class FullCodeFlagsHasRelocInfoForSerialization
5073 : public BitField<bool, 2, 1> {};
5074 // Bit 3 in this bitfield is unused.
5075 class ProfilerTicksField : public BitField<int, 4, 28> {};
5077 // Flags layout. BitField<type, shift, size>.
5078 class ICStateField : public BitField<InlineCacheState, 0, 4> {};
5079 class TypeField : public BitField<StubType, 4, 1> {};
5080 class CacheHolderField : public BitField<CacheHolderFlag, 5, 2> {};
5081 class KindField : public BitField<Kind, 7, 4> {};
5082 class ExtraICStateField: public BitField<ExtraICState, 11,
5083 PlatformSmiTagging::kSmiValueSize - 11 + 1> {}; // NOLINT
5085 // KindSpecificFlags1 layout (STUB and OPTIMIZED_FUNCTION)
5086 static const int kStackSlotsFirstBit = 0;
5087 static const int kStackSlotsBitCount = 24;
5088 static const int kHasFunctionCacheBit =
5089 kStackSlotsFirstBit + kStackSlotsBitCount;
5090 static const int kMarkedForDeoptimizationBit = kHasFunctionCacheBit + 1;
5091 static const int kIsTurbofannedBit = kMarkedForDeoptimizationBit + 1;
5092 static const int kCanHaveWeakObjects = kIsTurbofannedBit + 1;
5094 STATIC_ASSERT(kStackSlotsFirstBit + kStackSlotsBitCount <= 32);
5095 STATIC_ASSERT(kCanHaveWeakObjects + 1 <= 32);
5097 class StackSlotsField: public BitField<int,
5098 kStackSlotsFirstBit, kStackSlotsBitCount> {}; // NOLINT
5099 class HasFunctionCacheField : public BitField<bool, kHasFunctionCacheBit, 1> {
5101 class MarkedForDeoptimizationField
5102 : public BitField<bool, kMarkedForDeoptimizationBit, 1> {}; // NOLINT
5103 class IsTurbofannedField : public BitField<bool, kIsTurbofannedBit, 1> {
5105 class CanHaveWeakObjectsField
5106 : public BitField<bool, kCanHaveWeakObjects, 1> {}; // NOLINT
5108 // KindSpecificFlags2 layout (ALL)
5109 static const int kIsCrankshaftedBit = 0;
5110 class IsCrankshaftedField: public BitField<bool,
5111 kIsCrankshaftedBit, 1> {}; // NOLINT
5113 // KindSpecificFlags2 layout (STUB and OPTIMIZED_FUNCTION)
5114 static const int kSafepointTableOffsetFirstBit = kIsCrankshaftedBit + 1;
5115 static const int kSafepointTableOffsetBitCount = 30;
5117 STATIC_ASSERT(kSafepointTableOffsetFirstBit +
5118 kSafepointTableOffsetBitCount <= 32);
5119 STATIC_ASSERT(1 + kSafepointTableOffsetBitCount <= 32);
5121 class SafepointTableOffsetField: public BitField<int,
5122 kSafepointTableOffsetFirstBit,
5123 kSafepointTableOffsetBitCount> {}; // NOLINT
5125 // KindSpecificFlags2 layout (FUNCTION)
5126 class BackEdgeTableOffsetField: public BitField<int,
5127 kIsCrankshaftedBit + 1, 27> {}; // NOLINT
5128 class AllowOSRAtLoopNestingLevelField: public BitField<int,
5129 kIsCrankshaftedBit + 1 + 27, 4> {}; // NOLINT
5130 STATIC_ASSERT(AllowOSRAtLoopNestingLevelField::kMax >= kMaxLoopNestingMarker);
5132 static const int kArgumentsBits = 16;
5133 static const int kMaxArguments = (1 << kArgumentsBits) - 1;
5135 // This constant should be encodable in an ARM instruction.
5136 static const int kFlagsNotUsedInLookup =
5137 TypeField::kMask | CacheHolderField::kMask;
5140 friend class RelocIterator;
5141 friend class Deoptimizer; // For FindCodeAgeSequence.
5143 void ClearInlineCaches(Kind* kind);
5146 byte* FindCodeAgeSequence();
5147 static void GetCodeAgeAndParity(Code* code, Age* age,
5148 MarkingParity* parity);
5149 static void GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
5150 MarkingParity* parity);
5151 static Code* GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity);
5153 // Code aging -- platform-specific
5154 static void PatchPlatformCodeAge(Isolate* isolate,
5155 byte* sequence, Age age,
5156 MarkingParity parity);
5158 DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
5162 // This class describes the layout of dependent codes array of a map. The
5163 // array is partitioned into several groups of dependent codes. Each group
5164 // contains codes with the same dependency on the map. The array has the
5165 // following layout for n dependency groups:
5167 // +----+----+-----+----+---------+----------+-----+---------+-----------+
5168 // | C1 | C2 | ... | Cn | group 1 | group 2 | ... | group n | undefined |
5169 // +----+----+-----+----+---------+----------+-----+---------+-----------+
5171 // The first n elements are Smis, each of them specifies the number of codes
5172 // in the corresponding group. The subsequent elements contain grouped code
5173 // objects in weak cells. The suffix of the array can be filled with the
5174 // undefined value if the number of codes is less than the length of the
5175 // array. The order of the code objects within a group is not preserved.
5177 // All code indexes used in the class are counted starting from the first
5178 // code object of the first group. In other words, code index 0 corresponds
5179 // to array index n = kCodesStartIndex.
5181 class DependentCode: public FixedArray {
5183 enum DependencyGroup {
5184 // Group of code that weakly embed this map and depend on being
5185 // deoptimized when the map is garbage collected.
5187 // Group of code that embed a transition to this map, and depend on being
5188 // deoptimized when the transition is replaced by a new version.
5190 // Group of code that omit run-time prototype checks for prototypes
5191 // described by this map. The group is deoptimized whenever an object
5192 // described by this map changes shape (and transitions to a new map),
5193 // possibly invalidating the assumptions embedded in the code.
5194 kPrototypeCheckGroup,
5195 // Group of code that depends on global property values in property cells
5196 // not being changed.
5197 kPropertyCellChangedGroup,
5198 // Group of code that omit run-time type checks for the field(s) introduced
5201 // Group of code that omit run-time type checks for initial maps of
5203 kInitialMapChangedGroup,
5204 // Group of code that depends on tenuring information in AllocationSites
5205 // not being changed.
5206 kAllocationSiteTenuringChangedGroup,
5207 // Group of code that depends on element transition information in
5208 // AllocationSites not being changed.
5209 kAllocationSiteTransitionChangedGroup
5212 static const int kGroupCount = kAllocationSiteTransitionChangedGroup + 1;
5214 // Array for holding the index of the first code object of each group.
5215 // The last element stores the total number of code objects.
5216 class GroupStartIndexes {
5218 explicit GroupStartIndexes(DependentCode* entries);
5219 void Recompute(DependentCode* entries);
5220 int at(int i) { return start_indexes_[i]; }
5221 int number_of_entries() { return start_indexes_[kGroupCount]; }
5223 int start_indexes_[kGroupCount + 1];
5226 bool Contains(DependencyGroup group, WeakCell* code_cell);
5228 static Handle<DependentCode> InsertCompilationDependencies(
5229 Handle<DependentCode> entries, DependencyGroup group,
5230 Handle<Foreign> info);
5232 static Handle<DependentCode> InsertWeakCode(Handle<DependentCode> entries,
5233 DependencyGroup group,
5234 Handle<WeakCell> code_cell);
5236 void UpdateToFinishedCode(DependencyGroup group, Foreign* info,
5237 WeakCell* code_cell);
5239 void RemoveCompilationDependencies(DependentCode::DependencyGroup group,
5242 void DeoptimizeDependentCodeGroup(Isolate* isolate,
5243 DependentCode::DependencyGroup group);
5245 bool MarkCodeForDeoptimization(Isolate* isolate,
5246 DependentCode::DependencyGroup group);
5248 // The following low-level accessors should only be used by this class
5249 // and the mark compact collector.
5250 inline int number_of_entries(DependencyGroup group);
5251 inline void set_number_of_entries(DependencyGroup group, int value);
5252 inline Object* object_at(int i);
5253 inline void set_object_at(int i, Object* object);
5254 inline void clear_at(int i);
5255 inline void copy(int from, int to);
5256 DECLARE_CAST(DependentCode)
5258 static const char* DependencyGroupName(DependencyGroup group);
5259 static void SetMarkedForDeoptimization(Code* code, DependencyGroup group);
5262 static Handle<DependentCode> Insert(Handle<DependentCode> entries,
5263 DependencyGroup group,
5264 Handle<Object> object);
5265 static Handle<DependentCode> EnsureSpace(Handle<DependentCode> entries);
5266 // Make a room at the end of the given group by moving out the first
5267 // code objects of the subsequent groups.
5268 inline void ExtendGroup(DependencyGroup group);
5269 // Compact by removing cleared weak cells and return true if there was
5270 // any cleared weak cell.
5272 static int Grow(int number_of_entries) {
5273 if (number_of_entries < 5) return number_of_entries + 1;
5274 return number_of_entries * 5 / 4;
5276 static const int kCodesStartIndex = kGroupCount;
5280 class PrototypeInfo;
5283 // All heap objects have a Map that describes their structure.
5284 // A Map contains information about:
5285 // - Size information about the object
5286 // - How to iterate over an object (for garbage collection)
5287 class Map: public HeapObject {
5290 // Size in bytes or kVariableSizeSentinel if instances do not have
5292 inline int instance_size();
5293 inline void set_instance_size(int value);
5295 // Only to clear an unused byte, remove once byte is used.
5296 inline void clear_unused();
5298 // [inobject_properties_or_constructor_function_index]: Provides access
5299 // to the inobject properties in case of JSObject maps, or the constructor
5300 // function index in case of primitive maps.
5301 inline int inobject_properties_or_constructor_function_index();
5302 inline void set_inobject_properties_or_constructor_function_index(int value);
5303 // Count of properties allocated in the object (JSObject only).
5304 inline int GetInObjectProperties();
5305 inline void SetInObjectProperties(int value);
5306 // Index of the constructor function in the native context (primitives only),
5307 // or the special sentinel value to indicate that there is no object wrapper
5308 // for the primitive (i.e. in case of null or undefined).
5309 static const int kNoConstructorFunctionIndex = 0;
5310 inline int GetConstructorFunctionIndex();
5311 inline void SetConstructorFunctionIndex(int value);
5314 inline InstanceType instance_type();
5315 inline void set_instance_type(InstanceType value);
5317 // Tells how many unused property fields are available in the
5318 // instance (only used for JSObject in fast mode).
5319 inline int unused_property_fields();
5320 inline void set_unused_property_fields(int value);
5323 inline byte bit_field() const;
5324 inline void set_bit_field(byte value);
5327 inline byte bit_field2() const;
5328 inline void set_bit_field2(byte value);
5331 inline uint32_t bit_field3() const;
5332 inline void set_bit_field3(uint32_t bits);
5334 class EnumLengthBits: public BitField<int,
5335 0, kDescriptorIndexBitCount> {}; // NOLINT
5336 class NumberOfOwnDescriptorsBits: public BitField<int,
5337 kDescriptorIndexBitCount, kDescriptorIndexBitCount> {}; // NOLINT
5338 STATIC_ASSERT(kDescriptorIndexBitCount + kDescriptorIndexBitCount == 20);
5339 class DictionaryMap : public BitField<bool, 20, 1> {};
5340 class OwnsDescriptors : public BitField<bool, 21, 1> {};
5341 class IsHiddenPrototype : public BitField<bool, 22, 1> {};
5342 class Deprecated : public BitField<bool, 23, 1> {};
5343 class IsUnstable : public BitField<bool, 24, 1> {};
5344 class IsMigrationTarget : public BitField<bool, 25, 1> {};
5345 class IsStrong : public BitField<bool, 26, 1> {};
5348 // Keep this bit field at the very end for better code in
5349 // Builtins::kJSConstructStubGeneric stub.
5350 // This counter is used for in-object slack tracking and for map aging.
5351 // The in-object slack tracking is considered enabled when the counter is
5352 // in the range [kSlackTrackingCounterStart, kSlackTrackingCounterEnd].
5353 class Counter : public BitField<int, 28, 4> {};
5354 static const int kSlackTrackingCounterStart = 14;
5355 static const int kSlackTrackingCounterEnd = 8;
5356 static const int kRetainingCounterStart = kSlackTrackingCounterEnd - 1;
5357 static const int kRetainingCounterEnd = 0;
5359 // Tells whether the object in the prototype property will be used
5360 // for instances created from this function. If the prototype
5361 // property is set to a value that is not a JSObject, the prototype
5362 // property will not be used to create instances of the function.
5363 // See ECMA-262, 13.2.2.
5364 inline void set_non_instance_prototype(bool value);
5365 inline bool has_non_instance_prototype();
5367 // Tells whether function has special prototype property. If not, prototype
5368 // property will not be created when accessed (will return undefined),
5369 // and construction from this function will not be allowed.
5370 inline void set_function_with_prototype(bool value);
5371 inline bool function_with_prototype();
5373 // Tells whether the instance with this map should be ignored by the
5374 // Object.getPrototypeOf() function and the __proto__ accessor.
5375 inline void set_is_hidden_prototype();
5376 inline bool is_hidden_prototype() const;
5378 // Records and queries whether the instance has a named interceptor.
5379 inline void set_has_named_interceptor();
5380 inline bool has_named_interceptor();
5382 // Records and queries whether the instance has an indexed interceptor.
5383 inline void set_has_indexed_interceptor();
5384 inline bool has_indexed_interceptor();
5386 // Tells whether the instance is undetectable.
5387 // An undetectable object is a special class of JSObject: 'typeof' operator
5388 // returns undefined, ToBoolean returns false. Otherwise it behaves like
5389 // a normal JS object. It is useful for implementing undetectable
5390 // document.all in Firefox & Safari.
5391 // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
5392 inline void set_is_undetectable();
5393 inline bool is_undetectable();
5395 // Tells whether the instance has a call-as-function handler.
5396 inline void set_is_observed();
5397 inline bool is_observed();
5399 // Tells whether the instance has a [[Call]] internal field.
5400 // This property is implemented according to ES6, section 7.2.3.
5401 inline void set_is_callable();
5402 inline bool is_callable() const;
5404 inline void set_is_strong();
5405 inline bool is_strong();
5406 inline void set_is_extensible(bool value);
5407 inline bool is_extensible();
5408 inline void set_is_prototype_map(bool value);
5409 inline bool is_prototype_map() const;
5411 inline void set_elements_kind(ElementsKind elements_kind);
5412 inline ElementsKind elements_kind();
5414 // Tells whether the instance has fast elements that are only Smis.
5415 inline bool has_fast_smi_elements();
5417 // Tells whether the instance has fast elements.
5418 inline bool has_fast_object_elements();
5419 inline bool has_fast_smi_or_object_elements();
5420 inline bool has_fast_double_elements();
5421 inline bool has_fast_elements();
5422 inline bool has_sloppy_arguments_elements();
5423 inline bool has_fixed_typed_array_elements();
5424 inline bool has_dictionary_elements();
5426 static bool IsValidElementsTransition(ElementsKind from_kind,
5427 ElementsKind to_kind);
5429 // Returns true if the current map doesn't have DICTIONARY_ELEMENTS but if a
5430 // map with DICTIONARY_ELEMENTS was found in the prototype chain.
5431 bool DictionaryElementsInPrototypeChainOnly();
5433 inline Map* ElementsTransitionMap();
5435 inline FixedArrayBase* GetInitialElements();
5437 // [raw_transitions]: Provides access to the transitions storage field.
5438 // Don't call set_raw_transitions() directly to overwrite transitions, use
5439 // the TransitionArray::ReplaceTransitions() wrapper instead!
5440 DECL_ACCESSORS(raw_transitions, Object)
5441 // [prototype_info]: Per-prototype metadata. Aliased with transitions
5442 // (which prototype maps don't have).
5443 DECL_ACCESSORS(prototype_info, Object)
5444 // PrototypeInfo is created lazily using this helper (which installs it on
5445 // the given prototype's map).
5446 static Handle<PrototypeInfo> GetOrCreatePrototypeInfo(
5447 Handle<JSObject> prototype, Isolate* isolate);
5448 static Handle<PrototypeInfo> GetOrCreatePrototypeInfo(
5449 Handle<Map> prototype_map, Isolate* isolate);
5451 // [prototype chain validity cell]: Associated with a prototype object,
5452 // stored in that object's map's PrototypeInfo, indicates that prototype
5453 // chains through this object are currently valid. The cell will be
5454 // invalidated and replaced when the prototype chain changes.
5455 static Handle<Cell> GetOrCreatePrototypeChainValidityCell(Handle<Map> map,
5457 static const int kPrototypeChainValid = 0;
5458 static const int kPrototypeChainInvalid = 1;
5461 Map* FindFieldOwner(int descriptor);
5463 inline int GetInObjectPropertyOffset(int index);
5465 int NumberOfFields();
5467 // TODO(ishell): candidate with JSObject::MigrateToMap().
5468 bool InstancesNeedRewriting(Map* target, int target_number_of_fields,
5469 int target_inobject, int target_unused,
5470 int* old_number_of_fields);
5471 // TODO(ishell): moveit!
5472 static Handle<Map> GeneralizeAllFieldRepresentations(Handle<Map> map);
5473 MUST_USE_RESULT static Handle<HeapType> GeneralizeFieldType(
5474 Handle<HeapType> type1,
5475 Handle<HeapType> type2,
5477 static void GeneralizeFieldType(Handle<Map> map, int modify_index,
5478 Representation new_representation,
5479 Handle<HeapType> new_field_type);
5480 static Handle<Map> ReconfigureProperty(Handle<Map> map, int modify_index,
5481 PropertyKind new_kind,
5482 PropertyAttributes new_attributes,
5483 Representation new_representation,
5484 Handle<HeapType> new_field_type,
5485 StoreMode store_mode);
5486 static Handle<Map> CopyGeneralizeAllRepresentations(
5487 Handle<Map> map, int modify_index, StoreMode store_mode,
5488 PropertyKind kind, PropertyAttributes attributes, const char* reason);
5490 static Handle<Map> PrepareForDataProperty(Handle<Map> old_map,
5491 int descriptor_number,
5492 Handle<Object> value);
5494 static Handle<Map> Normalize(Handle<Map> map, PropertyNormalizationMode mode,
5495 const char* reason);
5497 // Returns the constructor name (the name (possibly, inferred name) of the
5498 // function that was used to instantiate the object).
5499 String* constructor_name();
5501 // Tells whether the map is used for JSObjects in dictionary mode (ie
5502 // normalized objects, ie objects for which HasFastProperties returns false).
5503 // A map can never be used for both dictionary mode and fast mode JSObjects.
5504 // False by default and for HeapObjects that are not JSObjects.
5505 inline void set_dictionary_map(bool value);
5506 inline bool is_dictionary_map();
5508 // Tells whether the instance needs security checks when accessing its
5510 inline void set_is_access_check_needed(bool access_check_needed);
5511 inline bool is_access_check_needed();
5513 // Returns true if map has a non-empty stub code cache.
5514 inline bool has_code_cache();
5516 // [prototype]: implicit prototype object.
5517 DECL_ACCESSORS(prototype, Object)
5518 // TODO(jkummerow): make set_prototype private.
5519 static void SetPrototype(
5520 Handle<Map> map, Handle<Object> prototype,
5521 PrototypeOptimizationMode proto_mode = FAST_PROTOTYPE);
5523 // [constructor]: points back to the function responsible for this map.
5524 // The field overlaps with the back pointer. All maps in a transition tree
5525 // have the same constructor, so maps with back pointers can walk the
5526 // back pointer chain until they find the map holding their constructor.
5527 DECL_ACCESSORS(constructor_or_backpointer, Object)
5528 inline Object* GetConstructor() const;
5529 inline void SetConstructor(Object* constructor,
5530 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
5531 // [back pointer]: points back to the parent map from which a transition
5532 // leads to this map. The field overlaps with the constructor (see above).
5533 inline Object* GetBackPointer();
5534 inline void SetBackPointer(Object* value,
5535 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
5537 // [instance descriptors]: describes the object.
5538 DECL_ACCESSORS(instance_descriptors, DescriptorArray)
5540 // [layout descriptor]: describes the object layout.
5541 DECL_ACCESSORS(layout_descriptor, LayoutDescriptor)
5542 // |layout descriptor| accessor which can be used from GC.
5543 inline LayoutDescriptor* layout_descriptor_gc_safe();
5544 inline bool HasFastPointerLayout() const;
5546 // |layout descriptor| accessor that is safe to call even when
5547 // FLAG_unbox_double_fields is disabled (in this case Map does not contain
5548 // |layout_descriptor| field at all).
5549 inline LayoutDescriptor* GetLayoutDescriptor();
5551 inline void UpdateDescriptors(DescriptorArray* descriptors,
5552 LayoutDescriptor* layout_descriptor);
5553 inline void InitializeDescriptors(DescriptorArray* descriptors,
5554 LayoutDescriptor* layout_descriptor);
5556 // [stub cache]: contains stubs compiled for this map.
5557 DECL_ACCESSORS(code_cache, Object)
5559 // [dependent code]: list of optimized codes that weakly embed this map.
5560 DECL_ACCESSORS(dependent_code, DependentCode)
5562 // [weak cell cache]: cache that stores a weak cell pointing to this map.
5563 DECL_ACCESSORS(weak_cell_cache, Object)
5565 inline PropertyDetails GetLastDescriptorDetails();
5567 inline int LastAdded();
5569 inline int NumberOfOwnDescriptors();
5570 inline void SetNumberOfOwnDescriptors(int number);
5572 inline Cell* RetrieveDescriptorsPointer();
5574 inline int EnumLength();
5575 inline void SetEnumLength(int length);
5577 inline bool owns_descriptors();
5578 inline void set_owns_descriptors(bool owns_descriptors);
5579 inline void mark_unstable();
5580 inline bool is_stable();
5581 inline void set_migration_target(bool value);
5582 inline bool is_migration_target();
5583 inline void set_counter(int value);
5584 inline int counter();
5585 inline void deprecate();
5586 inline bool is_deprecated();
5587 inline bool CanBeDeprecated();
5588 // Returns a non-deprecated version of the input. If the input was not
5589 // deprecated, it is directly returned. Otherwise, the non-deprecated version
5590 // is found by re-transitioning from the root of the transition tree using the
5591 // descriptor array of the map. Returns MaybeHandle<Map>() if no updated map
5593 static MaybeHandle<Map> TryUpdate(Handle<Map> map) WARN_UNUSED_RESULT;
5595 // Returns a non-deprecated version of the input. This method may deprecate
5596 // existing maps along the way if encodings conflict. Not for use while
5597 // gathering type feedback. Use TryUpdate in those cases instead.
5598 static Handle<Map> Update(Handle<Map> map);
5600 static Handle<Map> CopyDropDescriptors(Handle<Map> map);
5601 static Handle<Map> CopyInsertDescriptor(Handle<Map> map,
5602 Descriptor* descriptor,
5603 TransitionFlag flag);
5605 MUST_USE_RESULT static MaybeHandle<Map> CopyWithField(
5608 Handle<HeapType> type,
5609 PropertyAttributes attributes,
5610 Representation representation,
5611 TransitionFlag flag);
5613 MUST_USE_RESULT static MaybeHandle<Map> CopyWithConstant(
5616 Handle<Object> constant,
5617 PropertyAttributes attributes,
5618 TransitionFlag flag);
5620 // Returns a new map with all transitions dropped from the given map and
5621 // the ElementsKind set.
5622 static Handle<Map> TransitionElementsTo(Handle<Map> map,
5623 ElementsKind to_kind);
5625 static Handle<Map> AsElementsKind(Handle<Map> map, ElementsKind kind);
5627 static Handle<Map> CopyAsElementsKind(Handle<Map> map,
5629 TransitionFlag flag);
5631 static Handle<Map> CopyForObserved(Handle<Map> map);
5633 static Handle<Map> CopyForPreventExtensions(Handle<Map> map,
5634 PropertyAttributes attrs_to_add,
5635 Handle<Symbol> transition_marker,
5636 const char* reason);
5638 static Handle<Map> FixProxy(Handle<Map> map, InstanceType type, int size);
5641 // Maximal number of fast properties. Used to restrict the number of map
5642 // transitions to avoid an explosion in the number of maps for objects used as
5644 inline bool TooManyFastProperties(StoreFromKeyed store_mode);
5645 static Handle<Map> TransitionToDataProperty(Handle<Map> map,
5647 Handle<Object> value,
5648 PropertyAttributes attributes,
5649 StoreFromKeyed store_mode);
5650 static Handle<Map> TransitionToAccessorProperty(
5651 Handle<Map> map, Handle<Name> name, AccessorComponent component,
5652 Handle<Object> accessor, PropertyAttributes attributes);
5653 static Handle<Map> ReconfigureExistingProperty(Handle<Map> map,
5656 PropertyAttributes attributes);
5658 inline void AppendDescriptor(Descriptor* desc);
5660 // Returns a copy of the map, prepared for inserting into the transition
5661 // tree (if the |map| owns descriptors then the new one will share
5662 // descriptors with |map|).
5663 static Handle<Map> CopyForTransition(Handle<Map> map, const char* reason);
5665 // Returns a copy of the map, with all transitions dropped from the
5666 // instance descriptors.
5667 static Handle<Map> Copy(Handle<Map> map, const char* reason);
5668 static Handle<Map> Create(Isolate* isolate, int inobject_properties);
5670 // Returns the next free property index (only valid for FAST MODE).
5671 int NextFreePropertyIndex();
5673 // Returns the number of properties described in instance_descriptors
5674 // filtering out properties with the specified attributes.
5675 int NumberOfDescribedProperties(DescriptorFlag which = OWN_DESCRIPTORS,
5676 PropertyAttributes filter = NONE);
5680 // Code cache operations.
5682 // Clears the code cache.
5683 inline void ClearCodeCache(Heap* heap);
5685 // Update code cache.
5686 static void UpdateCodeCache(Handle<Map> map,
5690 // Extend the descriptor array of the map with the list of descriptors.
5691 // In case of duplicates, the latest descriptor is used.
5692 static void AppendCallbackDescriptors(Handle<Map> map,
5693 Handle<Object> descriptors);
5695 static inline int SlackForArraySize(int old_size, int size_limit);
5697 static void EnsureDescriptorSlack(Handle<Map> map, int slack);
5699 // Returns the found code or undefined if absent.
5700 Object* FindInCodeCache(Name* name, Code::Flags flags);
5702 // Returns the non-negative index of the code object if it is in the
5703 // cache and -1 otherwise.
5704 int IndexInCodeCache(Object* name, Code* code);
5706 // Removes a code object from the code cache at the given index.
5707 void RemoveFromCodeCache(Name* name, Code* code, int index);
5709 // Computes a hash value for this map, to be used in HashTables and such.
5712 // Returns the map that this map transitions to if its elements_kind
5713 // is changed to |elements_kind|, or NULL if no such map is cached yet.
5714 // |safe_to_add_transitions| is set to false if adding transitions is not
5716 Map* LookupElementsTransitionMap(ElementsKind elements_kind);
5718 // Returns the transitioned map for this map with the most generic
5719 // elements_kind that's found in |candidates|, or null handle if no match is
5721 static Handle<Map> FindTransitionedMap(Handle<Map> map,
5722 MapHandleList* candidates);
5724 inline bool CanTransition();
5726 inline bool IsPrimitiveMap();
5727 inline bool IsJSObjectMap();
5728 inline bool IsJSArrayMap();
5729 inline bool IsStringMap();
5730 inline bool IsJSProxyMap();
5731 inline bool IsJSGlobalProxyMap();
5732 inline bool IsJSGlobalObjectMap();
5733 inline bool IsGlobalObjectMap();
5735 inline bool CanOmitMapChecks();
5737 static void AddDependentCode(Handle<Map> map,
5738 DependentCode::DependencyGroup group,
5741 bool IsMapInArrayPrototypeChain();
5743 static Handle<WeakCell> WeakCellForMap(Handle<Map> map);
5745 // Dispatched behavior.
5746 DECLARE_PRINTER(Map)
5747 DECLARE_VERIFIER(Map)
5750 void DictionaryMapVerify();
5751 void VerifyOmittedMapChecks();
5754 inline int visitor_id();
5755 inline void set_visitor_id(int visitor_id);
5757 static Handle<Map> TransitionToPrototype(Handle<Map> map,
5758 Handle<Object> prototype,
5759 PrototypeOptimizationMode mode);
5761 static const int kMaxPreAllocatedPropertyFields = 255;
5763 // Layout description.
5764 static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
5765 static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
5766 static const int kBitField3Offset = kInstanceAttributesOffset + kIntSize;
5767 static const int kPrototypeOffset = kBitField3Offset + kPointerSize;
5768 static const int kConstructorOrBackPointerOffset =
5769 kPrototypeOffset + kPointerSize;
5770 // When there is only one transition, it is stored directly in this field;
5771 // otherwise a transition array is used.
5772 // For prototype maps, this slot is used to store this map's PrototypeInfo
5774 static const int kTransitionsOrPrototypeInfoOffset =
5775 kConstructorOrBackPointerOffset + kPointerSize;
5776 static const int kDescriptorsOffset =
5777 kTransitionsOrPrototypeInfoOffset + kPointerSize;
5778 #if V8_DOUBLE_FIELDS_UNBOXING
5779 static const int kLayoutDecriptorOffset = kDescriptorsOffset + kPointerSize;
5780 static const int kCodeCacheOffset = kLayoutDecriptorOffset + kPointerSize;
5782 static const int kLayoutDecriptorOffset = 1; // Must not be ever accessed.
5783 static const int kCodeCacheOffset = kDescriptorsOffset + kPointerSize;
5785 static const int kDependentCodeOffset = kCodeCacheOffset + kPointerSize;
5786 static const int kWeakCellCacheOffset = kDependentCodeOffset + kPointerSize;
5787 static const int kSize = kWeakCellCacheOffset + kPointerSize;
5789 // Layout of pointer fields. Heap iteration code relies on them
5790 // being continuously allocated.
5791 static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
5792 static const int kPointerFieldsEndOffset = kSize;
5794 // Byte offsets within kInstanceSizesOffset.
5795 static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
5796 static const int kInObjectPropertiesOrConstructorFunctionIndexByte = 1;
5797 static const int kInObjectPropertiesOrConstructorFunctionIndexOffset =
5798 kInstanceSizesOffset + kInObjectPropertiesOrConstructorFunctionIndexByte;
5799 // Note there is one byte available for use here.
5800 static const int kUnusedByte = 2;
5801 static const int kUnusedOffset = kInstanceSizesOffset + kUnusedByte;
5802 static const int kVisitorIdByte = 3;
5803 static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte;
5805 // Byte offsets within kInstanceAttributesOffset attributes.
5806 #if V8_TARGET_LITTLE_ENDIAN
5807 // Order instance type and bit field together such that they can be loaded
5808 // together as a 16-bit word with instance type in the lower 8 bits regardless
5809 // of endianess. Also provide endian-independent offset to that 16-bit word.
5810 static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
5811 static const int kBitFieldOffset = kInstanceAttributesOffset + 1;
5813 static const int kBitFieldOffset = kInstanceAttributesOffset + 0;
5814 static const int kInstanceTypeOffset = kInstanceAttributesOffset + 1;
5816 static const int kInstanceTypeAndBitFieldOffset =
5817 kInstanceAttributesOffset + 0;
5818 static const int kBitField2Offset = kInstanceAttributesOffset + 2;
5819 static const int kUnusedPropertyFieldsByte = 3;
5820 static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 3;
5822 STATIC_ASSERT(kInstanceTypeAndBitFieldOffset ==
5823 Internals::kMapInstanceTypeAndBitFieldOffset);
5825 // Bit positions for bit field.
5826 static const int kHasNonInstancePrototype = 0;
5827 static const int kIsCallable = 1;
5828 static const int kHasNamedInterceptor = 2;
5829 static const int kHasIndexedInterceptor = 3;
5830 static const int kIsUndetectable = 4;
5831 static const int kIsObserved = 5;
5832 static const int kIsAccessCheckNeeded = 6;
5833 class FunctionWithPrototype: public BitField<bool, 7, 1> {};
5835 // Bit positions for bit field 2
5836 static const int kIsExtensible = 0;
5838 class IsPrototypeMapBits : public BitField<bool, 2, 1> {};
5839 class ElementsKindBits: public BitField<ElementsKind, 3, 5> {};
5841 // Derived values from bit field 2
5842 static const int8_t kMaximumBitField2FastElementValue = static_cast<int8_t>(
5843 (FAST_ELEMENTS + 1) << Map::ElementsKindBits::kShift) - 1;
5844 static const int8_t kMaximumBitField2FastSmiElementValue =
5845 static_cast<int8_t>((FAST_SMI_ELEMENTS + 1) <<
5846 Map::ElementsKindBits::kShift) - 1;
5847 static const int8_t kMaximumBitField2FastHoleyElementValue =
5848 static_cast<int8_t>((FAST_HOLEY_ELEMENTS + 1) <<
5849 Map::ElementsKindBits::kShift) - 1;
5850 static const int8_t kMaximumBitField2FastHoleySmiElementValue =
5851 static_cast<int8_t>((FAST_HOLEY_SMI_ELEMENTS + 1) <<
5852 Map::ElementsKindBits::kShift) - 1;
5854 typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
5855 kPointerFieldsEndOffset,
5856 kSize> BodyDescriptor;
5858 // Compares this map to another to see if they describe equivalent objects.
5859 // If |mode| is set to CLEAR_INOBJECT_PROPERTIES, |other| is treated as if
5860 // it had exactly zero inobject properties.
5861 // The "shared" flags of both this map and |other| are ignored.
5862 bool EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode);
5864 // Returns true if given field is unboxed double.
5865 inline bool IsUnboxedDoubleField(FieldIndex index);
5868 static void TraceTransition(const char* what, Map* from, Map* to, Name* name);
5869 static void TraceAllTransitions(Map* map);
5872 static inline Handle<Map> CopyInstallDescriptorsForTesting(
5873 Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
5874 Handle<LayoutDescriptor> layout_descriptor);
5877 static void ConnectTransition(Handle<Map> parent, Handle<Map> child,
5878 Handle<Name> name, SimpleTransitionFlag flag);
5880 bool EquivalentToForTransition(Map* other);
5881 static Handle<Map> RawCopy(Handle<Map> map, int instance_size);
5882 static Handle<Map> ShareDescriptor(Handle<Map> map,
5883 Handle<DescriptorArray> descriptors,
5884 Descriptor* descriptor);
5885 static Handle<Map> CopyInstallDescriptors(
5886 Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
5887 Handle<LayoutDescriptor> layout_descriptor);
5888 static Handle<Map> CopyAddDescriptor(Handle<Map> map,
5889 Descriptor* descriptor,
5890 TransitionFlag flag);
5891 static Handle<Map> CopyReplaceDescriptors(
5892 Handle<Map> map, Handle<DescriptorArray> descriptors,
5893 Handle<LayoutDescriptor> layout_descriptor, TransitionFlag flag,
5894 MaybeHandle<Name> maybe_name, const char* reason,
5895 SimpleTransitionFlag simple_flag);
5897 static Handle<Map> CopyReplaceDescriptor(Handle<Map> map,
5898 Handle<DescriptorArray> descriptors,
5899 Descriptor* descriptor,
5901 TransitionFlag flag);
5902 static MUST_USE_RESULT MaybeHandle<Map> TryReconfigureExistingProperty(
5903 Handle<Map> map, int descriptor, PropertyKind kind,
5904 PropertyAttributes attributes, const char** reason);
5906 static Handle<Map> CopyNormalized(Handle<Map> map,
5907 PropertyNormalizationMode mode);
5909 // Fires when the layout of an object with a leaf map changes.
5910 // This includes adding transitions to the leaf map or changing
5911 // the descriptor array.
5912 inline void NotifyLeafMapLayoutChange();
5914 void DeprecateTransitionTree();
5915 bool DeprecateTarget(PropertyKind kind, Name* key,
5916 PropertyAttributes attributes,
5917 DescriptorArray* new_descriptors,
5918 LayoutDescriptor* new_layout_descriptor);
5920 Map* FindLastMatchMap(int verbatim, int length, DescriptorArray* descriptors);
5922 // Update field type of the given descriptor to new representation and new
5923 // type. The type must be prepared for storing in descriptor array:
5924 // it must be either a simple type or a map wrapped in a weak cell.
5925 void UpdateFieldType(int descriptor_number, Handle<Name> name,
5926 Representation new_representation,
5927 Handle<Object> new_wrapped_type);
5929 void PrintReconfiguration(FILE* file, int modify_index, PropertyKind kind,
5930 PropertyAttributes attributes);
5931 void PrintGeneralization(FILE* file,
5936 bool constant_to_field,
5937 Representation old_representation,
5938 Representation new_representation,
5939 HeapType* old_field_type,
5940 HeapType* new_field_type);
5942 static const int kFastPropertiesSoftLimit = 12;
5943 static const int kMaxFastProperties = 128;
5945 DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
5949 // An abstract superclass, a marker class really, for simple structure classes.
5950 // It doesn't carry much functionality but allows struct classes to be
5951 // identified in the type system.
5952 class Struct: public HeapObject {
5954 inline void InitializeBody(int object_size);
5955 DECLARE_CAST(Struct)
5959 // A simple one-element struct, useful where smis need to be boxed.
5960 class Box : public Struct {
5962 // [value]: the boxed contents.
5963 DECL_ACCESSORS(value, Object)
5967 // Dispatched behavior.
5968 DECLARE_PRINTER(Box)
5969 DECLARE_VERIFIER(Box)
5971 static const int kValueOffset = HeapObject::kHeaderSize;
5972 static const int kSize = kValueOffset + kPointerSize;
5975 DISALLOW_IMPLICIT_CONSTRUCTORS(Box);
5979 // Container for metadata stored on each prototype map.
5980 class PrototypeInfo : public Struct {
5982 static const int UNREGISTERED = -1;
5984 // [prototype_users]: WeakFixedArray containing maps using this prototype,
5985 // or Smi(0) if uninitialized.
5986 DECL_ACCESSORS(prototype_users, Object)
5987 // [registry_slot]: Slot in prototype's user registry where this user
5988 // is stored. Returns UNREGISTERED if this prototype has not been registered.
5989 inline int registry_slot() const;
5990 inline void set_registry_slot(int slot);
5991 // [validity_cell]: Cell containing the validity bit for prototype chains
5992 // going through this object, or Smi(0) if uninitialized.
5993 DECL_ACCESSORS(validity_cell, Object)
5994 // [constructor_name]: User-friendly name of the original constructor.
5995 DECL_ACCESSORS(constructor_name, Object)
5997 DECLARE_CAST(PrototypeInfo)
5999 // Dispatched behavior.
6000 DECLARE_PRINTER(PrototypeInfo)
6001 DECLARE_VERIFIER(PrototypeInfo)
6003 static const int kPrototypeUsersOffset = HeapObject::kHeaderSize;
6004 static const int kRegistrySlotOffset = kPrototypeUsersOffset + kPointerSize;
6005 static const int kValidityCellOffset = kRegistrySlotOffset + kPointerSize;
6006 static const int kConstructorNameOffset = kValidityCellOffset + kPointerSize;
6007 static const int kSize = kConstructorNameOffset + kPointerSize;
6010 DISALLOW_IMPLICIT_CONSTRUCTORS(PrototypeInfo);
6014 // Pair used to store both a ScopeInfo and an extension object in the extension
6015 // slot of a block context. Needed in the rare case where a declaration block
6016 // scope (a "varblock" as used to desugar parameter destructuring) also contains
6017 // a sloppy direct eval. (In no other case both are needed at the same time.)
6018 class SloppyBlockWithEvalContextExtension : public Struct {
6020 // [scope_info]: Scope info.
6021 DECL_ACCESSORS(scope_info, ScopeInfo)
6022 // [extension]: Extension object.
6023 DECL_ACCESSORS(extension, JSObject)
6025 DECLARE_CAST(SloppyBlockWithEvalContextExtension)
6027 // Dispatched behavior.
6028 DECLARE_PRINTER(SloppyBlockWithEvalContextExtension)
6029 DECLARE_VERIFIER(SloppyBlockWithEvalContextExtension)
6031 static const int kScopeInfoOffset = HeapObject::kHeaderSize;
6032 static const int kExtensionOffset = kScopeInfoOffset + kPointerSize;
6033 static const int kSize = kExtensionOffset + kPointerSize;
6036 DISALLOW_IMPLICIT_CONSTRUCTORS(SloppyBlockWithEvalContextExtension);
6040 // Script describes a script which has been added to the VM.
6041 class Script: public Struct {
6050 // Script compilation types.
6051 enum CompilationType {
6052 COMPILATION_TYPE_HOST = 0,
6053 COMPILATION_TYPE_EVAL = 1
6056 // Script compilation state.
6057 enum CompilationState {
6058 COMPILATION_STATE_INITIAL = 0,
6059 COMPILATION_STATE_COMPILED = 1
6062 // [source]: the script source.
6063 DECL_ACCESSORS(source, Object)
6065 // [name]: the script name.
6066 DECL_ACCESSORS(name, Object)
6068 // [id]: the script id.
6069 DECL_ACCESSORS(id, Smi)
6071 // [line_offset]: script line offset in resource from where it was extracted.
6072 DECL_ACCESSORS(line_offset, Smi)
6074 // [column_offset]: script column offset in resource from where it was
6076 DECL_ACCESSORS(column_offset, Smi)
6078 // [context_data]: context data for the context this script was compiled in.
6079 DECL_ACCESSORS(context_data, Object)
6081 // [wrapper]: the wrapper cache. This is either undefined or a WeakCell.
6082 DECL_ACCESSORS(wrapper, HeapObject)
6084 // [type]: the script type.
6085 DECL_ACCESSORS(type, Smi)
6087 // [line_ends]: FixedArray of line ends positions.
6088 DECL_ACCESSORS(line_ends, Object)
6090 // [eval_from_shared]: for eval scripts the shared funcion info for the
6091 // function from which eval was called.
6092 DECL_ACCESSORS(eval_from_shared, Object)
6094 // [eval_from_instructions_offset]: the instruction offset in the code for the
6095 // function from which eval was called where eval was called.
6096 DECL_ACCESSORS(eval_from_instructions_offset, Smi)
6098 // [shared_function_infos]: weak fixed array containing all shared
6099 // function infos created from this script.
6100 DECL_ACCESSORS(shared_function_infos, Object)
6102 // [flags]: Holds an exciting bitfield.
6103 DECL_ACCESSORS(flags, Smi)
6105 // [source_url]: sourceURL from magic comment
6106 DECL_ACCESSORS(source_url, Object)
6108 // [source_url]: sourceMappingURL magic comment
6109 DECL_ACCESSORS(source_mapping_url, Object)
6111 // [compilation_type]: how the the script was compiled. Encoded in the
6113 inline CompilationType compilation_type();
6114 inline void set_compilation_type(CompilationType type);
6116 // [compilation_state]: determines whether the script has already been
6117 // compiled. Encoded in the 'flags' field.
6118 inline CompilationState compilation_state();
6119 inline void set_compilation_state(CompilationState state);
6121 // [hide_source]: determines whether the script source can be exposed as
6122 // function source. Encoded in the 'flags' field.
6123 inline bool hide_source();
6124 inline void set_hide_source(bool value);
6126 // [origin_options]: optional attributes set by the embedder via ScriptOrigin,
6127 // and used by the embedder to make decisions about the script. V8 just passes
6128 // this through. Encoded in the 'flags' field.
6129 inline v8::ScriptOriginOptions origin_options();
6130 inline void set_origin_options(ScriptOriginOptions origin_options);
6132 DECLARE_CAST(Script)
6134 // If script source is an external string, check that the underlying
6135 // resource is accessible. Otherwise, always return true.
6136 inline bool HasValidSource();
6138 // Convert code position into column number.
6139 static int GetColumnNumber(Handle<Script> script, int code_pos);
6141 // Convert code position into (zero-based) line number.
6142 // The non-handlified version does not allocate, but may be much slower.
6143 static int GetLineNumber(Handle<Script> script, int code_pos);
6144 int GetLineNumber(int code_pos);
6146 static Handle<Object> GetNameOrSourceURL(Handle<Script> script);
6148 // Init line_ends array with code positions of line ends inside script source.
6149 static void InitLineEnds(Handle<Script> script);
6151 // Get the JS object wrapping the given script; create it if none exists.
6152 static Handle<JSObject> GetWrapper(Handle<Script> script);
6154 // Look through the list of existing shared function infos to find one
6155 // that matches the function literal. Return empty handle if not found.
6156 MaybeHandle<SharedFunctionInfo> FindSharedFunctionInfo(FunctionLiteral* fun);
6158 // Iterate over all script objects on the heap.
6161 explicit Iterator(Isolate* isolate);
6165 WeakFixedArray::Iterator iterator_;
6166 DISALLOW_COPY_AND_ASSIGN(Iterator);
6169 // Dispatched behavior.
6170 DECLARE_PRINTER(Script)
6171 DECLARE_VERIFIER(Script)
6173 static const int kSourceOffset = HeapObject::kHeaderSize;
6174 static const int kNameOffset = kSourceOffset + kPointerSize;
6175 static const int kLineOffsetOffset = kNameOffset + kPointerSize;
6176 static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
6177 static const int kContextOffset = kColumnOffsetOffset + kPointerSize;
6178 static const int kWrapperOffset = kContextOffset + kPointerSize;
6179 static const int kTypeOffset = kWrapperOffset + kPointerSize;
6180 static const int kLineEndsOffset = kTypeOffset + kPointerSize;
6181 static const int kIdOffset = kLineEndsOffset + kPointerSize;
6182 static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
6183 static const int kEvalFrominstructionsOffsetOffset =
6184 kEvalFromSharedOffset + kPointerSize;
6185 static const int kSharedFunctionInfosOffset =
6186 kEvalFrominstructionsOffsetOffset + kPointerSize;
6187 static const int kFlagsOffset = kSharedFunctionInfosOffset + kPointerSize;
6188 static const int kSourceUrlOffset = kFlagsOffset + kPointerSize;
6189 static const int kSourceMappingUrlOffset = kSourceUrlOffset + kPointerSize;
6190 static const int kSize = kSourceMappingUrlOffset + kPointerSize;
6193 int GetLineNumberWithArray(int code_pos);
6195 // Bit positions in the flags field.
6196 static const int kCompilationTypeBit = 0;
6197 static const int kCompilationStateBit = 1;
6198 static const int kHideSourceBit = 2;
6199 static const int kOriginOptionsShift = 3;
6200 static const int kOriginOptionsSize = 3;
6201 static const int kOriginOptionsMask = ((1 << kOriginOptionsSize) - 1)
6202 << kOriginOptionsShift;
6204 DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
6208 // List of builtin functions we want to identify to improve code
6211 // Each entry has a name of a global object property holding an object
6212 // optionally followed by ".prototype", a name of a builtin function
6213 // on the object (the one the id is set for), and a label.
6215 // Installation of ids for the selected builtin functions is handled
6216 // by the bootstrapper.
6217 #define FUNCTIONS_WITH_ID_LIST(V) \
6218 V(Array.prototype, indexOf, ArrayIndexOf) \
6219 V(Array.prototype, lastIndexOf, ArrayLastIndexOf) \
6220 V(Array.prototype, push, ArrayPush) \
6221 V(Array.prototype, pop, ArrayPop) \
6222 V(Array.prototype, shift, ArrayShift) \
6223 V(Function.prototype, apply, FunctionApply) \
6224 V(Function.prototype, call, FunctionCall) \
6225 V(String.prototype, charCodeAt, StringCharCodeAt) \
6226 V(String.prototype, charAt, StringCharAt) \
6227 V(String, fromCharCode, StringFromCharCode) \
6228 V(Math, random, MathRandom) \
6229 V(Math, floor, MathFloor) \
6230 V(Math, round, MathRound) \
6231 V(Math, ceil, MathCeil) \
6232 V(Math, abs, MathAbs) \
6233 V(Math, log, MathLog) \
6234 V(Math, exp, MathExp) \
6235 V(Math, sqrt, MathSqrt) \
6236 V(Math, pow, MathPow) \
6237 V(Math, max, MathMax) \
6238 V(Math, min, MathMin) \
6239 V(Math, cos, MathCos) \
6240 V(Math, sin, MathSin) \
6241 V(Math, tan, MathTan) \
6242 V(Math, acos, MathAcos) \
6243 V(Math, asin, MathAsin) \
6244 V(Math, atan, MathAtan) \
6245 V(Math, atan2, MathAtan2) \
6246 V(Math, imul, MathImul) \
6247 V(Math, clz32, MathClz32) \
6248 V(Math, fround, MathFround)
6250 #define ATOMIC_FUNCTIONS_WITH_ID_LIST(V) \
6251 V(Atomics, load, AtomicsLoad) \
6252 V(Atomics, store, AtomicsStore)
6254 enum BuiltinFunctionId {
6256 #define DECLARE_FUNCTION_ID(ignored1, ignore2, name) \
6258 FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
6259 ATOMIC_FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
6260 #undef DECLARE_FUNCTION_ID
6261 // Fake id for a special case of Math.pow. Note, it continues the
6262 // list of math functions.
6267 // Result of searching in an optimized code map of a SharedFunctionInfo. Note
6268 // that both {code} and {literals} can be NULL to pass search result status.
6269 struct CodeAndLiterals {
6270 Code* code; // Cached optimized code.
6271 FixedArray* literals; // Cached literals array.
6275 // SharedFunctionInfo describes the JSFunction information that can be
6276 // shared by multiple instances of the function.
6277 class SharedFunctionInfo: public HeapObject {
6279 // [name]: Function name.
6280 DECL_ACCESSORS(name, Object)
6282 // [code]: Function code.
6283 DECL_ACCESSORS(code, Code)
6284 inline void ReplaceCode(Code* code);
6286 // [optimized_code_map]: Map from native context to optimized code
6287 // and a shared literals array or Smi(0) if none.
6288 DECL_ACCESSORS(optimized_code_map, Object)
6290 // Returns entry from optimized code map for specified context and OSR entry.
6291 // Note that {code == nullptr} indicates no matching entry has been found,
6292 // whereas {literals == nullptr} indicates the code is context-independent.
6293 CodeAndLiterals SearchOptimizedCodeMap(Context* native_context,
6294 BailoutId osr_ast_id);
6296 // Clear optimized code map.
6297 void ClearOptimizedCodeMap();
6299 // Removed a specific optimized code object from the optimized code map.
6300 void EvictFromOptimizedCodeMap(Code* optimized_code, const char* reason);
6302 // Trims the optimized code map after entries have been removed.
6303 void TrimOptimizedCodeMap(int shrink_by);
6305 // Add a new entry to the optimized code map for context-independent code.
6306 static void AddSharedCodeToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
6309 // Add a new entry to the optimized code map for context-dependent code.
6310 static void AddToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
6311 Handle<Context> native_context,
6313 Handle<FixedArray> literals,
6314 BailoutId osr_ast_id);
6316 // Set up the link between shared function info and the script. The shared
6317 // function info is added to the list on the script.
6318 static void SetScript(Handle<SharedFunctionInfo> shared,
6319 Handle<Object> script_object);
6321 // Layout description of the optimized code map.
6322 static const int kNextMapIndex = 0;
6323 static const int kSharedCodeIndex = 1;
6324 static const int kEntriesStart = 2;
6325 static const int kContextOffset = 0;
6326 static const int kCachedCodeOffset = 1;
6327 static const int kLiteralsOffset = 2;
6328 static const int kOsrAstIdOffset = 3;
6329 static const int kEntryLength = 4;
6330 static const int kInitialLength = kEntriesStart + kEntryLength;
6332 // [scope_info]: Scope info.
6333 DECL_ACCESSORS(scope_info, ScopeInfo)
6335 // [construct stub]: Code stub for constructing instances of this function.
6336 DECL_ACCESSORS(construct_stub, Code)
6338 // Returns if this function has been compiled to native code yet.
6339 inline bool is_compiled();
6341 // [length]: The function length - usually the number of declared parameters.
6342 // Use up to 2^30 parameters.
6343 inline int length() const;
6344 inline void set_length(int value);
6346 // [internal formal parameter count]: The declared number of parameters.
6347 // For subclass constructors, also includes new.target.
6348 // The size of function's frame is internal_formal_parameter_count + 1.
6349 inline int internal_formal_parameter_count() const;
6350 inline void set_internal_formal_parameter_count(int value);
6352 // Set the formal parameter count so the function code will be
6353 // called without using argument adaptor frames.
6354 inline void DontAdaptArguments();
6356 // [expected_nof_properties]: Expected number of properties for the function.
6357 inline int expected_nof_properties() const;
6358 inline void set_expected_nof_properties(int value);
6360 // [feedback_vector] - accumulates ast node feedback from full-codegen and
6361 // (increasingly) from crankshafted code where sufficient feedback isn't
6363 DECL_ACCESSORS(feedback_vector, TypeFeedbackVector)
6365 // Unconditionally clear the type feedback vector (including vector ICs).
6366 void ClearTypeFeedbackInfo();
6368 // Clear the type feedback vector with a more subtle policy at GC time.
6369 void ClearTypeFeedbackInfoAtGCTime();
6372 // [unique_id] - For --trace-maps purposes, an identifier that's persistent
6373 // even if the GC moves this SharedFunctionInfo.
6374 inline int unique_id() const;
6375 inline void set_unique_id(int value);
6378 // [instance class name]: class name for instances.
6379 DECL_ACCESSORS(instance_class_name, Object)
6381 // [function data]: This field holds some additional data for function.
6382 // Currently it has one of:
6383 // - a FunctionTemplateInfo to make benefit the API [IsApiFunction()].
6384 // - a Smi identifying a builtin function [HasBuiltinFunctionId()].
6385 // - a BytecodeArray for the interpreter [HasBytecodeArray()].
6386 // In the long run we don't want all functions to have this field but
6387 // we can fix that when we have a better model for storing hidden data
6389 DECL_ACCESSORS(function_data, Object)
6391 inline bool IsApiFunction();
6392 inline FunctionTemplateInfo* get_api_func_data();
6393 inline bool HasBuiltinFunctionId();
6394 inline BuiltinFunctionId builtin_function_id();
6395 inline bool HasBytecodeArray();
6396 inline BytecodeArray* bytecode_array();
6398 // [script info]: Script from which the function originates.
6399 DECL_ACCESSORS(script, Object)
6401 // [num_literals]: Number of literals used by this function.
6402 inline int num_literals() const;
6403 inline void set_num_literals(int value);
6405 // [start_position_and_type]: Field used to store both the source code
6406 // position, whether or not the function is a function expression,
6407 // and whether or not the function is a toplevel function. The two
6408 // least significants bit indicates whether the function is an
6409 // expression and the rest contains the source code position.
6410 inline int start_position_and_type() const;
6411 inline void set_start_position_and_type(int value);
6413 // The function is subject to debugging if a debug info is attached.
6414 inline bool HasDebugInfo();
6415 inline DebugInfo* GetDebugInfo();
6417 // A function has debug code if the compiled code has debug break slots.
6418 inline bool HasDebugCode();
6420 // [debug info]: Debug information.
6421 DECL_ACCESSORS(debug_info, Object)
6423 // [inferred name]: Name inferred from variable or property
6424 // assignment of this function. Used to facilitate debugging and
6425 // profiling of JavaScript code written in OO style, where almost
6426 // all functions are anonymous but are assigned to object
6428 DECL_ACCESSORS(inferred_name, String)
6430 // The function's name if it is non-empty, otherwise the inferred name.
6431 String* DebugName();
6433 // Position of the 'function' token in the script source.
6434 inline int function_token_position() const;
6435 inline void set_function_token_position(int function_token_position);
6437 // Position of this function in the script source.
6438 inline int start_position() const;
6439 inline void set_start_position(int start_position);
6441 // End position of this function in the script source.
6442 inline int end_position() const;
6443 inline void set_end_position(int end_position);
6445 // Is this function a function expression in the source code.
6446 DECL_BOOLEAN_ACCESSORS(is_expression)
6448 // Is this function a top-level function (scripts, evals).
6449 DECL_BOOLEAN_ACCESSORS(is_toplevel)
6451 // Bit field containing various information collected by the compiler to
6452 // drive optimization.
6453 inline int compiler_hints() const;
6454 inline void set_compiler_hints(int value);
6456 inline int ast_node_count() const;
6457 inline void set_ast_node_count(int count);
6459 inline int profiler_ticks() const;
6460 inline void set_profiler_ticks(int ticks);
6462 // Inline cache age is used to infer whether the function survived a context
6463 // disposal or not. In the former case we reset the opt_count.
6464 inline int ic_age();
6465 inline void set_ic_age(int age);
6467 // Indicates if this function can be lazy compiled.
6468 // This is used to determine if we can safely flush code from a function
6469 // when doing GC if we expect that the function will no longer be used.
6470 DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation)
6472 // Indicates if this function can be lazy compiled without a context.
6473 // This is used to determine if we can force compilation without reaching
6474 // the function through program execution but through other means (e.g. heap
6475 // iteration by the debugger).
6476 DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation_without_context)
6478 // Indicates whether optimizations have been disabled for this
6479 // shared function info. If a function is repeatedly optimized or if
6480 // we cannot optimize the function we disable optimization to avoid
6481 // spending time attempting to optimize it again.
6482 DECL_BOOLEAN_ACCESSORS(optimization_disabled)
6484 // Indicates the language mode.
6485 inline LanguageMode language_mode();
6486 inline void set_language_mode(LanguageMode language_mode);
6488 // False if the function definitely does not allocate an arguments object.
6489 DECL_BOOLEAN_ACCESSORS(uses_arguments)
6491 // Indicates that this function uses a super property (or an eval that may
6492 // use a super property).
6493 // This is needed to set up the [[HomeObject]] on the function instance.
6494 DECL_BOOLEAN_ACCESSORS(needs_home_object)
6496 // True if the function has any duplicated parameter names.
6497 DECL_BOOLEAN_ACCESSORS(has_duplicate_parameters)
6499 // Indicates whether the function is a native function.
6500 // These needs special treatment in .call and .apply since
6501 // null passed as the receiver should not be translated to the
6503 DECL_BOOLEAN_ACCESSORS(native)
6505 // Indicate that this function should always be inlined in optimized code.
6506 DECL_BOOLEAN_ACCESSORS(force_inline)
6508 // Indicates that the function was created by the Function function.
6509 // Though it's anonymous, toString should treat it as if it had the name
6510 // "anonymous". We don't set the name itself so that the system does not
6511 // see a binding for it.
6512 DECL_BOOLEAN_ACCESSORS(name_should_print_as_anonymous)
6514 // Indicates whether the function is a bound function created using
6515 // the bind function.
6516 DECL_BOOLEAN_ACCESSORS(bound)
6518 // Indicates that the function is anonymous (the name field can be set
6519 // through the API, which does not change this flag).
6520 DECL_BOOLEAN_ACCESSORS(is_anonymous)
6522 // Is this a function or top-level/eval code.
6523 DECL_BOOLEAN_ACCESSORS(is_function)
6525 // Indicates that code for this function cannot be compiled with Crankshaft.
6526 DECL_BOOLEAN_ACCESSORS(dont_crankshaft)
6528 // Indicates that code for this function cannot be flushed.
6529 DECL_BOOLEAN_ACCESSORS(dont_flush)
6531 // Indicates that this function is a generator.
6532 DECL_BOOLEAN_ACCESSORS(is_generator)
6534 // Indicates that this function is an arrow function.
6535 DECL_BOOLEAN_ACCESSORS(is_arrow)
6537 // Indicates that this function is a concise method.
6538 DECL_BOOLEAN_ACCESSORS(is_concise_method)
6540 // Indicates that this function is an accessor (getter or setter).
6541 DECL_BOOLEAN_ACCESSORS(is_accessor_function)
6543 // Indicates that this function is a default constructor.
6544 DECL_BOOLEAN_ACCESSORS(is_default_constructor)
6546 // Indicates that this function is an asm function.
6547 DECL_BOOLEAN_ACCESSORS(asm_function)
6549 // Indicates that the the shared function info is deserialized from cache.
6550 DECL_BOOLEAN_ACCESSORS(deserialized)
6552 // Indicates that the the shared function info has never been compiled before.
6553 DECL_BOOLEAN_ACCESSORS(never_compiled)
6555 inline FunctionKind kind();
6556 inline void set_kind(FunctionKind kind);
6558 // Indicates whether or not the code in the shared function support
6560 inline bool has_deoptimization_support();
6562 // Enable deoptimization support through recompiled code.
6563 void EnableDeoptimizationSupport(Code* recompiled);
6565 // Disable (further) attempted optimization of all functions sharing this
6566 // shared function info.
6567 void DisableOptimization(BailoutReason reason);
6569 inline BailoutReason disable_optimization_reason();
6571 // Lookup the bailout ID and DCHECK that it exists in the non-optimized
6572 // code, returns whether it asserted (i.e., always true if assertions are
6574 bool VerifyBailoutId(BailoutId id);
6576 // [source code]: Source code for the function.
6577 bool HasSourceCode() const;
6578 Handle<Object> GetSourceCode();
6580 // Number of times the function was optimized.
6581 inline int opt_count();
6582 inline void set_opt_count(int opt_count);
6584 // Number of times the function was deoptimized.
6585 inline void set_deopt_count(int value);
6586 inline int deopt_count();
6587 inline void increment_deopt_count();
6589 // Number of time we tried to re-enable optimization after it
6590 // was disabled due to high number of deoptimizations.
6591 inline void set_opt_reenable_tries(int value);
6592 inline int opt_reenable_tries();
6594 inline void TryReenableOptimization();
6596 // Stores deopt_count, opt_reenable_tries and ic_age as bit-fields.
6597 inline void set_counters(int value);
6598 inline int counters() const;
6600 // Stores opt_count and bailout_reason as bit-fields.
6601 inline void set_opt_count_and_bailout_reason(int value);
6602 inline int opt_count_and_bailout_reason() const;
6604 inline void set_disable_optimization_reason(BailoutReason reason);
6606 // Tells whether this function should be subject to debugging.
6607 inline bool IsSubjectToDebugging();
6609 // Whether this function is defined in native code or extensions.
6610 inline bool IsBuiltin();
6612 // Check whether or not this function is inlineable.
6613 bool IsInlineable();
6615 // Source size of this function.
6618 // Calculate the instance size.
6619 int CalculateInstanceSize();
6621 // Calculate the number of in-object properties.
6622 int CalculateInObjectProperties();
6624 inline bool has_simple_parameters();
6626 // Initialize a SharedFunctionInfo from a parsed function literal.
6627 static void InitFromFunctionLiteral(Handle<SharedFunctionInfo> shared_info,
6628 FunctionLiteral* lit);
6630 // Dispatched behavior.
6631 DECLARE_PRINTER(SharedFunctionInfo)
6632 DECLARE_VERIFIER(SharedFunctionInfo)
6634 void ResetForNewContext(int new_ic_age);
6636 // Iterate over all shared function infos that are created from a script.
6637 // That excludes shared function infos created for API functions and C++
6641 explicit Iterator(Isolate* isolate);
6642 SharedFunctionInfo* Next();
6647 Script::Iterator script_iterator_;
6648 WeakFixedArray::Iterator sfi_iterator_;
6649 DisallowHeapAllocation no_gc_;
6650 DISALLOW_COPY_AND_ASSIGN(Iterator);
6653 DECLARE_CAST(SharedFunctionInfo)
6656 static const int kDontAdaptArgumentsSentinel = -1;
6658 // Layout description.
6660 static const int kNameOffset = HeapObject::kHeaderSize;
6661 static const int kCodeOffset = kNameOffset + kPointerSize;
6662 static const int kOptimizedCodeMapOffset = kCodeOffset + kPointerSize;
6663 static const int kScopeInfoOffset = kOptimizedCodeMapOffset + kPointerSize;
6664 static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize;
6665 static const int kInstanceClassNameOffset =
6666 kConstructStubOffset + kPointerSize;
6667 static const int kFunctionDataOffset =
6668 kInstanceClassNameOffset + kPointerSize;
6669 static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
6670 static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
6671 static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
6672 static const int kFeedbackVectorOffset =
6673 kInferredNameOffset + kPointerSize;
6675 static const int kUniqueIdOffset = kFeedbackVectorOffset + kPointerSize;
6676 static const int kLastPointerFieldOffset = kUniqueIdOffset;
6678 // Just to not break the postmortrem support with conditional offsets
6679 static const int kUniqueIdOffset = kFeedbackVectorOffset;
6680 static const int kLastPointerFieldOffset = kFeedbackVectorOffset;
6683 #if V8_HOST_ARCH_32_BIT
6685 static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
6686 static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
6687 static const int kExpectedNofPropertiesOffset =
6688 kFormalParameterCountOffset + kPointerSize;
6689 static const int kNumLiteralsOffset =
6690 kExpectedNofPropertiesOffset + kPointerSize;
6691 static const int kStartPositionAndTypeOffset =
6692 kNumLiteralsOffset + kPointerSize;
6693 static const int kEndPositionOffset =
6694 kStartPositionAndTypeOffset + kPointerSize;
6695 static const int kFunctionTokenPositionOffset =
6696 kEndPositionOffset + kPointerSize;
6697 static const int kCompilerHintsOffset =
6698 kFunctionTokenPositionOffset + kPointerSize;
6699 static const int kOptCountAndBailoutReasonOffset =
6700 kCompilerHintsOffset + kPointerSize;
6701 static const int kCountersOffset =
6702 kOptCountAndBailoutReasonOffset + kPointerSize;
6703 static const int kAstNodeCountOffset =
6704 kCountersOffset + kPointerSize;
6705 static const int kProfilerTicksOffset =
6706 kAstNodeCountOffset + kPointerSize;
6709 static const int kSize = kProfilerTicksOffset + kPointerSize;
6711 // The only reason to use smi fields instead of int fields
6712 // is to allow iteration without maps decoding during
6713 // garbage collections.
6714 // To avoid wasting space on 64-bit architectures we use
6715 // the following trick: we group integer fields into pairs
6716 // The least significant integer in each pair is shifted left by 1.
6717 // By doing this we guarantee that LSB of each kPointerSize aligned
6718 // word is not set and thus this word cannot be treated as pointer
6719 // to HeapObject during old space traversal.
6720 #if V8_TARGET_LITTLE_ENDIAN
6721 static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
6722 static const int kFormalParameterCountOffset =
6723 kLengthOffset + kIntSize;
6725 static const int kExpectedNofPropertiesOffset =
6726 kFormalParameterCountOffset + kIntSize;
6727 static const int kNumLiteralsOffset =
6728 kExpectedNofPropertiesOffset + kIntSize;
6730 static const int kEndPositionOffset =
6731 kNumLiteralsOffset + kIntSize;
6732 static const int kStartPositionAndTypeOffset =
6733 kEndPositionOffset + kIntSize;
6735 static const int kFunctionTokenPositionOffset =
6736 kStartPositionAndTypeOffset + kIntSize;
6737 static const int kCompilerHintsOffset =
6738 kFunctionTokenPositionOffset + kIntSize;
6740 static const int kOptCountAndBailoutReasonOffset =
6741 kCompilerHintsOffset + kIntSize;
6742 static const int kCountersOffset =
6743 kOptCountAndBailoutReasonOffset + kIntSize;
6745 static const int kAstNodeCountOffset =
6746 kCountersOffset + kIntSize;
6747 static const int kProfilerTicksOffset =
6748 kAstNodeCountOffset + kIntSize;
6751 static const int kSize = kProfilerTicksOffset + kIntSize;
6753 #elif V8_TARGET_BIG_ENDIAN
6754 static const int kFormalParameterCountOffset =
6755 kLastPointerFieldOffset + kPointerSize;
6756 static const int kLengthOffset = kFormalParameterCountOffset + kIntSize;
6758 static const int kNumLiteralsOffset = kLengthOffset + kIntSize;
6759 static const int kExpectedNofPropertiesOffset = kNumLiteralsOffset + kIntSize;
6761 static const int kStartPositionAndTypeOffset =
6762 kExpectedNofPropertiesOffset + kIntSize;
6763 static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;
6765 static const int kCompilerHintsOffset = kEndPositionOffset + kIntSize;
6766 static const int kFunctionTokenPositionOffset =
6767 kCompilerHintsOffset + kIntSize;
6769 static const int kCountersOffset = kFunctionTokenPositionOffset + kIntSize;
6770 static const int kOptCountAndBailoutReasonOffset = kCountersOffset + kIntSize;
6772 static const int kProfilerTicksOffset =
6773 kOptCountAndBailoutReasonOffset + kIntSize;
6774 static const int kAstNodeCountOffset = kProfilerTicksOffset + kIntSize;
6777 static const int kSize = kAstNodeCountOffset + kIntSize;
6780 #error Unknown byte ordering
6781 #endif // Big endian
6785 static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
6787 typedef FixedBodyDescriptor<kNameOffset,
6788 kLastPointerFieldOffset + kPointerSize,
6789 kSize> BodyDescriptor;
6791 // Bit positions in start_position_and_type.
6792 // The source code start position is in the 30 most significant bits of
6793 // the start_position_and_type field.
6794 static const int kIsExpressionBit = 0;
6795 static const int kIsTopLevelBit = 1;
6796 static const int kStartPositionShift = 2;
6797 static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
6799 // Bit positions in compiler_hints.
6800 enum CompilerHints {
6801 kAllowLazyCompilation,
6802 kAllowLazyCompilationWithoutContext,
6803 kOptimizationDisabled,
6805 kStrictModeFunction,
6806 kStrongModeFunction,
6809 kHasDuplicateParameters,
6813 kNameShouldPrintAsAnonymous,
6820 kIsAccessorFunction,
6821 kIsDefaultConstructor,
6822 kIsSubclassConstructor,
6828 kCompilerHintsCount // Pseudo entry
6830 // Add hints for other modes when they're added.
6831 STATIC_ASSERT(LANGUAGE_END == 3);
6833 class FunctionKindBits : public BitField<FunctionKind, kIsArrow, 8> {};
6835 class DeoptCountBits : public BitField<int, 0, 4> {};
6836 class OptReenableTriesBits : public BitField<int, 4, 18> {};
6837 class ICAgeBits : public BitField<int, 22, 8> {};
6839 class OptCountBits : public BitField<int, 0, 22> {};
6840 class DisabledOptimizationReasonBits : public BitField<int, 22, 8> {};
6843 #if V8_HOST_ARCH_32_BIT
6844 // On 32 bit platforms, compiler hints is a smi.
6845 static const int kCompilerHintsSmiTagSize = kSmiTagSize;
6846 static const int kCompilerHintsSize = kPointerSize;
6848 // On 64 bit platforms, compiler hints is not a smi, see comment above.
6849 static const int kCompilerHintsSmiTagSize = 0;
6850 static const int kCompilerHintsSize = kIntSize;
6853 STATIC_ASSERT(SharedFunctionInfo::kCompilerHintsCount <=
6854 SharedFunctionInfo::kCompilerHintsSize * kBitsPerByte);
6857 // Constants for optimizing codegen for strict mode function and
6859 // Allows to use byte-width instructions.
6860 static const int kStrictModeBitWithinByte =
6861 (kStrictModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
6862 static const int kStrongModeBitWithinByte =
6863 (kStrongModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
6865 static const int kNativeBitWithinByte =
6866 (kNative + kCompilerHintsSmiTagSize) % kBitsPerByte;
6868 static const int kBoundBitWithinByte =
6869 (kBoundFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
6871 #if defined(V8_TARGET_LITTLE_ENDIAN)
6872 static const int kStrictModeByteOffset = kCompilerHintsOffset +
6873 (kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
6874 static const int kStrongModeByteOffset =
6875 kCompilerHintsOffset +
6876 (kStrongModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
6877 static const int kNativeByteOffset = kCompilerHintsOffset +
6878 (kNative + kCompilerHintsSmiTagSize) / kBitsPerByte;
6879 static const int kBoundByteOffset =
6880 kCompilerHintsOffset +
6881 (kBoundFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
6882 #elif defined(V8_TARGET_BIG_ENDIAN)
6883 static const int kStrictModeByteOffset = kCompilerHintsOffset +
6884 (kCompilerHintsSize - 1) -
6885 ((kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
6886 static const int kStrongModeByteOffset =
6887 kCompilerHintsOffset + (kCompilerHintsSize - 1) -
6888 ((kStrongModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
6889 static const int kNativeByteOffset = kCompilerHintsOffset +
6890 (kCompilerHintsSize - 1) -
6891 ((kNative + kCompilerHintsSmiTagSize) / kBitsPerByte);
6892 static const int kBoundByteOffset =
6893 kCompilerHintsOffset + (kCompilerHintsSize - 1) -
6894 ((kBoundFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
6896 #error Unknown byte ordering
6900 DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
6904 // Printing support.
6905 struct SourceCodeOf {
6906 explicit SourceCodeOf(SharedFunctionInfo* v, int max = -1)
6907 : value(v), max_length(max) {}
6908 const SharedFunctionInfo* value;
6913 std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v);
6916 class JSGeneratorObject: public JSObject {
6918 // [function]: The function corresponding to this generator object.
6919 DECL_ACCESSORS(function, JSFunction)
6921 // [context]: The context of the suspended computation.
6922 DECL_ACCESSORS(context, Context)
6924 // [receiver]: The receiver of the suspended computation.
6925 DECL_ACCESSORS(receiver, Object)
6927 // [continuation]: Offset into code of continuation.
6929 // A positive offset indicates a suspended generator. The special
6930 // kGeneratorExecuting and kGeneratorClosed values indicate that a generator
6931 // cannot be resumed.
6932 inline int continuation() const;
6933 inline void set_continuation(int continuation);
6934 inline bool is_closed();
6935 inline bool is_executing();
6936 inline bool is_suspended();
6938 // [operand_stack]: Saved operand stack.
6939 DECL_ACCESSORS(operand_stack, FixedArray)
6941 DECLARE_CAST(JSGeneratorObject)
6943 // Dispatched behavior.
6944 DECLARE_PRINTER(JSGeneratorObject)
6945 DECLARE_VERIFIER(JSGeneratorObject)
6947 // Magic sentinel values for the continuation.
6948 static const int kGeneratorExecuting = -1;
6949 static const int kGeneratorClosed = 0;
6951 // Layout description.
6952 static const int kFunctionOffset = JSObject::kHeaderSize;
6953 static const int kContextOffset = kFunctionOffset + kPointerSize;
6954 static const int kReceiverOffset = kContextOffset + kPointerSize;
6955 static const int kContinuationOffset = kReceiverOffset + kPointerSize;
6956 static const int kOperandStackOffset = kContinuationOffset + kPointerSize;
6957 static const int kSize = kOperandStackOffset + kPointerSize;
6959 // Resume mode, for use by runtime functions.
6960 enum ResumeMode { NEXT, THROW };
6963 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGeneratorObject);
6967 // Representation for module instance objects.
6968 class JSModule: public JSObject {
6970 // [context]: the context holding the module's locals, or undefined if none.
6971 DECL_ACCESSORS(context, Object)
6973 // [scope_info]: Scope info.
6974 DECL_ACCESSORS(scope_info, ScopeInfo)
6976 DECLARE_CAST(JSModule)
6978 // Dispatched behavior.
6979 DECLARE_PRINTER(JSModule)
6980 DECLARE_VERIFIER(JSModule)
6982 // Layout description.
6983 static const int kContextOffset = JSObject::kHeaderSize;
6984 static const int kScopeInfoOffset = kContextOffset + kPointerSize;
6985 static const int kSize = kScopeInfoOffset + kPointerSize;
6988 DISALLOW_IMPLICIT_CONSTRUCTORS(JSModule);
6992 // JSFunction describes JavaScript functions.
6993 class JSFunction: public JSObject {
6995 // [prototype_or_initial_map]:
6996 DECL_ACCESSORS(prototype_or_initial_map, Object)
6998 // [shared]: The information about the function that
6999 // can be shared by instances.
7000 DECL_ACCESSORS(shared, SharedFunctionInfo)
7002 // [context]: The context for this function.
7003 inline Context* context();
7004 inline void set_context(Object* context);
7005 inline JSObject* global_proxy();
7007 // [code]: The generated code object for this function. Executed
7008 // when the function is invoked, e.g. foo() or new foo(). See
7009 // [[Call]] and [[Construct]] description in ECMA-262, section
7011 inline Code* code();
7012 inline void set_code(Code* code);
7013 inline void set_code_no_write_barrier(Code* code);
7014 inline void ReplaceCode(Code* code);
7016 // Tells whether this function is builtin.
7017 inline bool IsBuiltin();
7019 // Tells whether this function inlines the given shared function info.
7020 bool Inlines(SharedFunctionInfo* candidate);
7022 // Tells whether this function should be subject to debugging.
7023 inline bool IsSubjectToDebugging();
7025 // Tells whether or not the function needs arguments adaption.
7026 inline bool NeedsArgumentsAdaption();
7028 // Tells whether or not this function has been optimized.
7029 inline bool IsOptimized();
7031 // Mark this function for lazy recompilation. The function will be
7032 // recompiled the next time it is executed.
7033 void MarkForOptimization();
7034 void AttemptConcurrentOptimization();
7036 // Tells whether or not the function is already marked for lazy
7038 inline bool IsMarkedForOptimization();
7039 inline bool IsMarkedForConcurrentOptimization();
7041 // Tells whether or not the function is on the concurrent recompilation queue.
7042 inline bool IsInOptimizationQueue();
7044 // Inobject slack tracking is the way to reclaim unused inobject space.
7046 // The instance size is initially determined by adding some slack to
7047 // expected_nof_properties (to allow for a few extra properties added
7048 // after the constructor). There is no guarantee that the extra space
7049 // will not be wasted.
7051 // Here is the algorithm to reclaim the unused inobject space:
7052 // - Detect the first constructor call for this JSFunction.
7053 // When it happens enter the "in progress" state: initialize construction
7054 // counter in the initial_map.
7055 // - While the tracking is in progress create objects filled with
7056 // one_pointer_filler_map instead of undefined_value. This way they can be
7057 // resized quickly and safely.
7058 // - Once enough objects have been created compute the 'slack'
7059 // (traverse the map transition tree starting from the
7060 // initial_map and find the lowest value of unused_property_fields).
7061 // - Traverse the transition tree again and decrease the instance size
7062 // of every map. Existing objects will resize automatically (they are
7063 // filled with one_pointer_filler_map). All further allocations will
7064 // use the adjusted instance size.
7065 // - SharedFunctionInfo's expected_nof_properties left unmodified since
7066 // allocations made using different closures could actually create different
7067 // kind of objects (see prototype inheritance pattern).
7069 // Important: inobject slack tracking is not attempted during the snapshot
7072 // True if the initial_map is set and the object constructions countdown
7073 // counter is not zero.
7074 static const int kGenerousAllocationCount =
7075 Map::kSlackTrackingCounterStart - Map::kSlackTrackingCounterEnd + 1;
7076 inline bool IsInobjectSlackTrackingInProgress();
7078 // Starts the tracking.
7079 // Initializes object constructions countdown counter in the initial map.
7080 void StartInobjectSlackTracking();
7082 // Completes the tracking.
7083 void CompleteInobjectSlackTracking();
7085 // [literals_or_bindings]: Fixed array holding either
7086 // the materialized literals or the bindings of a bound function.
7088 // If the function contains object, regexp or array literals, the
7089 // literals array prefix contains the object, regexp, and array
7090 // function to be used when creating these literals. This is
7091 // necessary so that we do not dynamically lookup the object, regexp
7092 // or array functions. Performing a dynamic lookup, we might end up
7093 // using the functions from a new context that we should not have
7096 // On bound functions, the array is a (copy-on-write) fixed-array containing
7097 // the function that was bound, bound this-value and any bound
7098 // arguments. Bound functions never contain literals.
7099 DECL_ACCESSORS(literals_or_bindings, FixedArray)
7101 inline FixedArray* literals();
7102 inline void set_literals(FixedArray* literals);
7104 inline FixedArray* function_bindings();
7105 inline void set_function_bindings(FixedArray* bindings);
7107 // The initial map for an object created by this constructor.
7108 inline Map* initial_map();
7109 static void SetInitialMap(Handle<JSFunction> function, Handle<Map> map,
7110 Handle<Object> prototype);
7111 inline bool has_initial_map();
7112 static void EnsureHasInitialMap(Handle<JSFunction> function);
7114 // Get and set the prototype property on a JSFunction. If the
7115 // function has an initial map the prototype is set on the initial
7116 // map. Otherwise, the prototype is put in the initial map field
7117 // until an initial map is needed.
7118 inline bool has_prototype();
7119 inline bool has_instance_prototype();
7120 inline Object* prototype();
7121 inline Object* instance_prototype();
7122 static void SetPrototype(Handle<JSFunction> function,
7123 Handle<Object> value);
7124 static void SetInstancePrototype(Handle<JSFunction> function,
7125 Handle<Object> value);
7127 // Creates a new closure for the fucntion with the same bindings,
7128 // bound values, and prototype. An equivalent of spec operations
7129 // ``CloneMethod`` and ``CloneBoundFunction``.
7130 static Handle<JSFunction> CloneClosure(Handle<JSFunction> function);
7132 // After prototype is removed, it will not be created when accessed, and
7133 // [[Construct]] from this function will not be allowed.
7134 bool RemovePrototype();
7135 inline bool should_have_prototype();
7137 // Accessor for this function's initial map's [[class]]
7138 // property. This is primarily used by ECMA native functions. This
7139 // method sets the class_name field of this function's initial map
7140 // to a given value. It creates an initial map if this function does
7141 // not have one. Note that this method does not copy the initial map
7142 // if it has one already, but simply replaces it with the new value.
7143 // Instances created afterwards will have a map whose [[class]] is
7144 // set to 'value', but there is no guarantees on instances created
7146 void SetInstanceClassName(String* name);
7148 // Returns if this function has been compiled to native code yet.
7149 inline bool is_compiled();
7151 // Returns `false` if formal parameters include rest parameters, optional
7152 // parameters, or destructuring parameters.
7153 // TODO(caitp): make this a flag set during parsing
7154 inline bool has_simple_parameters();
7156 // [next_function_link]: Links functions into various lists, e.g. the list
7157 // of optimized functions hanging off the native_context. The CodeFlusher
7158 // uses this link to chain together flushing candidates. Treated weakly
7159 // by the garbage collector.
7160 DECL_ACCESSORS(next_function_link, Object)
7162 // Prints the name of the function using PrintF.
7163 void PrintName(FILE* out = stdout);
7165 DECLARE_CAST(JSFunction)
7167 // Iterates the objects, including code objects indirectly referenced
7168 // through pointers to the first instruction in the code object.
7169 void JSFunctionIterateBody(int object_size, ObjectVisitor* v);
7171 // Dispatched behavior.
7172 DECLARE_PRINTER(JSFunction)
7173 DECLARE_VERIFIER(JSFunction)
7175 // Returns the number of allocated literals.
7176 inline int NumberOfLiterals();
7178 // Used for flags such as --hydrogen-filter.
7179 bool PassesFilter(const char* raw_filter);
7181 // The function's name if it is configured, otherwise shared function info
7183 static Handle<String> GetDebugName(Handle<JSFunction> function);
7185 // Layout descriptors. The last property (from kNonWeakFieldsEndOffset to
7186 // kSize) is weak and has special handling during garbage collection.
7187 static const int kCodeEntryOffset = JSObject::kHeaderSize;
7188 static const int kPrototypeOrInitialMapOffset =
7189 kCodeEntryOffset + kPointerSize;
7190 static const int kSharedFunctionInfoOffset =
7191 kPrototypeOrInitialMapOffset + kPointerSize;
7192 static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
7193 static const int kLiteralsOffset = kContextOffset + kPointerSize;
7194 static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize;
7195 static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset;
7196 static const int kSize = kNextFunctionLinkOffset + kPointerSize;
7198 // Layout of the bound-function binding array.
7199 static const int kBoundFunctionIndex = 0;
7200 static const int kBoundThisIndex = 1;
7201 static const int kBoundArgumentsStartIndex = 2;
7204 DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
7208 // JSGlobalProxy's prototype must be a JSGlobalObject or null,
7209 // and the prototype is hidden. JSGlobalProxy always delegates
7210 // property accesses to its prototype if the prototype is not null.
7212 // A JSGlobalProxy can be reinitialized which will preserve its identity.
7214 // Accessing a JSGlobalProxy requires security check.
7216 class JSGlobalProxy : public JSObject {
7218 // [native_context]: the owner native context of this global proxy object.
7219 // It is null value if this object is not used by any context.
7220 DECL_ACCESSORS(native_context, Object)
7222 // [hash]: The hash code property (undefined if not initialized yet).
7223 DECL_ACCESSORS(hash, Object)
7225 DECLARE_CAST(JSGlobalProxy)
7227 inline bool IsDetachedFrom(GlobalObject* global) const;
7229 // Dispatched behavior.
7230 DECLARE_PRINTER(JSGlobalProxy)
7231 DECLARE_VERIFIER(JSGlobalProxy)
7233 // Layout description.
7234 static const int kNativeContextOffset = JSObject::kHeaderSize;
7235 static const int kHashOffset = kNativeContextOffset + kPointerSize;
7236 static const int kSize = kHashOffset + kPointerSize;
7239 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
7243 // Common super class for JavaScript global objects and the special
7244 // builtins global objects.
7245 class GlobalObject: public JSObject {
7247 // [builtins]: the object holding the runtime routines written in JS.
7248 DECL_ACCESSORS(builtins, JSBuiltinsObject)
7250 // [native context]: the natives corresponding to this global object.
7251 DECL_ACCESSORS(native_context, Context)
7253 // [global proxy]: the global proxy object of the context
7254 DECL_ACCESSORS(global_proxy, JSObject)
7256 DECLARE_CAST(GlobalObject)
7258 static void InvalidatePropertyCell(Handle<GlobalObject> object,
7260 // Ensure that the global object has a cell for the given property name.
7261 static Handle<PropertyCell> EnsurePropertyCell(Handle<GlobalObject> global,
7264 // Layout description.
7265 static const int kBuiltinsOffset = JSObject::kHeaderSize;
7266 static const int kNativeContextOffset = kBuiltinsOffset + kPointerSize;
7267 static const int kGlobalProxyOffset = kNativeContextOffset + kPointerSize;
7268 static const int kHeaderSize = kGlobalProxyOffset + kPointerSize;
7271 DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
7275 // JavaScript global object.
7276 class JSGlobalObject: public GlobalObject {
7278 DECLARE_CAST(JSGlobalObject)
7280 inline bool IsDetached();
7282 // Dispatched behavior.
7283 DECLARE_PRINTER(JSGlobalObject)
7284 DECLARE_VERIFIER(JSGlobalObject)
7286 // Layout description.
7287 static const int kSize = GlobalObject::kHeaderSize;
7290 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
7294 // Builtins global object which holds the runtime routines written in
7296 class JSBuiltinsObject: public GlobalObject {
7298 DECLARE_CAST(JSBuiltinsObject)
7300 // Dispatched behavior.
7301 DECLARE_PRINTER(JSBuiltinsObject)
7302 DECLARE_VERIFIER(JSBuiltinsObject)
7304 // Layout description.
7305 static const int kSize = GlobalObject::kHeaderSize;
7308 DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
7312 // Representation for JS Wrapper objects, String, Number, Boolean, etc.
7313 class JSValue: public JSObject {
7315 // [value]: the object being wrapped.
7316 DECL_ACCESSORS(value, Object)
7318 DECLARE_CAST(JSValue)
7320 // Dispatched behavior.
7321 DECLARE_PRINTER(JSValue)
7322 DECLARE_VERIFIER(JSValue)
7324 // Layout description.
7325 static const int kValueOffset = JSObject::kHeaderSize;
7326 static const int kSize = kValueOffset + kPointerSize;
7329 DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
7335 // Representation for JS date objects.
7336 class JSDate: public JSObject {
7338 // If one component is NaN, all of them are, indicating a NaN time value.
7339 // [value]: the time value.
7340 DECL_ACCESSORS(value, Object)
7341 // [year]: caches year. Either undefined, smi, or NaN.
7342 DECL_ACCESSORS(year, Object)
7343 // [month]: caches month. Either undefined, smi, or NaN.
7344 DECL_ACCESSORS(month, Object)
7345 // [day]: caches day. Either undefined, smi, or NaN.
7346 DECL_ACCESSORS(day, Object)
7347 // [weekday]: caches day of week. Either undefined, smi, or NaN.
7348 DECL_ACCESSORS(weekday, Object)
7349 // [hour]: caches hours. Either undefined, smi, or NaN.
7350 DECL_ACCESSORS(hour, Object)
7351 // [min]: caches minutes. Either undefined, smi, or NaN.
7352 DECL_ACCESSORS(min, Object)
7353 // [sec]: caches seconds. Either undefined, smi, or NaN.
7354 DECL_ACCESSORS(sec, Object)
7355 // [cache stamp]: sample of the date cache stamp at the
7356 // moment when chached fields were cached.
7357 DECL_ACCESSORS(cache_stamp, Object)
7359 DECLARE_CAST(JSDate)
7361 // Returns the date field with the specified index.
7362 // See FieldIndex for the list of date fields.
7363 static Object* GetField(Object* date, Smi* index);
7365 void SetValue(Object* value, bool is_value_nan);
7367 // ES6 section 20.3.4.45 Date.prototype [ @@toPrimitive ]
7368 static MUST_USE_RESULT MaybeHandle<Object> ToPrimitive(
7369 Handle<JSReceiver> receiver, Handle<Object> hint);
7371 // Dispatched behavior.
7372 DECLARE_PRINTER(JSDate)
7373 DECLARE_VERIFIER(JSDate)
7375 // The order is important. It must be kept in sync with date macros
7386 kFirstUncachedField,
7387 kMillisecond = kFirstUncachedField,
7391 kYearUTC = kFirstUTCField,
7404 // Layout description.
7405 static const int kValueOffset = JSObject::kHeaderSize;
7406 static const int kYearOffset = kValueOffset + kPointerSize;
7407 static const int kMonthOffset = kYearOffset + kPointerSize;
7408 static const int kDayOffset = kMonthOffset + kPointerSize;
7409 static const int kWeekdayOffset = kDayOffset + kPointerSize;
7410 static const int kHourOffset = kWeekdayOffset + kPointerSize;
7411 static const int kMinOffset = kHourOffset + kPointerSize;
7412 static const int kSecOffset = kMinOffset + kPointerSize;
7413 static const int kCacheStampOffset = kSecOffset + kPointerSize;
7414 static const int kSize = kCacheStampOffset + kPointerSize;
7417 inline Object* DoGetField(FieldIndex index);
7419 Object* GetUTCField(FieldIndex index, double value, DateCache* date_cache);
7421 // Computes and caches the cacheable fields of the date.
7422 inline void SetCachedFields(int64_t local_time_ms, DateCache* date_cache);
7425 DISALLOW_IMPLICIT_CONSTRUCTORS(JSDate);
7429 // Representation of message objects used for error reporting through
7430 // the API. The messages are formatted in JavaScript so this object is
7431 // a real JavaScript object. The information used for formatting the
7432 // error messages are not directly accessible from JavaScript to
7433 // prevent leaking information to user code called during error
7435 class JSMessageObject: public JSObject {
7437 // [type]: the type of error message.
7438 inline int type() const;
7439 inline void set_type(int value);
7441 // [arguments]: the arguments for formatting the error message.
7442 DECL_ACCESSORS(argument, Object)
7444 // [script]: the script from which the error message originated.
7445 DECL_ACCESSORS(script, Object)
7447 // [stack_frames]: an array of stack frames for this error object.
7448 DECL_ACCESSORS(stack_frames, Object)
7450 // [start_position]: the start position in the script for the error message.
7451 inline int start_position() const;
7452 inline void set_start_position(int value);
7454 // [end_position]: the end position in the script for the error message.
7455 inline int end_position() const;
7456 inline void set_end_position(int value);
7458 DECLARE_CAST(JSMessageObject)
7460 // Dispatched behavior.
7461 DECLARE_PRINTER(JSMessageObject)
7462 DECLARE_VERIFIER(JSMessageObject)
7464 // Layout description.
7465 static const int kTypeOffset = JSObject::kHeaderSize;
7466 static const int kArgumentsOffset = kTypeOffset + kPointerSize;
7467 static const int kScriptOffset = kArgumentsOffset + kPointerSize;
7468 static const int kStackFramesOffset = kScriptOffset + kPointerSize;
7469 static const int kStartPositionOffset = kStackFramesOffset + kPointerSize;
7470 static const int kEndPositionOffset = kStartPositionOffset + kPointerSize;
7471 static const int kSize = kEndPositionOffset + kPointerSize;
7473 typedef FixedBodyDescriptor<HeapObject::kMapOffset,
7474 kStackFramesOffset + kPointerSize,
7475 kSize> BodyDescriptor;
7479 // Regular expressions
7480 // The regular expression holds a single reference to a FixedArray in
7481 // the kDataOffset field.
7482 // The FixedArray contains the following data:
7483 // - tag : type of regexp implementation (not compiled yet, atom or irregexp)
7484 // - reference to the original source string
7485 // - reference to the original flag string
7486 // If it is an atom regexp
7487 // - a reference to a literal string to search for
7488 // If it is an irregexp regexp:
7489 // - a reference to code for Latin1 inputs (bytecode or compiled), or a smi
7490 // used for tracking the last usage (used for code flushing).
7491 // - a reference to code for UC16 inputs (bytecode or compiled), or a smi
7492 // used for tracking the last usage (used for code flushing)..
7493 // - max number of registers used by irregexp implementations.
7494 // - number of capture registers (output values) of the regexp.
7495 class JSRegExp: public JSObject {
7498 // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
7499 // ATOM: A simple string to match against using an indexOf operation.
7500 // IRREGEXP: Compiled with Irregexp.
7501 // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
7502 enum Type { NOT_COMPILED, ATOM, IRREGEXP };
7509 UNICODE_ESCAPES = 16
7514 explicit Flags(uint32_t value) : value_(value) { }
7515 bool is_global() { return (value_ & GLOBAL) != 0; }
7516 bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
7517 bool is_multiline() { return (value_ & MULTILINE) != 0; }
7518 bool is_sticky() { return (value_ & STICKY) != 0; }
7519 bool is_unicode() { return (value_ & UNICODE_ESCAPES) != 0; }
7520 uint32_t value() { return value_; }
7525 DECL_ACCESSORS(data, Object)
7527 inline Type TypeTag();
7528 inline int CaptureCount();
7529 inline Flags GetFlags();
7530 inline String* Pattern();
7531 inline Object* DataAt(int index);
7532 // Set implementation data after the object has been prepared.
7533 inline void SetDataAt(int index, Object* value);
7535 static int code_index(bool is_latin1) {
7537 return kIrregexpLatin1CodeIndex;
7539 return kIrregexpUC16CodeIndex;
7543 static int saved_code_index(bool is_latin1) {
7545 return kIrregexpLatin1CodeSavedIndex;
7547 return kIrregexpUC16CodeSavedIndex;
7551 DECLARE_CAST(JSRegExp)
7553 // Dispatched behavior.
7554 DECLARE_VERIFIER(JSRegExp)
7556 static const int kDataOffset = JSObject::kHeaderSize;
7557 static const int kSize = kDataOffset + kPointerSize;
7559 // Indices in the data array.
7560 static const int kTagIndex = 0;
7561 static const int kSourceIndex = kTagIndex + 1;
7562 static const int kFlagsIndex = kSourceIndex + 1;
7563 static const int kDataIndex = kFlagsIndex + 1;
7564 // The data fields are used in different ways depending on the
7565 // value of the tag.
7566 // Atom regexps (literal strings).
7567 static const int kAtomPatternIndex = kDataIndex;
7569 static const int kAtomDataSize = kAtomPatternIndex + 1;
7571 // Irregexp compiled code or bytecode for Latin1. If compilation
7572 // fails, this fields hold an exception object that should be
7573 // thrown if the regexp is used again.
7574 static const int kIrregexpLatin1CodeIndex = kDataIndex;
7575 // Irregexp compiled code or bytecode for UC16. If compilation
7576 // fails, this fields hold an exception object that should be
7577 // thrown if the regexp is used again.
7578 static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
7580 // Saved instance of Irregexp compiled code or bytecode for Latin1 that
7581 // is a potential candidate for flushing.
7582 static const int kIrregexpLatin1CodeSavedIndex = kDataIndex + 2;
7583 // Saved instance of Irregexp compiled code or bytecode for UC16 that is
7584 // a potential candidate for flushing.
7585 static const int kIrregexpUC16CodeSavedIndex = kDataIndex + 3;
7587 // Maximal number of registers used by either Latin1 or UC16.
7588 // Only used to check that there is enough stack space
7589 static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 4;
7590 // Number of captures in the compiled regexp.
7591 static const int kIrregexpCaptureCountIndex = kDataIndex + 5;
7593 static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
7595 // Offsets directly into the data fixed array.
7596 static const int kDataTagOffset =
7597 FixedArray::kHeaderSize + kTagIndex * kPointerSize;
7598 static const int kDataOneByteCodeOffset =
7599 FixedArray::kHeaderSize + kIrregexpLatin1CodeIndex * kPointerSize;
7600 static const int kDataUC16CodeOffset =
7601 FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
7602 static const int kIrregexpCaptureCountOffset =
7603 FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
7605 // In-object fields.
7606 static const int kSourceFieldIndex = 0;
7607 static const int kGlobalFieldIndex = 1;
7608 static const int kIgnoreCaseFieldIndex = 2;
7609 static const int kMultilineFieldIndex = 3;
7610 static const int kLastIndexFieldIndex = 4;
7611 static const int kInObjectFieldCount = 5;
7613 // The uninitialized value for a regexp code object.
7614 static const int kUninitializedValue = -1;
7616 // The compilation error value for the regexp code object. The real error
7617 // object is in the saved code field.
7618 static const int kCompilationErrorValue = -2;
7620 // When we store the sweep generation at which we moved the code from the
7621 // code index to the saved code index we mask it of to be in the [0:255]
7623 static const int kCodeAgeMask = 0xff;
7627 class CompilationCacheShape : public BaseShape<HashTableKey*> {
7629 static inline bool IsMatch(HashTableKey* key, Object* value) {
7630 return key->IsMatch(value);
7633 static inline uint32_t Hash(HashTableKey* key) {
7637 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
7638 return key->HashForObject(object);
7641 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
7643 static const int kPrefixSize = 0;
7644 static const int kEntrySize = 2;
7648 // This cache is used in two different variants. For regexp caching, it simply
7649 // maps identifying info of the regexp to the cached regexp object. Scripts and
7650 // eval code only gets cached after a second probe for the code object. To do
7651 // so, on first "put" only a hash identifying the source is entered into the
7652 // cache, mapping it to a lifetime count of the hash. On each call to Age all
7653 // such lifetimes get reduced, and removed once they reach zero. If a second put
7654 // is called while such a hash is live in the cache, the hash gets replaced by
7655 // an actual cache entry. Age also removes stale live entries from the cache.
7656 // Such entries are identified by SharedFunctionInfos pointing to either the
7657 // recompilation stub, or to "old" code. This avoids memory leaks due to
7658 // premature caching of scripts and eval strings that are never needed later.
7659 class CompilationCacheTable: public HashTable<CompilationCacheTable,
7660 CompilationCacheShape,
7663 // Find cached value for a string key, otherwise return null.
7664 Handle<Object> Lookup(
7665 Handle<String> src, Handle<Context> context, LanguageMode language_mode);
7666 Handle<Object> LookupEval(
7667 Handle<String> src, Handle<SharedFunctionInfo> shared,
7668 LanguageMode language_mode, int scope_position);
7669 Handle<Object> LookupRegExp(Handle<String> source, JSRegExp::Flags flags);
7670 static Handle<CompilationCacheTable> Put(
7671 Handle<CompilationCacheTable> cache, Handle<String> src,
7672 Handle<Context> context, LanguageMode language_mode,
7673 Handle<Object> value);
7674 static Handle<CompilationCacheTable> PutEval(
7675 Handle<CompilationCacheTable> cache, Handle<String> src,
7676 Handle<SharedFunctionInfo> context, Handle<SharedFunctionInfo> value,
7677 int scope_position);
7678 static Handle<CompilationCacheTable> PutRegExp(
7679 Handle<CompilationCacheTable> cache, Handle<String> src,
7680 JSRegExp::Flags flags, Handle<FixedArray> value);
7681 void Remove(Object* value);
7683 static const int kHashGenerations = 10;
7685 DECLARE_CAST(CompilationCacheTable)
7688 DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
7692 class CodeCache: public Struct {
7694 DECL_ACCESSORS(default_cache, FixedArray)
7695 DECL_ACCESSORS(normal_type_cache, Object)
7697 // Add the code object to the cache.
7699 Handle<CodeCache> cache, Handle<Name> name, Handle<Code> code);
7701 // Lookup code object in the cache. Returns code object if found and undefined
7703 Object* Lookup(Name* name, Code::Flags flags);
7705 // Get the internal index of a code object in the cache. Returns -1 if the
7706 // code object is not in that cache. This index can be used to later call
7707 // RemoveByIndex. The cache cannot be modified between a call to GetIndex and
7709 int GetIndex(Object* name, Code* code);
7711 // Remove an object from the cache with the provided internal index.
7712 void RemoveByIndex(Object* name, Code* code, int index);
7714 DECLARE_CAST(CodeCache)
7716 // Dispatched behavior.
7717 DECLARE_PRINTER(CodeCache)
7718 DECLARE_VERIFIER(CodeCache)
7720 static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
7721 static const int kNormalTypeCacheOffset =
7722 kDefaultCacheOffset + kPointerSize;
7723 static const int kSize = kNormalTypeCacheOffset + kPointerSize;
7726 static void UpdateDefaultCache(
7727 Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
7728 static void UpdateNormalTypeCache(
7729 Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
7730 Object* LookupDefaultCache(Name* name, Code::Flags flags);
7731 Object* LookupNormalTypeCache(Name* name, Code::Flags flags);
7733 // Code cache layout of the default cache. Elements are alternating name and
7734 // code objects for non normal load/store/call IC's.
7735 static const int kCodeCacheEntrySize = 2;
7736 static const int kCodeCacheEntryNameOffset = 0;
7737 static const int kCodeCacheEntryCodeOffset = 1;
7739 DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
7743 class CodeCacheHashTableShape : public BaseShape<HashTableKey*> {
7745 static inline bool IsMatch(HashTableKey* key, Object* value) {
7746 return key->IsMatch(value);
7749 static inline uint32_t Hash(HashTableKey* key) {
7753 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
7754 return key->HashForObject(object);
7757 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
7759 static const int kPrefixSize = 0;
7760 static const int kEntrySize = 2;
7764 class CodeCacheHashTable: public HashTable<CodeCacheHashTable,
7765 CodeCacheHashTableShape,
7768 Object* Lookup(Name* name, Code::Flags flags);
7769 static Handle<CodeCacheHashTable> Put(
7770 Handle<CodeCacheHashTable> table,
7774 int GetIndex(Name* name, Code::Flags flags);
7775 void RemoveByIndex(int index);
7777 DECLARE_CAST(CodeCacheHashTable)
7779 // Initial size of the fixed array backing the hash table.
7780 static const int kInitialSize = 64;
7783 DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
7787 class PolymorphicCodeCache: public Struct {
7789 DECL_ACCESSORS(cache, Object)
7791 static void Update(Handle<PolymorphicCodeCache> cache,
7792 MapHandleList* maps,
7797 // Returns an undefined value if the entry is not found.
7798 Handle<Object> Lookup(MapHandleList* maps, Code::Flags flags);
7800 DECLARE_CAST(PolymorphicCodeCache)
7802 // Dispatched behavior.
7803 DECLARE_PRINTER(PolymorphicCodeCache)
7804 DECLARE_VERIFIER(PolymorphicCodeCache)
7806 static const int kCacheOffset = HeapObject::kHeaderSize;
7807 static const int kSize = kCacheOffset + kPointerSize;
7810 DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCache);
7814 class PolymorphicCodeCacheHashTable
7815 : public HashTable<PolymorphicCodeCacheHashTable,
7816 CodeCacheHashTableShape,
7819 Object* Lookup(MapHandleList* maps, int code_kind);
7821 static Handle<PolymorphicCodeCacheHashTable> Put(
7822 Handle<PolymorphicCodeCacheHashTable> hash_table,
7823 MapHandleList* maps,
7827 DECLARE_CAST(PolymorphicCodeCacheHashTable)
7829 static const int kInitialSize = 64;
7831 DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCacheHashTable);
7835 class TypeFeedbackInfo: public Struct {
7837 inline int ic_total_count();
7838 inline void set_ic_total_count(int count);
7840 inline int ic_with_type_info_count();
7841 inline void change_ic_with_type_info_count(int delta);
7843 inline int ic_generic_count();
7844 inline void change_ic_generic_count(int delta);
7846 inline void initialize_storage();
7848 inline void change_own_type_change_checksum();
7849 inline int own_type_change_checksum();
7851 inline void set_inlined_type_change_checksum(int checksum);
7852 inline bool matches_inlined_type_change_checksum(int checksum);
7854 DECLARE_CAST(TypeFeedbackInfo)
7856 // Dispatched behavior.
7857 DECLARE_PRINTER(TypeFeedbackInfo)
7858 DECLARE_VERIFIER(TypeFeedbackInfo)
7860 static const int kStorage1Offset = HeapObject::kHeaderSize;
7861 static const int kStorage2Offset = kStorage1Offset + kPointerSize;
7862 static const int kStorage3Offset = kStorage2Offset + kPointerSize;
7863 static const int kSize = kStorage3Offset + kPointerSize;
7866 static const int kTypeChangeChecksumBits = 7;
7868 class ICTotalCountField: public BitField<int, 0,
7869 kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
7870 class OwnTypeChangeChecksum: public BitField<int,
7871 kSmiValueSize - kTypeChangeChecksumBits,
7872 kTypeChangeChecksumBits> {}; // NOLINT
7873 class ICsWithTypeInfoCountField: public BitField<int, 0,
7874 kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
7875 class InlinedTypeChangeChecksum: public BitField<int,
7876 kSmiValueSize - kTypeChangeChecksumBits,
7877 kTypeChangeChecksumBits> {}; // NOLINT
7879 DISALLOW_IMPLICIT_CONSTRUCTORS(TypeFeedbackInfo);
7883 enum AllocationSiteMode {
7884 DONT_TRACK_ALLOCATION_SITE,
7885 TRACK_ALLOCATION_SITE,
7886 LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
7890 class AllocationSite: public Struct {
7892 static const uint32_t kMaximumArrayBytesToPretransition = 8 * 1024;
7893 static const double kPretenureRatio;
7894 static const int kPretenureMinimumCreated = 100;
7896 // Values for pretenure decision field.
7897 enum PretenureDecision {
7903 kLastPretenureDecisionValue = kZombie
7906 const char* PretenureDecisionName(PretenureDecision decision);
7908 DECL_ACCESSORS(transition_info, Object)
7909 // nested_site threads a list of sites that represent nested literals
7910 // walked in a particular order. So [[1, 2], 1, 2] will have one
7911 // nested_site, but [[1, 2], 3, [4]] will have a list of two.
7912 DECL_ACCESSORS(nested_site, Object)
7913 DECL_ACCESSORS(pretenure_data, Smi)
7914 DECL_ACCESSORS(pretenure_create_count, Smi)
7915 DECL_ACCESSORS(dependent_code, DependentCode)
7916 DECL_ACCESSORS(weak_next, Object)
7918 inline void Initialize();
7920 // This method is expensive, it should only be called for reporting.
7921 bool IsNestedSite();
7923 // transition_info bitfields, for constructed array transition info.
7924 class ElementsKindBits: public BitField<ElementsKind, 0, 15> {};
7925 class UnusedBits: public BitField<int, 15, 14> {};
7926 class DoNotInlineBit: public BitField<bool, 29, 1> {};
7928 // Bitfields for pretenure_data
7929 class MementoFoundCountBits: public BitField<int, 0, 26> {};
7930 class PretenureDecisionBits: public BitField<PretenureDecision, 26, 3> {};
7931 class DeoptDependentCodeBit: public BitField<bool, 29, 1> {};
7932 STATIC_ASSERT(PretenureDecisionBits::kMax >= kLastPretenureDecisionValue);
7934 // Increments the mementos found counter and returns true when the first
7935 // memento was found for a given allocation site.
7936 inline bool IncrementMementoFoundCount();
7938 inline void IncrementMementoCreateCount();
7940 PretenureFlag GetPretenureMode();
7942 void ResetPretenureDecision();
7944 inline PretenureDecision pretenure_decision();
7945 inline void set_pretenure_decision(PretenureDecision decision);
7947 inline bool deopt_dependent_code();
7948 inline void set_deopt_dependent_code(bool deopt);
7950 inline int memento_found_count();
7951 inline void set_memento_found_count(int count);
7953 inline int memento_create_count();
7954 inline void set_memento_create_count(int count);
7956 // The pretenuring decision is made during gc, and the zombie state allows
7957 // us to recognize when an allocation site is just being kept alive because
7958 // a later traversal of new space may discover AllocationMementos that point
7959 // to this AllocationSite.
7960 inline bool IsZombie();
7962 inline bool IsMaybeTenure();
7964 inline void MarkZombie();
7966 inline bool MakePretenureDecision(PretenureDecision current_decision,
7968 bool maximum_size_scavenge);
7970 inline bool DigestPretenuringFeedback(bool maximum_size_scavenge);
7972 inline ElementsKind GetElementsKind();
7973 inline void SetElementsKind(ElementsKind kind);
7975 inline bool CanInlineCall();
7976 inline void SetDoNotInlineCall();
7978 inline bool SitePointsToLiteral();
7980 static void DigestTransitionFeedback(Handle<AllocationSite> site,
7981 ElementsKind to_kind);
7983 DECLARE_PRINTER(AllocationSite)
7984 DECLARE_VERIFIER(AllocationSite)
7986 DECLARE_CAST(AllocationSite)
7987 static inline AllocationSiteMode GetMode(
7988 ElementsKind boilerplate_elements_kind);
7989 static inline AllocationSiteMode GetMode(ElementsKind from, ElementsKind to);
7990 static inline bool CanTrack(InstanceType type);
7992 static const int kTransitionInfoOffset = HeapObject::kHeaderSize;
7993 static const int kNestedSiteOffset = kTransitionInfoOffset + kPointerSize;
7994 static const int kPretenureDataOffset = kNestedSiteOffset + kPointerSize;
7995 static const int kPretenureCreateCountOffset =
7996 kPretenureDataOffset + kPointerSize;
7997 static const int kDependentCodeOffset =
7998 kPretenureCreateCountOffset + kPointerSize;
7999 static const int kWeakNextOffset = kDependentCodeOffset + kPointerSize;
8000 static const int kSize = kWeakNextOffset + kPointerSize;
8002 // During mark compact we need to take special care for the dependent code
8004 static const int kPointerFieldsBeginOffset = kTransitionInfoOffset;
8005 static const int kPointerFieldsEndOffset = kWeakNextOffset;
8007 // For other visitors, use the fixed body descriptor below.
8008 typedef FixedBodyDescriptor<HeapObject::kHeaderSize,
8009 kDependentCodeOffset + kPointerSize,
8010 kSize> BodyDescriptor;
8013 inline bool PretenuringDecisionMade();
8015 DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationSite);
8019 class AllocationMemento: public Struct {
8021 static const int kAllocationSiteOffset = HeapObject::kHeaderSize;
8022 static const int kSize = kAllocationSiteOffset + kPointerSize;
8024 DECL_ACCESSORS(allocation_site, Object)
8026 inline bool IsValid();
8027 inline AllocationSite* GetAllocationSite();
8029 DECLARE_PRINTER(AllocationMemento)
8030 DECLARE_VERIFIER(AllocationMemento)
8032 DECLARE_CAST(AllocationMemento)
8035 DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationMemento);
8039 // Representation of a slow alias as part of a sloppy arguments objects.
8040 // For fast aliases (if HasSloppyArgumentsElements()):
8041 // - the parameter map contains an index into the context
8042 // - all attributes of the element have default values
8043 // For slow aliases (if HasDictionaryArgumentsElements()):
8044 // - the parameter map contains no fast alias mapping (i.e. the hole)
8045 // - this struct (in the slow backing store) contains an index into the context
8046 // - all attributes are available as part if the property details
8047 class AliasedArgumentsEntry: public Struct {
8049 inline int aliased_context_slot() const;
8050 inline void set_aliased_context_slot(int count);
8052 DECLARE_CAST(AliasedArgumentsEntry)
8054 // Dispatched behavior.
8055 DECLARE_PRINTER(AliasedArgumentsEntry)
8056 DECLARE_VERIFIER(AliasedArgumentsEntry)
8058 static const int kAliasedContextSlot = HeapObject::kHeaderSize;
8059 static const int kSize = kAliasedContextSlot + kPointerSize;
8062 DISALLOW_IMPLICIT_CONSTRUCTORS(AliasedArgumentsEntry);
8066 enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
8067 enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
8070 class StringHasher {
8072 explicit inline StringHasher(int length, uint32_t seed);
8074 template <typename schar>
8075 static inline uint32_t HashSequentialString(const schar* chars,
8079 // Reads all the data, even for long strings and computes the utf16 length.
8080 static uint32_t ComputeUtf8Hash(Vector<const char> chars,
8082 int* utf16_length_out);
8084 // Calculated hash value for a string consisting of 1 to
8085 // String::kMaxArrayIndexSize digits with no leading zeros (except "0").
8086 // value is represented decimal value.
8087 static uint32_t MakeArrayIndexHash(uint32_t value, int length);
8089 // No string is allowed to have a hash of zero. That value is reserved
8090 // for internal properties. If the hash calculation yields zero then we
8092 static const int kZeroHash = 27;
8094 // Reusable parts of the hashing algorithm.
8095 INLINE(static uint32_t AddCharacterCore(uint32_t running_hash, uint16_t c));
8096 INLINE(static uint32_t GetHashCore(uint32_t running_hash));
8097 INLINE(static uint32_t ComputeRunningHash(uint32_t running_hash,
8098 const uc16* chars, int length));
8099 INLINE(static uint32_t ComputeRunningHashOneByte(uint32_t running_hash,
8104 // Returns the value to store in the hash field of a string with
8105 // the given length and contents.
8106 uint32_t GetHashField();
8107 // Returns true if the hash of this string can be computed without
8108 // looking at the contents.
8109 inline bool has_trivial_hash();
8110 // Adds a block of characters to the hash.
8111 template<typename Char>
8112 inline void AddCharacters(const Char* chars, int len);
8115 // Add a character to the hash.
8116 inline void AddCharacter(uint16_t c);
8117 // Update index. Returns true if string is still an index.
8118 inline bool UpdateIndex(uint16_t c);
8121 uint32_t raw_running_hash_;
8122 uint32_t array_index_;
8123 bool is_array_index_;
8124 bool is_first_char_;
8125 DISALLOW_COPY_AND_ASSIGN(StringHasher);
8129 class IteratingStringHasher : public StringHasher {
8131 static inline uint32_t Hash(String* string, uint32_t seed);
8132 inline void VisitOneByteString(const uint8_t* chars, int length);
8133 inline void VisitTwoByteString(const uint16_t* chars, int length);
8136 inline IteratingStringHasher(int len, uint32_t seed);
8137 void VisitConsString(ConsString* cons_string);
8138 DISALLOW_COPY_AND_ASSIGN(IteratingStringHasher);
8142 // The characteristics of a string are stored in its map. Retrieving these
8143 // few bits of information is moderately expensive, involving two memory
8144 // loads where the second is dependent on the first. To improve efficiency
8145 // the shape of the string is given its own class so that it can be retrieved
8146 // once and used for several string operations. A StringShape is small enough
8147 // to be passed by value and is immutable, but be aware that flattening a
8148 // string can potentially alter its shape. Also be aware that a GC caused by
8149 // something else can alter the shape of a string due to ConsString
8150 // shortcutting. Keeping these restrictions in mind has proven to be error-
8151 // prone and so we no longer put StringShapes in variables unless there is a
8152 // concrete performance benefit at that particular point in the code.
8153 class StringShape BASE_EMBEDDED {
8155 inline explicit StringShape(const String* s);
8156 inline explicit StringShape(Map* s);
8157 inline explicit StringShape(InstanceType t);
8158 inline bool IsSequential();
8159 inline bool IsExternal();
8160 inline bool IsCons();
8161 inline bool IsSliced();
8162 inline bool IsIndirect();
8163 inline bool IsExternalOneByte();
8164 inline bool IsExternalTwoByte();
8165 inline bool IsSequentialOneByte();
8166 inline bool IsSequentialTwoByte();
8167 inline bool IsInternalized();
8168 inline StringRepresentationTag representation_tag();
8169 inline uint32_t encoding_tag();
8170 inline uint32_t full_representation_tag();
8171 inline uint32_t size_tag();
8173 inline uint32_t type() { return type_; }
8174 inline void invalidate() { valid_ = false; }
8175 inline bool valid() { return valid_; }
8177 inline void invalidate() { }
8183 inline void set_valid() { valid_ = true; }
8186 inline void set_valid() { }
8191 // The Name abstract class captures anything that can be used as a property
8192 // name, i.e., strings and symbols. All names store a hash value.
8193 class Name: public HeapObject {
8195 // Get and set the hash field of the name.
8196 inline uint32_t hash_field();
8197 inline void set_hash_field(uint32_t value);
8199 // Tells whether the hash code has been computed.
8200 inline bool HasHashCode();
8202 // Returns a hash value used for the property table
8203 inline uint32_t Hash();
8205 // Equality operations.
8206 inline bool Equals(Name* other);
8207 inline static bool Equals(Handle<Name> one, Handle<Name> two);
8210 inline bool AsArrayIndex(uint32_t* index);
8212 // If the name is private, it can only name own properties.
8213 inline bool IsPrivate();
8215 // If the name is a non-flat string, this method returns a flat version of the
8216 // string. Otherwise it'll just return the input.
8217 static inline Handle<Name> Flatten(Handle<Name> name,
8218 PretenureFlag pretenure = NOT_TENURED);
8220 // Return a string version of this name that is converted according to the
8221 // rules described in ES6 section 9.2.11.
8222 MUST_USE_RESULT static MaybeHandle<String> ToFunctionName(Handle<Name> name);
8226 DECLARE_PRINTER(Name)
8228 void NameShortPrint();
8229 int NameShortPrint(Vector<char> str);
8232 // Layout description.
8233 static const int kHashFieldSlot = HeapObject::kHeaderSize;
8234 #if V8_TARGET_LITTLE_ENDIAN || !V8_HOST_ARCH_64_BIT
8235 static const int kHashFieldOffset = kHashFieldSlot;
8237 static const int kHashFieldOffset = kHashFieldSlot + kIntSize;
8239 static const int kSize = kHashFieldSlot + kPointerSize;
8241 // Mask constant for checking if a name has a computed hash code
8242 // and if it is a string that is an array index. The least significant bit
8243 // indicates whether a hash code has been computed. If the hash code has
8244 // been computed the 2nd bit tells whether the string can be used as an
8246 static const int kHashNotComputedMask = 1;
8247 static const int kIsNotArrayIndexMask = 1 << 1;
8248 static const int kNofHashBitFields = 2;
8250 // Shift constant retrieving hash code from hash field.
8251 static const int kHashShift = kNofHashBitFields;
8253 // Only these bits are relevant in the hash, since the top two are shifted
8255 static const uint32_t kHashBitMask = 0xffffffffu >> kHashShift;
8257 // Array index strings this short can keep their index in the hash field.
8258 static const int kMaxCachedArrayIndexLength = 7;
8260 // For strings which are array indexes the hash value has the string length
8261 // mixed into the hash, mainly to avoid a hash value of zero which would be
8262 // the case for the string '0'. 24 bits are used for the array index value.
8263 static const int kArrayIndexValueBits = 24;
8264 static const int kArrayIndexLengthBits =
8265 kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
8267 STATIC_ASSERT((kArrayIndexLengthBits > 0));
8269 class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
8270 kArrayIndexValueBits> {}; // NOLINT
8271 class ArrayIndexLengthBits : public BitField<unsigned int,
8272 kNofHashBitFields + kArrayIndexValueBits,
8273 kArrayIndexLengthBits> {}; // NOLINT
8275 // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
8276 // could use a mask to test if the length of string is less than or equal to
8277 // kMaxCachedArrayIndexLength.
8278 STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
8280 static const unsigned int kContainsCachedArrayIndexMask =
8281 (~static_cast<unsigned>(kMaxCachedArrayIndexLength)
8282 << ArrayIndexLengthBits::kShift) |
8283 kIsNotArrayIndexMask;
8285 // Value of empty hash field indicating that the hash is not computed.
8286 static const int kEmptyHashField =
8287 kIsNotArrayIndexMask | kHashNotComputedMask;
8290 static inline bool IsHashFieldComputed(uint32_t field);
8293 DISALLOW_IMPLICIT_CONSTRUCTORS(Name);
8298 class Symbol: public Name {
8300 // [name]: The print name of a symbol, or undefined if none.
8301 DECL_ACCESSORS(name, Object)
8303 DECL_ACCESSORS(flags, Smi)
8305 // [is_private]: Whether this is a private symbol. Private symbols can only
8306 // be used to designate own properties of objects.
8307 DECL_BOOLEAN_ACCESSORS(is_private)
8309 DECLARE_CAST(Symbol)
8311 // Dispatched behavior.
8312 DECLARE_PRINTER(Symbol)
8313 DECLARE_VERIFIER(Symbol)
8315 // Layout description.
8316 static const int kNameOffset = Name::kSize;
8317 static const int kFlagsOffset = kNameOffset + kPointerSize;
8318 static const int kSize = kFlagsOffset + kPointerSize;
8320 typedef FixedBodyDescriptor<kNameOffset, kFlagsOffset, kSize> BodyDescriptor;
8322 void SymbolShortPrint(std::ostream& os);
8325 static const int kPrivateBit = 0;
8327 const char* PrivateSymbolToName() const;
8330 friend class Name; // For PrivateSymbolToName.
8333 DISALLOW_IMPLICIT_CONSTRUCTORS(Symbol);
8339 // The String abstract class captures JavaScript string values:
8342 // 4.3.16 String Value
8343 // A string value is a member of the type String and is a finite
8344 // ordered sequence of zero or more 16-bit unsigned integer values.
8346 // All string values have a length field.
8347 class String: public Name {
8349 enum Encoding { ONE_BYTE_ENCODING, TWO_BYTE_ENCODING };
8351 // Array index strings this short can keep their index in the hash field.
8352 static const int kMaxCachedArrayIndexLength = 7;
8354 // For strings which are array indexes the hash value has the string length
8355 // mixed into the hash, mainly to avoid a hash value of zero which would be
8356 // the case for the string '0'. 24 bits are used for the array index value.
8357 static const int kArrayIndexValueBits = 24;
8358 static const int kArrayIndexLengthBits =
8359 kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
8361 STATIC_ASSERT((kArrayIndexLengthBits > 0));
8363 class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
8364 kArrayIndexValueBits> {}; // NOLINT
8365 class ArrayIndexLengthBits : public BitField<unsigned int,
8366 kNofHashBitFields + kArrayIndexValueBits,
8367 kArrayIndexLengthBits> {}; // NOLINT
8369 // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
8370 // could use a mask to test if the length of string is less than or equal to
8371 // kMaxCachedArrayIndexLength.
8372 STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
8374 static const unsigned int kContainsCachedArrayIndexMask =
8375 (~static_cast<unsigned>(kMaxCachedArrayIndexLength)
8376 << ArrayIndexLengthBits::kShift) |
8377 kIsNotArrayIndexMask;
8379 class SubStringRange {
8381 explicit inline SubStringRange(String* string, int first = 0,
8384 inline iterator begin();
8385 inline iterator end();
8393 // Representation of the flat content of a String.
8394 // A non-flat string doesn't have flat content.
8395 // A flat string has content that's encoded as a sequence of either
8396 // one-byte chars or two-byte UC16.
8397 // Returned by String::GetFlatContent().
8400 // Returns true if the string is flat and this structure contains content.
8401 bool IsFlat() { return state_ != NON_FLAT; }
8402 // Returns true if the structure contains one-byte content.
8403 bool IsOneByte() { return state_ == ONE_BYTE; }
8404 // Returns true if the structure contains two-byte content.
8405 bool IsTwoByte() { return state_ == TWO_BYTE; }
8407 // Return the one byte content of the string. Only use if IsOneByte()
8409 Vector<const uint8_t> ToOneByteVector() {
8410 DCHECK_EQ(ONE_BYTE, state_);
8411 return Vector<const uint8_t>(onebyte_start, length_);
8413 // Return the two-byte content of the string. Only use if IsTwoByte()
8415 Vector<const uc16> ToUC16Vector() {
8416 DCHECK_EQ(TWO_BYTE, state_);
8417 return Vector<const uc16>(twobyte_start, length_);
8421 DCHECK(i < length_);
8422 DCHECK(state_ != NON_FLAT);
8423 if (state_ == ONE_BYTE) return onebyte_start[i];
8424 return twobyte_start[i];
8427 bool UsesSameString(const FlatContent& other) const {
8428 return onebyte_start == other.onebyte_start;
8432 enum State { NON_FLAT, ONE_BYTE, TWO_BYTE };
8434 // Constructors only used by String::GetFlatContent().
8435 explicit FlatContent(const uint8_t* start, int length)
8436 : onebyte_start(start), length_(length), state_(ONE_BYTE) {}
8437 explicit FlatContent(const uc16* start, int length)
8438 : twobyte_start(start), length_(length), state_(TWO_BYTE) { }
8439 FlatContent() : onebyte_start(NULL), length_(0), state_(NON_FLAT) { }
8442 const uint8_t* onebyte_start;
8443 const uc16* twobyte_start;
8448 friend class String;
8449 friend class IterableSubString;
8452 template <typename Char>
8453 INLINE(Vector<const Char> GetCharVector());
8455 // Get and set the length of the string.
8456 inline int length() const;
8457 inline void set_length(int value);
8459 // Get and set the length of the string using acquire loads and release
8461 inline int synchronized_length() const;
8462 inline void synchronized_set_length(int value);
8464 // Returns whether this string has only one-byte chars, i.e. all of them can
8465 // be one-byte encoded. This might be the case even if the string is
8466 // two-byte. Such strings may appear when the embedder prefers
8467 // two-byte external representations even for one-byte data.
8468 inline bool IsOneByteRepresentation() const;
8469 inline bool IsTwoByteRepresentation() const;
8471 // Cons and slices have an encoding flag that may not represent the actual
8472 // encoding of the underlying string. This is taken into account here.
8473 // Requires: this->IsFlat()
8474 inline bool IsOneByteRepresentationUnderneath();
8475 inline bool IsTwoByteRepresentationUnderneath();
8477 // NOTE: this should be considered only a hint. False negatives are
8479 inline bool HasOnlyOneByteChars();
8481 // Get and set individual two byte chars in the string.
8482 inline void Set(int index, uint16_t value);
8483 // Get individual two byte char in the string. Repeated calls
8484 // to this method are not efficient unless the string is flat.
8485 INLINE(uint16_t Get(int index));
8487 // ES6 section 7.1.3.1 ToNumber Applied to the String Type
8488 static Handle<Object> ToNumber(Handle<String> subject);
8490 // Flattens the string. Checks first inline to see if it is
8491 // necessary. Does nothing if the string is not a cons string.
8492 // Flattening allocates a sequential string with the same data as
8493 // the given string and mutates the cons string to a degenerate
8494 // form, where the first component is the new sequential string and
8495 // the second component is the empty string. If allocation fails,
8496 // this function returns a failure. If flattening succeeds, this
8497 // function returns the sequential string that is now the first
8498 // component of the cons string.
8500 // Degenerate cons strings are handled specially by the garbage
8501 // collector (see IsShortcutCandidate).
8503 static inline Handle<String> Flatten(Handle<String> string,
8504 PretenureFlag pretenure = NOT_TENURED);
8506 // Tries to return the content of a flat string as a structure holding either
8507 // a flat vector of char or of uc16.
8508 // If the string isn't flat, and therefore doesn't have flat content, the
8509 // returned structure will report so, and can't provide a vector of either
8511 FlatContent GetFlatContent();
8513 // Returns the parent of a sliced string or first part of a flat cons string.
8514 // Requires: StringShape(this).IsIndirect() && this->IsFlat()
8515 inline String* GetUnderlying();
8517 // String relational comparison, implemented according to ES6 section 7.2.11
8518 // Abstract Relational Comparison (step 5): The comparison of Strings uses a
8519 // simple lexicographic ordering on sequences of code unit values. There is no
8520 // attempt to use the more complex, semantically oriented definitions of
8521 // character or string equality and collating order defined in the Unicode
8522 // specification. Therefore String values that are canonically equal according
8523 // to the Unicode standard could test as unequal. In effect this algorithm
8524 // assumes that both Strings are already in normalized form. Also, note that
8525 // for strings containing supplementary characters, lexicographic ordering on
8526 // sequences of UTF-16 code unit values differs from that on sequences of code
8528 MUST_USE_RESULT static ComparisonResult Compare(Handle<String> x,
8531 // String equality operations.
8532 inline bool Equals(String* other);
8533 inline static bool Equals(Handle<String> one, Handle<String> two);
8534 bool IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match = false);
8535 bool IsOneByteEqualTo(Vector<const uint8_t> str);
8536 bool IsTwoByteEqualTo(Vector<const uc16> str);
8538 // Return a UTF8 representation of the string. The string is null
8539 // terminated but may optionally contain nulls. Length is returned
8540 // in length_output if length_output is not a null pointer The string
8541 // should be nearly flat, otherwise the performance of this method may
8542 // be very slow (quadratic in the length). Setting robustness_flag to
8543 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
8544 // handles unexpected data without causing assert failures and it does not
8545 // do any heap allocations. This is useful when printing stack traces.
8546 base::SmartArrayPointer<char> ToCString(AllowNullsFlag allow_nulls,
8547 RobustnessFlag robustness_flag,
8548 int offset, int length,
8549 int* length_output = 0);
8550 base::SmartArrayPointer<char> ToCString(
8551 AllowNullsFlag allow_nulls = DISALLOW_NULLS,
8552 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
8553 int* length_output = 0);
8555 // Return a 16 bit Unicode representation of the string.
8556 // The string should be nearly flat, otherwise the performance of
8557 // of this method may be very bad. Setting robustness_flag to
8558 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
8559 // handles unexpected data without causing assert failures and it does not
8560 // do any heap allocations. This is useful when printing stack traces.
8561 base::SmartArrayPointer<uc16> ToWideCString(
8562 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
8564 bool ComputeArrayIndex(uint32_t* index);
8567 bool MakeExternal(v8::String::ExternalStringResource* resource);
8568 bool MakeExternal(v8::String::ExternalOneByteStringResource* resource);
8571 inline bool AsArrayIndex(uint32_t* index);
8573 DECLARE_CAST(String)
8575 void PrintOn(FILE* out);
8577 // For use during stack traces. Performs rudimentary sanity check.
8580 // Dispatched behavior.
8581 void StringShortPrint(StringStream* accumulator);
8582 void PrintUC16(std::ostream& os, int start = 0, int end = -1); // NOLINT
8583 #if defined(DEBUG) || defined(OBJECT_PRINT)
8584 char* ToAsciiArray();
8586 DECLARE_PRINTER(String)
8587 DECLARE_VERIFIER(String)
8589 inline bool IsFlat();
8591 // Layout description.
8592 static const int kLengthOffset = Name::kSize;
8593 static const int kSize = kLengthOffset + kPointerSize;
8595 // Maximum number of characters to consider when trying to convert a string
8596 // value into an array index.
8597 static const int kMaxArrayIndexSize = 10;
8598 STATIC_ASSERT(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits));
8601 static const int32_t kMaxOneByteCharCode = unibrow::Latin1::kMaxChar;
8602 static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar;
8603 static const int kMaxUtf16CodeUnit = 0xffff;
8604 static const uint32_t kMaxUtf16CodeUnitU = kMaxUtf16CodeUnit;
8606 // Value of hash field containing computed hash equal to zero.
8607 static const int kEmptyStringHash = kIsNotArrayIndexMask;
8609 // Maximal string length.
8610 static const int kMaxLength = (1 << 28) - 16;
8612 // Max length for computing hash. For strings longer than this limit the
8613 // string length is used as the hash value.
8614 static const int kMaxHashCalcLength = 16383;
8616 // Limit for truncation in short printing.
8617 static const int kMaxShortPrintLength = 1024;
8619 // Support for regular expressions.
8620 const uc16* GetTwoByteData(unsigned start);
8622 // Helper function for flattening strings.
8623 template <typename sinkchar>
8624 static void WriteToFlat(String* source,
8629 // The return value may point to the first aligned word containing the first
8630 // non-one-byte character, rather than directly to the non-one-byte character.
8631 // If the return value is >= the passed length, the entire string was
8633 static inline int NonAsciiStart(const char* chars, int length) {
8634 const char* start = chars;
8635 const char* limit = chars + length;
8637 if (length >= kIntptrSize) {
8638 // Check unaligned bytes.
8639 while (!IsAligned(reinterpret_cast<intptr_t>(chars), sizeof(uintptr_t))) {
8640 if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
8641 return static_cast<int>(chars - start);
8645 // Check aligned words.
8646 DCHECK(unibrow::Utf8::kMaxOneByteChar == 0x7F);
8647 const uintptr_t non_one_byte_mask = kUintptrAllBitsSet / 0xFF * 0x80;
8648 while (chars + sizeof(uintptr_t) <= limit) {
8649 if (*reinterpret_cast<const uintptr_t*>(chars) & non_one_byte_mask) {
8650 return static_cast<int>(chars - start);
8652 chars += sizeof(uintptr_t);
8655 // Check remaining unaligned bytes.
8656 while (chars < limit) {
8657 if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
8658 return static_cast<int>(chars - start);
8663 return static_cast<int>(chars - start);
8666 static inline bool IsAscii(const char* chars, int length) {
8667 return NonAsciiStart(chars, length) >= length;
8670 static inline bool IsAscii(const uint8_t* chars, int length) {
8672 NonAsciiStart(reinterpret_cast<const char*>(chars), length) >= length;
8675 static inline int NonOneByteStart(const uc16* chars, int length) {
8676 const uc16* limit = chars + length;
8677 const uc16* start = chars;
8678 while (chars < limit) {
8679 if (*chars > kMaxOneByteCharCodeU) return static_cast<int>(chars - start);
8682 return static_cast<int>(chars - start);
8685 static inline bool IsOneByte(const uc16* chars, int length) {
8686 return NonOneByteStart(chars, length) >= length;
8689 template<class Visitor>
8690 static inline ConsString* VisitFlat(Visitor* visitor,
8694 static Handle<FixedArray> CalculateLineEnds(Handle<String> string,
8695 bool include_ending_line);
8697 // Use the hash field to forward to the canonical internalized string
8698 // when deserializing an internalized string.
8699 inline void SetForwardedInternalizedString(String* string);
8700 inline String* GetForwardedInternalizedString();
8704 friend class StringTableInsertionKey;
8706 static Handle<String> SlowFlatten(Handle<ConsString> cons,
8707 PretenureFlag tenure);
8709 // Slow case of String::Equals. This implementation works on any strings
8710 // but it is most efficient on strings that are almost flat.
8711 bool SlowEquals(String* other);
8713 static bool SlowEquals(Handle<String> one, Handle<String> two);
8715 // Slow case of AsArrayIndex.
8716 bool SlowAsArrayIndex(uint32_t* index);
8718 // Compute and set the hash code.
8719 uint32_t ComputeAndSetHash();
8721 DISALLOW_IMPLICIT_CONSTRUCTORS(String);
8725 // The SeqString abstract class captures sequential string values.
8726 class SeqString: public String {
8728 DECLARE_CAST(SeqString)
8730 // Layout description.
8731 static const int kHeaderSize = String::kSize;
8733 // Truncate the string in-place if possible and return the result.
8734 // In case of new_length == 0, the empty string is returned without
8735 // truncating the original string.
8736 MUST_USE_RESULT static Handle<String> Truncate(Handle<SeqString> string,
8739 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
8743 // The OneByteString class captures sequential one-byte string objects.
8744 // Each character in the OneByteString is an one-byte character.
8745 class SeqOneByteString: public SeqString {
8747 static const bool kHasOneByteEncoding = true;
8749 // Dispatched behavior.
8750 inline uint16_t SeqOneByteStringGet(int index);
8751 inline void SeqOneByteStringSet(int index, uint16_t value);
8753 // Get the address of the characters in this string.
8754 inline Address GetCharsAddress();
8756 inline uint8_t* GetChars();
8758 DECLARE_CAST(SeqOneByteString)
8760 // Garbage collection support. This method is called by the
8761 // garbage collector to compute the actual size of an OneByteString
8763 inline int SeqOneByteStringSize(InstanceType instance_type);
8765 // Computes the size for an OneByteString instance of a given length.
8766 static int SizeFor(int length) {
8767 return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
8770 // Maximal memory usage for a single sequential one-byte string.
8771 static const int kMaxSize = 512 * MB - 1;
8772 STATIC_ASSERT((kMaxSize - kHeaderSize) >= String::kMaxLength);
8775 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqOneByteString);
8779 // The TwoByteString class captures sequential unicode string objects.
8780 // Each character in the TwoByteString is a two-byte uint16_t.
8781 class SeqTwoByteString: public SeqString {
8783 static const bool kHasOneByteEncoding = false;
8785 // Dispatched behavior.
8786 inline uint16_t SeqTwoByteStringGet(int index);
8787 inline void SeqTwoByteStringSet(int index, uint16_t value);
8789 // Get the address of the characters in this string.
8790 inline Address GetCharsAddress();
8792 inline uc16* GetChars();
8795 const uint16_t* SeqTwoByteStringGetData(unsigned start);
8797 DECLARE_CAST(SeqTwoByteString)
8799 // Garbage collection support. This method is called by the
8800 // garbage collector to compute the actual size of a TwoByteString
8802 inline int SeqTwoByteStringSize(InstanceType instance_type);
8804 // Computes the size for a TwoByteString instance of a given length.
8805 static int SizeFor(int length) {
8806 return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
8809 // Maximal memory usage for a single sequential two-byte string.
8810 static const int kMaxSize = 512 * MB - 1;
8811 STATIC_ASSERT(static_cast<int>((kMaxSize - kHeaderSize)/sizeof(uint16_t)) >=
8812 String::kMaxLength);
8815 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
8819 // The ConsString class describes string values built by using the
8820 // addition operator on strings. A ConsString is a pair where the
8821 // first and second components are pointers to other string values.
8822 // One or both components of a ConsString can be pointers to other
8823 // ConsStrings, creating a binary tree of ConsStrings where the leaves
8824 // are non-ConsString string values. The string value represented by
8825 // a ConsString can be obtained by concatenating the leaf string
8826 // values in a left-to-right depth-first traversal of the tree.
8827 class ConsString: public String {
8829 // First string of the cons cell.
8830 inline String* first();
8831 // Doesn't check that the result is a string, even in debug mode. This is
8832 // useful during GC where the mark bits confuse the checks.
8833 inline Object* unchecked_first();
8834 inline void set_first(String* first,
8835 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8837 // Second string of the cons cell.
8838 inline String* second();
8839 // Doesn't check that the result is a string, even in debug mode. This is
8840 // useful during GC where the mark bits confuse the checks.
8841 inline Object* unchecked_second();
8842 inline void set_second(String* second,
8843 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8845 // Dispatched behavior.
8846 uint16_t ConsStringGet(int index);
8848 DECLARE_CAST(ConsString)
8850 // Layout description.
8851 static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
8852 static const int kSecondOffset = kFirstOffset + kPointerSize;
8853 static const int kSize = kSecondOffset + kPointerSize;
8855 // Minimum length for a cons string.
8856 static const int kMinLength = 13;
8858 typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize>
8861 DECLARE_VERIFIER(ConsString)
8864 DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
8868 // The Sliced String class describes strings that are substrings of another
8869 // sequential string. The motivation is to save time and memory when creating
8870 // a substring. A Sliced String is described as a pointer to the parent,
8871 // the offset from the start of the parent string and the length. Using
8872 // a Sliced String therefore requires unpacking of the parent string and
8873 // adding the offset to the start address. A substring of a Sliced String
8874 // are not nested since the double indirection is simplified when creating
8875 // such a substring.
8876 // Currently missing features are:
8877 // - handling externalized parent strings
8878 // - external strings as parent
8879 // - truncating sliced string to enable otherwise unneeded parent to be GC'ed.
8880 class SlicedString: public String {
8882 inline String* parent();
8883 inline void set_parent(String* parent,
8884 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8885 inline int offset() const;
8886 inline void set_offset(int offset);
8888 // Dispatched behavior.
8889 uint16_t SlicedStringGet(int index);
8891 DECLARE_CAST(SlicedString)
8893 // Layout description.
8894 static const int kParentOffset = POINTER_SIZE_ALIGN(String::kSize);
8895 static const int kOffsetOffset = kParentOffset + kPointerSize;
8896 static const int kSize = kOffsetOffset + kPointerSize;
8898 // Minimum length for a sliced string.
8899 static const int kMinLength = 13;
8901 typedef FixedBodyDescriptor<kParentOffset,
8902 kOffsetOffset + kPointerSize, kSize>
8905 DECLARE_VERIFIER(SlicedString)
8908 DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString);
8912 // The ExternalString class describes string values that are backed by
8913 // a string resource that lies outside the V8 heap. ExternalStrings
8914 // consist of the length field common to all strings, a pointer to the
8915 // external resource. It is important to ensure (externally) that the
8916 // resource is not deallocated while the ExternalString is live in the
8919 // The API expects that all ExternalStrings are created through the
8920 // API. Therefore, ExternalStrings should not be used internally.
8921 class ExternalString: public String {
8923 DECLARE_CAST(ExternalString)
8925 // Layout description.
8926 static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
8927 static const int kShortSize = kResourceOffset + kPointerSize;
8928 static const int kResourceDataOffset = kResourceOffset + kPointerSize;
8929 static const int kSize = kResourceDataOffset + kPointerSize;
8931 static const int kMaxShortLength =
8932 (kShortSize - SeqString::kHeaderSize) / kCharSize;
8934 // Return whether external string is short (data pointer is not cached).
8935 inline bool is_short();
8937 STATIC_ASSERT(kResourceOffset == Internals::kStringResourceOffset);
8940 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
8944 // The ExternalOneByteString class is an external string backed by an
8946 class ExternalOneByteString : public ExternalString {
8948 static const bool kHasOneByteEncoding = true;
8950 typedef v8::String::ExternalOneByteStringResource Resource;
8952 // The underlying resource.
8953 inline const Resource* resource();
8954 inline void set_resource(const Resource* buffer);
8956 // Update the pointer cache to the external character array.
8957 // The cached pointer is always valid, as the external character array does =
8958 // not move during lifetime. Deserialization is the only exception, after
8959 // which the pointer cache has to be refreshed.
8960 inline void update_data_cache();
8962 inline const uint8_t* GetChars();
8964 // Dispatched behavior.
8965 inline uint16_t ExternalOneByteStringGet(int index);
8967 DECLARE_CAST(ExternalOneByteString)
8969 // Garbage collection support.
8970 inline void ExternalOneByteStringIterateBody(ObjectVisitor* v);
8972 template <typename StaticVisitor>
8973 inline void ExternalOneByteStringIterateBody();
8976 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalOneByteString);
8980 // The ExternalTwoByteString class is an external string backed by a UTF-16
8982 class ExternalTwoByteString: public ExternalString {
8984 static const bool kHasOneByteEncoding = false;
8986 typedef v8::String::ExternalStringResource Resource;
8988 // The underlying string resource.
8989 inline const Resource* resource();
8990 inline void set_resource(const Resource* buffer);
8992 // Update the pointer cache to the external character array.
8993 // The cached pointer is always valid, as the external character array does =
8994 // not move during lifetime. Deserialization is the only exception, after
8995 // which the pointer cache has to be refreshed.
8996 inline void update_data_cache();
8998 inline const uint16_t* GetChars();
9000 // Dispatched behavior.
9001 inline uint16_t ExternalTwoByteStringGet(int index);
9004 inline const uint16_t* ExternalTwoByteStringGetData(unsigned start);
9006 DECLARE_CAST(ExternalTwoByteString)
9008 // Garbage collection support.
9009 inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
9011 template<typename StaticVisitor>
9012 inline void ExternalTwoByteStringIterateBody();
9015 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
9019 // Utility superclass for stack-allocated objects that must be updated
9020 // on gc. It provides two ways for the gc to update instances, either
9021 // iterating or updating after gc.
9022 class Relocatable BASE_EMBEDDED {
9024 explicit inline Relocatable(Isolate* isolate);
9025 inline virtual ~Relocatable();
9026 virtual void IterateInstance(ObjectVisitor* v) { }
9027 virtual void PostGarbageCollection() { }
9029 static void PostGarbageCollectionProcessing(Isolate* isolate);
9030 static int ArchiveSpacePerThread();
9031 static char* ArchiveState(Isolate* isolate, char* to);
9032 static char* RestoreState(Isolate* isolate, char* from);
9033 static void Iterate(Isolate* isolate, ObjectVisitor* v);
9034 static void Iterate(ObjectVisitor* v, Relocatable* top);
9035 static char* Iterate(ObjectVisitor* v, char* t);
9043 // A flat string reader provides random access to the contents of a
9044 // string independent of the character width of the string. The handle
9045 // must be valid as long as the reader is being used.
9046 class FlatStringReader : public Relocatable {
9048 FlatStringReader(Isolate* isolate, Handle<String> str);
9049 FlatStringReader(Isolate* isolate, Vector<const char> input);
9050 void PostGarbageCollection();
9051 inline uc32 Get(int index);
9052 template <typename Char>
9053 inline Char Get(int index);
9054 int length() { return length_; }
9063 // This maintains an off-stack representation of the stack frames required
9064 // to traverse a ConsString, allowing an entirely iterative and restartable
9065 // traversal of the entire string
9066 class ConsStringIterator {
9068 inline ConsStringIterator() {}
9069 inline explicit ConsStringIterator(ConsString* cons_string, int offset = 0) {
9070 Reset(cons_string, offset);
9072 inline void Reset(ConsString* cons_string, int offset = 0) {
9074 // Next will always return NULL.
9075 if (cons_string == NULL) return;
9076 Initialize(cons_string, offset);
9078 // Returns NULL when complete.
9079 inline String* Next(int* offset_out) {
9081 if (depth_ == 0) return NULL;
9082 return Continue(offset_out);
9086 static const int kStackSize = 32;
9087 // Use a mask instead of doing modulo operations for stack wrapping.
9088 static const int kDepthMask = kStackSize-1;
9089 STATIC_ASSERT(IS_POWER_OF_TWO(kStackSize));
9090 static inline int OffsetForDepth(int depth);
9092 inline void PushLeft(ConsString* string);
9093 inline void PushRight(ConsString* string);
9094 inline void AdjustMaximumDepth();
9096 inline bool StackBlown() { return maximum_depth_ - depth_ == kStackSize; }
9097 void Initialize(ConsString* cons_string, int offset);
9098 String* Continue(int* offset_out);
9099 String* NextLeaf(bool* blew_stack);
9100 String* Search(int* offset_out);
9102 // Stack must always contain only frames for which right traversal
9103 // has not yet been performed.
9104 ConsString* frames_[kStackSize];
9109 DISALLOW_COPY_AND_ASSIGN(ConsStringIterator);
9113 class StringCharacterStream {
9115 inline StringCharacterStream(String* string,
9117 inline uint16_t GetNext();
9118 inline bool HasMore();
9119 inline void Reset(String* string, int offset = 0);
9120 inline void VisitOneByteString(const uint8_t* chars, int length);
9121 inline void VisitTwoByteString(const uint16_t* chars, int length);
9124 ConsStringIterator iter_;
9127 const uint8_t* buffer8_;
9128 const uint16_t* buffer16_;
9130 const uint8_t* end_;
9131 DISALLOW_COPY_AND_ASSIGN(StringCharacterStream);
9135 template <typename T>
9136 class VectorIterator {
9138 VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
9139 explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
9140 T GetNext() { return data_[index_++]; }
9141 bool has_more() { return index_ < data_.length(); }
9143 Vector<const T> data_;
9148 // The Oddball describes objects null, undefined, true, and false.
9149 class Oddball: public HeapObject {
9151 // [to_string]: Cached to_string computed at startup.
9152 DECL_ACCESSORS(to_string, String)
9154 // [to_number]: Cached to_number computed at startup.
9155 DECL_ACCESSORS(to_number, Object)
9157 // [typeof]: Cached type_of computed at startup.
9158 DECL_ACCESSORS(type_of, String)
9160 inline byte kind() const;
9161 inline void set_kind(byte kind);
9163 // ES6 section 7.1.3 ToNumber for Boolean, Null, Undefined.
9164 MUST_USE_RESULT static inline Handle<Object> ToNumber(Handle<Oddball> input);
9166 DECLARE_CAST(Oddball)
9168 // Dispatched behavior.
9169 DECLARE_VERIFIER(Oddball)
9171 // Initialize the fields.
9172 static void Initialize(Isolate* isolate, Handle<Oddball> oddball,
9173 const char* to_string, Handle<Object> to_number,
9174 const char* type_of, byte kind);
9176 // Layout description.
9177 static const int kToStringOffset = HeapObject::kHeaderSize;
9178 static const int kToNumberOffset = kToStringOffset + kPointerSize;
9179 static const int kTypeOfOffset = kToNumberOffset + kPointerSize;
9180 static const int kKindOffset = kTypeOfOffset + kPointerSize;
9181 static const int kSize = kKindOffset + kPointerSize;
9183 static const byte kFalse = 0;
9184 static const byte kTrue = 1;
9185 static const byte kNotBooleanMask = ~1;
9186 static const byte kTheHole = 2;
9187 static const byte kNull = 3;
9188 static const byte kArgumentMarker = 4;
9189 static const byte kUndefined = 5;
9190 static const byte kUninitialized = 6;
9191 static const byte kOther = 7;
9192 static const byte kException = 8;
9194 typedef FixedBodyDescriptor<kToStringOffset, kTypeOfOffset + kPointerSize,
9195 kSize> BodyDescriptor;
9197 STATIC_ASSERT(kKindOffset == Internals::kOddballKindOffset);
9198 STATIC_ASSERT(kNull == Internals::kNullOddballKind);
9199 STATIC_ASSERT(kUndefined == Internals::kUndefinedOddballKind);
9202 DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
9206 class Cell: public HeapObject {
9208 // [value]: value of the cell.
9209 DECL_ACCESSORS(value, Object)
9213 static inline Cell* FromValueAddress(Address value) {
9214 Object* result = FromAddress(value - kValueOffset);
9215 return static_cast<Cell*>(result);
9218 inline Address ValueAddress() {
9219 return address() + kValueOffset;
9222 // Dispatched behavior.
9223 DECLARE_PRINTER(Cell)
9224 DECLARE_VERIFIER(Cell)
9226 // Layout description.
9227 static const int kValueOffset = HeapObject::kHeaderSize;
9228 static const int kSize = kValueOffset + kPointerSize;
9230 typedef FixedBodyDescriptor<kValueOffset,
9231 kValueOffset + kPointerSize,
9232 kSize> BodyDescriptor;
9235 DISALLOW_IMPLICIT_CONSTRUCTORS(Cell);
9239 class PropertyCell : public HeapObject {
9241 // [property_details]: details of the global property.
9242 DECL_ACCESSORS(property_details_raw, Object)
9243 // [value]: value of the global property.
9244 DECL_ACCESSORS(value, Object)
9245 // [dependent_code]: dependent code that depends on the type of the global
9247 DECL_ACCESSORS(dependent_code, DependentCode)
9249 inline PropertyDetails property_details();
9250 inline void set_property_details(PropertyDetails details);
9252 PropertyCellConstantType GetConstantType();
9254 // Computes the new type of the cell's contents for the given value, but
9255 // without actually modifying the details.
9256 static PropertyCellType UpdatedType(Handle<PropertyCell> cell,
9257 Handle<Object> value,
9258 PropertyDetails details);
9259 static void UpdateCell(Handle<GlobalDictionary> dictionary, int entry,
9260 Handle<Object> value, PropertyDetails details);
9262 static Handle<PropertyCell> InvalidateEntry(
9263 Handle<GlobalDictionary> dictionary, int entry);
9265 static void SetValueWithInvalidation(Handle<PropertyCell> cell,
9266 Handle<Object> new_value);
9268 DECLARE_CAST(PropertyCell)
9270 // Dispatched behavior.
9271 DECLARE_PRINTER(PropertyCell)
9272 DECLARE_VERIFIER(PropertyCell)
9274 // Layout description.
9275 static const int kDetailsOffset = HeapObject::kHeaderSize;
9276 static const int kValueOffset = kDetailsOffset + kPointerSize;
9277 static const int kDependentCodeOffset = kValueOffset + kPointerSize;
9278 static const int kSize = kDependentCodeOffset + kPointerSize;
9280 static const int kPointerFieldsBeginOffset = kValueOffset;
9281 static const int kPointerFieldsEndOffset = kSize;
9283 typedef FixedBodyDescriptor<kValueOffset,
9285 kSize> BodyDescriptor;
9288 DISALLOW_IMPLICIT_CONSTRUCTORS(PropertyCell);
9292 class WeakCell : public HeapObject {
9294 inline Object* value() const;
9296 // This should not be called by anyone except GC.
9297 inline void clear();
9299 // This should not be called by anyone except allocator.
9300 inline void initialize(HeapObject* value);
9302 inline bool cleared() const;
9304 DECL_ACCESSORS(next, Object)
9306 inline void clear_next(Heap* heap);
9308 inline bool next_cleared();
9310 DECLARE_CAST(WeakCell)
9312 DECLARE_PRINTER(WeakCell)
9313 DECLARE_VERIFIER(WeakCell)
9315 // Layout description.
9316 static const int kValueOffset = HeapObject::kHeaderSize;
9317 static const int kNextOffset = kValueOffset + kPointerSize;
9318 static const int kSize = kNextOffset + kPointerSize;
9320 typedef FixedBodyDescriptor<kValueOffset, kSize, kSize> BodyDescriptor;
9323 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakCell);
9327 // The JSProxy describes EcmaScript Harmony proxies
9328 class JSProxy: public JSReceiver {
9330 // [handler]: The handler property.
9331 DECL_ACCESSORS(handler, Object)
9333 // [hash]: The hash code property (undefined if not initialized yet).
9334 DECL_ACCESSORS(hash, Object)
9336 DECLARE_CAST(JSProxy)
9338 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithHandler(
9339 Handle<JSProxy> proxy,
9340 Handle<Object> receiver,
9343 // If the handler defines an accessor property with a setter, invoke it.
9344 // If it defines an accessor property without a setter, or a data property
9345 // that is read-only, throw. In all these cases set '*done' to true,
9346 // otherwise set it to false.
9348 static MaybeHandle<Object> SetPropertyViaPrototypesWithHandler(
9349 Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
9350 Handle<Object> value, LanguageMode language_mode, bool* done);
9352 MUST_USE_RESULT static Maybe<PropertyAttributes>
9353 GetPropertyAttributesWithHandler(Handle<JSProxy> proxy,
9354 Handle<Object> receiver,
9356 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithHandler(
9357 Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
9358 Handle<Object> value, LanguageMode language_mode);
9360 // Turn the proxy into an (empty) JSObject.
9361 static void Fix(Handle<JSProxy> proxy);
9363 // Initializes the body after the handler slot.
9364 inline void InitializeBody(int object_size, Object* value);
9366 // Invoke a trap by name. If the trap does not exist on this's handler,
9367 // but derived_trap is non-NULL, invoke that instead. May cause GC.
9368 MUST_USE_RESULT static MaybeHandle<Object> CallTrap(
9369 Handle<JSProxy> proxy,
9371 Handle<Object> derived_trap,
9373 Handle<Object> args[]);
9375 // Dispatched behavior.
9376 DECLARE_PRINTER(JSProxy)
9377 DECLARE_VERIFIER(JSProxy)
9379 // Layout description. We add padding so that a proxy has the same
9380 // size as a virgin JSObject. This is essential for becoming a JSObject
9382 static const int kHandlerOffset = HeapObject::kHeaderSize;
9383 static const int kHashOffset = kHandlerOffset + kPointerSize;
9384 static const int kPaddingOffset = kHashOffset + kPointerSize;
9385 static const int kSize = JSObject::kHeaderSize;
9386 static const int kHeaderSize = kPaddingOffset;
9387 static const int kPaddingSize = kSize - kPaddingOffset;
9389 STATIC_ASSERT(kPaddingSize >= 0);
9391 typedef FixedBodyDescriptor<kHandlerOffset,
9393 kSize> BodyDescriptor;
9396 friend class JSReceiver;
9398 MUST_USE_RESULT static Maybe<bool> HasPropertyWithHandler(
9399 Handle<JSProxy> proxy, Handle<Name> name);
9401 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithHandler(
9402 Handle<JSProxy> proxy, Handle<Name> name, LanguageMode language_mode);
9404 MUST_USE_RESULT Object* GetIdentityHash();
9406 static Handle<Smi> GetOrCreateIdentityHash(Handle<JSProxy> proxy);
9408 DISALLOW_IMPLICIT_CONSTRUCTORS(JSProxy);
9412 class JSFunctionProxy: public JSProxy {
9414 // [call_trap]: The call trap.
9415 DECL_ACCESSORS(call_trap, JSReceiver)
9417 // [construct_trap]: The construct trap.
9418 DECL_ACCESSORS(construct_trap, Object)
9420 DECLARE_CAST(JSFunctionProxy)
9422 // Dispatched behavior.
9423 DECLARE_PRINTER(JSFunctionProxy)
9424 DECLARE_VERIFIER(JSFunctionProxy)
9426 // Layout description.
9427 static const int kCallTrapOffset = JSProxy::kPaddingOffset;
9428 static const int kConstructTrapOffset = kCallTrapOffset + kPointerSize;
9429 static const int kPaddingOffset = kConstructTrapOffset + kPointerSize;
9430 static const int kSize = JSFunction::kSize;
9431 static const int kPaddingSize = kSize - kPaddingOffset;
9433 STATIC_ASSERT(kPaddingSize >= 0);
9435 typedef FixedBodyDescriptor<kHandlerOffset,
9436 kConstructTrapOffset + kPointerSize,
9437 kSize> BodyDescriptor;
9440 DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunctionProxy);
9444 class JSCollection : public JSObject {
9446 // [table]: the backing hash table
9447 DECL_ACCESSORS(table, Object)
9449 static const int kTableOffset = JSObject::kHeaderSize;
9450 static const int kSize = kTableOffset + kPointerSize;
9453 DISALLOW_IMPLICIT_CONSTRUCTORS(JSCollection);
9457 // The JSSet describes EcmaScript Harmony sets
9458 class JSSet : public JSCollection {
9462 static void Initialize(Handle<JSSet> set, Isolate* isolate);
9463 static void Clear(Handle<JSSet> set);
9465 // Dispatched behavior.
9466 DECLARE_PRINTER(JSSet)
9467 DECLARE_VERIFIER(JSSet)
9470 DISALLOW_IMPLICIT_CONSTRUCTORS(JSSet);
9474 // The JSMap describes EcmaScript Harmony maps
9475 class JSMap : public JSCollection {
9479 static void Initialize(Handle<JSMap> map, Isolate* isolate);
9480 static void Clear(Handle<JSMap> map);
9482 // Dispatched behavior.
9483 DECLARE_PRINTER(JSMap)
9484 DECLARE_VERIFIER(JSMap)
9487 DISALLOW_IMPLICIT_CONSTRUCTORS(JSMap);
9491 // OrderedHashTableIterator is an iterator that iterates over the keys and
9492 // values of an OrderedHashTable.
9494 // The iterator has a reference to the underlying OrderedHashTable data,
9495 // [table], as well as the current [index] the iterator is at.
9497 // When the OrderedHashTable is rehashed it adds a reference from the old table
9498 // to the new table as well as storing enough data about the changes so that the
9499 // iterator [index] can be adjusted accordingly.
9501 // When the [Next] result from the iterator is requested, the iterator checks if
9502 // there is a newer table that it needs to transition to.
9503 template<class Derived, class TableType>
9504 class OrderedHashTableIterator: public JSObject {
9506 // [table]: the backing hash table mapping keys to values.
9507 DECL_ACCESSORS(table, Object)
9509 // [index]: The index into the data table.
9510 DECL_ACCESSORS(index, Object)
9512 // [kind]: The kind of iteration this is. One of the [Kind] enum values.
9513 DECL_ACCESSORS(kind, Object)
9516 void OrderedHashTableIteratorPrint(std::ostream& os); // NOLINT
9519 static const int kTableOffset = JSObject::kHeaderSize;
9520 static const int kIndexOffset = kTableOffset + kPointerSize;
9521 static const int kKindOffset = kIndexOffset + kPointerSize;
9522 static const int kSize = kKindOffset + kPointerSize;
9530 // Whether the iterator has more elements. This needs to be called before
9531 // calling |CurrentKey| and/or |CurrentValue|.
9534 // Move the index forward one.
9536 set_index(Smi::FromInt(Smi::cast(index())->value() + 1));
9539 // Populates the array with the next key and value and then moves the iterator
9541 // This returns the |kind| or 0 if the iterator is already at the end.
9542 Smi* Next(JSArray* value_array);
9544 // Returns the current key of the iterator. This should only be called when
9545 // |HasMore| returns true.
9546 inline Object* CurrentKey();
9549 // Transitions the iterator to the non obsolete backing store. This is a NOP
9550 // if the [table] is not obsolete.
9553 DISALLOW_IMPLICIT_CONSTRUCTORS(OrderedHashTableIterator);
9557 class JSSetIterator: public OrderedHashTableIterator<JSSetIterator,
9560 // Dispatched behavior.
9561 DECLARE_PRINTER(JSSetIterator)
9562 DECLARE_VERIFIER(JSSetIterator)
9564 DECLARE_CAST(JSSetIterator)
9566 // Called by |Next| to populate the array. This allows the subclasses to
9567 // populate the array differently.
9568 inline void PopulateValueArray(FixedArray* array);
9571 DISALLOW_IMPLICIT_CONSTRUCTORS(JSSetIterator);
9575 class JSMapIterator: public OrderedHashTableIterator<JSMapIterator,
9578 // Dispatched behavior.
9579 DECLARE_PRINTER(JSMapIterator)
9580 DECLARE_VERIFIER(JSMapIterator)
9582 DECLARE_CAST(JSMapIterator)
9584 // Called by |Next| to populate the array. This allows the subclasses to
9585 // populate the array differently.
9586 inline void PopulateValueArray(FixedArray* array);
9589 // Returns the current value of the iterator. This should only be called when
9590 // |HasMore| returns true.
9591 inline Object* CurrentValue();
9593 DISALLOW_IMPLICIT_CONSTRUCTORS(JSMapIterator);
9597 // ES6 section 25.1.1.3 The IteratorResult Interface
9598 class JSIteratorResult final : public JSObject {
9600 // [done]: This is the result status of an iterator next method call. If the
9601 // end of the iterator was reached done is true. If the end was not reached
9602 // done is false and a [value] is available.
9603 DECL_ACCESSORS(done, Object)
9605 // [value]: If [done] is false, this is the current iteration element value.
9606 // If [done] is true, this is the return value of the iterator, if it supplied
9607 // one. If the iterator does not have a return value, value is undefined.
9608 // In that case, the value property may be absent from the conforming object
9609 // if it does not inherit an explicit value property.
9610 DECL_ACCESSORS(value, Object)
9612 // Dispatched behavior.
9613 DECLARE_PRINTER(JSIteratorResult)
9614 DECLARE_VERIFIER(JSIteratorResult)
9616 DECLARE_CAST(JSIteratorResult)
9618 static const int kValueOffset = JSObject::kHeaderSize;
9619 static const int kDoneOffset = kValueOffset + kPointerSize;
9620 static const int kSize = kDoneOffset + kPointerSize;
9622 // Indices of in-object properties.
9623 static const int kValueIndex = 0;
9624 static const int kDoneIndex = 1;
9627 DISALLOW_IMPLICIT_CONSTRUCTORS(JSIteratorResult);
9631 // Base class for both JSWeakMap and JSWeakSet
9632 class JSWeakCollection: public JSObject {
9634 // [table]: the backing hash table mapping keys to values.
9635 DECL_ACCESSORS(table, Object)
9637 // [next]: linked list of encountered weak maps during GC.
9638 DECL_ACCESSORS(next, Object)
9640 static void Initialize(Handle<JSWeakCollection> collection, Isolate* isolate);
9641 static void Set(Handle<JSWeakCollection> collection, Handle<Object> key,
9642 Handle<Object> value, int32_t hash);
9643 static bool Delete(Handle<JSWeakCollection> collection, Handle<Object> key,
9646 static const int kTableOffset = JSObject::kHeaderSize;
9647 static const int kNextOffset = kTableOffset + kPointerSize;
9648 static const int kSize = kNextOffset + kPointerSize;
9651 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakCollection);
9655 // The JSWeakMap describes EcmaScript Harmony weak maps
9656 class JSWeakMap: public JSWeakCollection {
9658 DECLARE_CAST(JSWeakMap)
9660 // Dispatched behavior.
9661 DECLARE_PRINTER(JSWeakMap)
9662 DECLARE_VERIFIER(JSWeakMap)
9665 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakMap);
9669 // The JSWeakSet describes EcmaScript Harmony weak sets
9670 class JSWeakSet: public JSWeakCollection {
9672 DECLARE_CAST(JSWeakSet)
9674 // Dispatched behavior.
9675 DECLARE_PRINTER(JSWeakSet)
9676 DECLARE_VERIFIER(JSWeakSet)
9679 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakSet);
9683 // Whether a JSArrayBuffer is a SharedArrayBuffer or not.
9684 enum class SharedFlag { kNotShared, kShared };
9687 class JSArrayBuffer: public JSObject {
9689 // [backing_store]: backing memory for this array
9690 DECL_ACCESSORS(backing_store, void)
9692 // [byte_length]: length in bytes
9693 DECL_ACCESSORS(byte_length, Object)
9695 inline uint32_t bit_field() const;
9696 inline void set_bit_field(uint32_t bits);
9698 inline bool is_external();
9699 inline void set_is_external(bool value);
9701 inline bool is_neuterable();
9702 inline void set_is_neuterable(bool value);
9704 inline bool was_neutered();
9705 inline void set_was_neutered(bool value);
9707 inline bool is_shared();
9708 inline void set_is_shared(bool value);
9710 DECLARE_CAST(JSArrayBuffer)
9714 static void Setup(Handle<JSArrayBuffer> array_buffer, Isolate* isolate,
9715 bool is_external, void* data, size_t allocated_length,
9716 SharedFlag shared = SharedFlag::kNotShared);
9718 static bool SetupAllocatingData(Handle<JSArrayBuffer> array_buffer,
9719 Isolate* isolate, size_t allocated_length,
9720 bool initialize = true,
9721 SharedFlag shared = SharedFlag::kNotShared);
9723 // Dispatched behavior.
9724 DECLARE_PRINTER(JSArrayBuffer)
9725 DECLARE_VERIFIER(JSArrayBuffer)
9727 static const int kByteLengthOffset = JSObject::kHeaderSize;
9729 // NOTE: GC will visit objects fields:
9730 // 1. From JSObject::BodyDescriptor::kStartOffset to kByteLengthOffset +
9732 // 2. From start of the internal fields and up to the end of them
9733 static const int kBackingStoreOffset = kByteLengthOffset + kPointerSize;
9734 static const int kBitFieldSlot = kBackingStoreOffset + kPointerSize;
9735 #if V8_TARGET_LITTLE_ENDIAN || !V8_HOST_ARCH_64_BIT
9736 static const int kBitFieldOffset = kBitFieldSlot;
9738 static const int kBitFieldOffset = kBitFieldSlot + kIntSize;
9740 static const int kSize = kBitFieldSlot + kPointerSize;
9742 static const int kSizeWithInternalFields =
9743 kSize + v8::ArrayBuffer::kInternalFieldCount * kPointerSize;
9745 template <typename StaticVisitor>
9746 static inline void JSArrayBufferIterateBody(Heap* heap, HeapObject* obj);
9748 static inline void JSArrayBufferIterateBody(HeapObject* obj,
9751 class IsExternal : public BitField<bool, 1, 1> {};
9752 class IsNeuterable : public BitField<bool, 2, 1> {};
9753 class WasNeutered : public BitField<bool, 3, 1> {};
9754 class IsShared : public BitField<bool, 4, 1> {};
9757 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBuffer);
9761 class JSArrayBufferView: public JSObject {
9763 // [buffer]: ArrayBuffer that this typed array views.
9764 DECL_ACCESSORS(buffer, Object)
9766 // [byte_offset]: offset of typed array in bytes.
9767 DECL_ACCESSORS(byte_offset, Object)
9769 // [byte_length]: length of typed array in bytes.
9770 DECL_ACCESSORS(byte_length, Object)
9772 DECLARE_CAST(JSArrayBufferView)
9774 DECLARE_VERIFIER(JSArrayBufferView)
9776 inline bool WasNeutered() const;
9778 static const int kBufferOffset = JSObject::kHeaderSize;
9779 static const int kByteOffsetOffset = kBufferOffset + kPointerSize;
9780 static const int kByteLengthOffset = kByteOffsetOffset + kPointerSize;
9781 static const int kViewSize = kByteLengthOffset + kPointerSize;
9785 DECL_ACCESSORS(raw_byte_offset, Object)
9786 DECL_ACCESSORS(raw_byte_length, Object)
9789 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBufferView);
9793 class JSTypedArray: public JSArrayBufferView {
9795 // [length]: length of typed array in elements.
9796 DECL_ACCESSORS(length, Object)
9797 inline uint32_t length_value() const;
9799 DECLARE_CAST(JSTypedArray)
9801 ExternalArrayType type();
9802 size_t element_size();
9804 Handle<JSArrayBuffer> GetBuffer();
9806 // Dispatched behavior.
9807 DECLARE_PRINTER(JSTypedArray)
9808 DECLARE_VERIFIER(JSTypedArray)
9810 static const int kLengthOffset = kViewSize + kPointerSize;
9811 static const int kSize = kLengthOffset + kPointerSize;
9813 static const int kSizeWithInternalFields =
9814 kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
9817 static Handle<JSArrayBuffer> MaterializeArrayBuffer(
9818 Handle<JSTypedArray> typed_array);
9820 DECL_ACCESSORS(raw_length, Object)
9823 DISALLOW_IMPLICIT_CONSTRUCTORS(JSTypedArray);
9827 class JSDataView: public JSArrayBufferView {
9829 DECLARE_CAST(JSDataView)
9831 // Dispatched behavior.
9832 DECLARE_PRINTER(JSDataView)
9833 DECLARE_VERIFIER(JSDataView)
9835 static const int kSize = kViewSize;
9837 static const int kSizeWithInternalFields =
9838 kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
9841 DISALLOW_IMPLICIT_CONSTRUCTORS(JSDataView);
9845 // Foreign describes objects pointing from JavaScript to C structures.
9846 class Foreign: public HeapObject {
9848 // [address]: field containing the address.
9849 inline Address foreign_address();
9850 inline void set_foreign_address(Address value);
9852 DECLARE_CAST(Foreign)
9854 // Dispatched behavior.
9855 inline void ForeignIterateBody(ObjectVisitor* v);
9857 template<typename StaticVisitor>
9858 inline void ForeignIterateBody();
9860 // Dispatched behavior.
9861 DECLARE_PRINTER(Foreign)
9862 DECLARE_VERIFIER(Foreign)
9864 // Layout description.
9866 static const int kForeignAddressOffset = HeapObject::kHeaderSize;
9867 static const int kSize = kForeignAddressOffset + kPointerSize;
9869 STATIC_ASSERT(kForeignAddressOffset == Internals::kForeignAddressOffset);
9872 DISALLOW_IMPLICIT_CONSTRUCTORS(Foreign);
9876 // The JSArray describes JavaScript Arrays
9877 // Such an array can be in one of two modes:
9878 // - fast, backing storage is a FixedArray and length <= elements.length();
9879 // Please note: push and pop can be used to grow and shrink the array.
9880 // - slow, backing storage is a HashTable with numbers as keys.
9881 class JSArray: public JSObject {
9883 // [length]: The length property.
9884 DECL_ACCESSORS(length, Object)
9886 // Overload the length setter to skip write barrier when the length
9887 // is set to a smi. This matches the set function on FixedArray.
9888 inline void set_length(Smi* length);
9890 static bool HasReadOnlyLength(Handle<JSArray> array);
9891 static bool WouldChangeReadOnlyLength(Handle<JSArray> array, uint32_t index);
9892 static MaybeHandle<Object> ReadOnlyLengthError(Handle<JSArray> array);
9894 // Initialize the array with the given capacity. The function may
9895 // fail due to out-of-memory situations, but only if the requested
9896 // capacity is non-zero.
9897 static void Initialize(Handle<JSArray> array, int capacity, int length = 0);
9899 // If the JSArray has fast elements, and new_length would result in
9900 // normalization, returns true.
9901 bool SetLengthWouldNormalize(uint32_t new_length);
9902 static inline bool SetLengthWouldNormalize(Heap* heap, uint32_t new_length);
9904 // Initializes the array to a certain length.
9905 inline bool AllowsSetLength();
9907 static void SetLength(Handle<JSArray> array, uint32_t length);
9908 // Same as above but will also queue splice records if |array| is observed.
9909 static MaybeHandle<Object> ObservableSetLength(Handle<JSArray> array,
9912 // Set the content of the array to the content of storage.
9913 static inline void SetContent(Handle<JSArray> array,
9914 Handle<FixedArrayBase> storage);
9916 DECLARE_CAST(JSArray)
9918 // Dispatched behavior.
9919 DECLARE_PRINTER(JSArray)
9920 DECLARE_VERIFIER(JSArray)
9922 // Number of element slots to pre-allocate for an empty array.
9923 static const int kPreallocatedArrayElements = 4;
9925 // Layout description.
9926 static const int kLengthOffset = JSObject::kHeaderSize;
9927 static const int kSize = kLengthOffset + kPointerSize;
9930 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
9934 Handle<Object> CacheInitialJSArrayMaps(Handle<Context> native_context,
9935 Handle<Map> initial_map);
9938 // JSRegExpResult is just a JSArray with a specific initial map.
9939 // This initial map adds in-object properties for "index" and "input"
9940 // properties, as assigned by RegExp.prototype.exec, which allows
9941 // faster creation of RegExp exec results.
9942 // This class just holds constants used when creating the result.
9943 // After creation the result must be treated as a JSArray in all regards.
9944 class JSRegExpResult: public JSArray {
9946 // Offsets of object fields.
9947 static const int kIndexOffset = JSArray::kSize;
9948 static const int kInputOffset = kIndexOffset + kPointerSize;
9949 static const int kSize = kInputOffset + kPointerSize;
9950 // Indices of in-object properties.
9951 static const int kIndexIndex = 0;
9952 static const int kInputIndex = 1;
9954 DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
9958 class AccessorInfo: public Struct {
9960 DECL_ACCESSORS(name, Object)
9961 DECL_ACCESSORS(flag, Smi)
9962 DECL_ACCESSORS(expected_receiver_type, Object)
9964 inline bool all_can_read();
9965 inline void set_all_can_read(bool value);
9967 inline bool all_can_write();
9968 inline void set_all_can_write(bool value);
9970 inline bool is_special_data_property();
9971 inline void set_is_special_data_property(bool value);
9973 inline PropertyAttributes property_attributes();
9974 inline void set_property_attributes(PropertyAttributes attributes);
9976 // Checks whether the given receiver is compatible with this accessor.
9977 static bool IsCompatibleReceiverMap(Isolate* isolate,
9978 Handle<AccessorInfo> info,
9980 inline bool IsCompatibleReceiver(Object* receiver);
9982 DECLARE_CAST(AccessorInfo)
9984 // Dispatched behavior.
9985 DECLARE_VERIFIER(AccessorInfo)
9987 // Append all descriptors to the array that are not already there.
9988 // Return number added.
9989 static int AppendUnique(Handle<Object> descriptors,
9990 Handle<FixedArray> array,
9991 int valid_descriptors);
9993 static const int kNameOffset = HeapObject::kHeaderSize;
9994 static const int kFlagOffset = kNameOffset + kPointerSize;
9995 static const int kExpectedReceiverTypeOffset = kFlagOffset + kPointerSize;
9996 static const int kSize = kExpectedReceiverTypeOffset + kPointerSize;
9999 inline bool HasExpectedReceiverType();
10001 // Bit positions in flag.
10002 static const int kAllCanReadBit = 0;
10003 static const int kAllCanWriteBit = 1;
10004 static const int kSpecialDataProperty = 2;
10005 class AttributesField : public BitField<PropertyAttributes, 3, 3> {};
10007 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
10011 // An accessor must have a getter, but can have no setter.
10013 // When setting a property, V8 searches accessors in prototypes.
10014 // If an accessor was found and it does not have a setter,
10015 // the request is ignored.
10017 // If the accessor in the prototype has the READ_ONLY property attribute, then
10018 // a new value is added to the derived object when the property is set.
10019 // This shadows the accessor in the prototype.
10020 class ExecutableAccessorInfo: public AccessorInfo {
10022 DECL_ACCESSORS(getter, Object)
10023 DECL_ACCESSORS(setter, Object)
10024 DECL_ACCESSORS(data, Object)
10026 DECLARE_CAST(ExecutableAccessorInfo)
10028 // Dispatched behavior.
10029 DECLARE_PRINTER(ExecutableAccessorInfo)
10030 DECLARE_VERIFIER(ExecutableAccessorInfo)
10032 static const int kGetterOffset = AccessorInfo::kSize;
10033 static const int kSetterOffset = kGetterOffset + kPointerSize;
10034 static const int kDataOffset = kSetterOffset + kPointerSize;
10035 static const int kSize = kDataOffset + kPointerSize;
10037 static void ClearSetter(Handle<ExecutableAccessorInfo> info);
10040 DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutableAccessorInfo);
10044 // Support for JavaScript accessors: A pair of a getter and a setter. Each
10045 // accessor can either be
10046 // * a pointer to a JavaScript function or proxy: a real accessor
10047 // * undefined: considered an accessor by the spec, too, strangely enough
10048 // * the hole: an accessor which has not been set
10049 // * a pointer to a map: a transition used to ensure map sharing
10050 class AccessorPair: public Struct {
10052 DECL_ACCESSORS(getter, Object)
10053 DECL_ACCESSORS(setter, Object)
10055 DECLARE_CAST(AccessorPair)
10057 static Handle<AccessorPair> Copy(Handle<AccessorPair> pair);
10059 inline Object* get(AccessorComponent component);
10060 inline void set(AccessorComponent component, Object* value);
10062 // Note: Returns undefined instead in case of a hole.
10063 Object* GetComponent(AccessorComponent component);
10065 // Set both components, skipping arguments which are a JavaScript null.
10066 inline void SetComponents(Object* getter, Object* setter);
10068 inline bool Equals(AccessorPair* pair);
10069 inline bool Equals(Object* getter_value, Object* setter_value);
10071 inline bool ContainsAccessor();
10073 // Dispatched behavior.
10074 DECLARE_PRINTER(AccessorPair)
10075 DECLARE_VERIFIER(AccessorPair)
10077 static const int kGetterOffset = HeapObject::kHeaderSize;
10078 static const int kSetterOffset = kGetterOffset + kPointerSize;
10079 static const int kSize = kSetterOffset + kPointerSize;
10082 // Strangely enough, in addition to functions and harmony proxies, the spec
10083 // requires us to consider undefined as a kind of accessor, too:
10085 // Object.defineProperty(obj, "foo", {get: undefined});
10086 // assertTrue("foo" in obj);
10087 inline bool IsJSAccessor(Object* obj);
10089 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorPair);
10093 class AccessCheckInfo: public Struct {
10095 DECL_ACCESSORS(named_callback, Object)
10096 DECL_ACCESSORS(indexed_callback, Object)
10097 DECL_ACCESSORS(data, Object)
10099 DECLARE_CAST(AccessCheckInfo)
10101 // Dispatched behavior.
10102 DECLARE_PRINTER(AccessCheckInfo)
10103 DECLARE_VERIFIER(AccessCheckInfo)
10105 static const int kNamedCallbackOffset = HeapObject::kHeaderSize;
10106 static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
10107 static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
10108 static const int kSize = kDataOffset + kPointerSize;
10111 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
10115 class InterceptorInfo: public Struct {
10117 DECL_ACCESSORS(getter, Object)
10118 DECL_ACCESSORS(setter, Object)
10119 DECL_ACCESSORS(query, Object)
10120 DECL_ACCESSORS(deleter, Object)
10121 DECL_ACCESSORS(enumerator, Object)
10122 DECL_ACCESSORS(data, Object)
10123 DECL_BOOLEAN_ACCESSORS(can_intercept_symbols)
10124 DECL_BOOLEAN_ACCESSORS(all_can_read)
10125 DECL_BOOLEAN_ACCESSORS(non_masking)
10127 inline int flags() const;
10128 inline void set_flags(int flags);
10130 DECLARE_CAST(InterceptorInfo)
10132 // Dispatched behavior.
10133 DECLARE_PRINTER(InterceptorInfo)
10134 DECLARE_VERIFIER(InterceptorInfo)
10136 static const int kGetterOffset = HeapObject::kHeaderSize;
10137 static const int kSetterOffset = kGetterOffset + kPointerSize;
10138 static const int kQueryOffset = kSetterOffset + kPointerSize;
10139 static const int kDeleterOffset = kQueryOffset + kPointerSize;
10140 static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
10141 static const int kDataOffset = kEnumeratorOffset + kPointerSize;
10142 static const int kFlagsOffset = kDataOffset + kPointerSize;
10143 static const int kSize = kFlagsOffset + kPointerSize;
10145 static const int kCanInterceptSymbolsBit = 0;
10146 static const int kAllCanReadBit = 1;
10147 static const int kNonMasking = 2;
10150 DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
10154 class CallHandlerInfo: public Struct {
10156 DECL_ACCESSORS(callback, Object)
10157 DECL_ACCESSORS(data, Object)
10159 DECLARE_CAST(CallHandlerInfo)
10161 // Dispatched behavior.
10162 DECLARE_PRINTER(CallHandlerInfo)
10163 DECLARE_VERIFIER(CallHandlerInfo)
10165 static const int kCallbackOffset = HeapObject::kHeaderSize;
10166 static const int kDataOffset = kCallbackOffset + kPointerSize;
10167 static const int kSize = kDataOffset + kPointerSize;
10170 DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
10174 class TemplateInfo: public Struct {
10176 DECL_ACCESSORS(tag, Object)
10177 inline int number_of_properties() const;
10178 inline void set_number_of_properties(int value);
10179 DECL_ACCESSORS(property_list, Object)
10180 DECL_ACCESSORS(property_accessors, Object)
10182 DECLARE_VERIFIER(TemplateInfo)
10184 static const int kTagOffset = HeapObject::kHeaderSize;
10185 static const int kNumberOfProperties = kTagOffset + kPointerSize;
10186 static const int kPropertyListOffset = kNumberOfProperties + kPointerSize;
10187 static const int kPropertyAccessorsOffset =
10188 kPropertyListOffset + kPointerSize;
10189 static const int kHeaderSize = kPropertyAccessorsOffset + kPointerSize;
10192 DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
10196 class FunctionTemplateInfo: public TemplateInfo {
10198 DECL_ACCESSORS(serial_number, Object)
10199 DECL_ACCESSORS(call_code, Object)
10200 DECL_ACCESSORS(prototype_template, Object)
10201 DECL_ACCESSORS(parent_template, Object)
10202 DECL_ACCESSORS(named_property_handler, Object)
10203 DECL_ACCESSORS(indexed_property_handler, Object)
10204 DECL_ACCESSORS(instance_template, Object)
10205 DECL_ACCESSORS(class_name, Object)
10206 DECL_ACCESSORS(signature, Object)
10207 DECL_ACCESSORS(instance_call_handler, Object)
10208 DECL_ACCESSORS(access_check_info, Object)
10209 DECL_ACCESSORS(flag, Smi)
10211 inline int length() const;
10212 inline void set_length(int value);
10214 // Following properties use flag bits.
10215 DECL_BOOLEAN_ACCESSORS(hidden_prototype)
10216 DECL_BOOLEAN_ACCESSORS(undetectable)
10217 // If the bit is set, object instances created by this function
10218 // requires access check.
10219 DECL_BOOLEAN_ACCESSORS(needs_access_check)
10220 DECL_BOOLEAN_ACCESSORS(read_only_prototype)
10221 DECL_BOOLEAN_ACCESSORS(remove_prototype)
10222 DECL_BOOLEAN_ACCESSORS(do_not_cache)
10223 DECL_BOOLEAN_ACCESSORS(instantiated)
10224 DECL_BOOLEAN_ACCESSORS(accept_any_receiver)
10226 DECLARE_CAST(FunctionTemplateInfo)
10228 // Dispatched behavior.
10229 DECLARE_PRINTER(FunctionTemplateInfo)
10230 DECLARE_VERIFIER(FunctionTemplateInfo)
10232 static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
10233 static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
10234 static const int kPrototypeTemplateOffset =
10235 kCallCodeOffset + kPointerSize;
10236 static const int kParentTemplateOffset =
10237 kPrototypeTemplateOffset + kPointerSize;
10238 static const int kNamedPropertyHandlerOffset =
10239 kParentTemplateOffset + kPointerSize;
10240 static const int kIndexedPropertyHandlerOffset =
10241 kNamedPropertyHandlerOffset + kPointerSize;
10242 static const int kInstanceTemplateOffset =
10243 kIndexedPropertyHandlerOffset + kPointerSize;
10244 static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
10245 static const int kSignatureOffset = kClassNameOffset + kPointerSize;
10246 static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
10247 static const int kAccessCheckInfoOffset =
10248 kInstanceCallHandlerOffset + kPointerSize;
10249 static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
10250 static const int kLengthOffset = kFlagOffset + kPointerSize;
10251 static const int kSize = kLengthOffset + kPointerSize;
10253 // Returns true if |object| is an instance of this function template.
10254 bool IsTemplateFor(Object* object);
10255 bool IsTemplateFor(Map* map);
10257 // Returns the holder JSObject if the function can legally be called with this
10258 // receiver. Returns Heap::null_value() if the call is illegal.
10259 Object* GetCompatibleReceiver(Isolate* isolate, Object* receiver);
10262 // Bit position in the flag, from least significant bit position.
10263 static const int kHiddenPrototypeBit = 0;
10264 static const int kUndetectableBit = 1;
10265 static const int kNeedsAccessCheckBit = 2;
10266 static const int kReadOnlyPrototypeBit = 3;
10267 static const int kRemovePrototypeBit = 4;
10268 static const int kDoNotCacheBit = 5;
10269 static const int kInstantiatedBit = 6;
10270 static const int kAcceptAnyReceiver = 7;
10272 DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
10276 class ObjectTemplateInfo: public TemplateInfo {
10278 DECL_ACCESSORS(constructor, Object)
10279 DECL_ACCESSORS(internal_field_count, Object)
10281 DECLARE_CAST(ObjectTemplateInfo)
10283 // Dispatched behavior.
10284 DECLARE_PRINTER(ObjectTemplateInfo)
10285 DECLARE_VERIFIER(ObjectTemplateInfo)
10287 static const int kConstructorOffset = TemplateInfo::kHeaderSize;
10288 static const int kInternalFieldCountOffset =
10289 kConstructorOffset + kPointerSize;
10290 static const int kSize = kInternalFieldCountOffset + kPointerSize;
10294 class TypeSwitchInfo: public Struct {
10296 DECL_ACCESSORS(types, Object)
10298 DECLARE_CAST(TypeSwitchInfo)
10300 // Dispatched behavior.
10301 DECLARE_PRINTER(TypeSwitchInfo)
10302 DECLARE_VERIFIER(TypeSwitchInfo)
10304 static const int kTypesOffset = Struct::kHeaderSize;
10305 static const int kSize = kTypesOffset + kPointerSize;
10309 // The DebugInfo class holds additional information for a function being
10311 class DebugInfo: public Struct {
10313 // The shared function info for the source being debugged.
10314 DECL_ACCESSORS(shared, SharedFunctionInfo)
10315 // Code object for the patched code. This code object is the code object
10316 // currently active for the function.
10317 DECL_ACCESSORS(code, Code)
10318 // Fixed array holding status information for each active break point.
10319 DECL_ACCESSORS(break_points, FixedArray)
10321 // Check if there is a break point at a code position.
10322 bool HasBreakPoint(int code_position);
10323 // Get the break point info object for a code position.
10324 Object* GetBreakPointInfo(int code_position);
10325 // Clear a break point.
10326 static void ClearBreakPoint(Handle<DebugInfo> debug_info,
10328 Handle<Object> break_point_object);
10329 // Set a break point.
10330 static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
10331 int source_position, int statement_position,
10332 Handle<Object> break_point_object);
10333 // Get the break point objects for a code position.
10334 Handle<Object> GetBreakPointObjects(int code_position);
10335 // Find the break point info holding this break point object.
10336 static Handle<Object> FindBreakPointInfo(Handle<DebugInfo> debug_info,
10337 Handle<Object> break_point_object);
10338 // Get the number of break points for this function.
10339 int GetBreakPointCount();
10341 DECLARE_CAST(DebugInfo)
10343 // Dispatched behavior.
10344 DECLARE_PRINTER(DebugInfo)
10345 DECLARE_VERIFIER(DebugInfo)
10347 static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
10348 static const int kCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
10349 static const int kBreakPointsStateIndex = kCodeIndex + kPointerSize;
10350 static const int kSize = kBreakPointsStateIndex + kPointerSize;
10352 static const int kEstimatedNofBreakPointsInFunction = 16;
10355 static const int kNoBreakPointInfo = -1;
10357 // Lookup the index in the break_points array for a code position.
10358 int GetBreakPointInfoIndex(int code_position);
10360 DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
10364 // The BreakPointInfo class holds information for break points set in a
10365 // function. The DebugInfo object holds a BreakPointInfo object for each code
10366 // position with one or more break points.
10367 class BreakPointInfo: public Struct {
10369 // The position in the code for the break point.
10370 DECL_ACCESSORS(code_position, Smi)
10371 // The position in the source for the break position.
10372 DECL_ACCESSORS(source_position, Smi)
10373 // The position in the source for the last statement before this break
10375 DECL_ACCESSORS(statement_position, Smi)
10376 // List of related JavaScript break points.
10377 DECL_ACCESSORS(break_point_objects, Object)
10379 // Removes a break point.
10380 static void ClearBreakPoint(Handle<BreakPointInfo> info,
10381 Handle<Object> break_point_object);
10382 // Set a break point.
10383 static void SetBreakPoint(Handle<BreakPointInfo> info,
10384 Handle<Object> break_point_object);
10385 // Check if break point info has this break point object.
10386 static bool HasBreakPointObject(Handle<BreakPointInfo> info,
10387 Handle<Object> break_point_object);
10388 // Get the number of break points for this code position.
10389 int GetBreakPointCount();
10391 DECLARE_CAST(BreakPointInfo)
10393 // Dispatched behavior.
10394 DECLARE_PRINTER(BreakPointInfo)
10395 DECLARE_VERIFIER(BreakPointInfo)
10397 static const int kCodePositionIndex = Struct::kHeaderSize;
10398 static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
10399 static const int kStatementPositionIndex =
10400 kSourcePositionIndex + kPointerSize;
10401 static const int kBreakPointObjectsIndex =
10402 kStatementPositionIndex + kPointerSize;
10403 static const int kSize = kBreakPointObjectsIndex + kPointerSize;
10406 DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
10410 #undef DECL_BOOLEAN_ACCESSORS
10411 #undef DECL_ACCESSORS
10412 #undef DECLARE_CAST
10413 #undef DECLARE_VERIFIER
10415 #define VISITOR_SYNCHRONIZATION_TAGS_LIST(V) \
10416 V(kStringTable, "string_table", "(Internalized strings)") \
10417 V(kExternalStringsTable, "external_strings_table", "(External strings)") \
10418 V(kStrongRootList, "strong_root_list", "(Strong roots)") \
10419 V(kSmiRootList, "smi_root_list", "(Smi roots)") \
10420 V(kBootstrapper, "bootstrapper", "(Bootstrapper)") \
10421 V(kTop, "top", "(Isolate)") \
10422 V(kRelocatable, "relocatable", "(Relocatable)") \
10423 V(kDebug, "debug", "(Debugger)") \
10424 V(kCompilationCache, "compilationcache", "(Compilation cache)") \
10425 V(kHandleScope, "handlescope", "(Handle scope)") \
10426 V(kBuiltins, "builtins", "(Builtins)") \
10427 V(kGlobalHandles, "globalhandles", "(Global handles)") \
10428 V(kEternalHandles, "eternalhandles", "(Eternal handles)") \
10429 V(kThreadManager, "threadmanager", "(Thread manager)") \
10430 V(kStrongRoots, "strong roots", "(Strong roots)") \
10431 V(kExtensions, "Extensions", "(Extensions)")
10433 class VisitorSynchronization : public AllStatic {
10435 #define DECLARE_ENUM(enum_item, ignore1, ignore2) enum_item,
10437 VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_ENUM)
10440 #undef DECLARE_ENUM
10442 static const char* const kTags[kNumberOfSyncTags];
10443 static const char* const kTagNames[kNumberOfSyncTags];
10446 // Abstract base class for visiting, and optionally modifying, the
10447 // pointers contained in Objects. Used in GC and serialization/deserialization.
10448 class ObjectVisitor BASE_EMBEDDED {
10450 virtual ~ObjectVisitor() {}
10452 // Visits a contiguous arrays of pointers in the half-open range
10453 // [start, end). Any or all of the values may be modified on return.
10454 virtual void VisitPointers(Object** start, Object** end) = 0;
10456 // Handy shorthand for visiting a single pointer.
10457 virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
10459 // Visit weak next_code_link in Code object.
10460 virtual void VisitNextCodeLink(Object** p) { VisitPointers(p, p + 1); }
10462 // To allow lazy clearing of inline caches the visitor has
10463 // a rich interface for iterating over Code objects..
10465 // Visits a code target in the instruction stream.
10466 virtual void VisitCodeTarget(RelocInfo* rinfo);
10468 // Visits a code entry in a JS function.
10469 virtual void VisitCodeEntry(Address entry_address);
10471 // Visits a global property cell reference in the instruction stream.
10472 virtual void VisitCell(RelocInfo* rinfo);
10474 // Visits a runtime entry in the instruction stream.
10475 virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
10477 // Visits the resource of an one-byte or two-byte string.
10478 virtual void VisitExternalOneByteString(
10479 v8::String::ExternalOneByteStringResource** resource) {}
10480 virtual void VisitExternalTwoByteString(
10481 v8::String::ExternalStringResource** resource) {}
10483 // Visits a debug call target in the instruction stream.
10484 virtual void VisitDebugTarget(RelocInfo* rinfo);
10486 // Visits the byte sequence in a function's prologue that contains information
10487 // about the code's age.
10488 virtual void VisitCodeAgeSequence(RelocInfo* rinfo);
10490 // Visit pointer embedded into a code object.
10491 virtual void VisitEmbeddedPointer(RelocInfo* rinfo);
10493 // Visits an external reference embedded into a code object.
10494 virtual void VisitExternalReference(RelocInfo* rinfo);
10496 // Visits an external reference.
10497 virtual void VisitExternalReference(Address* p) {}
10499 // Visits an (encoded) internal reference.
10500 virtual void VisitInternalReference(RelocInfo* rinfo) {}
10502 // Visits a handle that has an embedder-assigned class ID.
10503 virtual void VisitEmbedderReference(Object** p, uint16_t class_id) {}
10505 // Intended for serialization/deserialization checking: insert, or
10506 // check for the presence of, a tag at this position in the stream.
10507 // Also used for marking up GC roots in heap snapshots.
10508 virtual void Synchronize(VisitorSynchronization::SyncTag tag) {}
10512 class StructBodyDescriptor : public
10513 FlexibleBodyDescriptor<HeapObject::kHeaderSize> {
10515 static inline int SizeOf(Map* map, HeapObject* object);
10519 // BooleanBit is a helper class for setting and getting a bit in an
10521 class BooleanBit : public AllStatic {
10523 static inline bool get(Smi* smi, int bit_position) {
10524 return get(smi->value(), bit_position);
10527 static inline bool get(int value, int bit_position) {
10528 return (value & (1 << bit_position)) != 0;
10531 static inline Smi* set(Smi* smi, int bit_position, bool v) {
10532 return Smi::FromInt(set(smi->value(), bit_position, v));
10535 static inline int set(int value, int bit_position, bool v) {
10537 value |= (1 << bit_position);
10539 value &= ~(1 << bit_position);
10546 class KeyAccumulator final BASE_EMBEDDED {
10548 explicit KeyAccumulator(Isolate* isolate) : isolate_(isolate), length_(0) {}
10550 void AddKey(Handle<Object> key, int check_limit);
10551 void AddKeys(Handle<FixedArray> array, FixedArray::KeyFilter filter);
10552 void AddKeys(Handle<JSObject> array, FixedArray::KeyFilter filter);
10553 void PrepareForComparisons(int count);
10554 Handle<FixedArray> GetKeys();
10556 int GetLength() { return length_; }
10559 void EnsureCapacity(int capacity);
10563 Handle<FixedArray> keys_;
10564 Handle<OrderedHashSet> set_;
10566 DISALLOW_COPY_AND_ASSIGN(KeyAccumulator);
10568 } } // namespace v8::internal
10570 #endif // V8_OBJECTS_H_