1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
10 #include "src/allocation.h"
11 #include "src/assert-scope.h"
12 #include "src/bailout-reason.h"
13 #include "src/base/bits.h"
14 #include "src/base/smart-pointers.h"
15 #include "src/builtins.h"
16 #include "src/checks.h"
17 #include "src/elements-kind.h"
18 #include "src/field-index.h"
19 #include "src/flags.h"
21 #include "src/property-details.h"
22 #include "src/unicode-inl.h"
23 #include "src/unicode-decoder.h"
26 #if V8_TARGET_ARCH_ARM
27 #include "src/arm/constants-arm.h" // NOLINT
28 #elif V8_TARGET_ARCH_ARM64
29 #include "src/arm64/constants-arm64.h" // NOLINT
30 #elif V8_TARGET_ARCH_MIPS
31 #include "src/mips/constants-mips.h" // NOLINT
32 #elif V8_TARGET_ARCH_MIPS64
33 #include "src/mips64/constants-mips64.h" // NOLINT
34 #elif V8_TARGET_ARCH_PPC
35 #include "src/ppc/constants-ppc.h" // NOLINT
40 // Most object types in the V8 JavaScript are described in this file.
42 // Inheritance hierarchy:
44 // - Smi (immediate small integer)
45 // - HeapObject (superclass for everything allocated in the heap)
46 // - JSReceiver (suitable for property access)
50 // - JSArrayBufferView
63 // - JSGeneratorObject
82 // - CompilationCacheTable
83 // - CodeCacheHashTable
89 // - TypeFeedbackVector
92 // - ScriptContextTable
103 // - ExternalOneByteString
104 // - ExternalTwoByteString
105 // - InternalizedString
106 // - SeqInternalizedString
107 // - SeqOneByteInternalizedString
108 // - SeqTwoByteInternalizedString
109 // - ConsInternalizedString
110 // - ExternalInternalizedString
111 // - ExternalOneByteInternalizedString
112 // - ExternalTwoByteInternalizedString
129 // - SharedFunctionInfo
133 // - ExecutableAccessorInfo
139 // - FunctionTemplateInfo
140 // - ObjectTemplateInfo
149 // Formats of Object*:
150 // Smi: [31 bit signed int] 0
151 // HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
156 enum KeyedAccessStoreMode {
158 STORE_TRANSITION_SMI_TO_OBJECT,
159 STORE_TRANSITION_SMI_TO_DOUBLE,
160 STORE_TRANSITION_DOUBLE_TO_OBJECT,
161 STORE_TRANSITION_HOLEY_SMI_TO_OBJECT,
162 STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE,
163 STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT,
164 STORE_AND_GROW_NO_TRANSITION,
165 STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT,
166 STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE,
167 STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT,
168 STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT,
169 STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE,
170 STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT,
171 STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS,
172 STORE_NO_TRANSITION_HANDLE_COW
176 enum TypeofMode { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
185 enum ExternalArrayType {
186 kExternalInt8Array = 1,
189 kExternalUint16Array,
191 kExternalUint32Array,
192 kExternalFloat32Array,
193 kExternalFloat64Array,
194 kExternalUint8ClampedArray,
198 static const int kGrowICDelta = STORE_AND_GROW_NO_TRANSITION -
200 STATIC_ASSERT(STANDARD_STORE == 0);
201 STATIC_ASSERT(kGrowICDelta ==
202 STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT -
203 STORE_TRANSITION_SMI_TO_OBJECT);
204 STATIC_ASSERT(kGrowICDelta ==
205 STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE -
206 STORE_TRANSITION_SMI_TO_DOUBLE);
207 STATIC_ASSERT(kGrowICDelta ==
208 STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT -
209 STORE_TRANSITION_DOUBLE_TO_OBJECT);
212 static inline KeyedAccessStoreMode GetGrowStoreMode(
213 KeyedAccessStoreMode store_mode) {
214 if (store_mode < STORE_AND_GROW_NO_TRANSITION) {
215 store_mode = static_cast<KeyedAccessStoreMode>(
216 static_cast<int>(store_mode) + kGrowICDelta);
222 static inline bool IsTransitionStoreMode(KeyedAccessStoreMode store_mode) {
223 return store_mode > STANDARD_STORE &&
224 store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT &&
225 store_mode != STORE_AND_GROW_NO_TRANSITION;
229 static inline KeyedAccessStoreMode GetNonTransitioningStoreMode(
230 KeyedAccessStoreMode store_mode) {
231 if (store_mode >= STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
234 if (store_mode >= STORE_AND_GROW_NO_TRANSITION) {
235 return STORE_AND_GROW_NO_TRANSITION;
237 return STANDARD_STORE;
241 static inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) {
242 return store_mode >= STORE_AND_GROW_NO_TRANSITION &&
243 store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
247 enum IcCheckType { ELEMENT, PROPERTY };
250 // SKIP_WRITE_BARRIER skips the write barrier.
251 // UPDATE_WEAK_WRITE_BARRIER skips the marking part of the write barrier and
252 // only performs the generational part.
253 // UPDATE_WRITE_BARRIER is doing the full barrier, marking and generational.
254 enum WriteBarrierMode {
256 UPDATE_WEAK_WRITE_BARRIER,
261 // Indicates whether a value can be loaded as a constant.
262 enum StoreMode { ALLOW_IN_DESCRIPTOR, FORCE_FIELD };
265 // PropertyNormalizationMode is used to specify whether to keep
266 // inobject properties when normalizing properties of a JSObject.
267 enum PropertyNormalizationMode {
268 CLEAR_INOBJECT_PROPERTIES,
269 KEEP_INOBJECT_PROPERTIES
273 // Indicates how aggressively the prototype should be optimized. FAST_PROTOTYPE
274 // will give the fastest result by tailoring the map to the prototype, but that
275 // will cause polymorphism with other objects. REGULAR_PROTOTYPE is to be used
276 // (at least for now) when dynamically modifying the prototype chain of an
277 // object using __proto__ or Object.setPrototypeOf.
278 enum PrototypeOptimizationMode { REGULAR_PROTOTYPE, FAST_PROTOTYPE };
281 // Indicates whether transitions can be added to a source map or not.
282 enum TransitionFlag {
288 // Indicates whether the transition is simple: the target map of the transition
289 // either extends the current map with a new property, or it modifies the
290 // property that was added last to the current map.
291 enum SimpleTransitionFlag {
292 SIMPLE_PROPERTY_TRANSITION,
298 // Indicates whether we are only interested in the descriptors of a particular
299 // map, or in all descriptors in the descriptor array.
300 enum DescriptorFlag {
305 // The GC maintains a bit of information, the MarkingParity, which toggles
306 // from odd to even and back every time marking is completed. Incremental
307 // marking can visit an object twice during a marking phase, so algorithms that
308 // that piggy-back on marking can use the parity to ensure that they only
309 // perform an operation on an object once per marking phase: they record the
310 // MarkingParity when they visit an object, and only re-visit the object when it
311 // is marked again and the MarkingParity changes.
318 // ICs store extra state in a Code object. The default extra state is
320 typedef int ExtraICState;
321 static const ExtraICState kNoExtraICState = 0;
323 // Instance size sentinel for objects of variable size.
324 const int kVariableSizeSentinel = 0;
326 // We may store the unsigned bit field as signed Smi value and do not
328 const int kStubMajorKeyBits = 7;
329 const int kStubMinorKeyBits = kSmiValueSize - kStubMajorKeyBits - 1;
331 // All Maps have a field instance_type containing a InstanceType.
332 // It describes the type of the instances.
334 // As an example, a JavaScript object is a heap object and its map
335 // instance_type is JS_OBJECT_TYPE.
337 // The names of the string instance types are intended to systematically
338 // mirror their encoding in the instance_type field of the map. The default
339 // encoding is considered TWO_BYTE. It is not mentioned in the name. ONE_BYTE
340 // encoding is mentioned explicitly in the name. Likewise, the default
341 // representation is considered sequential. It is not mentioned in the
342 // name. The other representations (e.g. CONS, EXTERNAL) are explicitly
343 // mentioned. Finally, the string is either a STRING_TYPE (if it is a normal
344 // string) or a INTERNALIZED_STRING_TYPE (if it is a internalized string).
346 // NOTE: The following things are some that depend on the string types having
347 // instance_types that are less than those of all other types:
348 // HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
351 // NOTE: Everything following JS_VALUE_TYPE is considered a
352 // JSObject for GC purposes. The first four entries here have typeof
353 // 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
354 #define INSTANCE_TYPE_LIST(V) \
356 V(ONE_BYTE_STRING_TYPE) \
357 V(CONS_STRING_TYPE) \
358 V(CONS_ONE_BYTE_STRING_TYPE) \
359 V(SLICED_STRING_TYPE) \
360 V(SLICED_ONE_BYTE_STRING_TYPE) \
361 V(EXTERNAL_STRING_TYPE) \
362 V(EXTERNAL_ONE_BYTE_STRING_TYPE) \
363 V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
364 V(SHORT_EXTERNAL_STRING_TYPE) \
365 V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE) \
366 V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
368 V(INTERNALIZED_STRING_TYPE) \
369 V(ONE_BYTE_INTERNALIZED_STRING_TYPE) \
370 V(EXTERNAL_INTERNALIZED_STRING_TYPE) \
371 V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
372 V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
373 V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE) \
374 V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
375 V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
390 V(PROPERTY_CELL_TYPE) \
392 V(HEAP_NUMBER_TYPE) \
393 V(MUTABLE_HEAP_NUMBER_TYPE) \
396 V(BYTECODE_ARRAY_TYPE) \
399 V(FIXED_INT8_ARRAY_TYPE) \
400 V(FIXED_UINT8_ARRAY_TYPE) \
401 V(FIXED_INT16_ARRAY_TYPE) \
402 V(FIXED_UINT16_ARRAY_TYPE) \
403 V(FIXED_INT32_ARRAY_TYPE) \
404 V(FIXED_UINT32_ARRAY_TYPE) \
405 V(FIXED_FLOAT32_ARRAY_TYPE) \
406 V(FIXED_FLOAT64_ARRAY_TYPE) \
407 V(FIXED_UINT8_CLAMPED_ARRAY_TYPE) \
411 V(DECLARED_ACCESSOR_DESCRIPTOR_TYPE) \
412 V(DECLARED_ACCESSOR_INFO_TYPE) \
413 V(EXECUTABLE_ACCESSOR_INFO_TYPE) \
414 V(ACCESSOR_PAIR_TYPE) \
415 V(ACCESS_CHECK_INFO_TYPE) \
416 V(INTERCEPTOR_INFO_TYPE) \
417 V(CALL_HANDLER_INFO_TYPE) \
418 V(FUNCTION_TEMPLATE_INFO_TYPE) \
419 V(OBJECT_TEMPLATE_INFO_TYPE) \
420 V(SIGNATURE_INFO_TYPE) \
421 V(TYPE_SWITCH_INFO_TYPE) \
422 V(ALLOCATION_MEMENTO_TYPE) \
423 V(ALLOCATION_SITE_TYPE) \
426 V(POLYMORPHIC_CODE_CACHE_TYPE) \
427 V(TYPE_FEEDBACK_INFO_TYPE) \
428 V(ALIASED_ARGUMENTS_ENTRY_TYPE) \
430 V(PROTOTYPE_INFO_TYPE) \
432 V(FIXED_ARRAY_TYPE) \
433 V(FIXED_DOUBLE_ARRAY_TYPE) \
434 V(SHARED_FUNCTION_INFO_TYPE) \
437 V(JS_MESSAGE_OBJECT_TYPE) \
442 V(JS_CONTEXT_EXTENSION_OBJECT_TYPE) \
443 V(JS_GENERATOR_OBJECT_TYPE) \
445 V(JS_GLOBAL_OBJECT_TYPE) \
446 V(JS_BUILTINS_OBJECT_TYPE) \
447 V(JS_GLOBAL_PROXY_TYPE) \
449 V(JS_ARRAY_BUFFER_TYPE) \
450 V(JS_TYPED_ARRAY_TYPE) \
451 V(JS_DATA_VIEW_TYPE) \
455 V(JS_SET_ITERATOR_TYPE) \
456 V(JS_MAP_ITERATOR_TYPE) \
457 V(JS_WEAK_MAP_TYPE) \
458 V(JS_WEAK_SET_TYPE) \
461 V(JS_FUNCTION_TYPE) \
462 V(JS_FUNCTION_PROXY_TYPE) \
464 V(BREAK_POINT_INFO_TYPE)
467 // Since string types are not consecutive, this macro is used to
468 // iterate over them.
469 #define STRING_TYPE_LIST(V) \
470 V(STRING_TYPE, kVariableSizeSentinel, string, String) \
471 V(ONE_BYTE_STRING_TYPE, kVariableSizeSentinel, one_byte_string, \
473 V(CONS_STRING_TYPE, ConsString::kSize, cons_string, ConsString) \
474 V(CONS_ONE_BYTE_STRING_TYPE, ConsString::kSize, cons_one_byte_string, \
476 V(SLICED_STRING_TYPE, SlicedString::kSize, sliced_string, SlicedString) \
477 V(SLICED_ONE_BYTE_STRING_TYPE, SlicedString::kSize, sliced_one_byte_string, \
478 SlicedOneByteString) \
479 V(EXTERNAL_STRING_TYPE, ExternalTwoByteString::kSize, external_string, \
481 V(EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kSize, \
482 external_one_byte_string, ExternalOneByteString) \
483 V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, ExternalTwoByteString::kSize, \
484 external_string_with_one_byte_data, ExternalStringWithOneByteData) \
485 V(SHORT_EXTERNAL_STRING_TYPE, ExternalTwoByteString::kShortSize, \
486 short_external_string, ShortExternalString) \
487 V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kShortSize, \
488 short_external_one_byte_string, ShortExternalOneByteString) \
489 V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, \
490 ExternalTwoByteString::kShortSize, \
491 short_external_string_with_one_byte_data, \
492 ShortExternalStringWithOneByteData) \
494 V(INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, internalized_string, \
495 InternalizedString) \
496 V(ONE_BYTE_INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, \
497 one_byte_internalized_string, OneByteInternalizedString) \
498 V(EXTERNAL_INTERNALIZED_STRING_TYPE, ExternalTwoByteString::kSize, \
499 external_internalized_string, ExternalInternalizedString) \
500 V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, ExternalOneByteString::kSize, \
501 external_one_byte_internalized_string, ExternalOneByteInternalizedString) \
502 V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
503 ExternalTwoByteString::kSize, \
504 external_internalized_string_with_one_byte_data, \
505 ExternalInternalizedStringWithOneByteData) \
506 V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE, \
507 ExternalTwoByteString::kShortSize, short_external_internalized_string, \
508 ShortExternalInternalizedString) \
509 V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, \
510 ExternalOneByteString::kShortSize, \
511 short_external_one_byte_internalized_string, \
512 ShortExternalOneByteInternalizedString) \
513 V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
514 ExternalTwoByteString::kShortSize, \
515 short_external_internalized_string_with_one_byte_data, \
516 ShortExternalInternalizedStringWithOneByteData)
518 // A struct is a simple object a set of object-valued fields. Including an
519 // object type in this causes the compiler to generate most of the boilerplate
520 // code for the class including allocation and garbage collection routines,
521 // casts and predicates. All you need to define is the class, methods and
522 // object verification routines. Easy, no?
524 // Note that for subtle reasons related to the ordering or numerical values of
525 // type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
527 #define STRUCT_LIST(V) \
529 V(EXECUTABLE_ACCESSOR_INFO, ExecutableAccessorInfo, \
530 executable_accessor_info) \
531 V(ACCESSOR_PAIR, AccessorPair, accessor_pair) \
532 V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \
533 V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \
534 V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info) \
535 V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \
536 V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \
537 V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info) \
538 V(SCRIPT, Script, script) \
539 V(ALLOCATION_SITE, AllocationSite, allocation_site) \
540 V(ALLOCATION_MEMENTO, AllocationMemento, allocation_memento) \
541 V(CODE_CACHE, CodeCache, code_cache) \
542 V(POLYMORPHIC_CODE_CACHE, PolymorphicCodeCache, polymorphic_code_cache) \
543 V(TYPE_FEEDBACK_INFO, TypeFeedbackInfo, type_feedback_info) \
544 V(ALIASED_ARGUMENTS_ENTRY, AliasedArgumentsEntry, aliased_arguments_entry) \
545 V(DEBUG_INFO, DebugInfo, debug_info) \
546 V(BREAK_POINT_INFO, BreakPointInfo, break_point_info) \
547 V(PROTOTYPE_INFO, PrototypeInfo, prototype_info)
549 // We use the full 8 bits of the instance_type field to encode heap object
550 // instance types. The high-order bit (bit 7) is set if the object is not a
551 // string, and cleared if it is a string.
552 const uint32_t kIsNotStringMask = 0x80;
553 const uint32_t kStringTag = 0x0;
554 const uint32_t kNotStringTag = 0x80;
556 // Bit 6 indicates that the object is an internalized string (if set) or not.
557 // Bit 7 has to be clear as well.
558 const uint32_t kIsNotInternalizedMask = 0x40;
559 const uint32_t kNotInternalizedTag = 0x40;
560 const uint32_t kInternalizedTag = 0x0;
562 // If bit 7 is clear then bit 2 indicates whether the string consists of
563 // two-byte characters or one-byte characters.
564 const uint32_t kStringEncodingMask = 0x4;
565 const uint32_t kTwoByteStringTag = 0x0;
566 const uint32_t kOneByteStringTag = 0x4;
568 // If bit 7 is clear, the low-order 2 bits indicate the representation
570 const uint32_t kStringRepresentationMask = 0x03;
571 enum StringRepresentationTag {
573 kConsStringTag = 0x1,
574 kExternalStringTag = 0x2,
575 kSlicedStringTag = 0x3
577 const uint32_t kIsIndirectStringMask = 0x1;
578 const uint32_t kIsIndirectStringTag = 0x1;
579 STATIC_ASSERT((kSeqStringTag & kIsIndirectStringMask) == 0); // NOLINT
580 STATIC_ASSERT((kExternalStringTag & kIsIndirectStringMask) == 0); // NOLINT
581 STATIC_ASSERT((kConsStringTag &
582 kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
583 STATIC_ASSERT((kSlicedStringTag &
584 kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
586 // Use this mask to distinguish between cons and slice only after making
587 // sure that the string is one of the two (an indirect string).
588 const uint32_t kSlicedNotConsMask = kSlicedStringTag & ~kConsStringTag;
589 STATIC_ASSERT(IS_POWER_OF_TWO(kSlicedNotConsMask));
591 // If bit 7 is clear, then bit 3 indicates whether this two-byte
592 // string actually contains one byte data.
593 const uint32_t kOneByteDataHintMask = 0x08;
594 const uint32_t kOneByteDataHintTag = 0x08;
596 // If bit 7 is clear and string representation indicates an external string,
597 // then bit 4 indicates whether the data pointer is cached.
598 const uint32_t kShortExternalStringMask = 0x10;
599 const uint32_t kShortExternalStringTag = 0x10;
602 // A ConsString with an empty string as the right side is a candidate
603 // for being shortcut by the garbage collector. We don't allocate any
604 // non-flat internalized strings, so we do not shortcut them thereby
605 // avoiding turning internalized strings into strings. The bit-masks
606 // below contain the internalized bit as additional safety.
607 // See heap.cc, mark-compact.cc and objects-visiting.cc.
608 const uint32_t kShortcutTypeMask =
610 kIsNotInternalizedMask |
611 kStringRepresentationMask;
612 const uint32_t kShortcutTypeTag = kConsStringTag | kNotInternalizedTag;
614 static inline bool IsShortcutCandidate(int type) {
615 return ((type & kShortcutTypeMask) == kShortcutTypeTag);
621 INTERNALIZED_STRING_TYPE =
622 kTwoByteStringTag | kSeqStringTag | kInternalizedTag,
623 ONE_BYTE_INTERNALIZED_STRING_TYPE =
624 kOneByteStringTag | kSeqStringTag | kInternalizedTag,
625 EXTERNAL_INTERNALIZED_STRING_TYPE =
626 kTwoByteStringTag | kExternalStringTag | kInternalizedTag,
627 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
628 kOneByteStringTag | kExternalStringTag | kInternalizedTag,
629 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
630 EXTERNAL_INTERNALIZED_STRING_TYPE | kOneByteDataHintTag |
632 SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE = EXTERNAL_INTERNALIZED_STRING_TYPE |
633 kShortExternalStringTag |
635 SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
636 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kShortExternalStringTag |
638 SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
639 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
640 kShortExternalStringTag | kInternalizedTag,
641 STRING_TYPE = INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
642 ONE_BYTE_STRING_TYPE =
643 ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
644 CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag | kNotInternalizedTag,
645 CONS_ONE_BYTE_STRING_TYPE =
646 kOneByteStringTag | kConsStringTag | kNotInternalizedTag,
648 kTwoByteStringTag | kSlicedStringTag | kNotInternalizedTag,
649 SLICED_ONE_BYTE_STRING_TYPE =
650 kOneByteStringTag | kSlicedStringTag | kNotInternalizedTag,
651 EXTERNAL_STRING_TYPE =
652 EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
653 EXTERNAL_ONE_BYTE_STRING_TYPE =
654 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
655 EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
656 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
658 SHORT_EXTERNAL_STRING_TYPE =
659 SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
660 SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE =
661 SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
662 SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
663 SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
667 SYMBOL_TYPE = kNotStringTag, // FIRST_NONSTRING_TYPE, LAST_NAME_TYPE
669 // Objects allocated in their own spaces (never in new space).
674 // "Data", objects that cannot contain non-map-word pointers to heap
677 MUTABLE_HEAP_NUMBER_TYPE,
678 FLOAT32X4_TYPE, // FIRST_SIMD_VALUE_TYPE
684 BOOL8X16_TYPE, // LAST_SIMD_VALUE_TYPE
689 FIXED_INT8_ARRAY_TYPE, // FIRST_FIXED_TYPED_ARRAY_TYPE
690 FIXED_UINT8_ARRAY_TYPE,
691 FIXED_INT16_ARRAY_TYPE,
692 FIXED_UINT16_ARRAY_TYPE,
693 FIXED_INT32_ARRAY_TYPE,
694 FIXED_UINT32_ARRAY_TYPE,
695 FIXED_FLOAT32_ARRAY_TYPE,
696 FIXED_FLOAT64_ARRAY_TYPE,
697 FIXED_UINT8_CLAMPED_ARRAY_TYPE, // LAST_FIXED_TYPED_ARRAY_TYPE
698 FIXED_DOUBLE_ARRAY_TYPE,
699 FILLER_TYPE, // LAST_DATA_TYPE
702 DECLARED_ACCESSOR_DESCRIPTOR_TYPE,
703 DECLARED_ACCESSOR_INFO_TYPE,
704 EXECUTABLE_ACCESSOR_INFO_TYPE,
706 ACCESS_CHECK_INFO_TYPE,
707 INTERCEPTOR_INFO_TYPE,
708 CALL_HANDLER_INFO_TYPE,
709 FUNCTION_TEMPLATE_INFO_TYPE,
710 OBJECT_TEMPLATE_INFO_TYPE,
712 TYPE_SWITCH_INFO_TYPE,
713 ALLOCATION_SITE_TYPE,
714 ALLOCATION_MEMENTO_TYPE,
717 POLYMORPHIC_CODE_CACHE_TYPE,
718 TYPE_FEEDBACK_INFO_TYPE,
719 ALIASED_ARGUMENTS_ENTRY_TYPE,
722 BREAK_POINT_INFO_TYPE,
724 SHARED_FUNCTION_INFO_TYPE,
730 // All the following types are subtypes of JSReceiver, which corresponds to
731 // objects in the JS sense. The first and the last type in this range are
732 // the two forms of function. This organization enables using the same
733 // compares for checking the JS_RECEIVER/SPEC_OBJECT range and the
734 // NONCALLABLE_JS_OBJECT range.
735 JS_FUNCTION_PROXY_TYPE, // FIRST_JS_RECEIVER_TYPE, FIRST_JS_PROXY_TYPE
736 JS_PROXY_TYPE, // LAST_JS_PROXY_TYPE
737 JS_VALUE_TYPE, // FIRST_JS_OBJECT_TYPE
738 JS_MESSAGE_OBJECT_TYPE,
741 JS_CONTEXT_EXTENSION_OBJECT_TYPE,
742 JS_GENERATOR_OBJECT_TYPE,
744 JS_GLOBAL_OBJECT_TYPE,
745 JS_BUILTINS_OBJECT_TYPE,
746 JS_GLOBAL_PROXY_TYPE,
748 JS_ARRAY_BUFFER_TYPE,
753 JS_SET_ITERATOR_TYPE,
754 JS_MAP_ITERATOR_TYPE,
758 JS_FUNCTION_TYPE, // LAST_JS_OBJECT_TYPE, LAST_JS_RECEIVER_TYPE
762 LAST_TYPE = JS_FUNCTION_TYPE,
763 FIRST_NAME_TYPE = FIRST_TYPE,
764 LAST_NAME_TYPE = SYMBOL_TYPE,
765 FIRST_UNIQUE_NAME_TYPE = INTERNALIZED_STRING_TYPE,
766 LAST_UNIQUE_NAME_TYPE = SYMBOL_TYPE,
767 FIRST_NONSTRING_TYPE = SYMBOL_TYPE,
768 // Boundaries for testing for a SIMD types.
769 FIRST_SIMD_VALUE_TYPE = FLOAT32X4_TYPE,
770 LAST_SIMD_VALUE_TYPE = BOOL8X16_TYPE,
771 // Boundaries for testing for a fixed typed array.
772 FIRST_FIXED_TYPED_ARRAY_TYPE = FIXED_INT8_ARRAY_TYPE,
773 LAST_FIXED_TYPED_ARRAY_TYPE = FIXED_UINT8_CLAMPED_ARRAY_TYPE,
774 // Boundary for promotion to old space.
775 LAST_DATA_TYPE = FILLER_TYPE,
776 // Boundary for objects represented as JSReceiver (i.e. JSObject or JSProxy).
777 // Note that there is no range for JSObject or JSProxy, since their subtypes
778 // are not continuous in this enum! The enum ranges instead reflect the
779 // external class names, where proxies are treated as either ordinary objects,
781 FIRST_JS_RECEIVER_TYPE = JS_FUNCTION_PROXY_TYPE,
782 LAST_JS_RECEIVER_TYPE = LAST_TYPE,
783 // Boundaries for testing the types represented as JSObject
784 FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
785 LAST_JS_OBJECT_TYPE = LAST_TYPE,
786 // Boundaries for testing the types represented as JSProxy
787 FIRST_JS_PROXY_TYPE = JS_FUNCTION_PROXY_TYPE,
788 LAST_JS_PROXY_TYPE = JS_PROXY_TYPE,
789 // Boundaries for testing whether the type is a JavaScript object.
790 FIRST_SPEC_OBJECT_TYPE = FIRST_JS_RECEIVER_TYPE,
791 LAST_SPEC_OBJECT_TYPE = LAST_JS_RECEIVER_TYPE,
792 // Boundaries for testing the types for which typeof is "object".
793 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_PROXY_TYPE,
794 LAST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_REGEXP_TYPE,
795 // Note that the types for which typeof is "function" are not continuous.
796 // Define this so that we can put assertions on discrete checks.
797 NUM_OF_CALLABLE_SPEC_OBJECT_TYPES = 2
800 STATIC_ASSERT(JS_OBJECT_TYPE == Internals::kJSObjectType);
801 STATIC_ASSERT(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
802 STATIC_ASSERT(ODDBALL_TYPE == Internals::kOddballType);
803 STATIC_ASSERT(FOREIGN_TYPE == Internals::kForeignType);
806 #define FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(V) \
807 V(FAST_ELEMENTS_SUB_TYPE) \
808 V(DICTIONARY_ELEMENTS_SUB_TYPE) \
809 V(FAST_PROPERTIES_SUB_TYPE) \
810 V(DICTIONARY_PROPERTIES_SUB_TYPE) \
811 V(MAP_CODE_CACHE_SUB_TYPE) \
812 V(SCOPE_INFO_SUB_TYPE) \
813 V(STRING_TABLE_SUB_TYPE) \
814 V(DESCRIPTOR_ARRAY_SUB_TYPE) \
815 V(TRANSITION_ARRAY_SUB_TYPE)
817 enum FixedArraySubInstanceType {
818 #define DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE(name) name,
819 FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE)
820 #undef DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE
821 LAST_FIXED_ARRAY_SUB_TYPE = TRANSITION_ARRAY_SUB_TYPE
834 #define DECL_BOOLEAN_ACCESSORS(name) \
835 inline bool name() const; \
836 inline void set_##name(bool value); \
839 #define DECL_ACCESSORS(name, type) \
840 inline type* name() const; \
841 inline void set_##name(type* value, \
842 WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
845 #define DECLARE_CAST(type) \
846 INLINE(static type* cast(Object* object)); \
847 INLINE(static const type* cast(const Object* object));
851 class AllocationSite;
852 class AllocationSiteCreationContext;
853 class AllocationSiteUsageContext;
856 class ElementsAccessor;
857 class FixedArrayBase;
858 class FunctionLiteral;
860 class JSBuiltinsObject;
861 class LayoutDescriptor;
862 class LookupIterator;
863 class ObjectHashTable;
866 class SafepointEntry;
867 class SharedFunctionInfo;
869 class TypeFeedbackInfo;
870 class TypeFeedbackVector;
873 // We cannot just say "class HeapType;" if it is created from a template... =8-?
874 template<class> class TypeImpl;
875 struct HeapTypeConfig;
876 typedef TypeImpl<HeapTypeConfig> HeapType;
879 // A template-ized version of the IsXXX functions.
880 template <class C> inline bool Is(Object* obj);
883 #define DECLARE_VERIFIER(Name) void Name##Verify();
885 #define DECLARE_VERIFIER(Name)
889 #define DECLARE_PRINTER(Name) void Name##Print(std::ostream& os); // NOLINT
891 #define DECLARE_PRINTER(Name)
895 #define OBJECT_TYPE_LIST(V) \
900 #define HEAP_OBJECT_TYPE_LIST(V) \
902 V(MutableHeapNumber) \
918 V(ExternalTwoByteString) \
919 V(ExternalOneByteString) \
920 V(SeqTwoByteString) \
921 V(SeqOneByteString) \
922 V(InternalizedString) \
925 V(FixedTypedArrayBase) \
928 V(FixedUint16Array) \
930 V(FixedUint32Array) \
932 V(FixedFloat32Array) \
933 V(FixedFloat64Array) \
934 V(FixedUint8ClampedArray) \
940 V(JSContextExtensionObject) \
941 V(JSGeneratorObject) \
943 V(LayoutDescriptor) \
947 V(TypeFeedbackVector) \
948 V(DeoptimizationInputData) \
949 V(DeoptimizationOutputData) \
953 V(FixedDoubleArray) \
957 V(ScriptContextTable) \
963 V(SharedFunctionInfo) \
972 V(JSArrayBufferView) \
981 V(JSWeakCollection) \
988 V(NormalizedMapCache) \
989 V(CompilationCacheTable) \
990 V(CodeCacheHashTable) \
991 V(PolymorphicCodeCacheHashTable) \
996 V(JSBuiltinsObject) \
998 V(UndetectableObject) \
999 V(AccessCheckNeeded) \
1003 V(ObjectHashTable) \
1005 V(WeakValueHashTable) \
1008 // Object is the abstract superclass for all classes in the
1009 // object hierarchy.
1010 // Object does not use any virtual functions to avoid the
1011 // allocation of the C++ vtable.
1012 // Since both Smi and HeapObject are subclasses of Object no
1013 // data members can be present in Object.
1017 bool IsObject() const { return true; }
1019 #define IS_TYPE_FUNCTION_DECL(type_) INLINE(bool Is##type_() const);
1020 OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
1021 HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
1022 #undef IS_TYPE_FUNCTION_DECL
1024 // A non-keyed store is of the form a.x = foo or a["x"] = foo whereas
1025 // a keyed store is of the form a[expression] = foo.
1026 enum StoreFromKeyed {
1027 MAY_BE_STORE_FROM_KEYED,
1028 CERTAINLY_NOT_STORE_FROM_KEYED
1031 INLINE(bool IsFixedArrayBase() const);
1032 INLINE(bool IsExternal() const);
1033 INLINE(bool IsAccessorInfo() const);
1035 INLINE(bool IsStruct() const);
1036 #define DECLARE_STRUCT_PREDICATE(NAME, Name, name) \
1037 INLINE(bool Is##Name() const);
1038 STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
1039 #undef DECLARE_STRUCT_PREDICATE
1041 INLINE(bool IsSpecObject()) const;
1042 INLINE(bool IsSpecFunction()) const;
1043 INLINE(bool IsTemplateInfo()) const;
1044 INLINE(bool IsNameDictionary() const);
1045 INLINE(bool IsGlobalDictionary() const);
1046 INLINE(bool IsSeededNumberDictionary() const);
1047 INLINE(bool IsUnseededNumberDictionary() const);
1048 INLINE(bool IsOrderedHashSet() const);
1049 INLINE(bool IsOrderedHashMap() const);
1050 bool IsCallable() const;
1051 static bool IsPromise(Handle<Object> object);
1054 INLINE(bool IsUndefined() const);
1055 INLINE(bool IsNull() const);
1056 INLINE(bool IsTheHole() const);
1057 INLINE(bool IsException() const);
1058 INLINE(bool IsUninitialized() const);
1059 INLINE(bool IsTrue() const);
1060 INLINE(bool IsFalse() const);
1061 INLINE(bool IsArgumentsMarker() const);
1063 // Filler objects (fillers and free space objects).
1064 INLINE(bool IsFiller() const);
1066 // Extract the number.
1067 inline double Number();
1068 INLINE(bool IsNaN() const);
1069 INLINE(bool IsMinusZero() const);
1070 bool ToInt32(int32_t* value);
1071 bool ToUint32(uint32_t* value);
1073 inline Representation OptimalRepresentation() {
1074 if (!FLAG_track_fields) return Representation::Tagged();
1076 return Representation::Smi();
1077 } else if (FLAG_track_double_fields && IsHeapNumber()) {
1078 return Representation::Double();
1079 } else if (FLAG_track_computed_fields && IsUninitialized()) {
1080 return Representation::None();
1081 } else if (FLAG_track_heap_object_fields) {
1082 DCHECK(IsHeapObject());
1083 return Representation::HeapObject();
1085 return Representation::Tagged();
1089 inline ElementsKind OptimalElementsKind() {
1090 if (IsSmi()) return FAST_SMI_ELEMENTS;
1091 if (IsNumber()) return FAST_DOUBLE_ELEMENTS;
1092 return FAST_ELEMENTS;
1095 inline bool FitsRepresentation(Representation representation) {
1096 if (FLAG_track_fields && representation.IsNone()) {
1098 } else if (FLAG_track_fields && representation.IsSmi()) {
1100 } else if (FLAG_track_double_fields && representation.IsDouble()) {
1101 return IsMutableHeapNumber() || IsNumber();
1102 } else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
1103 return IsHeapObject();
1108 // Checks whether two valid primitive encodings of a property name resolve to
1109 // the same logical property. E.g., the smi 1, the string "1" and the double
1110 // 1 all refer to the same property, so this helper will return true.
1111 inline bool KeyEquals(Object* other);
1113 Handle<HeapType> OptimalType(Isolate* isolate, Representation representation);
1115 inline static Handle<Object> NewStorageFor(Isolate* isolate,
1116 Handle<Object> object,
1117 Representation representation);
1119 inline static Handle<Object> WrapForRead(Isolate* isolate,
1120 Handle<Object> object,
1121 Representation representation);
1123 // Returns true if the object is of the correct type to be used as a
1124 // implementation of a JSObject's elements.
1125 inline bool HasValidElements();
1127 inline bool HasSpecificClassOf(String* name);
1129 bool BooleanValue(); // ECMA-262 9.2.
1131 // Convert to a JSObject if needed.
1132 // native_context is used when creating wrapper object.
1133 static inline MaybeHandle<JSReceiver> ToObject(Isolate* isolate,
1134 Handle<Object> object);
1135 static MaybeHandle<JSReceiver> ToObject(Isolate* isolate,
1136 Handle<Object> object,
1137 Handle<Context> context);
1139 MUST_USE_RESULT static MaybeHandle<Object> GetProperty(
1140 LookupIterator* it, LanguageMode language_mode = SLOPPY);
1142 // Implementation of [[Put]], ECMA-262 5th edition, section 8.12.5.
1143 MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
1144 Handle<Object> object, Handle<Name> name, Handle<Object> value,
1145 LanguageMode language_mode,
1146 StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED);
1148 MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
1149 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1150 StoreFromKeyed store_mode);
1152 MUST_USE_RESULT static MaybeHandle<Object> SetSuperProperty(
1153 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1154 StoreFromKeyed store_mode);
1156 MUST_USE_RESULT static MaybeHandle<Object> ReadAbsentProperty(
1157 LookupIterator* it, LanguageMode language_mode);
1158 MUST_USE_RESULT static MaybeHandle<Object> ReadAbsentProperty(
1159 Isolate* isolate, Handle<Object> receiver, Handle<Object> name,
1160 LanguageMode language_mode);
1161 MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyProperty(
1162 LookupIterator* it, Handle<Object> value, LanguageMode language_mode);
1163 MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyProperty(
1164 Isolate* isolate, Handle<Object> receiver, Handle<Object> name,
1165 Handle<Object> value, LanguageMode language_mode);
1166 MUST_USE_RESULT static MaybeHandle<Object> RedefineNonconfigurableProperty(
1167 Isolate* isolate, Handle<Object> name, Handle<Object> value,
1168 LanguageMode language_mode);
1169 MUST_USE_RESULT static MaybeHandle<Object> SetDataProperty(
1170 LookupIterator* it, Handle<Object> value);
1171 MUST_USE_RESULT static MaybeHandle<Object> AddDataProperty(
1172 LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
1173 LanguageMode language_mode, StoreFromKeyed store_mode);
1174 MUST_USE_RESULT static inline MaybeHandle<Object> GetPropertyOrElement(
1175 Handle<Object> object, Handle<Name> name,
1176 LanguageMode language_mode = SLOPPY);
1177 MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
1178 Isolate* isolate, Handle<Object> object, const char* key,
1179 LanguageMode language_mode = SLOPPY);
1180 MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
1181 Handle<Object> object, Handle<Name> name,
1182 LanguageMode language_mode = SLOPPY);
1184 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithAccessor(
1185 LookupIterator* it, LanguageMode language_mode);
1186 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithAccessor(
1187 LookupIterator* it, Handle<Object> value, LanguageMode language_mode);
1189 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithDefinedGetter(
1190 Handle<Object> receiver,
1191 Handle<JSReceiver> getter);
1192 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithDefinedSetter(
1193 Handle<Object> receiver,
1194 Handle<JSReceiver> setter,
1195 Handle<Object> value);
1197 MUST_USE_RESULT static inline MaybeHandle<Object> GetElement(
1198 Isolate* isolate, Handle<Object> object, uint32_t index,
1199 LanguageMode language_mode = SLOPPY);
1201 MUST_USE_RESULT static inline MaybeHandle<Object> SetElement(
1202 Isolate* isolate, Handle<Object> object, uint32_t index,
1203 Handle<Object> value, LanguageMode language_mode);
1205 static inline Handle<Object> GetPrototypeSkipHiddenPrototypes(
1206 Isolate* isolate, Handle<Object> receiver);
1208 // Returns the permanent hash code associated with this object. May return
1209 // undefined if not yet created.
1212 // Returns undefined for JSObjects, but returns the hash code for simple
1213 // objects. This avoids a double lookup in the cases where we know we will
1214 // add the hash to the JSObject if it does not already exist.
1215 Object* GetSimpleHash();
1217 // Returns the permanent hash code associated with this object depending on
1218 // the actual object type. May create and store a hash code if needed and none
1220 static Handle<Smi> GetOrCreateHash(Isolate* isolate, Handle<Object> object);
1222 // Checks whether this object has the same value as the given one. This
1223 // function is implemented according to ES5, section 9.12 and can be used
1224 // to implement the Harmony "egal" function.
1225 bool SameValue(Object* other);
1227 // Checks whether this object has the same value as the given one.
1228 // +0 and -0 are treated equal. Everything else is the same as SameValue.
1229 // This function is implemented according to ES6, section 7.2.4 and is used
1230 // by ES6 Map and Set.
1231 bool SameValueZero(Object* other);
1233 // Tries to convert an object to an array length. Returns true and sets the
1234 // output parameter if it succeeds.
1235 inline bool ToArrayLength(uint32_t* index);
1237 // Tries to convert an object to an array index. Returns true and sets the
1238 // output parameter if it succeeds. Equivalent to ToArrayLength, but does not
1239 // allow kMaxUInt32.
1240 inline bool ToArrayIndex(uint32_t* index);
1242 // Returns true if this is a JSValue containing a string and the index is
1243 // < the length of the string. Used to implement [] on strings.
1244 inline bool IsStringObjectWithCharacterAt(uint32_t index);
1246 DECLARE_VERIFIER(Object)
1248 // Verify a pointer is a valid object pointer.
1249 static void VerifyPointer(Object* p);
1252 inline void VerifyApiCallResultType();
1254 // Prints this object without details.
1255 void ShortPrint(FILE* out = stdout);
1257 // Prints this object without details to a message accumulator.
1258 void ShortPrint(StringStream* accumulator);
1260 void ShortPrint(std::ostream& os); // NOLINT
1262 DECLARE_CAST(Object)
1264 // Layout description.
1265 static const int kHeaderSize = 0; // Object does not take up any space.
1268 // For our gdb macros, we should perhaps change these in the future.
1271 // Prints this object with details.
1272 void Print(std::ostream& os); // NOLINT
1274 void Print() { ShortPrint(); }
1275 void Print(std::ostream& os) { ShortPrint(os); } // NOLINT
1279 friend class LookupIterator;
1280 friend class PrototypeIterator;
1282 // Return the map of the root of object's prototype chain.
1283 Map* GetRootMap(Isolate* isolate);
1285 // Helper for SetProperty and SetSuperProperty.
1286 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyInternal(
1287 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1288 StoreFromKeyed store_mode, bool* found);
1290 DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
1295 explicit Brief(const Object* const v) : value(v) {}
1296 const Object* value;
1300 std::ostream& operator<<(std::ostream& os, const Brief& v);
1303 // Smi represents integer Numbers that can be stored in 31 bits.
1304 // Smis are immediate which means they are NOT allocated in the heap.
1305 // The this pointer has the following format: [31 bit signed int] 0
1306 // For long smis it has the following format:
1307 // [32 bit signed int] [31 bits zero padding] 0
1308 // Smi stands for small integer.
1309 class Smi: public Object {
1311 // Returns the integer value.
1312 inline int value() const;
1314 // Convert a value to a Smi object.
1315 static inline Smi* FromInt(int value);
1317 static inline Smi* FromIntptr(intptr_t value);
1319 // Returns whether value can be represented in a Smi.
1320 static inline bool IsValid(intptr_t value);
1324 // Dispatched behavior.
1325 void SmiPrint(std::ostream& os) const; // NOLINT
1326 DECLARE_VERIFIER(Smi)
1328 static const int kMinValue =
1329 (static_cast<unsigned int>(-1)) << (kSmiValueSize - 1);
1330 static const int kMaxValue = -(kMinValue + 1);
1333 DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
1337 // Heap objects typically have a map pointer in their first word. However,
1338 // during GC other data (e.g. mark bits, forwarding addresses) is sometimes
1339 // encoded in the first word. The class MapWord is an abstraction of the
1340 // value in a heap object's first word.
1341 class MapWord BASE_EMBEDDED {
1343 // Normal state: the map word contains a map pointer.
1345 // Create a map word from a map pointer.
1346 static inline MapWord FromMap(const Map* map);
1348 // View this map word as a map pointer.
1349 inline Map* ToMap();
1352 // Scavenge collection: the map word of live objects in the from space
1353 // contains a forwarding address (a heap object pointer in the to space).
1355 // True if this map word is a forwarding address for a scavenge
1356 // collection. Only valid during a scavenge collection (specifically,
1357 // when all map words are heap object pointers, i.e. not during a full GC).
1358 inline bool IsForwardingAddress();
1360 // Create a map word from a forwarding address.
1361 static inline MapWord FromForwardingAddress(HeapObject* object);
1363 // View this map word as a forwarding address.
1364 inline HeapObject* ToForwardingAddress();
1366 static inline MapWord FromRawValue(uintptr_t value) {
1367 return MapWord(value);
1370 inline uintptr_t ToRawValue() {
1375 // HeapObject calls the private constructor and directly reads the value.
1376 friend class HeapObject;
1378 explicit MapWord(uintptr_t value) : value_(value) {}
1384 // The content of an heap object (except for the map pointer). kTaggedValues
1385 // objects can contain both heap pointers and Smis, kMixedValues can contain
1386 // heap pointers, Smis, and raw values (e.g. doubles or strings), and kRawValues
1387 // objects can contain raw values and Smis.
1388 enum class HeapObjectContents { kTaggedValues, kMixedValues, kRawValues };
1391 // HeapObject is the superclass for all classes describing heap allocated
1393 class HeapObject: public Object {
1395 // [map]: Contains a map which contains the object's reflective
1397 inline Map* map() const;
1398 inline void set_map(Map* value);
1399 // The no-write-barrier version. This is OK if the object is white and in
1400 // new space, or if the value is an immortal immutable object, like the maps
1401 // of primitive (non-JS) objects like strings, heap numbers etc.
1402 inline void set_map_no_write_barrier(Map* value);
1404 // Get the map using acquire load.
1405 inline Map* synchronized_map();
1406 inline MapWord synchronized_map_word() const;
1408 // Set the map using release store
1409 inline void synchronized_set_map(Map* value);
1410 inline void synchronized_set_map_no_write_barrier(Map* value);
1411 inline void synchronized_set_map_word(MapWord map_word);
1413 // During garbage collection, the map word of a heap object does not
1414 // necessarily contain a map pointer.
1415 inline MapWord map_word() const;
1416 inline void set_map_word(MapWord map_word);
1418 // The Heap the object was allocated in. Used also to access Isolate.
1419 inline Heap* GetHeap() const;
1421 // Convenience method to get current isolate.
1422 inline Isolate* GetIsolate() const;
1424 // Converts an address to a HeapObject pointer.
1425 static inline HeapObject* FromAddress(Address address);
1427 // Returns the address of this HeapObject.
1428 inline Address address();
1430 // Iterates over pointers contained in the object (including the Map)
1431 void Iterate(ObjectVisitor* v);
1433 // Iterates over all pointers contained in the object except the
1434 // first map pointer. The object type is given in the first
1435 // parameter. This function does not access the map pointer in the
1436 // object, and so is safe to call while the map pointer is modified.
1437 void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
1439 // Returns the heap object's size in bytes
1442 // Indicates what type of values this heap object may contain.
1443 inline HeapObjectContents ContentType();
1445 // Given a heap object's map pointer, returns the heap size in bytes
1446 // Useful when the map pointer field is used for other purposes.
1448 inline int SizeFromMap(Map* map);
1450 // Returns the field at offset in obj, as a read/write Object* reference.
1451 // Does no checking, and is safe to use during GC, while maps are invalid.
1452 // Does not invoke write barrier, so should only be assigned to
1453 // during marking GC.
1454 static inline Object** RawField(HeapObject* obj, int offset);
1456 // Adds the |code| object related to |name| to the code cache of this map. If
1457 // this map is a dictionary map that is shared, the map copied and installed
1459 static void UpdateMapCodeCache(Handle<HeapObject> object,
1463 DECLARE_CAST(HeapObject)
1465 // Return the write barrier mode for this. Callers of this function
1466 // must be able to present a reference to an DisallowHeapAllocation
1467 // object as a sign that they are not going to use this function
1468 // from code that allocates and thus invalidates the returned write
1470 inline WriteBarrierMode GetWriteBarrierMode(
1471 const DisallowHeapAllocation& promise);
1473 // Dispatched behavior.
1474 void HeapObjectShortPrint(std::ostream& os); // NOLINT
1476 void PrintHeader(std::ostream& os, const char* id); // NOLINT
1478 DECLARE_PRINTER(HeapObject)
1479 DECLARE_VERIFIER(HeapObject)
1481 inline void VerifyObjectField(int offset);
1482 inline void VerifySmiField(int offset);
1484 // Verify a pointer is a valid HeapObject pointer that points to object
1485 // areas in the heap.
1486 static void VerifyHeapPointer(Object* p);
1489 inline AllocationAlignment RequiredAlignment();
1491 // Layout description.
1492 // First field in a heap object is map.
1493 static const int kMapOffset = Object::kHeaderSize;
1494 static const int kHeaderSize = kMapOffset + kPointerSize;
1496 STATIC_ASSERT(kMapOffset == Internals::kHeapObjectMapOffset);
1499 // helpers for calling an ObjectVisitor to iterate over pointers in the
1500 // half-open range [start, end) specified as integer offsets
1501 inline void IteratePointers(ObjectVisitor* v, int start, int end);
1502 // as above, for the single element at "offset"
1503 inline void IteratePointer(ObjectVisitor* v, int offset);
1504 // as above, for the next code link of a code object.
1505 inline void IterateNextCodeLink(ObjectVisitor* v, int offset);
1508 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1512 // This class describes a body of an object of a fixed size
1513 // in which all pointer fields are located in the [start_offset, end_offset)
1515 template<int start_offset, int end_offset, int size>
1516 class FixedBodyDescriptor {
1518 static const int kStartOffset = start_offset;
1519 static const int kEndOffset = end_offset;
1520 static const int kSize = size;
1522 static inline void IterateBody(HeapObject* obj, ObjectVisitor* v);
1524 template<typename StaticVisitor>
1525 static inline void IterateBody(HeapObject* obj) {
1526 StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
1527 HeapObject::RawField(obj, end_offset));
1532 // This class describes a body of an object of a variable size
1533 // in which all pointer fields are located in the [start_offset, object_size)
1535 template<int start_offset>
1536 class FlexibleBodyDescriptor {
1538 static const int kStartOffset = start_offset;
1540 static inline void IterateBody(HeapObject* obj,
1544 template<typename StaticVisitor>
1545 static inline void IterateBody(HeapObject* obj, int object_size) {
1546 StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
1547 HeapObject::RawField(obj, object_size));
1552 // The HeapNumber class describes heap allocated numbers that cannot be
1553 // represented in a Smi (small integer)
1554 class HeapNumber: public HeapObject {
1556 // [value]: number value.
1557 inline double value() const;
1558 inline void set_value(double value);
1560 DECLARE_CAST(HeapNumber)
1562 // Dispatched behavior.
1563 bool HeapNumberBooleanValue();
1565 void HeapNumberPrint(std::ostream& os); // NOLINT
1566 DECLARE_VERIFIER(HeapNumber)
1568 inline int get_exponent();
1569 inline int get_sign();
1571 // Layout description.
1572 static const int kValueOffset = HeapObject::kHeaderSize;
1573 // IEEE doubles are two 32 bit words. The first is just mantissa, the second
1574 // is a mixture of sign, exponent and mantissa. The offsets of two 32 bit
1575 // words within double numbers are endian dependent and they are set
1577 #if defined(V8_TARGET_LITTLE_ENDIAN)
1578 static const int kMantissaOffset = kValueOffset;
1579 static const int kExponentOffset = kValueOffset + 4;
1580 #elif defined(V8_TARGET_BIG_ENDIAN)
1581 static const int kMantissaOffset = kValueOffset + 4;
1582 static const int kExponentOffset = kValueOffset;
1584 #error Unknown byte ordering
1587 static const int kSize = kValueOffset + kDoubleSize;
1588 static const uint32_t kSignMask = 0x80000000u;
1589 static const uint32_t kExponentMask = 0x7ff00000u;
1590 static const uint32_t kMantissaMask = 0xfffffu;
1591 static const int kMantissaBits = 52;
1592 static const int kExponentBits = 11;
1593 static const int kExponentBias = 1023;
1594 static const int kExponentShift = 20;
1595 static const int kInfinityOrNanExponent =
1596 (kExponentMask >> kExponentShift) - kExponentBias;
1597 static const int kMantissaBitsInTopWord = 20;
1598 static const int kNonMantissaBitsInTopWord = 12;
1601 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1605 // The SimdValue128 class describes heap allocated 128 bit SIMD values.
1606 class Simd128Value : public HeapObject {
1608 DECLARE_CAST(Simd128Value)
1610 // Checks that another instance is bit-wise equal.
1611 bool BitwiseEquals(const Simd128Value* other) const;
1612 // Computes a hash from the 128 bit value, viewed as 4 32-bit integers.
1613 uint32_t Hash() const;
1614 // Copies the 16 bytes of SIMD data to the destination address.
1615 void CopyBits(void* destination) const;
1617 // Layout description.
1618 static const int kValueOffset = HeapObject::kHeaderSize;
1619 static const int kSize = kValueOffset + kSimd128Size;
1622 DISALLOW_IMPLICIT_CONSTRUCTORS(Simd128Value);
1626 #define SIMD128_TYPES(V) \
1627 V(Float32x4, float32x4, 4, float) \
1628 V(Int32x4, int32x4, 4, int32_t) \
1629 V(Bool32x4, bool32x4, 4, bool) \
1630 V(Int16x8, int16x8, 8, int16_t) \
1631 V(Bool16x8, bool16x8, 8, bool) \
1632 V(Int8x16, int8x16, 16, int8_t) \
1633 V(Bool8x16, bool8x16, 16, bool)
1635 #define SIMD128_VALUE_CLASS(name, type, lane_count, lane_type) \
1636 class name : public Simd128Value { \
1638 inline lane_type get_lane(int lane) const; \
1639 inline void set_lane(int lane, lane_type value); \
1641 DECLARE_CAST(name) \
1643 DECLARE_PRINTER(name) \
1644 DECLARE_VERIFIER(name) \
1647 DISALLOW_IMPLICIT_CONSTRUCTORS(name); \
1650 SIMD128_TYPES(SIMD128_VALUE_CLASS)
1653 enum EnsureElementsMode {
1654 DONT_ALLOW_DOUBLE_ELEMENTS,
1655 ALLOW_COPIED_DOUBLE_ELEMENTS,
1656 ALLOW_CONVERTED_DOUBLE_ELEMENTS
1660 // Indicator for one component of an AccessorPair.
1661 enum AccessorComponent {
1667 // JSReceiver includes types on which properties can be defined, i.e.,
1668 // JSObject and JSProxy.
1669 class JSReceiver: public HeapObject {
1671 DECLARE_CAST(JSReceiver)
1673 // Implementation of [[HasProperty]], ECMA-262 5th edition, section 8.12.6.
1674 MUST_USE_RESULT static inline Maybe<bool> HasProperty(
1675 Handle<JSReceiver> object, Handle<Name> name);
1676 MUST_USE_RESULT static inline Maybe<bool> HasOwnProperty(Handle<JSReceiver>,
1678 MUST_USE_RESULT static inline Maybe<bool> HasElement(
1679 Handle<JSReceiver> object, uint32_t index);
1680 MUST_USE_RESULT static inline Maybe<bool> HasOwnElement(
1681 Handle<JSReceiver> object, uint32_t index);
1683 // Implementation of [[Delete]], ECMA-262 5th edition, section 8.12.7.
1684 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyOrElement(
1685 Handle<JSReceiver> object, Handle<Name> name,
1686 LanguageMode language_mode = SLOPPY);
1687 MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
1688 Handle<JSReceiver> object, Handle<Name> name,
1689 LanguageMode language_mode = SLOPPY);
1690 MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
1691 LookupIterator* it, LanguageMode language_mode);
1692 MUST_USE_RESULT static MaybeHandle<Object> DeleteElement(
1693 Handle<JSReceiver> object, uint32_t index,
1694 LanguageMode language_mode = SLOPPY);
1696 // Tests for the fast common case for property enumeration.
1697 bool IsSimpleEnum();
1699 // Returns the class name ([[Class]] property in the specification).
1700 String* class_name();
1702 // Returns the constructor name (the name (possibly, inferred name) of the
1703 // function that was used to instantiate the object).
1704 String* constructor_name();
1706 MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetPropertyAttributes(
1707 Handle<JSReceiver> object, Handle<Name> name);
1708 MUST_USE_RESULT static inline Maybe<PropertyAttributes>
1709 GetOwnPropertyAttributes(Handle<JSReceiver> object, Handle<Name> name);
1711 MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetElementAttributes(
1712 Handle<JSReceiver> object, uint32_t index);
1713 MUST_USE_RESULT static inline Maybe<PropertyAttributes>
1714 GetOwnElementAttributes(Handle<JSReceiver> object, uint32_t index);
1716 MUST_USE_RESULT static Maybe<PropertyAttributes> GetPropertyAttributes(
1717 LookupIterator* it);
1720 static Handle<Object> GetDataProperty(Handle<JSReceiver> object,
1722 static Handle<Object> GetDataProperty(LookupIterator* it);
1725 // Retrieves a permanent object identity hash code. The undefined value might
1726 // be returned in case no hash was created yet.
1727 inline Object* GetIdentityHash();
1729 // Retrieves a permanent object identity hash code. May create and store a
1730 // hash code if needed and none exists.
1731 inline static Handle<Smi> GetOrCreateIdentityHash(
1732 Handle<JSReceiver> object);
1734 enum KeyCollectionType { OWN_ONLY, INCLUDE_PROTOS };
1736 // Computes the enumerable keys for a JSObject. Used for implementing
1737 // "for (n in object) { }".
1738 MUST_USE_RESULT static MaybeHandle<FixedArray> GetKeys(
1739 Handle<JSReceiver> object,
1740 KeyCollectionType type);
1743 DISALLOW_IMPLICIT_CONSTRUCTORS(JSReceiver);
1747 // The JSObject describes real heap allocated JavaScript objects with
1749 // Note that the map of JSObject changes during execution to enable inline
1751 class JSObject: public JSReceiver {
1753 // [properties]: Backing storage for properties.
1754 // properties is a FixedArray in the fast case and a Dictionary in the
1756 DECL_ACCESSORS(properties, FixedArray) // Get and set fast properties.
1757 inline void initialize_properties();
1758 inline bool HasFastProperties();
1759 // Gets slow properties for non-global objects.
1760 inline NameDictionary* property_dictionary();
1761 // Gets global object properties.
1762 inline GlobalDictionary* global_dictionary();
1764 // [elements]: The elements (properties with names that are integers).
1766 // Elements can be in two general modes: fast and slow. Each mode
1767 // corrensponds to a set of object representations of elements that
1768 // have something in common.
1770 // In the fast mode elements is a FixedArray and so each element can
1771 // be quickly accessed. This fact is used in the generated code. The
1772 // elements array can have one of three maps in this mode:
1773 // fixed_array_map, sloppy_arguments_elements_map or
1774 // fixed_cow_array_map (for copy-on-write arrays). In the latter case
1775 // the elements array may be shared by a few objects and so before
1776 // writing to any element the array must be copied. Use
1777 // EnsureWritableFastElements in this case.
1779 // In the slow mode the elements is either a NumberDictionary, a
1780 // FixedArray parameter map for a (sloppy) arguments object.
1781 DECL_ACCESSORS(elements, FixedArrayBase)
1782 inline void initialize_elements();
1783 static void ResetElements(Handle<JSObject> object);
1784 static inline void SetMapAndElements(Handle<JSObject> object,
1786 Handle<FixedArrayBase> elements);
1787 inline ElementsKind GetElementsKind();
1788 ElementsAccessor* GetElementsAccessor();
1789 // Returns true if an object has elements of FAST_SMI_ELEMENTS ElementsKind.
1790 inline bool HasFastSmiElements();
1791 // Returns true if an object has elements of FAST_ELEMENTS ElementsKind.
1792 inline bool HasFastObjectElements();
1793 // Returns true if an object has elements of FAST_ELEMENTS or
1794 // FAST_SMI_ONLY_ELEMENTS.
1795 inline bool HasFastSmiOrObjectElements();
1796 // Returns true if an object has any of the fast elements kinds.
1797 inline bool HasFastElements();
1798 // Returns true if an object has elements of FAST_DOUBLE_ELEMENTS
1800 inline bool HasFastDoubleElements();
1801 // Returns true if an object has elements of FAST_HOLEY_*_ELEMENTS
1803 inline bool HasFastHoleyElements();
1804 inline bool HasSloppyArgumentsElements();
1805 inline bool HasDictionaryElements();
1807 inline bool HasFixedTypedArrayElements();
1809 inline bool HasFixedUint8ClampedElements();
1810 inline bool HasFixedArrayElements();
1811 inline bool HasFixedInt8Elements();
1812 inline bool HasFixedUint8Elements();
1813 inline bool HasFixedInt16Elements();
1814 inline bool HasFixedUint16Elements();
1815 inline bool HasFixedInt32Elements();
1816 inline bool HasFixedUint32Elements();
1817 inline bool HasFixedFloat32Elements();
1818 inline bool HasFixedFloat64Elements();
1820 inline bool HasFastArgumentsElements();
1821 inline bool HasSlowArgumentsElements();
1822 inline SeededNumberDictionary* element_dictionary(); // Gets slow elements.
1824 // Requires: HasFastElements().
1825 static Handle<FixedArray> EnsureWritableFastElements(
1826 Handle<JSObject> object);
1828 // Collects elements starting at index 0.
1829 // Undefined values are placed after non-undefined values.
1830 // Returns the number of non-undefined values.
1831 static Handle<Object> PrepareElementsForSort(Handle<JSObject> object,
1833 // As PrepareElementsForSort, but only on objects where elements is
1834 // a dictionary, and it will stay a dictionary. Collates undefined and
1835 // unexisting elements below limit from position zero of the elements.
1836 static Handle<Object> PrepareSlowElementsForSort(Handle<JSObject> object,
1839 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithInterceptor(
1840 LookupIterator* it, Handle<Object> value);
1842 // SetLocalPropertyIgnoreAttributes converts callbacks to fields. We need to
1843 // grant an exemption to ExecutableAccessor callbacks in some cases.
1844 enum ExecutableAccessorInfoHandling { DEFAULT_HANDLING, DONT_FORCE_FIELD };
1846 MUST_USE_RESULT static MaybeHandle<Object> DefineOwnPropertyIgnoreAttributes(
1847 LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
1848 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1850 MUST_USE_RESULT static MaybeHandle<Object> SetOwnPropertyIgnoreAttributes(
1851 Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
1852 PropertyAttributes attributes,
1853 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1855 MUST_USE_RESULT static MaybeHandle<Object> SetOwnElementIgnoreAttributes(
1856 Handle<JSObject> object, uint32_t index, Handle<Object> value,
1857 PropertyAttributes attributes,
1858 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1860 // Equivalent to one of the above depending on whether |name| can be converted
1861 // to an array index.
1862 MUST_USE_RESULT static MaybeHandle<Object>
1863 DefinePropertyOrElementIgnoreAttributes(
1864 Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
1865 PropertyAttributes attributes = NONE,
1866 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1868 // Adds or reconfigures a property to attributes NONE. It will fail when it
1870 MUST_USE_RESULT static Maybe<bool> CreateDataProperty(LookupIterator* it,
1871 Handle<Object> value);
1873 static void AddProperty(Handle<JSObject> object, Handle<Name> name,
1874 Handle<Object> value, PropertyAttributes attributes);
1876 MUST_USE_RESULT static MaybeHandle<Object> AddDataElement(
1877 Handle<JSObject> receiver, uint32_t index, Handle<Object> value,
1878 PropertyAttributes attributes);
1880 // Extend the receiver with a single fast property appeared first in the
1881 // passed map. This also extends the property backing store if necessary.
1882 static void AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map);
1884 // Migrates the given object to a map whose field representations are the
1885 // lowest upper bound of all known representations for that field.
1886 static void MigrateInstance(Handle<JSObject> instance);
1888 // Migrates the given object only if the target map is already available,
1889 // or returns false if such a map is not yet available.
1890 static bool TryMigrateInstance(Handle<JSObject> instance);
1892 // Sets the property value in a normalized object given (key, value, details).
1893 // Handles the special representation of JS global objects.
1894 static void SetNormalizedProperty(Handle<JSObject> object, Handle<Name> name,
1895 Handle<Object> value,
1896 PropertyDetails details);
1897 static void SetDictionaryElement(Handle<JSObject> object, uint32_t index,
1898 Handle<Object> value,
1899 PropertyAttributes attributes);
1900 static void SetDictionaryArgumentsElement(Handle<JSObject> object,
1902 Handle<Object> value,
1903 PropertyAttributes attributes);
1905 static void OptimizeAsPrototype(Handle<JSObject> object,
1906 PrototypeOptimizationMode mode);
1907 static void ReoptimizeIfPrototype(Handle<JSObject> object);
1908 static void LazyRegisterPrototypeUser(Handle<Map> user, Isolate* isolate);
1909 static bool UnregisterPrototypeUser(Handle<Map> user, Isolate* isolate);
1910 static void InvalidatePrototypeChains(Map* map);
1912 // Alternative implementation of WeakFixedArray::NullCallback.
1913 class PrototypeRegistryCompactionCallback {
1915 static void Callback(Object* value, int old_index, int new_index);
1918 // Retrieve interceptors.
1919 InterceptorInfo* GetNamedInterceptor();
1920 InterceptorInfo* GetIndexedInterceptor();
1922 // Used from JSReceiver.
1923 MUST_USE_RESULT static Maybe<PropertyAttributes>
1924 GetPropertyAttributesWithInterceptor(LookupIterator* it);
1925 MUST_USE_RESULT static Maybe<PropertyAttributes>
1926 GetPropertyAttributesWithFailedAccessCheck(LookupIterator* it);
1928 // Retrieves an AccessorPair property from the given object. Might return
1929 // undefined if the property doesn't exist or is of a different kind.
1930 MUST_USE_RESULT static MaybeHandle<Object> GetAccessor(
1931 Handle<JSObject> object,
1933 AccessorComponent component);
1935 // Defines an AccessorPair property on the given object.
1936 // TODO(mstarzinger): Rename to SetAccessor().
1937 static MaybeHandle<Object> DefineAccessor(Handle<JSObject> object,
1939 Handle<Object> getter,
1940 Handle<Object> setter,
1941 PropertyAttributes attributes);
1943 // Defines an AccessorInfo property on the given object.
1944 MUST_USE_RESULT static MaybeHandle<Object> SetAccessor(
1945 Handle<JSObject> object,
1946 Handle<AccessorInfo> info);
1948 // The result must be checked first for exceptions. If there's no exception,
1949 // the output parameter |done| indicates whether the interceptor has a result
1951 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithInterceptor(
1952 LookupIterator* it, bool* done);
1954 // Accessors for hidden properties object.
1956 // Hidden properties are not own properties of the object itself.
1957 // Instead they are stored in an auxiliary structure kept as an own
1958 // property with a special name Heap::hidden_string(). But if the
1959 // receiver is a JSGlobalProxy then the auxiliary object is a property
1960 // of its prototype, and if it's a detached proxy, then you can't have
1961 // hidden properties.
1963 // Sets a hidden property on this object. Returns this object if successful,
1964 // undefined if called on a detached proxy.
1965 static Handle<Object> SetHiddenProperty(Handle<JSObject> object,
1967 Handle<Object> value);
1968 // Gets the value of a hidden property with the given key. Returns the hole
1969 // if the property doesn't exist (or if called on a detached proxy),
1970 // otherwise returns the value set for the key.
1971 Object* GetHiddenProperty(Handle<Name> key);
1972 // Deletes a hidden property. Deleting a non-existing property is
1973 // considered successful.
1974 static void DeleteHiddenProperty(Handle<JSObject> object,
1976 // Returns true if the object has a property with the hidden string as name.
1977 static bool HasHiddenProperties(Handle<JSObject> object);
1979 static void SetIdentityHash(Handle<JSObject> object, Handle<Smi> hash);
1981 static void ValidateElements(Handle<JSObject> object);
1983 // Makes sure that this object can contain HeapObject as elements.
1984 static inline void EnsureCanContainHeapObjectElements(Handle<JSObject> obj);
1986 // Makes sure that this object can contain the specified elements.
1987 static inline void EnsureCanContainElements(
1988 Handle<JSObject> object,
1991 EnsureElementsMode mode);
1992 static inline void EnsureCanContainElements(
1993 Handle<JSObject> object,
1994 Handle<FixedArrayBase> elements,
1996 EnsureElementsMode mode);
1997 static void EnsureCanContainElements(
1998 Handle<JSObject> object,
1999 Arguments* arguments,
2002 EnsureElementsMode mode);
2004 // Would we convert a fast elements array to dictionary mode given
2005 // an access at key?
2006 bool WouldConvertToSlowElements(uint32_t index);
2008 // Computes the new capacity when expanding the elements of a JSObject.
2009 static uint32_t NewElementsCapacity(uint32_t old_capacity) {
2010 // (old_capacity + 50%) + 16
2011 return old_capacity + (old_capacity >> 1) + 16;
2014 // These methods do not perform access checks!
2015 static void UpdateAllocationSite(Handle<JSObject> object,
2016 ElementsKind to_kind);
2018 // Lookup interceptors are used for handling properties controlled by host
2020 inline bool HasNamedInterceptor();
2021 inline bool HasIndexedInterceptor();
2023 // Computes the enumerable keys from interceptors. Used for debug mirrors and
2024 // by JSReceiver::GetKeys.
2025 MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForNamedInterceptor(
2026 Handle<JSObject> object,
2027 Handle<JSReceiver> receiver);
2028 MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForIndexedInterceptor(
2029 Handle<JSObject> object,
2030 Handle<JSReceiver> receiver);
2032 // Support functions for v8 api (needed for correct interceptor behavior).
2033 MUST_USE_RESULT static Maybe<bool> HasRealNamedProperty(
2034 Handle<JSObject> object, Handle<Name> name);
2035 MUST_USE_RESULT static Maybe<bool> HasRealElementProperty(
2036 Handle<JSObject> object, uint32_t index);
2037 MUST_USE_RESULT static Maybe<bool> HasRealNamedCallbackProperty(
2038 Handle<JSObject> object, Handle<Name> name);
2040 // Get the header size for a JSObject. Used to compute the index of
2041 // internal fields as well as the number of internal fields.
2042 inline int GetHeaderSize();
2044 inline int GetInternalFieldCount();
2045 inline int GetInternalFieldOffset(int index);
2046 inline Object* GetInternalField(int index);
2047 inline void SetInternalField(int index, Object* value);
2048 inline void SetInternalField(int index, Smi* value);
2050 // Returns the number of properties on this object filtering out properties
2051 // with the specified attributes (ignoring interceptors).
2052 int NumberOfOwnProperties(PropertyAttributes filter = NONE);
2053 // Fill in details for properties into storage starting at the specified
2054 // index. Returns the number of properties added.
2055 int GetOwnPropertyNames(FixedArray* storage, int index,
2056 PropertyAttributes filter = NONE);
2058 // Returns the number of properties on this object filtering out properties
2059 // with the specified attributes (ignoring interceptors).
2060 int NumberOfOwnElements(PropertyAttributes filter);
2061 // Returns the number of enumerable elements (ignoring interceptors).
2062 int NumberOfEnumElements();
2063 // Returns the number of elements on this object filtering out elements
2064 // with the specified attributes (ignoring interceptors).
2065 int GetOwnElementKeys(FixedArray* storage, PropertyAttributes filter);
2066 // Count and fill in the enumerable elements into storage.
2067 // (storage->length() == NumberOfEnumElements()).
2068 // If storage is NULL, will count the elements without adding
2069 // them to any storage.
2070 // Returns the number of enumerable elements.
2071 int GetEnumElementKeys(FixedArray* storage);
2073 static Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
2076 // Returns a new map with all transitions dropped from the object's current
2077 // map and the ElementsKind set.
2078 static Handle<Map> GetElementsTransitionMap(Handle<JSObject> object,
2079 ElementsKind to_kind);
2080 static void TransitionElementsKind(Handle<JSObject> object,
2081 ElementsKind to_kind);
2083 // Always use this to migrate an object to a new map.
2084 // |expected_additional_properties| is only used for fast-to-slow transitions
2085 // and ignored otherwise.
2086 static void MigrateToMap(Handle<JSObject> object, Handle<Map> new_map,
2087 int expected_additional_properties = 0);
2089 // Convert the object to use the canonical dictionary
2090 // representation. If the object is expected to have additional properties
2091 // added this number can be indicated to have the backing store allocated to
2092 // an initial capacity for holding these properties.
2093 static void NormalizeProperties(Handle<JSObject> object,
2094 PropertyNormalizationMode mode,
2095 int expected_additional_properties,
2096 const char* reason);
2098 // Convert and update the elements backing store to be a
2099 // SeededNumberDictionary dictionary. Returns the backing after conversion.
2100 static Handle<SeededNumberDictionary> NormalizeElements(
2101 Handle<JSObject> object);
2103 void RequireSlowElements(SeededNumberDictionary* dictionary);
2105 // Transform slow named properties to fast variants.
2106 static void MigrateSlowToFast(Handle<JSObject> object,
2107 int unused_property_fields, const char* reason);
2109 inline bool IsUnboxedDoubleField(FieldIndex index);
2111 // Access fast-case object properties at index.
2112 static Handle<Object> FastPropertyAt(Handle<JSObject> object,
2113 Representation representation,
2115 inline Object* RawFastPropertyAt(FieldIndex index);
2116 inline double RawFastDoublePropertyAt(FieldIndex index);
2118 inline void FastPropertyAtPut(FieldIndex index, Object* value);
2119 inline void RawFastPropertyAtPut(FieldIndex index, Object* value);
2120 inline void RawFastDoublePropertyAtPut(FieldIndex index, double value);
2121 inline void WriteToField(int descriptor, Object* value);
2123 // Access to in object properties.
2124 inline int GetInObjectPropertyOffset(int index);
2125 inline Object* InObjectPropertyAt(int index);
2126 inline Object* InObjectPropertyAtPut(int index,
2128 WriteBarrierMode mode
2129 = UPDATE_WRITE_BARRIER);
2131 // Set the object's prototype (only JSReceiver and null are allowed values).
2132 MUST_USE_RESULT static MaybeHandle<Object> SetPrototype(
2133 Handle<JSObject> object, Handle<Object> value, bool from_javascript);
2135 // Initializes the body after properties slot, properties slot is
2136 // initialized by set_properties. Fill the pre-allocated fields with
2137 // pre_allocated_value and the rest with filler_value.
2138 // Note: this call does not update write barrier, the caller is responsible
2139 // to ensure that |filler_value| can be collected without WB here.
2140 inline void InitializeBody(Map* map,
2141 Object* pre_allocated_value,
2142 Object* filler_value);
2144 // Check whether this object references another object
2145 bool ReferencesObject(Object* obj);
2147 // Disalow further properties to be added to the oject.
2148 MUST_USE_RESULT static MaybeHandle<Object> PreventExtensions(
2149 Handle<JSObject> object);
2151 bool IsExtensible();
2154 MUST_USE_RESULT static MaybeHandle<Object> Seal(Handle<JSObject> object);
2156 // ES5 Object.freeze
2157 MUST_USE_RESULT static MaybeHandle<Object> Freeze(Handle<JSObject> object);
2159 // Called the first time an object is observed with ES7 Object.observe.
2160 static void SetObserved(Handle<JSObject> object);
2163 enum DeepCopyHints { kNoHints = 0, kObjectIsShallow = 1 };
2165 MUST_USE_RESULT static MaybeHandle<JSObject> DeepCopy(
2166 Handle<JSObject> object,
2167 AllocationSiteUsageContext* site_context,
2168 DeepCopyHints hints = kNoHints);
2169 MUST_USE_RESULT static MaybeHandle<JSObject> DeepWalk(
2170 Handle<JSObject> object,
2171 AllocationSiteCreationContext* site_context);
2173 DECLARE_CAST(JSObject)
2175 // Dispatched behavior.
2176 void JSObjectShortPrint(StringStream* accumulator);
2177 DECLARE_PRINTER(JSObject)
2178 DECLARE_VERIFIER(JSObject)
2180 void PrintProperties(std::ostream& os); // NOLINT
2181 void PrintElements(std::ostream& os); // NOLINT
2183 #if defined(DEBUG) || defined(OBJECT_PRINT)
2184 void PrintTransitions(std::ostream& os); // NOLINT
2187 static void PrintElementsTransition(
2188 FILE* file, Handle<JSObject> object,
2189 ElementsKind from_kind, Handle<FixedArrayBase> from_elements,
2190 ElementsKind to_kind, Handle<FixedArrayBase> to_elements);
2192 void PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map);
2195 // Structure for collecting spill information about JSObjects.
2196 class SpillInformation {
2200 int number_of_objects_;
2201 int number_of_objects_with_fast_properties_;
2202 int number_of_objects_with_fast_elements_;
2203 int number_of_fast_used_fields_;
2204 int number_of_fast_unused_fields_;
2205 int number_of_slow_used_properties_;
2206 int number_of_slow_unused_properties_;
2207 int number_of_fast_used_elements_;
2208 int number_of_fast_unused_elements_;
2209 int number_of_slow_used_elements_;
2210 int number_of_slow_unused_elements_;
2213 void IncrementSpillStatistics(SpillInformation* info);
2217 // If a GC was caused while constructing this object, the elements pointer
2218 // may point to a one pointer filler map. The object won't be rooted, but
2219 // our heap verification code could stumble across it.
2220 bool ElementsAreSafeToExamine();
2223 Object* SlowReverseLookup(Object* value);
2225 // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
2226 // Also maximal value of JSArray's length property.
2227 static const uint32_t kMaxElementCount = 0xffffffffu;
2229 // Constants for heuristics controlling conversion of fast elements
2230 // to slow elements.
2232 // Maximal gap that can be introduced by adding an element beyond
2233 // the current elements length.
2234 static const uint32_t kMaxGap = 1024;
2236 // Maximal length of fast elements array that won't be checked for
2237 // being dense enough on expansion.
2238 static const int kMaxUncheckedFastElementsLength = 5000;
2240 // Same as above but for old arrays. This limit is more strict. We
2241 // don't want to be wasteful with long lived objects.
2242 static const int kMaxUncheckedOldFastElementsLength = 500;
2244 // Note that Page::kMaxRegularHeapObjectSize puts a limit on
2245 // permissible values (see the DCHECK in heap.cc).
2246 static const int kInitialMaxFastElementArray = 100000;
2248 // This constant applies only to the initial map of "global.Object" and
2249 // not to arbitrary other JSObject maps.
2250 static const int kInitialGlobalObjectUnusedPropertiesCount = 4;
2252 static const int kMaxInstanceSize = 255 * kPointerSize;
2253 // When extending the backing storage for property values, we increase
2254 // its size by more than the 1 entry necessary, so sequentially adding fields
2255 // to the same object requires fewer allocations and copies.
2256 static const int kFieldsAdded = 3;
2258 // Layout description.
2259 static const int kPropertiesOffset = HeapObject::kHeaderSize;
2260 static const int kElementsOffset = kPropertiesOffset + kPointerSize;
2261 static const int kHeaderSize = kElementsOffset + kPointerSize;
2263 STATIC_ASSERT(kHeaderSize == Internals::kJSObjectHeaderSize);
2265 class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> {
2267 static inline int SizeOf(Map* map, HeapObject* object);
2270 Context* GetCreationContext();
2272 // Enqueue change record for Object.observe. May cause GC.
2273 MUST_USE_RESULT static MaybeHandle<Object> EnqueueChangeRecord(
2274 Handle<JSObject> object, const char* type, Handle<Name> name,
2275 Handle<Object> old_value);
2277 // Gets the number of currently used elements.
2278 int GetFastElementsUsage();
2280 // Deletes an existing named property in a normalized object.
2281 static void DeleteNormalizedProperty(Handle<JSObject> object,
2282 Handle<Name> name, int entry);
2284 static bool AllCanRead(LookupIterator* it);
2285 static bool AllCanWrite(LookupIterator* it);
2288 friend class JSReceiver;
2289 friend class Object;
2291 static void MigrateFastToFast(Handle<JSObject> object, Handle<Map> new_map);
2292 static void MigrateFastToSlow(Handle<JSObject> object,
2293 Handle<Map> new_map,
2294 int expected_additional_properties);
2296 // Used from Object::GetProperty().
2297 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithFailedAccessCheck(
2298 LookupIterator* it);
2300 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithFailedAccessCheck(
2301 LookupIterator* it, Handle<Object> value);
2303 // Add a property to a slow-case object.
2304 static void AddSlowProperty(Handle<JSObject> object,
2306 Handle<Object> value,
2307 PropertyAttributes attributes);
2309 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithInterceptor(
2310 LookupIterator* it);
2312 bool ReferencesObjectFromElements(FixedArray* elements,
2316 // Return the hash table backing store or the inline stored identity hash,
2317 // whatever is found.
2318 MUST_USE_RESULT Object* GetHiddenPropertiesHashTable();
2320 // Return the hash table backing store for hidden properties. If there is no
2321 // backing store, allocate one.
2322 static Handle<ObjectHashTable> GetOrCreateHiddenPropertiesHashtable(
2323 Handle<JSObject> object);
2325 // Set the hidden property backing store to either a hash table or
2326 // the inline-stored identity hash.
2327 static Handle<Object> SetHiddenPropertiesHashTable(
2328 Handle<JSObject> object,
2329 Handle<Object> value);
2331 MUST_USE_RESULT Object* GetIdentityHash();
2333 static Handle<Smi> GetOrCreateIdentityHash(Handle<JSObject> object);
2335 static Handle<SeededNumberDictionary> GetNormalizedElementDictionary(
2336 Handle<JSObject> object, Handle<FixedArrayBase> elements);
2338 // Helper for fast versions of preventExtensions, seal, and freeze.
2339 // attrs is one of NONE, SEALED, or FROZEN (depending on the operation).
2340 template <PropertyAttributes attrs>
2341 MUST_USE_RESULT static MaybeHandle<Object> PreventExtensionsWithTransition(
2342 Handle<JSObject> object);
2344 DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
2348 // Common superclass for FixedArrays that allow implementations to share
2349 // common accessors and some code paths.
2350 class FixedArrayBase: public HeapObject {
2352 // [length]: length of the array.
2353 inline int length() const;
2354 inline void set_length(int value);
2356 // Get and set the length using acquire loads and release stores.
2357 inline int synchronized_length() const;
2358 inline void synchronized_set_length(int value);
2360 DECLARE_CAST(FixedArrayBase)
2362 // Layout description.
2363 // Length is smi tagged when it is stored.
2364 static const int kLengthOffset = HeapObject::kHeaderSize;
2365 static const int kHeaderSize = kLengthOffset + kPointerSize;
2369 class FixedDoubleArray;
2370 class IncrementalMarking;
2373 // FixedArray describes fixed-sized arrays with element type Object*.
2374 class FixedArray: public FixedArrayBase {
2376 // Setter and getter for elements.
2377 inline Object* get(int index) const;
2378 void SetValue(uint32_t index, Object* value);
2379 static inline Handle<Object> get(Handle<FixedArray> array, int index);
2380 // Setter that uses write barrier.
2381 inline void set(int index, Object* value);
2382 inline bool is_the_hole(int index);
2384 // Setter that doesn't need write barrier.
2385 inline void set(int index, Smi* value);
2386 // Setter with explicit barrier mode.
2387 inline void set(int index, Object* value, WriteBarrierMode mode);
2389 // Setters for frequently used oddballs located in old space.
2390 inline void set_undefined(int index);
2391 inline void set_null(int index);
2392 inline void set_the_hole(int index);
2394 inline Object** GetFirstElementAddress();
2395 inline bool ContainsOnlySmisOrHoles();
2397 // Gives access to raw memory which stores the array's data.
2398 inline Object** data_start();
2400 inline void FillWithHoles(int from, int to);
2402 // Shrink length and insert filler objects.
2403 void Shrink(int length);
2405 enum KeyFilter { ALL_KEYS, NON_SYMBOL_KEYS };
2407 // Add the elements of a JSArray to this FixedArray.
2408 MUST_USE_RESULT static MaybeHandle<FixedArray> AddKeysFromArrayLike(
2409 Handle<FixedArray> content, Handle<JSObject> array,
2410 KeyFilter filter = ALL_KEYS);
2412 // Computes the union of keys and return the result.
2413 // Used for implementing "for (n in object) { }"
2414 MUST_USE_RESULT static MaybeHandle<FixedArray> UnionOfKeys(
2415 Handle<FixedArray> first,
2416 Handle<FixedArray> second);
2418 // Copy a sub array from the receiver to dest.
2419 void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
2421 // Garbage collection support.
2422 static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
2424 // Code Generation support.
2425 static int OffsetOfElementAt(int index) { return SizeFor(index); }
2427 // Garbage collection support.
2428 Object** RawFieldOfElementAt(int index) {
2429 return HeapObject::RawField(this, OffsetOfElementAt(index));
2432 DECLARE_CAST(FixedArray)
2434 // Maximal allowed size, in bytes, of a single FixedArray.
2435 // Prevents overflowing size computations, as well as extreme memory
2437 static const int kMaxSize = 128 * MB * kPointerSize;
2438 // Maximally allowed length of a FixedArray.
2439 static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
2441 // Dispatched behavior.
2442 DECLARE_PRINTER(FixedArray)
2443 DECLARE_VERIFIER(FixedArray)
2445 // Checks if two FixedArrays have identical contents.
2446 bool IsEqualTo(FixedArray* other);
2449 // Swap two elements in a pair of arrays. If this array and the
2450 // numbers array are the same object, the elements are only swapped
2452 void SwapPairs(FixedArray* numbers, int i, int j);
2454 // Sort prefix of this array and the numbers array as pairs wrt. the
2455 // numbers. If the numbers array and the this array are the same
2456 // object, the prefix of this array is sorted.
2457 void SortPairs(FixedArray* numbers, uint32_t len);
2459 class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> {
2461 static inline int SizeOf(Map* map, HeapObject* object) {
2463 reinterpret_cast<FixedArray*>(object)->synchronized_length());
2468 // Set operation on FixedArray without using write barriers. Can
2469 // only be used for storing old space objects or smis.
2470 static inline void NoWriteBarrierSet(FixedArray* array,
2474 // Set operation on FixedArray without incremental write barrier. Can
2475 // only be used if the object is guaranteed to be white (whiteness witness
2477 static inline void NoIncrementalWriteBarrierSet(FixedArray* array,
2482 STATIC_ASSERT(kHeaderSize == Internals::kFixedArrayHeaderSize);
2484 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
2488 // FixedDoubleArray describes fixed-sized arrays with element type double.
2489 class FixedDoubleArray: public FixedArrayBase {
2491 // Setter and getter for elements.
2492 inline double get_scalar(int index);
2493 inline uint64_t get_representation(int index);
2494 static inline Handle<Object> get(Handle<FixedDoubleArray> array, int index);
2495 // This accessor has to get a Number as |value|.
2496 void SetValue(uint32_t index, Object* value);
2497 inline void set(int index, double value);
2498 inline void set_the_hole(int index);
2500 // Checking for the hole.
2501 inline bool is_the_hole(int index);
2503 // Garbage collection support.
2504 inline static int SizeFor(int length) {
2505 return kHeaderSize + length * kDoubleSize;
2508 // Gives access to raw memory which stores the array's data.
2509 inline double* data_start();
2511 inline void FillWithHoles(int from, int to);
2513 // Code Generation support.
2514 static int OffsetOfElementAt(int index) { return SizeFor(index); }
2516 DECLARE_CAST(FixedDoubleArray)
2518 // Maximal allowed size, in bytes, of a single FixedDoubleArray.
2519 // Prevents overflowing size computations, as well as extreme memory
2521 static const int kMaxSize = 512 * MB;
2522 // Maximally allowed length of a FixedArray.
2523 static const int kMaxLength = (kMaxSize - kHeaderSize) / kDoubleSize;
2525 // Dispatched behavior.
2526 DECLARE_PRINTER(FixedDoubleArray)
2527 DECLARE_VERIFIER(FixedDoubleArray)
2530 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedDoubleArray);
2534 class WeakFixedArray : public FixedArray {
2536 // If |maybe_array| is not a WeakFixedArray, a fresh one will be allocated.
2537 // This function does not check if the value exists already, callers must
2538 // ensure this themselves if necessary.
2539 static Handle<WeakFixedArray> Add(Handle<Object> maybe_array,
2540 Handle<HeapObject> value,
2541 int* assigned_index = NULL);
2543 // Returns true if an entry was found and removed.
2544 bool Remove(Handle<HeapObject> value);
2546 class NullCallback {
2548 static void Callback(Object* value, int old_index, int new_index) {}
2551 template <class CompactionCallback>
2554 inline Object* Get(int index) const;
2555 inline void Clear(int index);
2556 inline int Length() const;
2558 inline bool IsEmptySlot(int index) const;
2559 static Object* Empty() { return Smi::FromInt(0); }
2561 DECLARE_CAST(WeakFixedArray)
2564 static const int kLastUsedIndexIndex = 0;
2565 static const int kFirstIndex = 1;
2567 static Handle<WeakFixedArray> Allocate(
2568 Isolate* isolate, int size, Handle<WeakFixedArray> initialize_from);
2570 static void Set(Handle<WeakFixedArray> array, int index,
2571 Handle<HeapObject> value);
2572 inline void clear(int index);
2574 inline int last_used_index() const;
2575 inline void set_last_used_index(int index);
2577 // Disallow inherited setters.
2578 void set(int index, Smi* value);
2579 void set(int index, Object* value);
2580 void set(int index, Object* value, WriteBarrierMode mode);
2581 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakFixedArray);
2585 // Generic array grows dynamically with O(1) amortized insertion.
2586 class ArrayList : public FixedArray {
2590 // Use this if GC can delete elements from the array.
2591 kReloadLengthAfterAllocation,
2593 static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj,
2594 AddMode mode = kNone);
2595 static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj1,
2596 Handle<Object> obj2, AddMode = kNone);
2597 inline int Length();
2598 inline void SetLength(int length);
2599 inline Object* Get(int index);
2600 inline Object** Slot(int index);
2601 inline void Set(int index, Object* obj);
2602 inline void Clear(int index, Object* undefined);
2603 DECLARE_CAST(ArrayList)
2606 static Handle<ArrayList> EnsureSpace(Handle<ArrayList> array, int length);
2607 static const int kLengthIndex = 0;
2608 static const int kFirstIndex = 1;
2609 DISALLOW_IMPLICIT_CONSTRUCTORS(ArrayList);
2613 // DescriptorArrays are fixed arrays used to hold instance descriptors.
2614 // The format of the these objects is:
2615 // [0]: Number of descriptors
2616 // [1]: Either Smi(0) if uninitialized, or a pointer to small fixed array:
2617 // [0]: pointer to fixed array with enum cache
2618 // [1]: either Smi(0) or pointer to fixed array with indices
2620 // [2 + number of descriptors * kDescriptorSize]: start of slack
2621 class DescriptorArray: public FixedArray {
2623 // Returns true for both shared empty_descriptor_array and for smis, which the
2624 // map uses to encode additional bit fields when the descriptor array is not
2626 inline bool IsEmpty();
2628 // Returns the number of descriptors in the array.
2629 int number_of_descriptors() {
2630 DCHECK(length() >= kFirstIndex || IsEmpty());
2632 return len == 0 ? 0 : Smi::cast(get(kDescriptorLengthIndex))->value();
2635 int number_of_descriptors_storage() {
2637 return len == 0 ? 0 : (len - kFirstIndex) / kDescriptorSize;
2640 int NumberOfSlackDescriptors() {
2641 return number_of_descriptors_storage() - number_of_descriptors();
2644 inline void SetNumberOfDescriptors(int number_of_descriptors);
2645 inline int number_of_entries() { return number_of_descriptors(); }
2647 bool HasEnumCache() {
2648 return !IsEmpty() && !get(kEnumCacheIndex)->IsSmi();
2651 void CopyEnumCacheFrom(DescriptorArray* array) {
2652 set(kEnumCacheIndex, array->get(kEnumCacheIndex));
2655 FixedArray* GetEnumCache() {
2656 DCHECK(HasEnumCache());
2657 FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex));
2658 return FixedArray::cast(bridge->get(kEnumCacheBridgeCacheIndex));
2661 bool HasEnumIndicesCache() {
2662 if (IsEmpty()) return false;
2663 Object* object = get(kEnumCacheIndex);
2664 if (object->IsSmi()) return false;
2665 FixedArray* bridge = FixedArray::cast(object);
2666 return !bridge->get(kEnumCacheBridgeIndicesCacheIndex)->IsSmi();
2669 FixedArray* GetEnumIndicesCache() {
2670 DCHECK(HasEnumIndicesCache());
2671 FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex));
2672 return FixedArray::cast(bridge->get(kEnumCacheBridgeIndicesCacheIndex));
2675 Object** GetEnumCacheSlot() {
2676 DCHECK(HasEnumCache());
2677 return HeapObject::RawField(reinterpret_cast<HeapObject*>(this),
2681 void ClearEnumCache();
2683 // Initialize or change the enum cache,
2684 // using the supplied storage for the small "bridge".
2685 void SetEnumCache(FixedArray* bridge_storage,
2686 FixedArray* new_cache,
2687 Object* new_index_cache);
2689 bool CanHoldValue(int descriptor, Object* value);
2691 // Accessors for fetching instance descriptor at descriptor number.
2692 inline Name* GetKey(int descriptor_number);
2693 inline Object** GetKeySlot(int descriptor_number);
2694 inline Object* GetValue(int descriptor_number);
2695 inline void SetValue(int descriptor_number, Object* value);
2696 inline Object** GetValueSlot(int descriptor_number);
2697 static inline int GetValueOffset(int descriptor_number);
2698 inline Object** GetDescriptorStartSlot(int descriptor_number);
2699 inline Object** GetDescriptorEndSlot(int descriptor_number);
2700 inline PropertyDetails GetDetails(int descriptor_number);
2701 inline PropertyType GetType(int descriptor_number);
2702 inline int GetFieldIndex(int descriptor_number);
2703 inline HeapType* GetFieldType(int descriptor_number);
2704 inline Object* GetConstant(int descriptor_number);
2705 inline Object* GetCallbacksObject(int descriptor_number);
2706 inline AccessorDescriptor* GetCallbacks(int descriptor_number);
2708 inline Name* GetSortedKey(int descriptor_number);
2709 inline int GetSortedKeyIndex(int descriptor_number);
2710 inline void SetSortedKey(int pointer, int descriptor_number);
2711 inline void SetRepresentation(int descriptor_number,
2712 Representation representation);
2714 // Accessor for complete descriptor.
2715 inline void Get(int descriptor_number, Descriptor* desc);
2716 inline void Set(int descriptor_number, Descriptor* desc);
2717 void Replace(int descriptor_number, Descriptor* descriptor);
2719 // Append automatically sets the enumeration index. This should only be used
2720 // to add descriptors in bulk at the end, followed by sorting the descriptor
2722 inline void Append(Descriptor* desc);
2724 static Handle<DescriptorArray> CopyUpTo(Handle<DescriptorArray> desc,
2725 int enumeration_index,
2728 static Handle<DescriptorArray> CopyUpToAddAttributes(
2729 Handle<DescriptorArray> desc,
2730 int enumeration_index,
2731 PropertyAttributes attributes,
2734 // Sort the instance descriptors by the hash codes of their keys.
2737 // Search the instance descriptors for given name.
2738 INLINE(int Search(Name* name, int number_of_own_descriptors));
2740 // As the above, but uses DescriptorLookupCache and updates it when
2742 INLINE(int SearchWithCache(Name* name, Map* map));
2744 // Allocates a DescriptorArray, but returns the singleton
2745 // empty descriptor array object if number_of_descriptors is 0.
2746 static Handle<DescriptorArray> Allocate(Isolate* isolate,
2747 int number_of_descriptors,
2750 DECLARE_CAST(DescriptorArray)
2752 // Constant for denoting key was not found.
2753 static const int kNotFound = -1;
2755 static const int kDescriptorLengthIndex = 0;
2756 static const int kEnumCacheIndex = 1;
2757 static const int kFirstIndex = 2;
2759 // The length of the "bridge" to the enum cache.
2760 static const int kEnumCacheBridgeLength = 2;
2761 static const int kEnumCacheBridgeCacheIndex = 0;
2762 static const int kEnumCacheBridgeIndicesCacheIndex = 1;
2764 // Layout description.
2765 static const int kDescriptorLengthOffset = FixedArray::kHeaderSize;
2766 static const int kEnumCacheOffset = kDescriptorLengthOffset + kPointerSize;
2767 static const int kFirstOffset = kEnumCacheOffset + kPointerSize;
2769 // Layout description for the bridge array.
2770 static const int kEnumCacheBridgeCacheOffset = FixedArray::kHeaderSize;
2772 // Layout of descriptor.
2773 static const int kDescriptorKey = 0;
2774 static const int kDescriptorDetails = 1;
2775 static const int kDescriptorValue = 2;
2776 static const int kDescriptorSize = 3;
2778 #if defined(DEBUG) || defined(OBJECT_PRINT)
2779 // For our gdb macros, we should perhaps change these in the future.
2782 // Print all the descriptors.
2783 void PrintDescriptors(std::ostream& os); // NOLINT
2787 // Is the descriptor array sorted and without duplicates?
2788 bool IsSortedNoDuplicates(int valid_descriptors = -1);
2790 // Is the descriptor array consistent with the back pointers in targets?
2791 bool IsConsistentWithBackPointers(Map* current_map);
2793 // Are two DescriptorArrays equal?
2794 bool IsEqualTo(DescriptorArray* other);
2797 // Returns the fixed array length required to hold number_of_descriptors
2799 static int LengthFor(int number_of_descriptors) {
2800 return ToKeyIndex(number_of_descriptors);
2804 // WhitenessWitness is used to prove that a descriptor array is white
2805 // (unmarked), so incremental write barriers can be skipped because the
2806 // marking invariant cannot be broken and slots pointing into evacuation
2807 // candidates will be discovered when the object is scanned. A witness is
2808 // always stack-allocated right after creating an array. By allocating a
2809 // witness, incremental marking is globally disabled. The witness is then
2810 // passed along wherever needed to statically prove that the array is known to
2812 class WhitenessWitness {
2814 inline explicit WhitenessWitness(DescriptorArray* array);
2815 inline ~WhitenessWitness();
2818 IncrementalMarking* marking_;
2821 // An entry in a DescriptorArray, represented as an (array, index) pair.
2824 inline explicit Entry(DescriptorArray* descs, int index) :
2825 descs_(descs), index_(index) { }
2827 inline PropertyType type() { return descs_->GetType(index_); }
2828 inline Object* GetCallbackObject() { return descs_->GetValue(index_); }
2831 DescriptorArray* descs_;
2835 // Conversion from descriptor number to array indices.
2836 static int ToKeyIndex(int descriptor_number) {
2837 return kFirstIndex +
2838 (descriptor_number * kDescriptorSize) +
2842 static int ToDetailsIndex(int descriptor_number) {
2843 return kFirstIndex +
2844 (descriptor_number * kDescriptorSize) +
2848 static int ToValueIndex(int descriptor_number) {
2849 return kFirstIndex +
2850 (descriptor_number * kDescriptorSize) +
2854 // Transfer a complete descriptor from the src descriptor array to this
2855 // descriptor array.
2856 void CopyFrom(int index, DescriptorArray* src, const WhitenessWitness&);
2858 inline void Set(int descriptor_number,
2860 const WhitenessWitness&);
2862 // Swap first and second descriptor.
2863 inline void SwapSortedKeys(int first, int second);
2865 DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
2869 enum SearchMode { ALL_ENTRIES, VALID_ENTRIES };
2871 template <SearchMode search_mode, typename T>
2872 inline int Search(T* array, Name* name, int valid_entries = 0,
2873 int* out_insertion_index = NULL);
2876 // HashTable is a subclass of FixedArray that implements a hash table
2877 // that uses open addressing and quadratic probing.
2879 // In order for the quadratic probing to work, elements that have not
2880 // yet been used and elements that have been deleted are
2881 // distinguished. Probing continues when deleted elements are
2882 // encountered and stops when unused elements are encountered.
2884 // - Elements with key == undefined have not been used yet.
2885 // - Elements with key == the_hole have been deleted.
2887 // The hash table class is parameterized with a Shape and a Key.
2888 // Shape must be a class with the following interface:
2889 // class ExampleShape {
2891 // // Tells whether key matches other.
2892 // static bool IsMatch(Key key, Object* other);
2893 // // Returns the hash value for key.
2894 // static uint32_t Hash(Key key);
2895 // // Returns the hash value for object.
2896 // static uint32_t HashForObject(Key key, Object* object);
2897 // // Convert key to an object.
2898 // static inline Handle<Object> AsHandle(Isolate* isolate, Key key);
2899 // // The prefix size indicates number of elements in the beginning
2900 // // of the backing storage.
2901 // static const int kPrefixSize = ..;
2902 // // The Element size indicates number of elements per entry.
2903 // static const int kEntrySize = ..;
2905 // The prefix size indicates an amount of memory in the
2906 // beginning of the backing storage that can be used for non-element
2907 // information by subclasses.
2909 template<typename Key>
2912 static const bool UsesSeed = false;
2913 static uint32_t Hash(Key key) { return 0; }
2914 static uint32_t SeededHash(Key key, uint32_t seed) {
2918 static uint32_t HashForObject(Key key, Object* object) { return 0; }
2919 static uint32_t SeededHashForObject(Key key, uint32_t seed, Object* object) {
2921 return HashForObject(key, object);
2926 class HashTableBase : public FixedArray {
2928 // Returns the number of elements in the hash table.
2929 int NumberOfElements() {
2930 return Smi::cast(get(kNumberOfElementsIndex))->value();
2933 // Returns the number of deleted elements in the hash table.
2934 int NumberOfDeletedElements() {
2935 return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
2938 // Returns the capacity of the hash table.
2940 return Smi::cast(get(kCapacityIndex))->value();
2943 // ElementAdded should be called whenever an element is added to a
2945 void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
2947 // ElementRemoved should be called whenever an element is removed from
2949 void ElementRemoved() {
2950 SetNumberOfElements(NumberOfElements() - 1);
2951 SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
2953 void ElementsRemoved(int n) {
2954 SetNumberOfElements(NumberOfElements() - n);
2955 SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
2958 // Computes the required capacity for a table holding the given
2959 // number of elements. May be more than HashTable::kMaxCapacity.
2960 static inline int ComputeCapacity(int at_least_space_for);
2962 // Tells whether k is a real key. The hole and undefined are not allowed
2963 // as keys and can be used to indicate missing or deleted elements.
2964 bool IsKey(Object* k) {
2965 return !k->IsTheHole() && !k->IsUndefined();
2968 // Compute the probe offset (quadratic probing).
2969 INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
2970 return (n + n * n) >> 1;
2973 static const int kNumberOfElementsIndex = 0;
2974 static const int kNumberOfDeletedElementsIndex = 1;
2975 static const int kCapacityIndex = 2;
2976 static const int kPrefixStartIndex = 3;
2978 // Constant used for denoting a absent entry.
2979 static const int kNotFound = -1;
2982 // Update the number of elements in the hash table.
2983 void SetNumberOfElements(int nof) {
2984 set(kNumberOfElementsIndex, Smi::FromInt(nof));
2987 // Update the number of deleted elements in the hash table.
2988 void SetNumberOfDeletedElements(int nod) {
2989 set(kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
2992 // Returns probe entry.
2993 static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
2994 DCHECK(base::bits::IsPowerOfTwo32(size));
2995 return (hash + GetProbeOffset(number)) & (size - 1);
2998 inline static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
2999 return hash & (size - 1);
3002 inline static uint32_t NextProbe(
3003 uint32_t last, uint32_t number, uint32_t size) {
3004 return (last + number) & (size - 1);
3009 template <typename Derived, typename Shape, typename Key>
3010 class HashTable : public HashTableBase {
3013 inline uint32_t Hash(Key key) {
3014 if (Shape::UsesSeed) {
3015 return Shape::SeededHash(key, GetHeap()->HashSeed());
3017 return Shape::Hash(key);
3021 inline uint32_t HashForObject(Key key, Object* object) {
3022 if (Shape::UsesSeed) {
3023 return Shape::SeededHashForObject(key, GetHeap()->HashSeed(), object);
3025 return Shape::HashForObject(key, object);
3029 // Returns a new HashTable object.
3030 MUST_USE_RESULT static Handle<Derived> New(
3031 Isolate* isolate, int at_least_space_for,
3032 MinimumCapacity capacity_option = USE_DEFAULT_MINIMUM_CAPACITY,
3033 PretenureFlag pretenure = NOT_TENURED);
3035 DECLARE_CAST(HashTable)
3037 // Garbage collection support.
3038 void IteratePrefix(ObjectVisitor* visitor);
3039 void IterateElements(ObjectVisitor* visitor);
3041 // Find entry for key otherwise return kNotFound.
3042 inline int FindEntry(Key key);
3043 inline int FindEntry(Isolate* isolate, Key key, int32_t hash);
3044 int FindEntry(Isolate* isolate, Key key);
3046 // Rehashes the table in-place.
3047 void Rehash(Key key);
3049 // Returns the key at entry.
3050 Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
3052 static const int kElementsStartIndex = kPrefixStartIndex + Shape::kPrefixSize;
3053 static const int kEntrySize = Shape::kEntrySize;
3054 static const int kElementsStartOffset =
3055 kHeaderSize + kElementsStartIndex * kPointerSize;
3056 static const int kCapacityOffset =
3057 kHeaderSize + kCapacityIndex * kPointerSize;
3059 // Returns the index for an entry (of the key)
3060 static inline int EntryToIndex(int entry) {
3061 return (entry * kEntrySize) + kElementsStartIndex;
3065 friend class ObjectHashTable;
3067 // Find the entry at which to insert element with the given key that
3068 // has the given hash value.
3069 uint32_t FindInsertionEntry(uint32_t hash);
3071 // Attempt to shrink hash table after removal of key.
3072 MUST_USE_RESULT static Handle<Derived> Shrink(Handle<Derived> table, Key key);
3074 // Ensure enough space for n additional elements.
3075 MUST_USE_RESULT static Handle<Derived> EnsureCapacity(
3076 Handle<Derived> table,
3079 PretenureFlag pretenure = NOT_TENURED);
3081 // Sets the capacity of the hash table.
3082 void SetCapacity(int capacity) {
3083 // To scale a computed hash code to fit within the hash table, we
3084 // use bit-wise AND with a mask, so the capacity must be positive
3086 DCHECK(capacity > 0);
3087 DCHECK(capacity <= kMaxCapacity);
3088 set(kCapacityIndex, Smi::FromInt(capacity));
3091 // Maximal capacity of HashTable. Based on maximal length of underlying
3092 // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
3094 static const int kMaxCapacity =
3095 (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
3098 // Returns _expected_ if one of entries given by the first _probe_ probes is
3099 // equal to _expected_. Otherwise, returns the entry given by the probe
3101 uint32_t EntryForProbe(Key key, Object* k, int probe, uint32_t expected);
3103 void Swap(uint32_t entry1, uint32_t entry2, WriteBarrierMode mode);
3105 // Rehashes this hash-table into the new table.
3106 void Rehash(Handle<Derived> new_table, Key key);
3110 // HashTableKey is an abstract superclass for virtual key behavior.
3111 class HashTableKey {
3113 // Returns whether the other object matches this key.
3114 virtual bool IsMatch(Object* other) = 0;
3115 // Returns the hash value for this key.
3116 virtual uint32_t Hash() = 0;
3117 // Returns the hash value for object.
3118 virtual uint32_t HashForObject(Object* key) = 0;
3119 // Returns the key object for storing into the hash table.
3120 MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate) = 0;
3122 virtual ~HashTableKey() {}
3126 class StringTableShape : public BaseShape<HashTableKey*> {
3128 static inline bool IsMatch(HashTableKey* key, Object* value) {
3129 return key->IsMatch(value);
3132 static inline uint32_t Hash(HashTableKey* key) {
3136 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3137 return key->HashForObject(object);
3140 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
3142 static const int kPrefixSize = 0;
3143 static const int kEntrySize = 1;
3146 class SeqOneByteString;
3150 // No special elements in the prefix and the element size is 1
3151 // because only the string itself (the key) needs to be stored.
3152 class StringTable: public HashTable<StringTable,
3156 // Find string in the string table. If it is not there yet, it is
3157 // added. The return value is the string found.
3158 static Handle<String> LookupString(Isolate* isolate, Handle<String> key);
3159 static Handle<String> LookupKey(Isolate* isolate, HashTableKey* key);
3160 static String* LookupKeyIfExists(Isolate* isolate, HashTableKey* key);
3162 // Tries to internalize given string and returns string handle on success
3163 // or an empty handle otherwise.
3164 MUST_USE_RESULT static MaybeHandle<String> InternalizeStringIfExists(
3166 Handle<String> string);
3168 // Looks up a string that is equal to the given string and returns
3169 // string handle if it is found, or an empty handle otherwise.
3170 MUST_USE_RESULT static MaybeHandle<String> LookupStringIfExists(
3172 Handle<String> str);
3173 MUST_USE_RESULT static MaybeHandle<String> LookupTwoCharsStringIfExists(
3178 static void EnsureCapacityForDeserialization(Isolate* isolate, int expected);
3180 DECLARE_CAST(StringTable)
3183 template <bool seq_one_byte>
3184 friend class JsonParser;
3186 DISALLOW_IMPLICIT_CONSTRUCTORS(StringTable);
3190 template <typename Derived, typename Shape, typename Key>
3191 class Dictionary: public HashTable<Derived, Shape, Key> {
3192 typedef HashTable<Derived, Shape, Key> DerivedHashTable;
3195 // Returns the value at entry.
3196 Object* ValueAt(int entry) {
3197 return this->get(Derived::EntryToIndex(entry) + 1);
3200 // Set the value for entry.
3201 void ValueAtPut(int entry, Object* value) {
3202 this->set(Derived::EntryToIndex(entry) + 1, value);
3205 // Returns the property details for the property at entry.
3206 PropertyDetails DetailsAt(int entry) {
3207 return Shape::DetailsAt(static_cast<Derived*>(this), entry);
3210 // Set the details for entry.
3211 void DetailsAtPut(int entry, PropertyDetails value) {
3212 Shape::DetailsAtPut(static_cast<Derived*>(this), entry, value);
3215 // Returns true if property at given entry is deleted.
3216 bool IsDeleted(int entry) {
3217 return Shape::IsDeleted(static_cast<Derived*>(this), entry);
3220 // Delete a property from the dictionary.
3221 static Handle<Object> DeleteProperty(Handle<Derived> dictionary, int entry);
3223 // Attempt to shrink the dictionary after deletion of key.
3224 MUST_USE_RESULT static inline Handle<Derived> Shrink(
3225 Handle<Derived> dictionary,
3227 return DerivedHashTable::Shrink(dictionary, key);
3231 // TODO(dcarney): templatize or move to SeededNumberDictionary
3232 void CopyValuesTo(FixedArray* elements);
3234 // Returns the number of elements in the dictionary filtering out properties
3235 // with the specified attributes.
3236 int NumberOfElementsFilterAttributes(PropertyAttributes filter);
3238 // Returns the number of enumerable elements in the dictionary.
3239 int NumberOfEnumElements() {
3240 return NumberOfElementsFilterAttributes(
3241 static_cast<PropertyAttributes>(DONT_ENUM | SYMBOLIC));
3244 // Returns true if the dictionary contains any elements that are non-writable,
3245 // non-configurable, non-enumerable, or have getters/setters.
3246 bool HasComplexElements();
3248 enum SortMode { UNSORTED, SORTED };
3250 // Fill in details for properties into storage.
3251 // Returns the number of properties added.
3252 int CopyKeysTo(FixedArray* storage, int index, PropertyAttributes filter,
3253 SortMode sort_mode);
3255 // Copies enumerable keys to preallocated fixed array.
3256 void CopyEnumKeysTo(FixedArray* storage);
3258 // Accessors for next enumeration index.
3259 void SetNextEnumerationIndex(int index) {
3261 this->set(kNextEnumerationIndexIndex, Smi::FromInt(index));
3264 int NextEnumerationIndex() {
3265 return Smi::cast(this->get(kNextEnumerationIndexIndex))->value();
3268 // Creates a new dictionary.
3269 MUST_USE_RESULT static Handle<Derived> New(
3271 int at_least_space_for,
3272 PretenureFlag pretenure = NOT_TENURED);
3274 // Ensure enough space for n additional elements.
3275 static Handle<Derived> EnsureCapacity(Handle<Derived> obj, int n, Key key);
3278 void Print(std::ostream& os); // NOLINT
3280 // Returns the key (slow).
3281 Object* SlowReverseLookup(Object* value);
3283 // Sets the entry to (key, value) pair.
3284 inline void SetEntry(int entry,
3286 Handle<Object> value);
3287 inline void SetEntry(int entry,
3289 Handle<Object> value,
3290 PropertyDetails details);
3292 MUST_USE_RESULT static Handle<Derived> Add(
3293 Handle<Derived> dictionary,
3295 Handle<Object> value,
3296 PropertyDetails details);
3298 // Returns iteration indices array for the |dictionary|.
3299 // Values are direct indices in the |HashTable| array.
3300 static Handle<FixedArray> BuildIterationIndicesArray(
3301 Handle<Derived> dictionary);
3304 // Generic at put operation.
3305 MUST_USE_RESULT static Handle<Derived> AtPut(
3306 Handle<Derived> dictionary,
3308 Handle<Object> value);
3310 // Add entry to dictionary.
3311 static void AddEntry(
3312 Handle<Derived> dictionary,
3314 Handle<Object> value,
3315 PropertyDetails details,
3318 // Generate new enumeration indices to avoid enumeration index overflow.
3319 // Returns iteration indices array for the |dictionary|.
3320 static Handle<FixedArray> GenerateNewEnumerationIndices(
3321 Handle<Derived> dictionary);
3322 static const int kMaxNumberKeyIndex = DerivedHashTable::kPrefixStartIndex;
3323 static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
3327 template <typename Derived, typename Shape>
3328 class NameDictionaryBase : public Dictionary<Derived, Shape, Handle<Name> > {
3329 typedef Dictionary<Derived, Shape, Handle<Name> > DerivedDictionary;
3332 // Find entry for key, otherwise return kNotFound. Optimized version of
3333 // HashTable::FindEntry.
3334 int FindEntry(Handle<Name> key);
3338 template <typename Key>
3339 class BaseDictionaryShape : public BaseShape<Key> {
3341 template <typename Dictionary>
3342 static inline PropertyDetails DetailsAt(Dictionary* dict, int entry) {
3343 STATIC_ASSERT(Dictionary::kEntrySize == 3);
3344 DCHECK(entry >= 0); // Not found is -1, which is not caught by get().
3345 return PropertyDetails(
3346 Smi::cast(dict->get(Dictionary::EntryToIndex(entry) + 2)));
3349 template <typename Dictionary>
3350 static inline void DetailsAtPut(Dictionary* dict, int entry,
3351 PropertyDetails value) {
3352 STATIC_ASSERT(Dictionary::kEntrySize == 3);
3353 dict->set(Dictionary::EntryToIndex(entry) + 2, value.AsSmi());
3356 template <typename Dictionary>
3357 static bool IsDeleted(Dictionary* dict, int entry) {
3361 template <typename Dictionary>
3362 static inline void SetEntry(Dictionary* dict, int entry, Handle<Object> key,
3363 Handle<Object> value, PropertyDetails details);
3367 class NameDictionaryShape : public BaseDictionaryShape<Handle<Name> > {
3369 static inline bool IsMatch(Handle<Name> key, Object* other);
3370 static inline uint32_t Hash(Handle<Name> key);
3371 static inline uint32_t HashForObject(Handle<Name> key, Object* object);
3372 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Name> key);
3373 static const int kPrefixSize = 2;
3374 static const int kEntrySize = 3;
3375 static const bool kIsEnumerable = true;
3379 class NameDictionary
3380 : public NameDictionaryBase<NameDictionary, NameDictionaryShape> {
3381 typedef NameDictionaryBase<NameDictionary, NameDictionaryShape>
3385 DECLARE_CAST(NameDictionary)
3387 inline static Handle<FixedArray> DoGenerateNewEnumerationIndices(
3388 Handle<NameDictionary> dictionary);
3392 class GlobalDictionaryShape : public NameDictionaryShape {
3394 static const int kEntrySize = 2; // Overrides NameDictionaryShape::kEntrySize
3396 template <typename Dictionary>
3397 static inline PropertyDetails DetailsAt(Dictionary* dict, int entry);
3399 template <typename Dictionary>
3400 static inline void DetailsAtPut(Dictionary* dict, int entry,
3401 PropertyDetails value);
3403 template <typename Dictionary>
3404 static bool IsDeleted(Dictionary* dict, int entry);
3406 template <typename Dictionary>
3407 static inline void SetEntry(Dictionary* dict, int entry, Handle<Object> key,
3408 Handle<Object> value, PropertyDetails details);
3412 class GlobalDictionary
3413 : public NameDictionaryBase<GlobalDictionary, GlobalDictionaryShape> {
3415 DECLARE_CAST(GlobalDictionary)
3419 class NumberDictionaryShape : public BaseDictionaryShape<uint32_t> {
3421 static inline bool IsMatch(uint32_t key, Object* other);
3422 static inline Handle<Object> AsHandle(Isolate* isolate, uint32_t key);
3423 static const int kEntrySize = 3;
3424 static const bool kIsEnumerable = false;
3428 class SeededNumberDictionaryShape : public NumberDictionaryShape {
3430 static const bool UsesSeed = true;
3431 static const int kPrefixSize = 2;
3433 static inline uint32_t SeededHash(uint32_t key, uint32_t seed);
3434 static inline uint32_t SeededHashForObject(uint32_t key,
3440 class UnseededNumberDictionaryShape : public NumberDictionaryShape {
3442 static const int kPrefixSize = 0;
3444 static inline uint32_t Hash(uint32_t key);
3445 static inline uint32_t HashForObject(uint32_t key, Object* object);
3449 class SeededNumberDictionary
3450 : public Dictionary<SeededNumberDictionary,
3451 SeededNumberDictionaryShape,
3454 DECLARE_CAST(SeededNumberDictionary)
3456 // Type specific at put (default NONE attributes is used when adding).
3457 MUST_USE_RESULT static Handle<SeededNumberDictionary> AtNumberPut(
3458 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3459 Handle<Object> value, bool used_as_prototype);
3460 MUST_USE_RESULT static Handle<SeededNumberDictionary> AddNumberEntry(
3461 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3462 Handle<Object> value, PropertyDetails details, bool used_as_prototype);
3464 // Set an existing entry or add a new one if needed.
3465 // Return the updated dictionary.
3466 MUST_USE_RESULT static Handle<SeededNumberDictionary> Set(
3467 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3468 Handle<Object> value, PropertyDetails details, bool used_as_prototype);
3470 void UpdateMaxNumberKey(uint32_t key, bool used_as_prototype);
3472 // If slow elements are required we will never go back to fast-case
3473 // for the elements kept in this dictionary. We require slow
3474 // elements if an element has been added at an index larger than
3475 // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
3476 // when defining a getter or setter with a number key.
3477 inline bool requires_slow_elements();
3478 inline void set_requires_slow_elements();
3480 // Get the value of the max number key that has been added to this
3481 // dictionary. max_number_key can only be called if
3482 // requires_slow_elements returns false.
3483 inline uint32_t max_number_key();
3486 static const int kRequiresSlowElementsMask = 1;
3487 static const int kRequiresSlowElementsTagSize = 1;
3488 static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
3492 class UnseededNumberDictionary
3493 : public Dictionary<UnseededNumberDictionary,
3494 UnseededNumberDictionaryShape,
3497 DECLARE_CAST(UnseededNumberDictionary)
3499 // Type specific at put (default NONE attributes is used when adding).
3500 MUST_USE_RESULT static Handle<UnseededNumberDictionary> AtNumberPut(
3501 Handle<UnseededNumberDictionary> dictionary,
3503 Handle<Object> value);
3504 MUST_USE_RESULT static Handle<UnseededNumberDictionary> AddNumberEntry(
3505 Handle<UnseededNumberDictionary> dictionary,
3507 Handle<Object> value);
3509 // Set an existing entry or add a new one if needed.
3510 // Return the updated dictionary.
3511 MUST_USE_RESULT static Handle<UnseededNumberDictionary> Set(
3512 Handle<UnseededNumberDictionary> dictionary,
3514 Handle<Object> value);
3518 class ObjectHashTableShape : public BaseShape<Handle<Object> > {
3520 static inline bool IsMatch(Handle<Object> key, Object* other);
3521 static inline uint32_t Hash(Handle<Object> key);
3522 static inline uint32_t HashForObject(Handle<Object> key, Object* object);
3523 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
3524 static const int kPrefixSize = 0;
3525 static const int kEntrySize = 2;
3529 // ObjectHashTable maps keys that are arbitrary objects to object values by
3530 // using the identity hash of the key for hashing purposes.
3531 class ObjectHashTable: public HashTable<ObjectHashTable,
3532 ObjectHashTableShape,
3535 ObjectHashTable, ObjectHashTableShape, Handle<Object> > DerivedHashTable;
3537 DECLARE_CAST(ObjectHashTable)
3539 // Attempt to shrink hash table after removal of key.
3540 MUST_USE_RESULT static inline Handle<ObjectHashTable> Shrink(
3541 Handle<ObjectHashTable> table,
3542 Handle<Object> key);
3544 // Looks up the value associated with the given key. The hole value is
3545 // returned in case the key is not present.
3546 Object* Lookup(Handle<Object> key);
3547 Object* Lookup(Handle<Object> key, int32_t hash);
3548 Object* Lookup(Isolate* isolate, Handle<Object> key, int32_t hash);
3550 // Adds (or overwrites) the value associated with the given key.
3551 static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
3553 Handle<Object> value);
3554 static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
3555 Handle<Object> key, Handle<Object> value,
3558 // Returns an ObjectHashTable (possibly |table|) where |key| has been removed.
3559 static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
3562 static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
3563 Handle<Object> key, bool* was_present,
3567 friend class MarkCompactCollector;
3569 void AddEntry(int entry, Object* key, Object* value);
3570 void RemoveEntry(int entry);
3572 // Returns the index to the value of an entry.
3573 static inline int EntryToValueIndex(int entry) {
3574 return EntryToIndex(entry) + 1;
3579 // OrderedHashTable is a HashTable with Object keys that preserves
3580 // insertion order. There are Map and Set interfaces (OrderedHashMap
3581 // and OrderedHashTable, below). It is meant to be used by JSMap/JSSet.
3583 // Only Object* keys are supported, with Object::SameValueZero() used as the
3584 // equality operator and Object::GetHash() for the hash function.
3586 // Based on the "Deterministic Hash Table" as described by Jason Orendorff at
3587 // https://wiki.mozilla.org/User:Jorend/Deterministic_hash_tables
3588 // Originally attributed to Tyler Close.
3591 // [0]: bucket count
3592 // [1]: element count
3593 // [2]: deleted element count
3594 // [3..(3 + NumberOfBuckets() - 1)]: "hash table", where each item is an
3595 // offset into the data table (see below) where the
3596 // first item in this bucket is stored.
3597 // [3 + NumberOfBuckets()..length]: "data table", an array of length
3598 // Capacity() * kEntrySize, where the first entrysize
3599 // items are handled by the derived class and the
3600 // item at kChainOffset is another entry into the
3601 // data table indicating the next entry in this hash
3604 // When we transition the table to a new version we obsolete it and reuse parts
3605 // of the memory to store information how to transition an iterator to the new
3608 // Memory layout for obsolete table:
3609 // [0]: bucket count
3610 // [1]: Next newer table
3611 // [2]: Number of removed holes or -1 when the table was cleared.
3612 // [3..(3 + NumberOfRemovedHoles() - 1)]: The indexes of the removed holes.
3613 // [3 + NumberOfRemovedHoles()..length]: Not used
3615 template<class Derived, class Iterator, int entrysize>
3616 class OrderedHashTable: public FixedArray {
3618 // Returns an OrderedHashTable with a capacity of at least |capacity|.
3619 static Handle<Derived> Allocate(
3620 Isolate* isolate, int capacity, PretenureFlag pretenure = NOT_TENURED);
3622 // Returns an OrderedHashTable (possibly |table|) with enough space
3623 // to add at least one new element.
3624 static Handle<Derived> EnsureGrowable(Handle<Derived> table);
3626 // Returns an OrderedHashTable (possibly |table|) that's shrunken
3628 static Handle<Derived> Shrink(Handle<Derived> table);
3630 // Returns a new empty OrderedHashTable and records the clearing so that
3631 // exisiting iterators can be updated.
3632 static Handle<Derived> Clear(Handle<Derived> table);
3634 int NumberOfElements() {
3635 return Smi::cast(get(kNumberOfElementsIndex))->value();
3638 int NumberOfDeletedElements() {
3639 return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
3642 int UsedCapacity() { return NumberOfElements() + NumberOfDeletedElements(); }
3644 int NumberOfBuckets() {
3645 return Smi::cast(get(kNumberOfBucketsIndex))->value();
3648 // Returns an index into |this| for the given entry.
3649 int EntryToIndex(int entry) {
3650 return kHashTableStartIndex + NumberOfBuckets() + (entry * kEntrySize);
3653 Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
3656 return !get(kNextTableIndex)->IsSmi();
3659 // The next newer table. This is only valid if the table is obsolete.
3660 Derived* NextTable() {
3661 return Derived::cast(get(kNextTableIndex));
3664 // When the table is obsolete we store the indexes of the removed holes.
3665 int RemovedIndexAt(int index) {
3666 return Smi::cast(get(kRemovedHolesIndex + index))->value();
3669 static const int kNotFound = -1;
3670 static const int kMinCapacity = 4;
3672 static const int kNumberOfBucketsIndex = 0;
3673 static const int kNumberOfElementsIndex = kNumberOfBucketsIndex + 1;
3674 static const int kNumberOfDeletedElementsIndex = kNumberOfElementsIndex + 1;
3675 static const int kHashTableStartIndex = kNumberOfDeletedElementsIndex + 1;
3676 static const int kNextTableIndex = kNumberOfElementsIndex;
3678 static const int kNumberOfBucketsOffset =
3679 kHeaderSize + kNumberOfBucketsIndex * kPointerSize;
3680 static const int kNumberOfElementsOffset =
3681 kHeaderSize + kNumberOfElementsIndex * kPointerSize;
3682 static const int kNumberOfDeletedElementsOffset =
3683 kHeaderSize + kNumberOfDeletedElementsIndex * kPointerSize;
3684 static const int kHashTableStartOffset =
3685 kHeaderSize + kHashTableStartIndex * kPointerSize;
3686 static const int kNextTableOffset =
3687 kHeaderSize + kNextTableIndex * kPointerSize;
3689 static const int kEntrySize = entrysize + 1;
3690 static const int kChainOffset = entrysize;
3692 static const int kLoadFactor = 2;
3694 // NumberOfDeletedElements is set to kClearedTableSentinel when
3695 // the table is cleared, which allows iterator transitions to
3696 // optimize that case.
3697 static const int kClearedTableSentinel = -1;
3700 static Handle<Derived> Rehash(Handle<Derived> table, int new_capacity);
3702 void SetNumberOfBuckets(int num) {
3703 set(kNumberOfBucketsIndex, Smi::FromInt(num));
3706 void SetNumberOfElements(int num) {
3707 set(kNumberOfElementsIndex, Smi::FromInt(num));
3710 void SetNumberOfDeletedElements(int num) {
3711 set(kNumberOfDeletedElementsIndex, Smi::FromInt(num));
3715 return NumberOfBuckets() * kLoadFactor;
3718 void SetNextTable(Derived* next_table) {
3719 set(kNextTableIndex, next_table);
3722 void SetRemovedIndexAt(int index, int removed_index) {
3723 return set(kRemovedHolesIndex + index, Smi::FromInt(removed_index));
3726 static const int kRemovedHolesIndex = kHashTableStartIndex;
3728 static const int kMaxCapacity =
3729 (FixedArray::kMaxLength - kHashTableStartIndex)
3730 / (1 + (kEntrySize * kLoadFactor));
3734 class JSSetIterator;
3737 class OrderedHashSet: public OrderedHashTable<
3738 OrderedHashSet, JSSetIterator, 1> {
3740 DECLARE_CAST(OrderedHashSet)
3744 class JSMapIterator;
3747 class OrderedHashMap
3748 : public OrderedHashTable<OrderedHashMap, JSMapIterator, 2> {
3750 DECLARE_CAST(OrderedHashMap)
3752 Object* ValueAt(int entry) {
3753 return get(EntryToIndex(entry) + kValueOffset);
3756 static const int kValueOffset = 1;
3760 template <int entrysize>
3761 class WeakHashTableShape : public BaseShape<Handle<Object> > {
3763 static inline bool IsMatch(Handle<Object> key, Object* other);
3764 static inline uint32_t Hash(Handle<Object> key);
3765 static inline uint32_t HashForObject(Handle<Object> key, Object* object);
3766 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
3767 static const int kPrefixSize = 0;
3768 static const int kEntrySize = entrysize;
3772 // WeakHashTable maps keys that are arbitrary heap objects to heap object
3773 // values. The table wraps the keys in weak cells and store values directly.
3774 // Thus it references keys weakly and values strongly.
3775 class WeakHashTable: public HashTable<WeakHashTable,
3776 WeakHashTableShape<2>,
3779 WeakHashTable, WeakHashTableShape<2>, Handle<Object> > DerivedHashTable;
3781 DECLARE_CAST(WeakHashTable)
3783 // Looks up the value associated with the given key. The hole value is
3784 // returned in case the key is not present.
3785 Object* Lookup(Handle<HeapObject> key);
3787 // Adds (or overwrites) the value associated with the given key. Mapping a
3788 // key to the hole value causes removal of the whole entry.
3789 MUST_USE_RESULT static Handle<WeakHashTable> Put(Handle<WeakHashTable> table,
3790 Handle<HeapObject> key,
3791 Handle<HeapObject> value);
3793 static Handle<FixedArray> GetValues(Handle<WeakHashTable> table);
3796 friend class MarkCompactCollector;
3798 void AddEntry(int entry, Handle<WeakCell> key, Handle<HeapObject> value);
3800 // Returns the index to the value of an entry.
3801 static inline int EntryToValueIndex(int entry) {
3802 return EntryToIndex(entry) + 1;
3807 class WeakValueHashTable : public ObjectHashTable {
3809 DECLARE_CAST(WeakValueHashTable)
3812 // Looks up the value associated with the given key. The hole value is
3813 // returned in case the key is not present.
3814 Object* LookupWeak(Handle<Object> key);
3817 // Adds (or overwrites) the value associated with the given key. Mapping a
3818 // key to the hole value causes removal of the whole entry.
3819 MUST_USE_RESULT static Handle<WeakValueHashTable> PutWeak(
3820 Handle<WeakValueHashTable> table, Handle<Object> key,
3821 Handle<HeapObject> value);
3823 static Handle<FixedArray> GetWeakValues(Handle<WeakValueHashTable> table);
3827 // ScopeInfo represents information about different scopes of a source
3828 // program and the allocation of the scope's variables. Scope information
3829 // is stored in a compressed form in ScopeInfo objects and is used
3830 // at runtime (stack dumps, deoptimization, etc.).
3832 // This object provides quick access to scope info details for runtime
3834 class ScopeInfo : public FixedArray {
3836 DECLARE_CAST(ScopeInfo)
3838 // Return the type of this scope.
3839 ScopeType scope_type();
3841 // Does this scope call eval?
3844 // Return the language mode of this scope.
3845 LanguageMode language_mode();
3847 // Does this scope make a sloppy eval call?
3848 bool CallsSloppyEval() { return CallsEval() && is_sloppy(language_mode()); }
3850 // Return the total number of locals allocated on the stack and in the
3851 // context. This includes the parameters that are allocated in the context.
3854 // Return the number of stack slots for code. This number consists of two
3856 // 1. One stack slot per stack allocated local.
3857 // 2. One stack slot for the function name if it is stack allocated.
3858 int StackSlotCount();
3860 // Return the number of context slots for code if a context is allocated. This
3861 // number consists of three parts:
3862 // 1. Size of fixed header for every context: Context::MIN_CONTEXT_SLOTS
3863 // 2. One context slot per context allocated local.
3864 // 3. One context slot for the function name if it is context allocated.
3865 // Parameters allocated in the context count as context allocated locals. If
3866 // no contexts are allocated for this scope ContextLength returns 0.
3867 int ContextLength();
3869 // Does this scope declare a "this" binding?
3872 // Does this scope declare a "this" binding, and the "this" binding is stack-
3873 // or context-allocated?
3874 bool HasAllocatedReceiver();
3876 // Is this scope the scope of a named function expression?
3877 bool HasFunctionName();
3879 // Return if this has context allocated locals.
3880 bool HasHeapAllocatedLocals();
3882 // Return if contexts are allocated for this scope.
3885 // Return if this is a function scope with "use asm".
3886 bool IsAsmModule() { return AsmModuleField::decode(Flags()); }
3888 // Return if this is a nested function within an asm module scope.
3889 bool IsAsmFunction() { return AsmFunctionField::decode(Flags()); }
3891 bool HasSimpleParameters() {
3892 return HasSimpleParametersField::decode(Flags());
3895 // Return the function_name if present.
3896 String* FunctionName();
3898 // Return the name of the given parameter.
3899 String* ParameterName(int var);
3901 // Return the name of the given local.
3902 String* LocalName(int var);
3904 // Return the name of the given stack local.
3905 String* StackLocalName(int var);
3907 // Return the name of the given stack local.
3908 int StackLocalIndex(int var);
3910 // Return the name of the given context local.
3911 String* ContextLocalName(int var);
3913 // Return the mode of the given context local.
3914 VariableMode ContextLocalMode(int var);
3916 // Return the initialization flag of the given context local.
3917 InitializationFlag ContextLocalInitFlag(int var);
3919 // Return the initialization flag of the given context local.
3920 MaybeAssignedFlag ContextLocalMaybeAssignedFlag(int var);
3922 // Return true if this local was introduced by the compiler, and should not be
3923 // exposed to the user in a debugger.
3924 bool LocalIsSynthetic(int var);
3926 String* StrongModeFreeVariableName(int var);
3927 int StrongModeFreeVariableStartPosition(int var);
3928 int StrongModeFreeVariableEndPosition(int var);
3930 // Lookup support for serialized scope info. Returns the
3931 // the stack slot index for a given slot name if the slot is
3932 // present; otherwise returns a value < 0. The name must be an internalized
3934 int StackSlotIndex(String* name);
3936 // Lookup support for serialized scope info. Returns the
3937 // context slot index for a given slot name if the slot is present; otherwise
3938 // returns a value < 0. The name must be an internalized string.
3939 // If the slot is present and mode != NULL, sets *mode to the corresponding
3940 // mode for that variable.
3941 static int ContextSlotIndex(Handle<ScopeInfo> scope_info, Handle<String> name,
3942 VariableMode* mode, VariableLocation* location,
3943 InitializationFlag* init_flag,
3944 MaybeAssignedFlag* maybe_assigned_flag);
3946 static int LexicalContextSlotIndex(Handle<ScopeInfo> scope_info,
3947 Handle<String> name);
3949 // Lookup the name of a certain context slot by its index.
3950 String* ContextSlotName(int slot_index);
3952 // Lookup support for serialized scope info. Returns the
3953 // parameter index for a given parameter name if the parameter is present;
3954 // otherwise returns a value < 0. The name must be an internalized string.
3955 int ParameterIndex(String* name);
3957 // Lookup support for serialized scope info. Returns the function context
3958 // slot index if the function name is present and context-allocated (named
3959 // function expressions, only), otherwise returns a value < 0. The name
3960 // must be an internalized string.
3961 int FunctionContextSlotIndex(String* name, VariableMode* mode);
3963 // Lookup support for serialized scope info. Returns the receiver context
3964 // slot index if scope has a "this" binding, and the binding is
3965 // context-allocated. Otherwise returns a value < 0.
3966 int ReceiverContextSlotIndex();
3968 FunctionKind function_kind();
3970 static Handle<ScopeInfo> Create(Isolate* isolate, Zone* zone, Scope* scope);
3971 static Handle<ScopeInfo> CreateGlobalThisBinding(Isolate* isolate);
3973 // Serializes empty scope info.
3974 static ScopeInfo* Empty(Isolate* isolate);
3980 // The layout of the static part of a ScopeInfo is as follows. Each entry is
3981 // numeric and occupies one array slot.
3982 // 1. A set of properties of the scope
3983 // 2. The number of parameters. This only applies to function scopes. For
3984 // non-function scopes this is 0.
3985 // 3. The number of non-parameter variables allocated on the stack.
3986 // 4. The number of non-parameter and parameter variables allocated in the
3988 #define FOR_EACH_NUMERIC_FIELD(V) \
3991 V(StackLocalCount) \
3992 V(ContextLocalCount) \
3993 V(LexicalContextLocalCount) \
3994 V(ContextGlobalCount) \
3995 V(StrongModeFreeVariableCount)
3997 #define FIELD_ACCESSORS(name) \
3998 void Set##name(int value) { \
3999 set(k##name, Smi::FromInt(value)); \
4002 if (length() > 0) { \
4003 return Smi::cast(get(k##name))->value(); \
4008 FOR_EACH_NUMERIC_FIELD(FIELD_ACCESSORS)
4009 #undef FIELD_ACCESSORS
4013 #define DECL_INDEX(name) k##name,
4014 FOR_EACH_NUMERIC_FIELD(DECL_INDEX)
4016 #undef FOR_EACH_NUMERIC_FIELD
4020 // The layout of the variable part of a ScopeInfo is as follows:
4021 // 1. ParameterEntries:
4022 // This part stores the names of the parameters for function scopes. One
4023 // slot is used per parameter, so in total this part occupies
4024 // ParameterCount() slots in the array. For other scopes than function
4025 // scopes ParameterCount() is 0.
4026 // 2. StackLocalFirstSlot:
4027 // Index of a first stack slot for stack local. Stack locals belonging to
4028 // this scope are located on a stack at slots starting from this index.
4029 // 3. StackLocalEntries:
4030 // Contains the names of local variables that are allocated on the stack,
4031 // in increasing order of the stack slot index. First local variable has
4032 // a stack slot index defined in StackLocalFirstSlot (point 2 above).
4033 // One slot is used per stack local, so in total this part occupies
4034 // StackLocalCount() slots in the array.
4035 // 4. ContextLocalNameEntries:
4036 // Contains the names of local variables and parameters that are allocated
4037 // in the context. They are stored in increasing order of the context slot
4038 // index starting with Context::MIN_CONTEXT_SLOTS. One slot is used per
4039 // context local, so in total this part occupies ContextLocalCount() slots
4041 // 5. ContextLocalInfoEntries:
4042 // Contains the variable modes and initialization flags corresponding to
4043 // the context locals in ContextLocalNameEntries. One slot is used per
4044 // context local, so in total this part occupies ContextLocalCount()
4045 // slots in the array.
4046 // 6. StrongModeFreeVariableNameEntries:
4047 // Stores the names of strong mode free variables.
4048 // 7. StrongModeFreeVariablePositionEntries:
4049 // Stores the locations (start and end position) of strong mode free
4051 // 8. RecieverEntryIndex:
4052 // If the scope binds a "this" value, one slot is reserved to hold the
4053 // context or stack slot index for the variable.
4054 // 9. FunctionNameEntryIndex:
4055 // If the scope belongs to a named function expression this part contains
4056 // information about the function variable. It always occupies two array
4057 // slots: a. The name of the function variable.
4058 // b. The context or stack slot index for the variable.
4059 int ParameterEntriesIndex();
4060 int StackLocalFirstSlotIndex();
4061 int StackLocalEntriesIndex();
4062 int ContextLocalNameEntriesIndex();
4063 int ContextGlobalNameEntriesIndex();
4064 int ContextLocalInfoEntriesIndex();
4065 int ContextGlobalInfoEntriesIndex();
4066 int StrongModeFreeVariableNameEntriesIndex();
4067 int StrongModeFreeVariablePositionEntriesIndex();
4068 int ReceiverEntryIndex();
4069 int FunctionNameEntryIndex();
4071 int Lookup(Handle<String> name, int start, int end, VariableMode* mode,
4072 VariableLocation* location, InitializationFlag* init_flag,
4073 MaybeAssignedFlag* maybe_assigned_flag);
4075 // Used for the function name variable for named function expressions, and for
4077 enum VariableAllocationInfo { NONE, STACK, CONTEXT, UNUSED };
4079 // Properties of scopes.
4080 class ScopeTypeField : public BitField<ScopeType, 0, 4> {};
4081 class CallsEvalField : public BitField<bool, ScopeTypeField::kNext, 1> {};
4082 STATIC_ASSERT(LANGUAGE_END == 3);
4083 class LanguageModeField
4084 : public BitField<LanguageMode, CallsEvalField::kNext, 2> {};
4085 class ReceiverVariableField
4086 : public BitField<VariableAllocationInfo, LanguageModeField::kNext, 2> {};
4087 class FunctionVariableField
4088 : public BitField<VariableAllocationInfo, ReceiverVariableField::kNext,
4090 class FunctionVariableMode
4091 : public BitField<VariableMode, FunctionVariableField::kNext, 3> {};
4092 class AsmModuleField : public BitField<bool, FunctionVariableMode::kNext, 1> {
4094 class AsmFunctionField : public BitField<bool, AsmModuleField::kNext, 1> {};
4095 class HasSimpleParametersField
4096 : public BitField<bool, AsmFunctionField::kNext, 1> {};
4097 class FunctionKindField
4098 : public BitField<FunctionKind, HasSimpleParametersField::kNext, 8> {};
4100 // BitFields representing the encoded information for context locals in the
4101 // ContextLocalInfoEntries part.
4102 class ContextLocalMode: public BitField<VariableMode, 0, 3> {};
4103 class ContextLocalInitFlag: public BitField<InitializationFlag, 3, 1> {};
4104 class ContextLocalMaybeAssignedFlag
4105 : public BitField<MaybeAssignedFlag, 4, 1> {};
4107 friend class ScopeIterator;
4111 // The cache for maps used by normalized (dictionary mode) objects.
4112 // Such maps do not have property descriptors, so a typical program
4113 // needs very limited number of distinct normalized maps.
4114 class NormalizedMapCache: public FixedArray {
4116 static Handle<NormalizedMapCache> New(Isolate* isolate);
4118 MUST_USE_RESULT MaybeHandle<Map> Get(Handle<Map> fast_map,
4119 PropertyNormalizationMode mode);
4120 void Set(Handle<Map> fast_map, Handle<Map> normalized_map);
4124 DECLARE_CAST(NormalizedMapCache)
4126 static inline bool IsNormalizedMapCache(const Object* obj);
4128 DECLARE_VERIFIER(NormalizedMapCache)
4130 static const int kEntries = 64;
4132 static inline int GetIndex(Handle<Map> map);
4134 // The following declarations hide base class methods.
4135 Object* get(int index);
4136 void set(int index, Object* value);
4140 // ByteArray represents fixed sized byte arrays. Used for the relocation info
4141 // that is attached to code objects.
4142 class ByteArray: public FixedArrayBase {
4144 inline int Size() { return RoundUp(length() + kHeaderSize, kPointerSize); }
4146 // Setter and getter.
4147 inline byte get(int index);
4148 inline void set(int index, byte value);
4150 // Treat contents as an int array.
4151 inline int get_int(int index);
4153 static int SizeFor(int length) {
4154 return OBJECT_POINTER_ALIGN(kHeaderSize + length);
4156 // We use byte arrays for free blocks in the heap. Given a desired size in
4157 // bytes that is a multiple of the word size and big enough to hold a byte
4158 // array, this function returns the number of elements a byte array should
4160 static int LengthFor(int size_in_bytes) {
4161 DCHECK(IsAligned(size_in_bytes, kPointerSize));
4162 DCHECK(size_in_bytes >= kHeaderSize);
4163 return size_in_bytes - kHeaderSize;
4166 // Returns data start address.
4167 inline Address GetDataStartAddress();
4169 // Returns a pointer to the ByteArray object for a given data start address.
4170 static inline ByteArray* FromDataStartAddress(Address address);
4172 DECLARE_CAST(ByteArray)
4174 // Dispatched behavior.
4175 inline int ByteArraySize() {
4176 return SizeFor(this->length());
4178 DECLARE_PRINTER(ByteArray)
4179 DECLARE_VERIFIER(ByteArray)
4181 // Layout description.
4182 static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
4184 // Maximal memory consumption for a single ByteArray.
4185 static const int kMaxSize = 512 * MB;
4186 // Maximal length of a single ByteArray.
4187 static const int kMaxLength = kMaxSize - kHeaderSize;
4190 DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
4194 // BytecodeArray represents a sequence of interpreter bytecodes.
4195 class BytecodeArray : public FixedArrayBase {
4197 static int SizeFor(int length) {
4198 return OBJECT_POINTER_ALIGN(kHeaderSize + length);
4201 // Setter and getter
4202 inline byte get(int index);
4203 inline void set(int index, byte value);
4205 // Returns data start address.
4206 inline Address GetFirstBytecodeAddress();
4208 // Accessors for frame size and the number of locals
4209 inline int frame_size() const;
4210 inline void set_frame_size(int value);
4212 DECLARE_CAST(BytecodeArray)
4214 // Dispatched behavior.
4215 inline int BytecodeArraySize() { return SizeFor(this->length()); }
4217 DECLARE_PRINTER(BytecodeArray)
4218 DECLARE_VERIFIER(BytecodeArray)
4220 void Disassemble(std::ostream& os);
4222 // Layout description.
4223 static const int kFrameSizeOffset = FixedArrayBase::kHeaderSize;
4224 static const int kHeaderSize = kFrameSizeOffset + kIntSize;
4226 static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
4228 // Maximal memory consumption for a single BytecodeArray.
4229 static const int kMaxSize = 512 * MB;
4230 // Maximal length of a single BytecodeArray.
4231 static const int kMaxLength = kMaxSize - kHeaderSize;
4234 DISALLOW_IMPLICIT_CONSTRUCTORS(BytecodeArray);
4238 // FreeSpace are fixed-size free memory blocks used by the heap and GC.
4239 // They look like heap objects (are heap object tagged and have a map) so that
4240 // the heap remains iterable. They have a size and a next pointer.
4241 // The next pointer is the raw address of the next FreeSpace object (or NULL)
4242 // in the free list.
4243 class FreeSpace: public HeapObject {
4245 // [size]: size of the free space including the header.
4246 inline int size() const;
4247 inline void set_size(int value);
4249 inline int nobarrier_size() const;
4250 inline void nobarrier_set_size(int value);
4252 inline int Size() { return size(); }
4254 // Accessors for the next field.
4255 inline FreeSpace* next();
4256 inline FreeSpace** next_address();
4257 inline void set_next(FreeSpace* next);
4259 inline static FreeSpace* cast(HeapObject* obj);
4261 // Dispatched behavior.
4262 DECLARE_PRINTER(FreeSpace)
4263 DECLARE_VERIFIER(FreeSpace)
4265 // Layout description.
4266 // Size is smi tagged when it is stored.
4267 static const int kSizeOffset = HeapObject::kHeaderSize;
4268 static const int kNextOffset = POINTER_SIZE_ALIGN(kSizeOffset + kPointerSize);
4271 DISALLOW_IMPLICIT_CONSTRUCTORS(FreeSpace);
4275 // V has parameters (Type, type, TYPE, C type, element_size)
4276 #define TYPED_ARRAYS(V) \
4277 V(Uint8, uint8, UINT8, uint8_t, 1) \
4278 V(Int8, int8, INT8, int8_t, 1) \
4279 V(Uint16, uint16, UINT16, uint16_t, 2) \
4280 V(Int16, int16, INT16, int16_t, 2) \
4281 V(Uint32, uint32, UINT32, uint32_t, 4) \
4282 V(Int32, int32, INT32, int32_t, 4) \
4283 V(Float32, float32, FLOAT32, float, 4) \
4284 V(Float64, float64, FLOAT64, double, 8) \
4285 V(Uint8Clamped, uint8_clamped, UINT8_CLAMPED, uint8_t, 1)
4288 class FixedTypedArrayBase: public FixedArrayBase {
4290 // [base_pointer]: Either points to the FixedTypedArrayBase itself or nullptr.
4291 DECL_ACCESSORS(base_pointer, Object)
4293 // [external_pointer]: Contains the offset between base_pointer and the start
4294 // of the data. If the base_pointer is a nullptr, the external_pointer
4295 // therefore points to the actual backing store.
4296 DECL_ACCESSORS(external_pointer, void)
4298 // Dispatched behavior.
4299 inline void FixedTypedArrayBaseIterateBody(ObjectVisitor* v);
4301 template <typename StaticVisitor>
4302 inline void FixedTypedArrayBaseIterateBody();
4304 DECLARE_CAST(FixedTypedArrayBase)
4306 static const int kBasePointerOffset = FixedArrayBase::kHeaderSize;
4307 static const int kExternalPointerOffset = kBasePointerOffset + kPointerSize;
4308 static const int kHeaderSize =
4309 DOUBLE_POINTER_ALIGN(kExternalPointerOffset + kPointerSize);
4311 static const int kDataOffset = kHeaderSize;
4315 static inline int TypedArraySize(InstanceType type, int length);
4316 inline int TypedArraySize(InstanceType type);
4318 // Use with care: returns raw pointer into heap.
4319 inline void* DataPtr();
4321 inline int DataSize();
4324 static inline int ElementSize(InstanceType type);
4326 inline int DataSize(InstanceType type);
4328 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArrayBase);
4332 template <class Traits>
4333 class FixedTypedArray: public FixedTypedArrayBase {
4335 typedef typename Traits::ElementType ElementType;
4336 static const InstanceType kInstanceType = Traits::kInstanceType;
4338 DECLARE_CAST(FixedTypedArray<Traits>)
4340 inline ElementType get_scalar(int index);
4341 static inline Handle<Object> get(Handle<FixedTypedArray> array, int index);
4342 inline void set(int index, ElementType value);
4344 static inline ElementType from_int(int value);
4345 static inline ElementType from_double(double value);
4347 // This accessor applies the correct conversion from Smi, HeapNumber
4349 void SetValue(uint32_t index, Object* value);
4351 DECLARE_PRINTER(FixedTypedArray)
4352 DECLARE_VERIFIER(FixedTypedArray)
4355 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArray);
4358 #define FIXED_TYPED_ARRAY_TRAITS(Type, type, TYPE, elementType, size) \
4359 class Type##ArrayTraits { \
4360 public: /* NOLINT */ \
4361 typedef elementType ElementType; \
4362 static const InstanceType kInstanceType = FIXED_##TYPE##_ARRAY_TYPE; \
4363 static const char* Designator() { return #type " array"; } \
4364 static inline Handle<Object> ToHandle(Isolate* isolate, \
4365 elementType scalar); \
4366 static inline elementType defaultValue(); \
4369 typedef FixedTypedArray<Type##ArrayTraits> Fixed##Type##Array;
4371 TYPED_ARRAYS(FIXED_TYPED_ARRAY_TRAITS)
4373 #undef FIXED_TYPED_ARRAY_TRAITS
4376 // DeoptimizationInputData is a fixed array used to hold the deoptimization
4377 // data for code generated by the Hydrogen/Lithium compiler. It also
4378 // contains information about functions that were inlined. If N different
4379 // functions were inlined then first N elements of the literal array will
4380 // contain these functions.
4383 class DeoptimizationInputData: public FixedArray {
4385 // Layout description. Indices in the array.
4386 static const int kTranslationByteArrayIndex = 0;
4387 static const int kInlinedFunctionCountIndex = 1;
4388 static const int kLiteralArrayIndex = 2;
4389 static const int kOsrAstIdIndex = 3;
4390 static const int kOsrPcOffsetIndex = 4;
4391 static const int kOptimizationIdIndex = 5;
4392 static const int kSharedFunctionInfoIndex = 6;
4393 static const int kWeakCellCacheIndex = 7;
4394 static const int kFirstDeoptEntryIndex = 8;
4396 // Offsets of deopt entry elements relative to the start of the entry.
4397 static const int kAstIdRawOffset = 0;
4398 static const int kTranslationIndexOffset = 1;
4399 static const int kArgumentsStackHeightOffset = 2;
4400 static const int kPcOffset = 3;
4401 static const int kDeoptEntrySize = 4;
4403 // Simple element accessors.
4404 #define DEFINE_ELEMENT_ACCESSORS(name, type) \
4406 return type::cast(get(k##name##Index)); \
4408 void Set##name(type* value) { \
4409 set(k##name##Index, value); \
4412 DEFINE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
4413 DEFINE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
4414 DEFINE_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
4415 DEFINE_ELEMENT_ACCESSORS(OsrAstId, Smi)
4416 DEFINE_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
4417 DEFINE_ELEMENT_ACCESSORS(OptimizationId, Smi)
4418 DEFINE_ELEMENT_ACCESSORS(SharedFunctionInfo, Object)
4419 DEFINE_ELEMENT_ACCESSORS(WeakCellCache, Object)
4421 #undef DEFINE_ELEMENT_ACCESSORS
4423 // Accessors for elements of the ith deoptimization entry.
4424 #define DEFINE_ENTRY_ACCESSORS(name, type) \
4425 type* name(int i) { \
4426 return type::cast(get(IndexForEntry(i) + k##name##Offset)); \
4428 void Set##name(int i, type* value) { \
4429 set(IndexForEntry(i) + k##name##Offset, value); \
4432 DEFINE_ENTRY_ACCESSORS(AstIdRaw, Smi)
4433 DEFINE_ENTRY_ACCESSORS(TranslationIndex, Smi)
4434 DEFINE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi)
4435 DEFINE_ENTRY_ACCESSORS(Pc, Smi)
4437 #undef DEFINE_DEOPT_ENTRY_ACCESSORS
4439 BailoutId AstId(int i) {
4440 return BailoutId(AstIdRaw(i)->value());
4443 void SetAstId(int i, BailoutId value) {
4444 SetAstIdRaw(i, Smi::FromInt(value.ToInt()));
4448 return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize;
4451 // Allocates a DeoptimizationInputData.
4452 static Handle<DeoptimizationInputData> New(Isolate* isolate,
4453 int deopt_entry_count,
4454 PretenureFlag pretenure);
4456 DECLARE_CAST(DeoptimizationInputData)
4458 #ifdef ENABLE_DISASSEMBLER
4459 void DeoptimizationInputDataPrint(std::ostream& os); // NOLINT
4463 static int IndexForEntry(int i) {
4464 return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
4468 static int LengthFor(int entry_count) { return IndexForEntry(entry_count); }
4472 // DeoptimizationOutputData is a fixed array used to hold the deoptimization
4473 // data for code generated by the full compiler.
4474 // The format of the these objects is
4475 // [i * 2]: Ast ID for ith deoptimization.
4476 // [i * 2 + 1]: PC and state of ith deoptimization
4477 class DeoptimizationOutputData: public FixedArray {
4479 int DeoptPoints() { return length() / 2; }
4481 BailoutId AstId(int index) {
4482 return BailoutId(Smi::cast(get(index * 2))->value());
4485 void SetAstId(int index, BailoutId id) {
4486 set(index * 2, Smi::FromInt(id.ToInt()));
4489 Smi* PcAndState(int index) { return Smi::cast(get(1 + index * 2)); }
4490 void SetPcAndState(int index, Smi* offset) { set(1 + index * 2, offset); }
4492 static int LengthOfFixedArray(int deopt_points) {
4493 return deopt_points * 2;
4496 // Allocates a DeoptimizationOutputData.
4497 static Handle<DeoptimizationOutputData> New(Isolate* isolate,
4498 int number_of_deopt_points,
4499 PretenureFlag pretenure);
4501 DECLARE_CAST(DeoptimizationOutputData)
4503 #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
4504 void DeoptimizationOutputDataPrint(std::ostream& os); // NOLINT
4509 // HandlerTable is a fixed array containing entries for exception handlers in
4510 // the code object it is associated with. The tables comes in two flavors:
4511 // 1) Based on ranges: Used for unoptimized code. Contains one entry per
4512 // exception handler and a range representing the try-block covered by that
4513 // handler. Layout looks as follows:
4514 // [ range-start , range-end , handler-offset , stack-depth ]
4515 // 2) Based on return addresses: Used for turbofanned code. Contains one entry
4516 // per call-site that could throw an exception. Layout looks as follows:
4517 // [ return-address-offset , handler-offset ]
4518 class HandlerTable : public FixedArray {
4520 // Conservative prediction whether a given handler will locally catch an
4521 // exception or cause a re-throw to outside the code boundary. Since this is
4522 // undecidable it is merely an approximation (e.g. useful for debugger).
4523 enum CatchPrediction { UNCAUGHT, CAUGHT };
4525 // Accessors for handler table based on ranges.
4526 void SetRangeStart(int index, int value) {
4527 set(index * kRangeEntrySize + kRangeStartIndex, Smi::FromInt(value));
4529 void SetRangeEnd(int index, int value) {
4530 set(index * kRangeEntrySize + kRangeEndIndex, Smi::FromInt(value));
4532 void SetRangeHandler(int index, int offset, CatchPrediction prediction) {
4533 int value = HandlerOffsetField::encode(offset) |
4534 HandlerPredictionField::encode(prediction);
4535 set(index * kRangeEntrySize + kRangeHandlerIndex, Smi::FromInt(value));
4537 void SetRangeDepth(int index, int value) {
4538 set(index * kRangeEntrySize + kRangeDepthIndex, Smi::FromInt(value));
4541 // Accessors for handler table based on return addresses.
4542 void SetReturnOffset(int index, int value) {
4543 set(index * kReturnEntrySize + kReturnOffsetIndex, Smi::FromInt(value));
4545 void SetReturnHandler(int index, int offset, CatchPrediction prediction) {
4546 int value = HandlerOffsetField::encode(offset) |
4547 HandlerPredictionField::encode(prediction);
4548 set(index * kReturnEntrySize + kReturnHandlerIndex, Smi::FromInt(value));
4551 // Lookup handler in a table based on ranges.
4552 int LookupRange(int pc_offset, int* stack_depth, CatchPrediction* prediction);
4554 // Lookup handler in a table based on return addresses.
4555 int LookupReturn(int pc_offset, CatchPrediction* prediction);
4557 // Returns the required length of the underlying fixed array.
4558 static int LengthForRange(int entries) { return entries * kRangeEntrySize; }
4559 static int LengthForReturn(int entries) { return entries * kReturnEntrySize; }
4561 DECLARE_CAST(HandlerTable)
4563 #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
4564 void HandlerTableRangePrint(std::ostream& os); // NOLINT
4565 void HandlerTableReturnPrint(std::ostream& os); // NOLINT
4569 // Layout description for handler table based on ranges.
4570 static const int kRangeStartIndex = 0;
4571 static const int kRangeEndIndex = 1;
4572 static const int kRangeHandlerIndex = 2;
4573 static const int kRangeDepthIndex = 3;
4574 static const int kRangeEntrySize = 4;
4576 // Layout description for handler table based on return addresses.
4577 static const int kReturnOffsetIndex = 0;
4578 static const int kReturnHandlerIndex = 1;
4579 static const int kReturnEntrySize = 2;
4581 // Encoding of the {handler} field.
4582 class HandlerPredictionField : public BitField<CatchPrediction, 0, 1> {};
4583 class HandlerOffsetField : public BitField<int, 1, 30> {};
4587 // Code describes objects with on-the-fly generated machine code.
4588 class Code: public HeapObject {
4590 // Opaque data type for encapsulating code flags like kind, inline
4591 // cache state, and arguments count.
4592 typedef uint32_t Flags;
4594 #define NON_IC_KIND_LIST(V) \
4596 V(OPTIMIZED_FUNCTION) \
4602 #define IC_KIND_LIST(V) \
4613 #define CODE_KIND_LIST(V) \
4614 NON_IC_KIND_LIST(V) \
4618 #define DEFINE_CODE_KIND_ENUM(name) name,
4619 CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM)
4620 #undef DEFINE_CODE_KIND_ENUM
4624 // No more than 16 kinds. The value is currently encoded in four bits in
4626 STATIC_ASSERT(NUMBER_OF_KINDS <= 16);
4628 static const char* Kind2String(Kind kind);
4636 static const int kPrologueOffsetNotSet = -1;
4638 #ifdef ENABLE_DISASSEMBLER
4640 static const char* ICState2String(InlineCacheState state);
4641 static const char* StubType2String(StubType type);
4642 static void PrintExtraICState(std::ostream& os, // NOLINT
4643 Kind kind, ExtraICState extra);
4644 void Disassemble(const char* name, std::ostream& os); // NOLINT
4645 #endif // ENABLE_DISASSEMBLER
4647 // [instruction_size]: Size of the native instructions
4648 inline int instruction_size() const;
4649 inline void set_instruction_size(int value);
4651 // [relocation_info]: Code relocation information
4652 DECL_ACCESSORS(relocation_info, ByteArray)
4653 void InvalidateRelocation();
4654 void InvalidateEmbeddedObjects();
4656 // [handler_table]: Fixed array containing offsets of exception handlers.
4657 DECL_ACCESSORS(handler_table, FixedArray)
4659 // [deoptimization_data]: Array containing data for deopt.
4660 DECL_ACCESSORS(deoptimization_data, FixedArray)
4662 // [raw_type_feedback_info]: This field stores various things, depending on
4663 // the kind of the code object.
4664 // FUNCTION => type feedback information.
4665 // STUB and ICs => major/minor key as Smi.
4666 DECL_ACCESSORS(raw_type_feedback_info, Object)
4667 inline Object* type_feedback_info();
4668 inline void set_type_feedback_info(
4669 Object* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4670 inline uint32_t stub_key();
4671 inline void set_stub_key(uint32_t key);
4673 // [next_code_link]: Link for lists of optimized or deoptimized code.
4674 // Note that storage for this field is overlapped with typefeedback_info.
4675 DECL_ACCESSORS(next_code_link, Object)
4677 // [gc_metadata]: Field used to hold GC related metadata. The contents of this
4678 // field does not have to be traced during garbage collection since
4679 // it is only used by the garbage collector itself.
4680 DECL_ACCESSORS(gc_metadata, Object)
4682 // [ic_age]: Inline caching age: the value of the Heap::global_ic_age
4683 // at the moment when this object was created.
4684 inline void set_ic_age(int count);
4685 inline int ic_age() const;
4687 // [prologue_offset]: Offset of the function prologue, used for aging
4688 // FUNCTIONs and OPTIMIZED_FUNCTIONs.
4689 inline int prologue_offset() const;
4690 inline void set_prologue_offset(int offset);
4692 // [constant_pool offset]: Offset of the constant pool.
4693 // Valid for FLAG_enable_embedded_constant_pool only
4694 inline int constant_pool_offset() const;
4695 inline void set_constant_pool_offset(int offset);
4697 // Unchecked accessors to be used during GC.
4698 inline ByteArray* unchecked_relocation_info();
4700 inline int relocation_size();
4702 // [flags]: Various code flags.
4703 inline Flags flags();
4704 inline void set_flags(Flags flags);
4706 // [flags]: Access to specific code flags.
4708 inline InlineCacheState ic_state(); // Only valid for IC stubs.
4709 inline ExtraICState extra_ic_state(); // Only valid for IC stubs.
4711 inline StubType type(); // Only valid for monomorphic IC stubs.
4713 // Testers for IC stub kinds.
4714 inline bool is_inline_cache_stub();
4715 inline bool is_debug_stub();
4716 inline bool is_handler() { return kind() == HANDLER; }
4717 inline bool is_load_stub() { return kind() == LOAD_IC; }
4718 inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
4719 inline bool is_store_stub() { return kind() == STORE_IC; }
4720 inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
4721 inline bool is_call_stub() { return kind() == CALL_IC; }
4722 inline bool is_binary_op_stub() { return kind() == BINARY_OP_IC; }
4723 inline bool is_compare_ic_stub() { return kind() == COMPARE_IC; }
4724 inline bool is_compare_nil_ic_stub() { return kind() == COMPARE_NIL_IC; }
4725 inline bool is_to_boolean_ic_stub() { return kind() == TO_BOOLEAN_IC; }
4726 inline bool is_keyed_stub();
4727 inline bool is_optimized_code() { return kind() == OPTIMIZED_FUNCTION; }
4728 inline bool embeds_maps_weakly() {
4730 return (k == LOAD_IC || k == STORE_IC || k == KEYED_LOAD_IC ||
4731 k == KEYED_STORE_IC || k == COMPARE_NIL_IC) &&
4732 ic_state() == MONOMORPHIC;
4735 inline bool IsCodeStubOrIC();
4737 inline void set_raw_kind_specific_flags1(int value);
4738 inline void set_raw_kind_specific_flags2(int value);
4740 // [is_crankshafted]: For kind STUB or ICs, tells whether or not a code
4741 // object was generated by either the hydrogen or the TurboFan optimizing
4742 // compiler (but it may not be an optimized function).
4743 inline bool is_crankshafted();
4744 inline bool is_hydrogen_stub(); // Crankshafted, but not a function.
4745 inline void set_is_crankshafted(bool value);
4747 // [is_turbofanned]: For kind STUB or OPTIMIZED_FUNCTION, tells whether the
4748 // code object was generated by the TurboFan optimizing compiler.
4749 inline bool is_turbofanned();
4750 inline void set_is_turbofanned(bool value);
4752 // [can_have_weak_objects]: For kind OPTIMIZED_FUNCTION, tells whether the
4753 // embedded objects in code should be treated weakly.
4754 inline bool can_have_weak_objects();
4755 inline void set_can_have_weak_objects(bool value);
4757 // [has_deoptimization_support]: For FUNCTION kind, tells if it has
4758 // deoptimization support.
4759 inline bool has_deoptimization_support();
4760 inline void set_has_deoptimization_support(bool value);
4762 // [has_debug_break_slots]: For FUNCTION kind, tells if it has
4763 // been compiled with debug break slots.
4764 inline bool has_debug_break_slots();
4765 inline void set_has_debug_break_slots(bool value);
4767 // [has_reloc_info_for_serialization]: For FUNCTION kind, tells if its
4768 // reloc info includes runtime and external references to support
4769 // serialization/deserialization.
4770 inline bool has_reloc_info_for_serialization();
4771 inline void set_has_reloc_info_for_serialization(bool value);
4773 // [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for
4774 // how long the function has been marked for OSR and therefore which
4775 // level of loop nesting we are willing to do on-stack replacement
4777 inline void set_allow_osr_at_loop_nesting_level(int level);
4778 inline int allow_osr_at_loop_nesting_level();
4780 // [profiler_ticks]: For FUNCTION kind, tells for how many profiler ticks
4781 // the code object was seen on the stack with no IC patching going on.
4782 inline int profiler_ticks();
4783 inline void set_profiler_ticks(int ticks);
4785 // [builtin_index]: For BUILTIN kind, tells which builtin index it has.
4786 // For builtins, tells which builtin index it has.
4787 // Note that builtins can have a code kind other than BUILTIN, which means
4788 // that for arbitrary code objects, this index value may be random garbage.
4789 // To verify in that case, compare the code object to the indexed builtin.
4790 inline int builtin_index();
4791 inline void set_builtin_index(int id);
4793 // [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots
4794 // reserved in the code prologue.
4795 inline unsigned stack_slots();
4796 inline void set_stack_slots(unsigned slots);
4798 // [safepoint_table_start]: For kind OPTIMIZED_FUNCTION, the offset in
4799 // the instruction stream where the safepoint table starts.
4800 inline unsigned safepoint_table_offset();
4801 inline void set_safepoint_table_offset(unsigned offset);
4803 // [back_edge_table_start]: For kind FUNCTION, the offset in the
4804 // instruction stream where the back edge table starts.
4805 inline unsigned back_edge_table_offset();
4806 inline void set_back_edge_table_offset(unsigned offset);
4808 inline bool back_edges_patched_for_osr();
4810 // [to_boolean_foo]: For kind TO_BOOLEAN_IC tells what state the stub is in.
4811 inline uint16_t to_boolean_state();
4813 // [has_function_cache]: For kind STUB tells whether there is a function
4814 // cache is passed to the stub.
4815 inline bool has_function_cache();
4816 inline void set_has_function_cache(bool flag);
4819 // [marked_for_deoptimization]: For kind OPTIMIZED_FUNCTION tells whether
4820 // the code is going to be deoptimized because of dead embedded maps.
4821 inline bool marked_for_deoptimization();
4822 inline void set_marked_for_deoptimization(bool flag);
4824 // [constant_pool]: The constant pool for this function.
4825 inline Address constant_pool();
4827 // Get the safepoint entry for the given pc.
4828 SafepointEntry GetSafepointEntry(Address pc);
4830 // Find an object in a stub with a specified map
4831 Object* FindNthObject(int n, Map* match_map);
4833 // Find the first allocation site in an IC stub.
4834 AllocationSite* FindFirstAllocationSite();
4836 // Find the first map in an IC stub.
4837 Map* FindFirstMap();
4838 void FindAllMaps(MapHandleList* maps);
4840 // Find the first handler in an IC stub.
4841 Code* FindFirstHandler();
4843 // Find |length| handlers and put them into |code_list|. Returns false if not
4844 // enough handlers can be found.
4845 bool FindHandlers(CodeHandleList* code_list, int length = -1);
4847 // Find the handler for |map|.
4848 MaybeHandle<Code> FindHandlerForMap(Map* map);
4850 // Find the first name in an IC stub.
4851 Name* FindFirstName();
4853 class FindAndReplacePattern;
4854 // For each (map-to-find, object-to-replace) pair in the pattern, this
4855 // function replaces the corresponding placeholder in the code with the
4856 // object-to-replace. The function assumes that pairs in the pattern come in
4857 // the same order as the placeholders in the code.
4858 // If the placeholder is a weak cell, then the value of weak cell is matched
4859 // against the map-to-find.
4860 void FindAndReplace(const FindAndReplacePattern& pattern);
4862 // The entire code object including its header is copied verbatim to the
4863 // snapshot so that it can be written in one, fast, memcpy during
4864 // deserialization. The deserializer will overwrite some pointers, rather
4865 // like a runtime linker, but the random allocation addresses used in the
4866 // mksnapshot process would still be present in the unlinked snapshot data,
4867 // which would make snapshot production non-reproducible. This method wipes
4868 // out the to-be-overwritten header data for reproducible snapshots.
4869 inline void WipeOutHeader();
4871 // Flags operations.
4872 static inline Flags ComputeFlags(
4873 Kind kind, InlineCacheState ic_state = UNINITIALIZED,
4874 ExtraICState extra_ic_state = kNoExtraICState, StubType type = NORMAL,
4875 CacheHolderFlag holder = kCacheOnReceiver);
4877 static inline Flags ComputeMonomorphicFlags(
4878 Kind kind, ExtraICState extra_ic_state = kNoExtraICState,
4879 CacheHolderFlag holder = kCacheOnReceiver, StubType type = NORMAL);
4881 static inline Flags ComputeHandlerFlags(
4882 Kind handler_kind, StubType type = NORMAL,
4883 CacheHolderFlag holder = kCacheOnReceiver);
4885 static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
4886 static inline StubType ExtractTypeFromFlags(Flags flags);
4887 static inline CacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
4888 static inline Kind ExtractKindFromFlags(Flags flags);
4889 static inline ExtraICState ExtractExtraICStateFromFlags(Flags flags);
4891 static inline Flags RemoveTypeFromFlags(Flags flags);
4892 static inline Flags RemoveTypeAndHolderFromFlags(Flags flags);
4894 // Convert a target address into a code object.
4895 static inline Code* GetCodeFromTargetAddress(Address address);
4897 // Convert an entry address into an object.
4898 static inline Object* GetObjectFromEntryAddress(Address location_of_address);
4900 // Returns the address of the first instruction.
4901 inline byte* instruction_start();
4903 // Returns the address right after the last instruction.
4904 inline byte* instruction_end();
4906 // Returns the size of the instructions, padding, and relocation information.
4907 inline int body_size();
4909 // Returns the address of the first relocation info (read backwards!).
4910 inline byte* relocation_start();
4912 // Code entry point.
4913 inline byte* entry();
4915 // Returns true if pc is inside this object's instructions.
4916 inline bool contains(byte* pc);
4918 // Relocate the code by delta bytes. Called to signal that this code
4919 // object has been moved by delta bytes.
4920 void Relocate(intptr_t delta);
4922 // Migrate code described by desc.
4923 void CopyFrom(const CodeDesc& desc);
4925 // Returns the object size for a given body (used for allocation).
4926 static int SizeFor(int body_size) {
4927 DCHECK_SIZE_TAG_ALIGNED(body_size);
4928 return RoundUp(kHeaderSize + body_size, kCodeAlignment);
4931 // Calculate the size of the code object to report for log events. This takes
4932 // the layout of the code object into account.
4933 int ExecutableSize() {
4934 // Check that the assumptions about the layout of the code object holds.
4935 DCHECK_EQ(static_cast<int>(instruction_start() - address()),
4937 return instruction_size() + Code::kHeaderSize;
4940 // Locating source position.
4941 int SourcePosition(Address pc);
4942 int SourceStatementPosition(Address pc);
4946 // Dispatched behavior.
4947 int CodeSize() { return SizeFor(body_size()); }
4948 inline void CodeIterateBody(ObjectVisitor* v);
4950 template<typename StaticVisitor>
4951 inline void CodeIterateBody(Heap* heap);
4953 DECLARE_PRINTER(Code)
4954 DECLARE_VERIFIER(Code)
4956 void ClearInlineCaches();
4957 void ClearInlineCaches(Kind kind);
4959 BailoutId TranslatePcOffsetToAstId(uint32_t pc_offset);
4960 uint32_t TranslateAstIdToPcOffset(BailoutId ast_id);
4962 #define DECLARE_CODE_AGE_ENUM(X) k##X##CodeAge,
4964 kToBeExecutedOnceCodeAge = -3,
4965 kNotExecutedCodeAge = -2,
4966 kExecutedOnceCodeAge = -1,
4968 CODE_AGE_LIST(DECLARE_CODE_AGE_ENUM)
4970 kFirstCodeAge = kToBeExecutedOnceCodeAge,
4971 kLastCodeAge = kAfterLastCodeAge - 1,
4972 kCodeAgeCount = kAfterLastCodeAge - kFirstCodeAge - 1,
4973 kIsOldCodeAge = kSexagenarianCodeAge,
4974 kPreAgedCodeAge = kIsOldCodeAge - 1
4976 #undef DECLARE_CODE_AGE_ENUM
4978 // Code aging. Indicates how many full GCs this code has survived without
4979 // being entered through the prologue. Used to determine when it is
4980 // relatively safe to flush this code object and replace it with the lazy
4981 // compilation stub.
4982 static void MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate);
4983 static void MarkCodeAsExecuted(byte* sequence, Isolate* isolate);
4984 void MakeYoung(Isolate* isolate);
4985 void MarkToBeExecutedOnce(Isolate* isolate);
4986 void MakeOlder(MarkingParity);
4987 static bool IsYoungSequence(Isolate* isolate, byte* sequence);
4990 static inline Code* GetPreAgedCodeAgeStub(Isolate* isolate) {
4991 return GetCodeAgeStub(isolate, kNotExecutedCodeAge, NO_MARKING_PARITY);
4994 void PrintDeoptLocation(FILE* out, Address pc);
4995 bool CanDeoptAt(Address pc);
4998 void VerifyEmbeddedObjectsDependency();
5002 enum VerifyMode { kNoContextSpecificPointers, kNoContextRetainingPointers };
5003 void VerifyEmbeddedObjects(VerifyMode mode = kNoContextRetainingPointers);
5004 static void VerifyRecompiledCode(Code* old_code, Code* new_code);
5007 inline bool CanContainWeakObjects() {
5008 // is_turbofanned() implies !can_have_weak_objects().
5009 DCHECK(!is_optimized_code() || !is_turbofanned() ||
5010 !can_have_weak_objects());
5011 return is_optimized_code() && can_have_weak_objects();
5014 inline bool IsWeakObject(Object* object) {
5015 return (CanContainWeakObjects() && IsWeakObjectInOptimizedCode(object));
5018 static inline bool IsWeakObjectInOptimizedCode(Object* object);
5020 static Handle<WeakCell> WeakCellFor(Handle<Code> code);
5021 WeakCell* CachedWeakCell();
5023 // Max loop nesting marker used to postpose OSR. We don't take loop
5024 // nesting that is deeper than 5 levels into account.
5025 static const int kMaxLoopNestingMarker = 6;
5027 static const int kConstantPoolSize =
5028 FLAG_enable_embedded_constant_pool ? kIntSize : 0;
5030 // Layout description.
5031 static const int kRelocationInfoOffset = HeapObject::kHeaderSize;
5032 static const int kHandlerTableOffset = kRelocationInfoOffset + kPointerSize;
5033 static const int kDeoptimizationDataOffset =
5034 kHandlerTableOffset + kPointerSize;
5035 // For FUNCTION kind, we store the type feedback info here.
5036 static const int kTypeFeedbackInfoOffset =
5037 kDeoptimizationDataOffset + kPointerSize;
5038 static const int kNextCodeLinkOffset = kTypeFeedbackInfoOffset + kPointerSize;
5039 static const int kGCMetadataOffset = kNextCodeLinkOffset + kPointerSize;
5040 static const int kInstructionSizeOffset = kGCMetadataOffset + kPointerSize;
5041 static const int kICAgeOffset = kInstructionSizeOffset + kIntSize;
5042 static const int kFlagsOffset = kICAgeOffset + kIntSize;
5043 static const int kKindSpecificFlags1Offset = kFlagsOffset + kIntSize;
5044 static const int kKindSpecificFlags2Offset =
5045 kKindSpecificFlags1Offset + kIntSize;
5046 // Note: We might be able to squeeze this into the flags above.
5047 static const int kPrologueOffset = kKindSpecificFlags2Offset + kIntSize;
5048 static const int kConstantPoolOffset = kPrologueOffset + kIntSize;
5049 static const int kHeaderPaddingStart =
5050 kConstantPoolOffset + kConstantPoolSize;
5052 // Add padding to align the instruction start following right after
5053 // the Code object header.
5054 static const int kHeaderSize =
5055 (kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;
5057 // Byte offsets within kKindSpecificFlags1Offset.
5058 static const int kFullCodeFlags = kKindSpecificFlags1Offset;
5059 class FullCodeFlagsHasDeoptimizationSupportField:
5060 public BitField<bool, 0, 1> {}; // NOLINT
5061 class FullCodeFlagsHasDebugBreakSlotsField: public BitField<bool, 1, 1> {};
5062 class FullCodeFlagsHasRelocInfoForSerialization
5063 : public BitField<bool, 2, 1> {};
5064 // Bit 3 in this bitfield is unused.
5065 class ProfilerTicksField : public BitField<int, 4, 28> {};
5067 // Flags layout. BitField<type, shift, size>.
5068 class ICStateField : public BitField<InlineCacheState, 0, 4> {};
5069 class TypeField : public BitField<StubType, 4, 1> {};
5070 class CacheHolderField : public BitField<CacheHolderFlag, 5, 2> {};
5071 class KindField : public BitField<Kind, 7, 4> {};
5072 class ExtraICStateField: public BitField<ExtraICState, 11,
5073 PlatformSmiTagging::kSmiValueSize - 11 + 1> {}; // NOLINT
5075 // KindSpecificFlags1 layout (STUB and OPTIMIZED_FUNCTION)
5076 static const int kStackSlotsFirstBit = 0;
5077 static const int kStackSlotsBitCount = 24;
5078 static const int kHasFunctionCacheBit =
5079 kStackSlotsFirstBit + kStackSlotsBitCount;
5080 static const int kMarkedForDeoptimizationBit = kHasFunctionCacheBit + 1;
5081 static const int kIsTurbofannedBit = kMarkedForDeoptimizationBit + 1;
5082 static const int kCanHaveWeakObjects = kIsTurbofannedBit + 1;
5084 STATIC_ASSERT(kStackSlotsFirstBit + kStackSlotsBitCount <= 32);
5085 STATIC_ASSERT(kCanHaveWeakObjects + 1 <= 32);
5087 class StackSlotsField: public BitField<int,
5088 kStackSlotsFirstBit, kStackSlotsBitCount> {}; // NOLINT
5089 class HasFunctionCacheField : public BitField<bool, kHasFunctionCacheBit, 1> {
5091 class MarkedForDeoptimizationField
5092 : public BitField<bool, kMarkedForDeoptimizationBit, 1> {}; // NOLINT
5093 class IsTurbofannedField : public BitField<bool, kIsTurbofannedBit, 1> {
5095 class CanHaveWeakObjectsField
5096 : public BitField<bool, kCanHaveWeakObjects, 1> {}; // NOLINT
5098 // KindSpecificFlags2 layout (ALL)
5099 static const int kIsCrankshaftedBit = 0;
5100 class IsCrankshaftedField: public BitField<bool,
5101 kIsCrankshaftedBit, 1> {}; // NOLINT
5103 // KindSpecificFlags2 layout (STUB and OPTIMIZED_FUNCTION)
5104 static const int kSafepointTableOffsetFirstBit = kIsCrankshaftedBit + 1;
5105 static const int kSafepointTableOffsetBitCount = 30;
5107 STATIC_ASSERT(kSafepointTableOffsetFirstBit +
5108 kSafepointTableOffsetBitCount <= 32);
5109 STATIC_ASSERT(1 + kSafepointTableOffsetBitCount <= 32);
5111 class SafepointTableOffsetField: public BitField<int,
5112 kSafepointTableOffsetFirstBit,
5113 kSafepointTableOffsetBitCount> {}; // NOLINT
5115 // KindSpecificFlags2 layout (FUNCTION)
5116 class BackEdgeTableOffsetField: public BitField<int,
5117 kIsCrankshaftedBit + 1, 27> {}; // NOLINT
5118 class AllowOSRAtLoopNestingLevelField: public BitField<int,
5119 kIsCrankshaftedBit + 1 + 27, 4> {}; // NOLINT
5120 STATIC_ASSERT(AllowOSRAtLoopNestingLevelField::kMax >= kMaxLoopNestingMarker);
5122 static const int kArgumentsBits = 16;
5123 static const int kMaxArguments = (1 << kArgumentsBits) - 1;
5125 // This constant should be encodable in an ARM instruction.
5126 static const int kFlagsNotUsedInLookup =
5127 TypeField::kMask | CacheHolderField::kMask;
5130 friend class RelocIterator;
5131 friend class Deoptimizer; // For FindCodeAgeSequence.
5133 void ClearInlineCaches(Kind* kind);
5136 byte* FindCodeAgeSequence();
5137 static void GetCodeAgeAndParity(Code* code, Age* age,
5138 MarkingParity* parity);
5139 static void GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
5140 MarkingParity* parity);
5141 static Code* GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity);
5143 // Code aging -- platform-specific
5144 static void PatchPlatformCodeAge(Isolate* isolate,
5145 byte* sequence, Age age,
5146 MarkingParity parity);
5148 DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
5152 // This class describes the layout of dependent codes array of a map. The
5153 // array is partitioned into several groups of dependent codes. Each group
5154 // contains codes with the same dependency on the map. The array has the
5155 // following layout for n dependency groups:
5157 // +----+----+-----+----+---------+----------+-----+---------+-----------+
5158 // | C1 | C2 | ... | Cn | group 1 | group 2 | ... | group n | undefined |
5159 // +----+----+-----+----+---------+----------+-----+---------+-----------+
5161 // The first n elements are Smis, each of them specifies the number of codes
5162 // in the corresponding group. The subsequent elements contain grouped code
5163 // objects in weak cells. The suffix of the array can be filled with the
5164 // undefined value if the number of codes is less than the length of the
5165 // array. The order of the code objects within a group is not preserved.
5167 // All code indexes used in the class are counted starting from the first
5168 // code object of the first group. In other words, code index 0 corresponds
5169 // to array index n = kCodesStartIndex.
5171 class DependentCode: public FixedArray {
5173 enum DependencyGroup {
5174 // Group of code that weakly embed this map and depend on being
5175 // deoptimized when the map is garbage collected.
5177 // Group of code that embed a transition to this map, and depend on being
5178 // deoptimized when the transition is replaced by a new version.
5180 // Group of code that omit run-time prototype checks for prototypes
5181 // described by this map. The group is deoptimized whenever an object
5182 // described by this map changes shape (and transitions to a new map),
5183 // possibly invalidating the assumptions embedded in the code.
5184 kPrototypeCheckGroup,
5185 // Group of code that depends on global property values in property cells
5186 // not being changed.
5187 kPropertyCellChangedGroup,
5188 // Group of code that omit run-time type checks for the field(s) introduced
5191 // Group of code that omit run-time type checks for initial maps of
5193 kInitialMapChangedGroup,
5194 // Group of code that depends on tenuring information in AllocationSites
5195 // not being changed.
5196 kAllocationSiteTenuringChangedGroup,
5197 // Group of code that depends on element transition information in
5198 // AllocationSites not being changed.
5199 kAllocationSiteTransitionChangedGroup
5202 static const int kGroupCount = kAllocationSiteTransitionChangedGroup + 1;
5204 // Array for holding the index of the first code object of each group.
5205 // The last element stores the total number of code objects.
5206 class GroupStartIndexes {
5208 explicit GroupStartIndexes(DependentCode* entries);
5209 void Recompute(DependentCode* entries);
5210 int at(int i) { return start_indexes_[i]; }
5211 int number_of_entries() { return start_indexes_[kGroupCount]; }
5213 int start_indexes_[kGroupCount + 1];
5216 bool Contains(DependencyGroup group, WeakCell* code_cell);
5218 static Handle<DependentCode> InsertCompilationDependencies(
5219 Handle<DependentCode> entries, DependencyGroup group,
5220 Handle<Foreign> info);
5222 static Handle<DependentCode> InsertWeakCode(Handle<DependentCode> entries,
5223 DependencyGroup group,
5224 Handle<WeakCell> code_cell);
5226 void UpdateToFinishedCode(DependencyGroup group, Foreign* info,
5227 WeakCell* code_cell);
5229 void RemoveCompilationDependencies(DependentCode::DependencyGroup group,
5232 void DeoptimizeDependentCodeGroup(Isolate* isolate,
5233 DependentCode::DependencyGroup group);
5235 bool MarkCodeForDeoptimization(Isolate* isolate,
5236 DependentCode::DependencyGroup group);
5238 // The following low-level accessors should only be used by this class
5239 // and the mark compact collector.
5240 inline int number_of_entries(DependencyGroup group);
5241 inline void set_number_of_entries(DependencyGroup group, int value);
5242 inline Object* object_at(int i);
5243 inline void set_object_at(int i, Object* object);
5244 inline void clear_at(int i);
5245 inline void copy(int from, int to);
5246 DECLARE_CAST(DependentCode)
5248 static const char* DependencyGroupName(DependencyGroup group);
5249 static void SetMarkedForDeoptimization(Code* code, DependencyGroup group);
5252 static Handle<DependentCode> Insert(Handle<DependentCode> entries,
5253 DependencyGroup group,
5254 Handle<Object> object);
5255 static Handle<DependentCode> EnsureSpace(Handle<DependentCode> entries);
5256 // Make a room at the end of the given group by moving out the first
5257 // code objects of the subsequent groups.
5258 inline void ExtendGroup(DependencyGroup group);
5259 // Compact by removing cleared weak cells and return true if there was
5260 // any cleared weak cell.
5262 static int Grow(int number_of_entries) {
5263 if (number_of_entries < 5) return number_of_entries + 1;
5264 return number_of_entries * 5 / 4;
5266 static const int kCodesStartIndex = kGroupCount;
5270 class PrototypeInfo;
5273 // All heap objects have a Map that describes their structure.
5274 // A Map contains information about:
5275 // - Size information about the object
5276 // - How to iterate over an object (for garbage collection)
5277 class Map: public HeapObject {
5280 // Size in bytes or kVariableSizeSentinel if instances do not have
5282 inline int instance_size();
5283 inline void set_instance_size(int value);
5285 // Only to clear an unused byte, remove once byte is used.
5286 inline void clear_unused();
5288 // Count of properties allocated in the object.
5289 inline int inobject_properties();
5290 inline void set_inobject_properties(int value);
5293 inline InstanceType instance_type();
5294 inline void set_instance_type(InstanceType value);
5296 // Tells how many unused property fields are available in the
5297 // instance (only used for JSObject in fast mode).
5298 inline int unused_property_fields();
5299 inline void set_unused_property_fields(int value);
5302 inline byte bit_field() const;
5303 inline void set_bit_field(byte value);
5306 inline byte bit_field2() const;
5307 inline void set_bit_field2(byte value);
5310 inline uint32_t bit_field3() const;
5311 inline void set_bit_field3(uint32_t bits);
5313 class EnumLengthBits: public BitField<int,
5314 0, kDescriptorIndexBitCount> {}; // NOLINT
5315 class NumberOfOwnDescriptorsBits: public BitField<int,
5316 kDescriptorIndexBitCount, kDescriptorIndexBitCount> {}; // NOLINT
5317 STATIC_ASSERT(kDescriptorIndexBitCount + kDescriptorIndexBitCount == 20);
5318 class DictionaryMap : public BitField<bool, 20, 1> {};
5319 class OwnsDescriptors : public BitField<bool, 21, 1> {};
5320 class HasInstanceCallHandler : public BitField<bool, 22, 1> {};
5321 class Deprecated : public BitField<bool, 23, 1> {};
5322 class IsUnstable : public BitField<bool, 24, 1> {};
5323 class IsMigrationTarget : public BitField<bool, 25, 1> {};
5324 class IsStrong : public BitField<bool, 26, 1> {};
5327 // Keep this bit field at the very end for better code in
5328 // Builtins::kJSConstructStubGeneric stub.
5329 // This counter is used for in-object slack tracking and for map aging.
5330 // The in-object slack tracking is considered enabled when the counter is
5331 // in the range [kSlackTrackingCounterStart, kSlackTrackingCounterEnd].
5332 class Counter : public BitField<int, 28, 4> {};
5333 static const int kSlackTrackingCounterStart = 14;
5334 static const int kSlackTrackingCounterEnd = 8;
5335 static const int kRetainingCounterStart = kSlackTrackingCounterEnd - 1;
5336 static const int kRetainingCounterEnd = 0;
5338 // Tells whether the object in the prototype property will be used
5339 // for instances created from this function. If the prototype
5340 // property is set to a value that is not a JSObject, the prototype
5341 // property will not be used to create instances of the function.
5342 // See ECMA-262, 13.2.2.
5343 inline void set_non_instance_prototype(bool value);
5344 inline bool has_non_instance_prototype();
5346 // Tells whether function has special prototype property. If not, prototype
5347 // property will not be created when accessed (will return undefined),
5348 // and construction from this function will not be allowed.
5349 inline void set_function_with_prototype(bool value);
5350 inline bool function_with_prototype();
5352 // Tells whether the instance with this map should be ignored by the
5353 // Object.getPrototypeOf() function and the __proto__ accessor.
5354 inline void set_is_hidden_prototype() {
5355 set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
5358 inline bool is_hidden_prototype() {
5359 return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
5362 // Records and queries whether the instance has a named interceptor.
5363 inline void set_has_named_interceptor() {
5364 set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
5367 inline bool has_named_interceptor() {
5368 return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
5371 // Records and queries whether the instance has an indexed interceptor.
5372 inline void set_has_indexed_interceptor() {
5373 set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
5376 inline bool has_indexed_interceptor() {
5377 return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
5380 // Tells whether the instance is undetectable.
5381 // An undetectable object is a special class of JSObject: 'typeof' operator
5382 // returns undefined, ToBoolean returns false. Otherwise it behaves like
5383 // a normal JS object. It is useful for implementing undetectable
5384 // document.all in Firefox & Safari.
5385 // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
5386 inline void set_is_undetectable() {
5387 set_bit_field(bit_field() | (1 << kIsUndetectable));
5390 inline bool is_undetectable() {
5391 return ((1 << kIsUndetectable) & bit_field()) != 0;
5394 // Tells whether the instance has a call-as-function handler.
5395 inline void set_is_observed() {
5396 set_bit_field(bit_field() | (1 << kIsObserved));
5399 inline bool is_observed() {
5400 return ((1 << kIsObserved) & bit_field()) != 0;
5403 inline void set_is_strong();
5404 inline bool is_strong();
5405 inline void set_is_extensible(bool value);
5406 inline bool is_extensible();
5407 inline void set_is_prototype_map(bool value);
5408 inline bool is_prototype_map() const;
5410 inline void set_elements_kind(ElementsKind elements_kind) {
5411 DCHECK(static_cast<int>(elements_kind) < kElementsKindCount);
5412 DCHECK(kElementsKindCount <= (1 << Map::ElementsKindBits::kSize));
5413 set_bit_field2(Map::ElementsKindBits::update(bit_field2(), elements_kind));
5414 DCHECK(this->elements_kind() == elements_kind);
5417 inline ElementsKind elements_kind() {
5418 return Map::ElementsKindBits::decode(bit_field2());
5421 // Tells whether the instance has fast elements that are only Smis.
5422 inline bool has_fast_smi_elements() {
5423 return IsFastSmiElementsKind(elements_kind());
5426 // Tells whether the instance has fast elements.
5427 inline bool has_fast_object_elements() {
5428 return IsFastObjectElementsKind(elements_kind());
5431 inline bool has_fast_smi_or_object_elements() {
5432 return IsFastSmiOrObjectElementsKind(elements_kind());
5435 inline bool has_fast_double_elements() {
5436 return IsFastDoubleElementsKind(elements_kind());
5439 inline bool has_fast_elements() {
5440 return IsFastElementsKind(elements_kind());
5443 inline bool has_sloppy_arguments_elements() {
5444 return IsSloppyArgumentsElements(elements_kind());
5447 inline bool has_fixed_typed_array_elements() {
5448 return IsFixedTypedArrayElementsKind(elements_kind());
5451 inline bool has_dictionary_elements() {
5452 return IsDictionaryElementsKind(elements_kind());
5455 static bool IsValidElementsTransition(ElementsKind from_kind,
5456 ElementsKind to_kind);
5458 // Returns true if the current map doesn't have DICTIONARY_ELEMENTS but if a
5459 // map with DICTIONARY_ELEMENTS was found in the prototype chain.
5460 bool DictionaryElementsInPrototypeChainOnly();
5462 inline Map* ElementsTransitionMap();
5464 inline FixedArrayBase* GetInitialElements();
5466 // [raw_transitions]: Provides access to the transitions storage field.
5467 // Don't call set_raw_transitions() directly to overwrite transitions, use
5468 // the TransitionArray::ReplaceTransitions() wrapper instead!
5469 DECL_ACCESSORS(raw_transitions, Object)
5470 // [prototype_info]: Per-prototype metadata. Aliased with transitions
5471 // (which prototype maps don't have).
5472 DECL_ACCESSORS(prototype_info, Object)
5473 // PrototypeInfo is created lazily using this helper (which installs it on
5474 // the given prototype's map).
5475 static Handle<PrototypeInfo> GetOrCreatePrototypeInfo(
5476 Handle<JSObject> prototype, Isolate* isolate);
5477 static Handle<PrototypeInfo> GetOrCreatePrototypeInfo(
5478 Handle<Map> prototype_map, Isolate* isolate);
5480 // [prototype chain validity cell]: Associated with a prototype object,
5481 // stored in that object's map's PrototypeInfo, indicates that prototype
5482 // chains through this object are currently valid. The cell will be
5483 // invalidated and replaced when the prototype chain changes.
5484 static Handle<Cell> GetOrCreatePrototypeChainValidityCell(Handle<Map> map,
5486 static const int kPrototypeChainValid = 0;
5487 static const int kPrototypeChainInvalid = 1;
5490 Map* FindFieldOwner(int descriptor);
5492 inline int GetInObjectPropertyOffset(int index);
5494 int NumberOfFields();
5496 // TODO(ishell): candidate with JSObject::MigrateToMap().
5497 bool InstancesNeedRewriting(Map* target, int target_number_of_fields,
5498 int target_inobject, int target_unused,
5499 int* old_number_of_fields);
5500 // TODO(ishell): moveit!
5501 static Handle<Map> GeneralizeAllFieldRepresentations(Handle<Map> map);
5502 MUST_USE_RESULT static Handle<HeapType> GeneralizeFieldType(
5503 Handle<HeapType> type1,
5504 Handle<HeapType> type2,
5506 static void GeneralizeFieldType(Handle<Map> map, int modify_index,
5507 Representation new_representation,
5508 Handle<HeapType> new_field_type);
5509 static Handle<Map> ReconfigureProperty(Handle<Map> map, int modify_index,
5510 PropertyKind new_kind,
5511 PropertyAttributes new_attributes,
5512 Representation new_representation,
5513 Handle<HeapType> new_field_type,
5514 StoreMode store_mode);
5515 static Handle<Map> CopyGeneralizeAllRepresentations(
5516 Handle<Map> map, int modify_index, StoreMode store_mode,
5517 PropertyKind kind, PropertyAttributes attributes, const char* reason);
5519 static Handle<Map> PrepareForDataProperty(Handle<Map> old_map,
5520 int descriptor_number,
5521 Handle<Object> value);
5523 static Handle<Map> Normalize(Handle<Map> map, PropertyNormalizationMode mode,
5524 const char* reason);
5526 // Returns the constructor name (the name (possibly, inferred name) of the
5527 // function that was used to instantiate the object).
5528 String* constructor_name();
5530 // Tells whether the map is used for JSObjects in dictionary mode (ie
5531 // normalized objects, ie objects for which HasFastProperties returns false).
5532 // A map can never be used for both dictionary mode and fast mode JSObjects.
5533 // False by default and for HeapObjects that are not JSObjects.
5534 inline void set_dictionary_map(bool value);
5535 inline bool is_dictionary_map();
5537 // Tells whether the instance needs security checks when accessing its
5539 inline void set_is_access_check_needed(bool access_check_needed);
5540 inline bool is_access_check_needed();
5542 // Returns true if map has a non-empty stub code cache.
5543 inline bool has_code_cache();
5545 // [prototype]: implicit prototype object.
5546 DECL_ACCESSORS(prototype, Object)
5547 // TODO(jkummerow): make set_prototype private.
5548 static void SetPrototype(
5549 Handle<Map> map, Handle<Object> prototype,
5550 PrototypeOptimizationMode proto_mode = FAST_PROTOTYPE);
5552 // [constructor]: points back to the function responsible for this map.
5553 // The field overlaps with the back pointer. All maps in a transition tree
5554 // have the same constructor, so maps with back pointers can walk the
5555 // back pointer chain until they find the map holding their constructor.
5556 DECL_ACCESSORS(constructor_or_backpointer, Object)
5557 inline Object* GetConstructor() const;
5558 inline void SetConstructor(Object* constructor,
5559 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
5560 // [back pointer]: points back to the parent map from which a transition
5561 // leads to this map. The field overlaps with the constructor (see above).
5562 inline Object* GetBackPointer();
5563 inline void SetBackPointer(Object* value,
5564 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
5566 // [instance descriptors]: describes the object.
5567 DECL_ACCESSORS(instance_descriptors, DescriptorArray)
5569 // [layout descriptor]: describes the object layout.
5570 DECL_ACCESSORS(layout_descriptor, LayoutDescriptor)
5571 // |layout descriptor| accessor which can be used from GC.
5572 inline LayoutDescriptor* layout_descriptor_gc_safe();
5573 inline bool HasFastPointerLayout() const;
5575 // |layout descriptor| accessor that is safe to call even when
5576 // FLAG_unbox_double_fields is disabled (in this case Map does not contain
5577 // |layout_descriptor| field at all).
5578 inline LayoutDescriptor* GetLayoutDescriptor();
5580 inline void UpdateDescriptors(DescriptorArray* descriptors,
5581 LayoutDescriptor* layout_descriptor);
5582 inline void InitializeDescriptors(DescriptorArray* descriptors,
5583 LayoutDescriptor* layout_descriptor);
5585 // [stub cache]: contains stubs compiled for this map.
5586 DECL_ACCESSORS(code_cache, Object)
5588 // [dependent code]: list of optimized codes that weakly embed this map.
5589 DECL_ACCESSORS(dependent_code, DependentCode)
5591 // [weak cell cache]: cache that stores a weak cell pointing to this map.
5592 DECL_ACCESSORS(weak_cell_cache, Object)
5594 inline PropertyDetails GetLastDescriptorDetails();
5597 int number_of_own_descriptors = NumberOfOwnDescriptors();
5598 DCHECK(number_of_own_descriptors > 0);
5599 return number_of_own_descriptors - 1;
5602 int NumberOfOwnDescriptors() {
5603 return NumberOfOwnDescriptorsBits::decode(bit_field3());
5606 void SetNumberOfOwnDescriptors(int number) {
5607 DCHECK(number <= instance_descriptors()->number_of_descriptors());
5608 set_bit_field3(NumberOfOwnDescriptorsBits::update(bit_field3(), number));
5611 inline Cell* RetrieveDescriptorsPointer();
5614 return EnumLengthBits::decode(bit_field3());
5617 void SetEnumLength(int length) {
5618 if (length != kInvalidEnumCacheSentinel) {
5619 DCHECK(length >= 0);
5620 DCHECK(length == 0 || instance_descriptors()->HasEnumCache());
5621 DCHECK(length <= NumberOfOwnDescriptors());
5623 set_bit_field3(EnumLengthBits::update(bit_field3(), length));
5626 inline bool owns_descriptors();
5627 inline void set_owns_descriptors(bool owns_descriptors);
5628 inline bool has_instance_call_handler();
5629 inline void set_has_instance_call_handler();
5630 inline void mark_unstable();
5631 inline bool is_stable();
5632 inline void set_migration_target(bool value);
5633 inline bool is_migration_target();
5634 inline void set_counter(int value);
5635 inline int counter();
5636 inline void deprecate();
5637 inline bool is_deprecated();
5638 inline bool CanBeDeprecated();
5639 // Returns a non-deprecated version of the input. If the input was not
5640 // deprecated, it is directly returned. Otherwise, the non-deprecated version
5641 // is found by re-transitioning from the root of the transition tree using the
5642 // descriptor array of the map. Returns MaybeHandle<Map>() if no updated map
5644 static MaybeHandle<Map> TryUpdate(Handle<Map> map) WARN_UNUSED_RESULT;
5646 // Returns a non-deprecated version of the input. This method may deprecate
5647 // existing maps along the way if encodings conflict. Not for use while
5648 // gathering type feedback. Use TryUpdate in those cases instead.
5649 static Handle<Map> Update(Handle<Map> map);
5651 static Handle<Map> CopyDropDescriptors(Handle<Map> map);
5652 static Handle<Map> CopyInsertDescriptor(Handle<Map> map,
5653 Descriptor* descriptor,
5654 TransitionFlag flag);
5656 MUST_USE_RESULT static MaybeHandle<Map> CopyWithField(
5659 Handle<HeapType> type,
5660 PropertyAttributes attributes,
5661 Representation representation,
5662 TransitionFlag flag);
5664 MUST_USE_RESULT static MaybeHandle<Map> CopyWithConstant(
5667 Handle<Object> constant,
5668 PropertyAttributes attributes,
5669 TransitionFlag flag);
5671 // Returns a new map with all transitions dropped from the given map and
5672 // the ElementsKind set.
5673 static Handle<Map> TransitionElementsTo(Handle<Map> map,
5674 ElementsKind to_kind);
5676 static Handle<Map> AsElementsKind(Handle<Map> map, ElementsKind kind);
5678 static Handle<Map> CopyAsElementsKind(Handle<Map> map,
5680 TransitionFlag flag);
5682 static Handle<Map> CopyForObserved(Handle<Map> map);
5684 static Handle<Map> CopyForPreventExtensions(Handle<Map> map,
5685 PropertyAttributes attrs_to_add,
5686 Handle<Symbol> transition_marker,
5687 const char* reason);
5689 static Handle<Map> FixProxy(Handle<Map> map, InstanceType type, int size);
5692 // Maximal number of fast properties. Used to restrict the number of map
5693 // transitions to avoid an explosion in the number of maps for objects used as
5695 inline bool TooManyFastProperties(StoreFromKeyed store_mode);
5696 static Handle<Map> TransitionToDataProperty(Handle<Map> map,
5698 Handle<Object> value,
5699 PropertyAttributes attributes,
5700 StoreFromKeyed store_mode);
5701 static Handle<Map> TransitionToAccessorProperty(
5702 Handle<Map> map, Handle<Name> name, AccessorComponent component,
5703 Handle<Object> accessor, PropertyAttributes attributes);
5704 static Handle<Map> ReconfigureExistingProperty(Handle<Map> map,
5707 PropertyAttributes attributes);
5709 inline void AppendDescriptor(Descriptor* desc);
5711 // Returns a copy of the map, prepared for inserting into the transition
5712 // tree (if the |map| owns descriptors then the new one will share
5713 // descriptors with |map|).
5714 static Handle<Map> CopyForTransition(Handle<Map> map, const char* reason);
5716 // Returns a copy of the map, with all transitions dropped from the
5717 // instance descriptors.
5718 static Handle<Map> Copy(Handle<Map> map, const char* reason);
5719 static Handle<Map> Create(Isolate* isolate, int inobject_properties);
5721 // Returns the next free property index (only valid for FAST MODE).
5722 int NextFreePropertyIndex();
5724 // Returns the number of properties described in instance_descriptors
5725 // filtering out properties with the specified attributes.
5726 int NumberOfDescribedProperties(DescriptorFlag which = OWN_DESCRIPTORS,
5727 PropertyAttributes filter = NONE);
5731 // Code cache operations.
5733 // Clears the code cache.
5734 inline void ClearCodeCache(Heap* heap);
5736 // Update code cache.
5737 static void UpdateCodeCache(Handle<Map> map,
5741 // Extend the descriptor array of the map with the list of descriptors.
5742 // In case of duplicates, the latest descriptor is used.
5743 static void AppendCallbackDescriptors(Handle<Map> map,
5744 Handle<Object> descriptors);
5746 static inline int SlackForArraySize(int old_size, int size_limit);
5748 static void EnsureDescriptorSlack(Handle<Map> map, int slack);
5750 // Returns the found code or undefined if absent.
5751 Object* FindInCodeCache(Name* name, Code::Flags flags);
5753 // Returns the non-negative index of the code object if it is in the
5754 // cache and -1 otherwise.
5755 int IndexInCodeCache(Object* name, Code* code);
5757 // Removes a code object from the code cache at the given index.
5758 void RemoveFromCodeCache(Name* name, Code* code, int index);
5760 // Computes a hash value for this map, to be used in HashTables and such.
5763 // Returns the map that this map transitions to if its elements_kind
5764 // is changed to |elements_kind|, or NULL if no such map is cached yet.
5765 // |safe_to_add_transitions| is set to false if adding transitions is not
5767 Map* LookupElementsTransitionMap(ElementsKind elements_kind);
5769 // Returns the transitioned map for this map with the most generic
5770 // elements_kind that's found in |candidates|, or null handle if no match is
5772 static Handle<Map> FindTransitionedMap(Handle<Map> map,
5773 MapHandleList* candidates);
5775 bool CanTransition() {
5776 // Only JSObject and subtypes have map transitions and back pointers.
5777 STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE);
5778 return instance_type() >= FIRST_JS_OBJECT_TYPE;
5781 bool IsJSObjectMap() {
5782 return instance_type() >= FIRST_JS_OBJECT_TYPE;
5784 bool IsJSArrayMap() { return instance_type() == JS_ARRAY_TYPE; }
5785 bool IsStringMap() { return instance_type() < FIRST_NONSTRING_TYPE; }
5786 bool IsJSProxyMap() {
5787 InstanceType type = instance_type();
5788 return FIRST_JS_PROXY_TYPE <= type && type <= LAST_JS_PROXY_TYPE;
5790 bool IsJSGlobalProxyMap() {
5791 return instance_type() == JS_GLOBAL_PROXY_TYPE;
5793 bool IsJSGlobalObjectMap() {
5794 return instance_type() == JS_GLOBAL_OBJECT_TYPE;
5796 bool IsGlobalObjectMap() {
5797 const InstanceType type = instance_type();
5798 return type == JS_GLOBAL_OBJECT_TYPE || type == JS_BUILTINS_OBJECT_TYPE;
5801 inline bool CanOmitMapChecks();
5803 static void AddDependentCode(Handle<Map> map,
5804 DependentCode::DependencyGroup group,
5807 bool IsMapInArrayPrototypeChain();
5809 static Handle<WeakCell> WeakCellForMap(Handle<Map> map);
5811 // Dispatched behavior.
5812 DECLARE_PRINTER(Map)
5813 DECLARE_VERIFIER(Map)
5816 void DictionaryMapVerify();
5817 void VerifyOmittedMapChecks();
5820 inline int visitor_id();
5821 inline void set_visitor_id(int visitor_id);
5823 static Handle<Map> TransitionToPrototype(Handle<Map> map,
5824 Handle<Object> prototype,
5825 PrototypeOptimizationMode mode);
5827 static const int kMaxPreAllocatedPropertyFields = 255;
5829 // Layout description.
5830 static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
5831 static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
5832 static const int kBitField3Offset = kInstanceAttributesOffset + kIntSize;
5833 static const int kPrototypeOffset = kBitField3Offset + kPointerSize;
5834 static const int kConstructorOrBackPointerOffset =
5835 kPrototypeOffset + kPointerSize;
5836 // When there is only one transition, it is stored directly in this field;
5837 // otherwise a transition array is used.
5838 // For prototype maps, this slot is used to store this map's PrototypeInfo
5840 static const int kTransitionsOrPrototypeInfoOffset =
5841 kConstructorOrBackPointerOffset + kPointerSize;
5842 static const int kDescriptorsOffset =
5843 kTransitionsOrPrototypeInfoOffset + kPointerSize;
5844 #if V8_DOUBLE_FIELDS_UNBOXING
5845 static const int kLayoutDecriptorOffset = kDescriptorsOffset + kPointerSize;
5846 static const int kCodeCacheOffset = kLayoutDecriptorOffset + kPointerSize;
5848 static const int kLayoutDecriptorOffset = 1; // Must not be ever accessed.
5849 static const int kCodeCacheOffset = kDescriptorsOffset + kPointerSize;
5851 static const int kDependentCodeOffset = kCodeCacheOffset + kPointerSize;
5852 static const int kWeakCellCacheOffset = kDependentCodeOffset + kPointerSize;
5853 static const int kSize = kWeakCellCacheOffset + kPointerSize;
5855 // Layout of pointer fields. Heap iteration code relies on them
5856 // being continuously allocated.
5857 static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
5858 static const int kPointerFieldsEndOffset = kSize;
5860 // Byte offsets within kInstanceSizesOffset.
5861 static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
5862 static const int kInObjectPropertiesByte = 1;
5863 static const int kInObjectPropertiesOffset =
5864 kInstanceSizesOffset + kInObjectPropertiesByte;
5865 // Note there is one byte available for use here.
5866 static const int kUnusedByte = 2;
5867 static const int kUnusedOffset = kInstanceSizesOffset + kUnusedByte;
5868 static const int kVisitorIdByte = 3;
5869 static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte;
5871 // Byte offsets within kInstanceAttributesOffset attributes.
5872 #if V8_TARGET_LITTLE_ENDIAN
5873 // Order instance type and bit field together such that they can be loaded
5874 // together as a 16-bit word with instance type in the lower 8 bits regardless
5875 // of endianess. Also provide endian-independent offset to that 16-bit word.
5876 static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
5877 static const int kBitFieldOffset = kInstanceAttributesOffset + 1;
5879 static const int kBitFieldOffset = kInstanceAttributesOffset + 0;
5880 static const int kInstanceTypeOffset = kInstanceAttributesOffset + 1;
5882 static const int kInstanceTypeAndBitFieldOffset =
5883 kInstanceAttributesOffset + 0;
5884 static const int kBitField2Offset = kInstanceAttributesOffset + 2;
5885 static const int kUnusedPropertyFieldsByte = 3;
5886 static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 3;
5888 STATIC_ASSERT(kInstanceTypeAndBitFieldOffset ==
5889 Internals::kMapInstanceTypeAndBitFieldOffset);
5891 // Bit positions for bit field.
5892 static const int kHasNonInstancePrototype = 0;
5893 static const int kIsHiddenPrototype = 1;
5894 static const int kHasNamedInterceptor = 2;
5895 static const int kHasIndexedInterceptor = 3;
5896 static const int kIsUndetectable = 4;
5897 static const int kIsObserved = 5;
5898 static const int kIsAccessCheckNeeded = 6;
5899 class FunctionWithPrototype: public BitField<bool, 7, 1> {};
5901 // Bit positions for bit field 2
5902 static const int kIsExtensible = 0;
5903 static const int kStringWrapperSafeForDefaultValueOf = 1;
5904 class IsPrototypeMapBits : public BitField<bool, 2, 1> {};
5905 class ElementsKindBits: public BitField<ElementsKind, 3, 5> {};
5907 // Derived values from bit field 2
5908 static const int8_t kMaximumBitField2FastElementValue = static_cast<int8_t>(
5909 (FAST_ELEMENTS + 1) << Map::ElementsKindBits::kShift) - 1;
5910 static const int8_t kMaximumBitField2FastSmiElementValue =
5911 static_cast<int8_t>((FAST_SMI_ELEMENTS + 1) <<
5912 Map::ElementsKindBits::kShift) - 1;
5913 static const int8_t kMaximumBitField2FastHoleyElementValue =
5914 static_cast<int8_t>((FAST_HOLEY_ELEMENTS + 1) <<
5915 Map::ElementsKindBits::kShift) - 1;
5916 static const int8_t kMaximumBitField2FastHoleySmiElementValue =
5917 static_cast<int8_t>((FAST_HOLEY_SMI_ELEMENTS + 1) <<
5918 Map::ElementsKindBits::kShift) - 1;
5920 typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
5921 kPointerFieldsEndOffset,
5922 kSize> BodyDescriptor;
5924 // Compares this map to another to see if they describe equivalent objects.
5925 // If |mode| is set to CLEAR_INOBJECT_PROPERTIES, |other| is treated as if
5926 // it had exactly zero inobject properties.
5927 // The "shared" flags of both this map and |other| are ignored.
5928 bool EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode);
5930 // Returns true if given field is unboxed double.
5931 inline bool IsUnboxedDoubleField(FieldIndex index);
5934 static void TraceTransition(const char* what, Map* from, Map* to, Name* name);
5935 static void TraceAllTransitions(Map* map);
5938 static inline Handle<Map> CopyInstallDescriptorsForTesting(
5939 Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
5940 Handle<LayoutDescriptor> layout_descriptor);
5943 static void ConnectTransition(Handle<Map> parent, Handle<Map> child,
5944 Handle<Name> name, SimpleTransitionFlag flag);
5946 bool EquivalentToForTransition(Map* other);
5947 static Handle<Map> RawCopy(Handle<Map> map, int instance_size);
5948 static Handle<Map> ShareDescriptor(Handle<Map> map,
5949 Handle<DescriptorArray> descriptors,
5950 Descriptor* descriptor);
5951 static Handle<Map> CopyInstallDescriptors(
5952 Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
5953 Handle<LayoutDescriptor> layout_descriptor);
5954 static Handle<Map> CopyAddDescriptor(Handle<Map> map,
5955 Descriptor* descriptor,
5956 TransitionFlag flag);
5957 static Handle<Map> CopyReplaceDescriptors(
5958 Handle<Map> map, Handle<DescriptorArray> descriptors,
5959 Handle<LayoutDescriptor> layout_descriptor, TransitionFlag flag,
5960 MaybeHandle<Name> maybe_name, const char* reason,
5961 SimpleTransitionFlag simple_flag);
5963 static Handle<Map> CopyReplaceDescriptor(Handle<Map> map,
5964 Handle<DescriptorArray> descriptors,
5965 Descriptor* descriptor,
5967 TransitionFlag flag);
5968 static MUST_USE_RESULT MaybeHandle<Map> TryReconfigureExistingProperty(
5969 Handle<Map> map, int descriptor, PropertyKind kind,
5970 PropertyAttributes attributes, const char** reason);
5972 static Handle<Map> CopyNormalized(Handle<Map> map,
5973 PropertyNormalizationMode mode);
5975 // Fires when the layout of an object with a leaf map changes.
5976 // This includes adding transitions to the leaf map or changing
5977 // the descriptor array.
5978 inline void NotifyLeafMapLayoutChange();
5980 void DeprecateTransitionTree();
5981 bool DeprecateTarget(PropertyKind kind, Name* key,
5982 PropertyAttributes attributes,
5983 DescriptorArray* new_descriptors,
5984 LayoutDescriptor* new_layout_descriptor);
5986 Map* FindLastMatchMap(int verbatim, int length, DescriptorArray* descriptors);
5988 // Update field type of the given descriptor to new representation and new
5989 // type. The type must be prepared for storing in descriptor array:
5990 // it must be either a simple type or a map wrapped in a weak cell.
5991 void UpdateFieldType(int descriptor_number, Handle<Name> name,
5992 Representation new_representation,
5993 Handle<Object> new_wrapped_type);
5995 void PrintReconfiguration(FILE* file, int modify_index, PropertyKind kind,
5996 PropertyAttributes attributes);
5997 void PrintGeneralization(FILE* file,
6002 bool constant_to_field,
6003 Representation old_representation,
6004 Representation new_representation,
6005 HeapType* old_field_type,
6006 HeapType* new_field_type);
6008 static const int kFastPropertiesSoftLimit = 12;
6009 static const int kMaxFastProperties = 128;
6011 DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
6015 // An abstract superclass, a marker class really, for simple structure classes.
6016 // It doesn't carry much functionality but allows struct classes to be
6017 // identified in the type system.
6018 class Struct: public HeapObject {
6020 inline void InitializeBody(int object_size);
6021 DECLARE_CAST(Struct)
6025 // A simple one-element struct, useful where smis need to be boxed.
6026 class Box : public Struct {
6028 // [value]: the boxed contents.
6029 DECL_ACCESSORS(value, Object)
6033 // Dispatched behavior.
6034 DECLARE_PRINTER(Box)
6035 DECLARE_VERIFIER(Box)
6037 static const int kValueOffset = HeapObject::kHeaderSize;
6038 static const int kSize = kValueOffset + kPointerSize;
6041 DISALLOW_IMPLICIT_CONSTRUCTORS(Box);
6045 // Container for metadata stored on each prototype map.
6046 class PrototypeInfo : public Struct {
6048 static const int UNREGISTERED = -1;
6050 // [prototype_users]: WeakFixedArray containing maps using this prototype,
6051 // or Smi(0) if uninitialized.
6052 DECL_ACCESSORS(prototype_users, Object)
6053 // [registry_slot]: Slot in prototype's user registry where this user
6054 // is stored. Returns UNREGISTERED if this prototype has not been registered.
6055 inline int registry_slot() const;
6056 inline void set_registry_slot(int slot);
6057 // [validity_cell]: Cell containing the validity bit for prototype chains
6058 // going through this object, or Smi(0) if uninitialized.
6059 DECL_ACCESSORS(validity_cell, Object)
6060 // [constructor_name]: User-friendly name of the original constructor.
6061 DECL_ACCESSORS(constructor_name, Object)
6063 DECLARE_CAST(PrototypeInfo)
6065 // Dispatched behavior.
6066 DECLARE_PRINTER(PrototypeInfo)
6067 DECLARE_VERIFIER(PrototypeInfo)
6069 static const int kPrototypeUsersOffset = HeapObject::kHeaderSize;
6070 static const int kRegistrySlotOffset = kPrototypeUsersOffset + kPointerSize;
6071 static const int kValidityCellOffset = kRegistrySlotOffset + kPointerSize;
6072 static const int kConstructorNameOffset = kValidityCellOffset + kPointerSize;
6073 static const int kSize = kConstructorNameOffset + kPointerSize;
6076 DISALLOW_IMPLICIT_CONSTRUCTORS(PrototypeInfo);
6080 // Script describes a script which has been added to the VM.
6081 class Script: public Struct {
6090 // Script compilation types.
6091 enum CompilationType {
6092 COMPILATION_TYPE_HOST = 0,
6093 COMPILATION_TYPE_EVAL = 1
6096 // Script compilation state.
6097 enum CompilationState {
6098 COMPILATION_STATE_INITIAL = 0,
6099 COMPILATION_STATE_COMPILED = 1
6102 // [source]: the script source.
6103 DECL_ACCESSORS(source, Object)
6105 // [name]: the script name.
6106 DECL_ACCESSORS(name, Object)
6108 // [id]: the script id.
6109 DECL_ACCESSORS(id, Smi)
6111 // [line_offset]: script line offset in resource from where it was extracted.
6112 DECL_ACCESSORS(line_offset, Smi)
6114 // [column_offset]: script column offset in resource from where it was
6116 DECL_ACCESSORS(column_offset, Smi)
6118 // [context_data]: context data for the context this script was compiled in.
6119 DECL_ACCESSORS(context_data, Object)
6121 // [wrapper]: the wrapper cache. This is either undefined or a WeakCell.
6122 DECL_ACCESSORS(wrapper, HeapObject)
6124 // [type]: the script type.
6125 DECL_ACCESSORS(type, Smi)
6127 // [line_ends]: FixedArray of line ends positions.
6128 DECL_ACCESSORS(line_ends, Object)
6130 // [eval_from_shared]: for eval scripts the shared funcion info for the
6131 // function from which eval was called.
6132 DECL_ACCESSORS(eval_from_shared, Object)
6134 // [eval_from_instructions_offset]: the instruction offset in the code for the
6135 // function from which eval was called where eval was called.
6136 DECL_ACCESSORS(eval_from_instructions_offset, Smi)
6138 // [shared_function_infos]: weak fixed array containing all shared
6139 // function infos created from this script.
6140 DECL_ACCESSORS(shared_function_infos, Object)
6142 // [flags]: Holds an exciting bitfield.
6143 DECL_ACCESSORS(flags, Smi)
6145 // [source_url]: sourceURL from magic comment
6146 DECL_ACCESSORS(source_url, Object)
6148 // [source_url]: sourceMappingURL magic comment
6149 DECL_ACCESSORS(source_mapping_url, Object)
6151 // [compilation_type]: how the the script was compiled. Encoded in the
6153 inline CompilationType compilation_type();
6154 inline void set_compilation_type(CompilationType type);
6156 // [compilation_state]: determines whether the script has already been
6157 // compiled. Encoded in the 'flags' field.
6158 inline CompilationState compilation_state();
6159 inline void set_compilation_state(CompilationState state);
6161 // [origin_options]: optional attributes set by the embedder via ScriptOrigin,
6162 // and used by the embedder to make decisions about the script. V8 just passes
6163 // this through. Encoded in the 'flags' field.
6164 inline v8::ScriptOriginOptions origin_options();
6165 inline void set_origin_options(ScriptOriginOptions origin_options);
6167 DECLARE_CAST(Script)
6169 // If script source is an external string, check that the underlying
6170 // resource is accessible. Otherwise, always return true.
6171 inline bool HasValidSource();
6173 // Convert code position into column number.
6174 static int GetColumnNumber(Handle<Script> script, int code_pos);
6176 // Convert code position into (zero-based) line number.
6177 // The non-handlified version does not allocate, but may be much slower.
6178 static int GetLineNumber(Handle<Script> script, int code_pos);
6179 int GetLineNumber(int code_pos);
6181 static Handle<Object> GetNameOrSourceURL(Handle<Script> script);
6183 // Init line_ends array with code positions of line ends inside script source.
6184 static void InitLineEnds(Handle<Script> script);
6186 // Get the JS object wrapping the given script; create it if none exists.
6187 static Handle<JSObject> GetWrapper(Handle<Script> script);
6189 // Look through the list of existing shared function infos to find one
6190 // that matches the function literal. Return empty handle if not found.
6191 MaybeHandle<SharedFunctionInfo> FindSharedFunctionInfo(FunctionLiteral* fun);
6193 // Dispatched behavior.
6194 DECLARE_PRINTER(Script)
6195 DECLARE_VERIFIER(Script)
6197 static const int kSourceOffset = HeapObject::kHeaderSize;
6198 static const int kNameOffset = kSourceOffset + kPointerSize;
6199 static const int kLineOffsetOffset = kNameOffset + kPointerSize;
6200 static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
6201 static const int kContextOffset = kColumnOffsetOffset + kPointerSize;
6202 static const int kWrapperOffset = kContextOffset + kPointerSize;
6203 static const int kTypeOffset = kWrapperOffset + kPointerSize;
6204 static const int kLineEndsOffset = kTypeOffset + kPointerSize;
6205 static const int kIdOffset = kLineEndsOffset + kPointerSize;
6206 static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
6207 static const int kEvalFrominstructionsOffsetOffset =
6208 kEvalFromSharedOffset + kPointerSize;
6209 static const int kSharedFunctionInfosOffset =
6210 kEvalFrominstructionsOffsetOffset + kPointerSize;
6211 static const int kFlagsOffset = kSharedFunctionInfosOffset + kPointerSize;
6212 static const int kSourceUrlOffset = kFlagsOffset + kPointerSize;
6213 static const int kSourceMappingUrlOffset = kSourceUrlOffset + kPointerSize;
6214 static const int kSize = kSourceMappingUrlOffset + kPointerSize;
6217 int GetLineNumberWithArray(int code_pos);
6219 // Bit positions in the flags field.
6220 static const int kCompilationTypeBit = 0;
6221 static const int kCompilationStateBit = 1;
6222 static const int kOriginOptionsShift = 2;
6223 static const int kOriginOptionsSize = 3;
6224 static const int kOriginOptionsMask = ((1 << kOriginOptionsSize) - 1)
6225 << kOriginOptionsShift;
6227 DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
6231 // List of builtin functions we want to identify to improve code
6234 // Each entry has a name of a global object property holding an object
6235 // optionally followed by ".prototype", a name of a builtin function
6236 // on the object (the one the id is set for), and a label.
6238 // Installation of ids for the selected builtin functions is handled
6239 // by the bootstrapper.
6240 #define FUNCTIONS_WITH_ID_LIST(V) \
6241 V(Array.prototype, indexOf, ArrayIndexOf) \
6242 V(Array.prototype, lastIndexOf, ArrayLastIndexOf) \
6243 V(Array.prototype, push, ArrayPush) \
6244 V(Array.prototype, pop, ArrayPop) \
6245 V(Array.prototype, shift, ArrayShift) \
6246 V(Function.prototype, apply, FunctionApply) \
6247 V(Function.prototype, call, FunctionCall) \
6248 V(String.prototype, charCodeAt, StringCharCodeAt) \
6249 V(String.prototype, charAt, StringCharAt) \
6250 V(String, fromCharCode, StringFromCharCode) \
6251 V(Math, random, MathRandom) \
6252 V(Math, floor, MathFloor) \
6253 V(Math, round, MathRound) \
6254 V(Math, ceil, MathCeil) \
6255 V(Math, abs, MathAbs) \
6256 V(Math, log, MathLog) \
6257 V(Math, exp, MathExp) \
6258 V(Math, sqrt, MathSqrt) \
6259 V(Math, pow, MathPow) \
6260 V(Math, max, MathMax) \
6261 V(Math, min, MathMin) \
6262 V(Math, cos, MathCos) \
6263 V(Math, sin, MathSin) \
6264 V(Math, tan, MathTan) \
6265 V(Math, acos, MathAcos) \
6266 V(Math, asin, MathAsin) \
6267 V(Math, atan, MathAtan) \
6268 V(Math, atan2, MathAtan2) \
6269 V(Math, imul, MathImul) \
6270 V(Math, clz32, MathClz32) \
6271 V(Math, fround, MathFround)
6273 #define ATOMIC_FUNCTIONS_WITH_ID_LIST(V) \
6274 V(Atomics, load, AtomicsLoad) \
6275 V(Atomics, store, AtomicsStore)
6277 enum BuiltinFunctionId {
6279 #define DECLARE_FUNCTION_ID(ignored1, ignore2, name) \
6281 FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
6282 ATOMIC_FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
6283 #undef DECLARE_FUNCTION_ID
6284 // Fake id for a special case of Math.pow. Note, it continues the
6285 // list of math functions.
6290 // Result of searching in an optimized code map of a SharedFunctionInfo. Note
6291 // that both {code} and {literals} can be NULL to pass search result status.
6292 struct CodeAndLiterals {
6293 Code* code; // Cached optimized code.
6294 FixedArray* literals; // Cached literals array.
6298 // SharedFunctionInfo describes the JSFunction information that can be
6299 // shared by multiple instances of the function.
6300 class SharedFunctionInfo: public HeapObject {
6302 // [name]: Function name.
6303 DECL_ACCESSORS(name, Object)
6305 // [code]: Function code.
6306 DECL_ACCESSORS(code, Code)
6307 inline void ReplaceCode(Code* code);
6309 // [optimized_code_map]: Map from native context to optimized code
6310 // and a shared literals array or Smi(0) if none.
6311 DECL_ACCESSORS(optimized_code_map, Object)
6313 // Returns entry from optimized code map for specified context and OSR entry.
6314 // Note that {code == nullptr} indicates no matching entry has been found,
6315 // whereas {literals == nullptr} indicates the code is context-independent.
6316 CodeAndLiterals SearchOptimizedCodeMap(Context* native_context,
6317 BailoutId osr_ast_id);
6319 // Clear optimized code map.
6320 void ClearOptimizedCodeMap();
6322 // Removed a specific optimized code object from the optimized code map.
6323 void EvictFromOptimizedCodeMap(Code* optimized_code, const char* reason);
6325 // Trims the optimized code map after entries have been removed.
6326 void TrimOptimizedCodeMap(int shrink_by);
6328 // Add a new entry to the optimized code map for context-independent code.
6329 static void AddSharedCodeToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
6332 // Add a new entry to the optimized code map for context-dependent code.
6333 static void AddToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
6334 Handle<Context> native_context,
6336 Handle<FixedArray> literals,
6337 BailoutId osr_ast_id);
6339 // Set up the link between shared function info and the script. The shared
6340 // function info is added to the list on the script.
6341 static void SetScript(Handle<SharedFunctionInfo> shared,
6342 Handle<Object> script_object);
6344 // Layout description of the optimized code map.
6345 static const int kNextMapIndex = 0;
6346 static const int kSharedCodeIndex = 1;
6347 static const int kEntriesStart = 2;
6348 static const int kContextOffset = 0;
6349 static const int kCachedCodeOffset = 1;
6350 static const int kLiteralsOffset = 2;
6351 static const int kOsrAstIdOffset = 3;
6352 static const int kEntryLength = 4;
6353 static const int kInitialLength = kEntriesStart + kEntryLength;
6355 // [scope_info]: Scope info.
6356 DECL_ACCESSORS(scope_info, ScopeInfo)
6358 // [construct stub]: Code stub for constructing instances of this function.
6359 DECL_ACCESSORS(construct_stub, Code)
6361 // Returns if this function has been compiled to native code yet.
6362 inline bool is_compiled();
6364 // [length]: The function length - usually the number of declared parameters.
6365 // Use up to 2^30 parameters.
6366 inline int length() const;
6367 inline void set_length(int value);
6369 // [internal formal parameter count]: The declared number of parameters.
6370 // For subclass constructors, also includes new.target.
6371 // The size of function's frame is internal_formal_parameter_count + 1.
6372 inline int internal_formal_parameter_count() const;
6373 inline void set_internal_formal_parameter_count(int value);
6375 // Set the formal parameter count so the function code will be
6376 // called without using argument adaptor frames.
6377 inline void DontAdaptArguments();
6379 // [expected_nof_properties]: Expected number of properties for the function.
6380 inline int expected_nof_properties() const;
6381 inline void set_expected_nof_properties(int value);
6383 // [feedback_vector] - accumulates ast node feedback from full-codegen and
6384 // (increasingly) from crankshafted code where sufficient feedback isn't
6386 DECL_ACCESSORS(feedback_vector, TypeFeedbackVector)
6388 // Unconditionally clear the type feedback vector (including vector ICs).
6389 void ClearTypeFeedbackInfo();
6391 // Clear the type feedback vector with a more subtle policy at GC time.
6392 void ClearTypeFeedbackInfoAtGCTime();
6395 // [unique_id] - For --trace-maps purposes, an identifier that's persistent
6396 // even if the GC moves this SharedFunctionInfo.
6397 inline int unique_id() const;
6398 inline void set_unique_id(int value);
6401 // [instance class name]: class name for instances.
6402 DECL_ACCESSORS(instance_class_name, Object)
6404 // [function data]: This field holds some additional data for function.
6405 // Currently it has one of:
6406 // - a FunctionTemplateInfo to make benefit the API [IsApiFunction()].
6407 // - a Smi identifying a builtin function [HasBuiltinFunctionId()].
6408 // - a BytecodeArray for the interpreter [HasBytecodeArray()].
6409 // In the long run we don't want all functions to have this field but
6410 // we can fix that when we have a better model for storing hidden data
6412 DECL_ACCESSORS(function_data, Object)
6414 inline bool IsApiFunction();
6415 inline FunctionTemplateInfo* get_api_func_data();
6416 inline bool HasBuiltinFunctionId();
6417 inline BuiltinFunctionId builtin_function_id();
6418 inline bool HasBytecodeArray();
6419 inline BytecodeArray* bytecode_array();
6421 // [script info]: Script from which the function originates.
6422 DECL_ACCESSORS(script, Object)
6424 // [num_literals]: Number of literals used by this function.
6425 inline int num_literals() const;
6426 inline void set_num_literals(int value);
6428 // [start_position_and_type]: Field used to store both the source code
6429 // position, whether or not the function is a function expression,
6430 // and whether or not the function is a toplevel function. The two
6431 // least significants bit indicates whether the function is an
6432 // expression and the rest contains the source code position.
6433 inline int start_position_and_type() const;
6434 inline void set_start_position_and_type(int value);
6436 // The function is subject to debugging if a debug info is attached.
6437 inline bool HasDebugInfo();
6438 inline DebugInfo* GetDebugInfo();
6440 // A function has debug code if the compiled code has debug break slots.
6441 inline bool HasDebugCode();
6443 // [debug info]: Debug information.
6444 DECL_ACCESSORS(debug_info, Object)
6446 // [inferred name]: Name inferred from variable or property
6447 // assignment of this function. Used to facilitate debugging and
6448 // profiling of JavaScript code written in OO style, where almost
6449 // all functions are anonymous but are assigned to object
6451 DECL_ACCESSORS(inferred_name, String)
6453 // The function's name if it is non-empty, otherwise the inferred name.
6454 String* DebugName();
6456 // Position of the 'function' token in the script source.
6457 inline int function_token_position() const;
6458 inline void set_function_token_position(int function_token_position);
6460 // Position of this function in the script source.
6461 inline int start_position() const;
6462 inline void set_start_position(int start_position);
6464 // End position of this function in the script source.
6465 inline int end_position() const;
6466 inline void set_end_position(int end_position);
6468 // Is this function a function expression in the source code.
6469 DECL_BOOLEAN_ACCESSORS(is_expression)
6471 // Is this function a top-level function (scripts, evals).
6472 DECL_BOOLEAN_ACCESSORS(is_toplevel)
6474 // Bit field containing various information collected by the compiler to
6475 // drive optimization.
6476 inline int compiler_hints() const;
6477 inline void set_compiler_hints(int value);
6479 inline int ast_node_count() const;
6480 inline void set_ast_node_count(int count);
6482 inline int profiler_ticks() const;
6483 inline void set_profiler_ticks(int ticks);
6485 // Inline cache age is used to infer whether the function survived a context
6486 // disposal or not. In the former case we reset the opt_count.
6487 inline int ic_age();
6488 inline void set_ic_age(int age);
6490 // Indicates if this function can be lazy compiled.
6491 // This is used to determine if we can safely flush code from a function
6492 // when doing GC if we expect that the function will no longer be used.
6493 DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation)
6495 // Indicates if this function can be lazy compiled without a context.
6496 // This is used to determine if we can force compilation without reaching
6497 // the function through program execution but through other means (e.g. heap
6498 // iteration by the debugger).
6499 DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation_without_context)
6501 // Indicates whether optimizations have been disabled for this
6502 // shared function info. If a function is repeatedly optimized or if
6503 // we cannot optimize the function we disable optimization to avoid
6504 // spending time attempting to optimize it again.
6505 DECL_BOOLEAN_ACCESSORS(optimization_disabled)
6507 // Indicates the language mode.
6508 inline LanguageMode language_mode();
6509 inline void set_language_mode(LanguageMode language_mode);
6511 // False if the function definitely does not allocate an arguments object.
6512 DECL_BOOLEAN_ACCESSORS(uses_arguments)
6514 // Indicates that this function uses a super property (or an eval that may
6515 // use a super property).
6516 // This is needed to set up the [[HomeObject]] on the function instance.
6517 DECL_BOOLEAN_ACCESSORS(needs_home_object)
6519 // True if the function has any duplicated parameter names.
6520 DECL_BOOLEAN_ACCESSORS(has_duplicate_parameters)
6522 // Indicates whether the function is a native function.
6523 // These needs special treatment in .call and .apply since
6524 // null passed as the receiver should not be translated to the
6526 DECL_BOOLEAN_ACCESSORS(native)
6528 // Indicate that this function should always be inlined in optimized code.
6529 DECL_BOOLEAN_ACCESSORS(force_inline)
6531 // Indicates that the function was created by the Function function.
6532 // Though it's anonymous, toString should treat it as if it had the name
6533 // "anonymous". We don't set the name itself so that the system does not
6534 // see a binding for it.
6535 DECL_BOOLEAN_ACCESSORS(name_should_print_as_anonymous)
6537 // Indicates whether the function is a bound function created using
6538 // the bind function.
6539 DECL_BOOLEAN_ACCESSORS(bound)
6541 // Indicates that the function is anonymous (the name field can be set
6542 // through the API, which does not change this flag).
6543 DECL_BOOLEAN_ACCESSORS(is_anonymous)
6545 // Is this a function or top-level/eval code.
6546 DECL_BOOLEAN_ACCESSORS(is_function)
6548 // Indicates that code for this function cannot be compiled with Crankshaft.
6549 DECL_BOOLEAN_ACCESSORS(dont_crankshaft)
6551 // Indicates that code for this function cannot be flushed.
6552 DECL_BOOLEAN_ACCESSORS(dont_flush)
6554 // Indicates that this function is a generator.
6555 DECL_BOOLEAN_ACCESSORS(is_generator)
6557 // Indicates that this function is an arrow function.
6558 DECL_BOOLEAN_ACCESSORS(is_arrow)
6560 // Indicates that this function is a concise method.
6561 DECL_BOOLEAN_ACCESSORS(is_concise_method)
6563 // Indicates that this function is an accessor (getter or setter).
6564 DECL_BOOLEAN_ACCESSORS(is_accessor_function)
6566 // Indicates that this function is a default constructor.
6567 DECL_BOOLEAN_ACCESSORS(is_default_constructor)
6569 // Indicates that this function is an asm function.
6570 DECL_BOOLEAN_ACCESSORS(asm_function)
6572 // Indicates that the the shared function info is deserialized from cache.
6573 DECL_BOOLEAN_ACCESSORS(deserialized)
6575 // Indicates that the the shared function info has never been compiled before.
6576 DECL_BOOLEAN_ACCESSORS(never_compiled)
6578 inline FunctionKind kind();
6579 inline void set_kind(FunctionKind kind);
6581 // Indicates whether or not the code in the shared function support
6583 inline bool has_deoptimization_support();
6585 // Enable deoptimization support through recompiled code.
6586 void EnableDeoptimizationSupport(Code* recompiled);
6588 // Disable (further) attempted optimization of all functions sharing this
6589 // shared function info.
6590 void DisableOptimization(BailoutReason reason);
6592 inline BailoutReason disable_optimization_reason();
6594 // Lookup the bailout ID and DCHECK that it exists in the non-optimized
6595 // code, returns whether it asserted (i.e., always true if assertions are
6597 bool VerifyBailoutId(BailoutId id);
6599 // [source code]: Source code for the function.
6600 bool HasSourceCode() const;
6601 Handle<Object> GetSourceCode();
6603 // Number of times the function was optimized.
6604 inline int opt_count();
6605 inline void set_opt_count(int opt_count);
6607 // Number of times the function was deoptimized.
6608 inline void set_deopt_count(int value);
6609 inline int deopt_count();
6610 inline void increment_deopt_count();
6612 // Number of time we tried to re-enable optimization after it
6613 // was disabled due to high number of deoptimizations.
6614 inline void set_opt_reenable_tries(int value);
6615 inline int opt_reenable_tries();
6617 inline void TryReenableOptimization();
6619 // Stores deopt_count, opt_reenable_tries and ic_age as bit-fields.
6620 inline void set_counters(int value);
6621 inline int counters() const;
6623 // Stores opt_count and bailout_reason as bit-fields.
6624 inline void set_opt_count_and_bailout_reason(int value);
6625 inline int opt_count_and_bailout_reason() const;
6627 void set_disable_optimization_reason(BailoutReason reason) {
6628 set_opt_count_and_bailout_reason(
6629 DisabledOptimizationReasonBits::update(opt_count_and_bailout_reason(),
6633 // Tells whether this function should be subject to debugging.
6634 inline bool IsSubjectToDebugging();
6636 // Check whether or not this function is inlineable.
6637 bool IsInlineable();
6639 // Source size of this function.
6642 // Calculate the instance size.
6643 int CalculateInstanceSize();
6645 // Calculate the number of in-object properties.
6646 int CalculateInObjectProperties();
6648 inline bool has_simple_parameters();
6650 // Initialize a SharedFunctionInfo from a parsed function literal.
6651 static void InitFromFunctionLiteral(Handle<SharedFunctionInfo> shared_info,
6652 FunctionLiteral* lit);
6654 // Dispatched behavior.
6655 DECLARE_PRINTER(SharedFunctionInfo)
6656 DECLARE_VERIFIER(SharedFunctionInfo)
6658 void ResetForNewContext(int new_ic_age);
6660 DECLARE_CAST(SharedFunctionInfo)
6663 static const int kDontAdaptArgumentsSentinel = -1;
6665 // Layout description.
6667 static const int kNameOffset = HeapObject::kHeaderSize;
6668 static const int kCodeOffset = kNameOffset + kPointerSize;
6669 static const int kOptimizedCodeMapOffset = kCodeOffset + kPointerSize;
6670 static const int kScopeInfoOffset = kOptimizedCodeMapOffset + kPointerSize;
6671 static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize;
6672 static const int kInstanceClassNameOffset =
6673 kConstructStubOffset + kPointerSize;
6674 static const int kFunctionDataOffset =
6675 kInstanceClassNameOffset + kPointerSize;
6676 static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
6677 static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
6678 static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
6679 static const int kFeedbackVectorOffset =
6680 kInferredNameOffset + kPointerSize;
6682 static const int kUniqueIdOffset = kFeedbackVectorOffset + kPointerSize;
6683 static const int kLastPointerFieldOffset = kUniqueIdOffset;
6685 // Just to not break the postmortrem support with conditional offsets
6686 static const int kUniqueIdOffset = kFeedbackVectorOffset;
6687 static const int kLastPointerFieldOffset = kFeedbackVectorOffset;
6690 #if V8_HOST_ARCH_32_BIT
6692 static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
6693 static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
6694 static const int kExpectedNofPropertiesOffset =
6695 kFormalParameterCountOffset + kPointerSize;
6696 static const int kNumLiteralsOffset =
6697 kExpectedNofPropertiesOffset + kPointerSize;
6698 static const int kStartPositionAndTypeOffset =
6699 kNumLiteralsOffset + kPointerSize;
6700 static const int kEndPositionOffset =
6701 kStartPositionAndTypeOffset + kPointerSize;
6702 static const int kFunctionTokenPositionOffset =
6703 kEndPositionOffset + kPointerSize;
6704 static const int kCompilerHintsOffset =
6705 kFunctionTokenPositionOffset + kPointerSize;
6706 static const int kOptCountAndBailoutReasonOffset =
6707 kCompilerHintsOffset + kPointerSize;
6708 static const int kCountersOffset =
6709 kOptCountAndBailoutReasonOffset + kPointerSize;
6710 static const int kAstNodeCountOffset =
6711 kCountersOffset + kPointerSize;
6712 static const int kProfilerTicksOffset =
6713 kAstNodeCountOffset + kPointerSize;
6716 static const int kSize = kProfilerTicksOffset + kPointerSize;
6718 // The only reason to use smi fields instead of int fields
6719 // is to allow iteration without maps decoding during
6720 // garbage collections.
6721 // To avoid wasting space on 64-bit architectures we use
6722 // the following trick: we group integer fields into pairs
6723 // The least significant integer in each pair is shifted left by 1.
6724 // By doing this we guarantee that LSB of each kPointerSize aligned
6725 // word is not set and thus this word cannot be treated as pointer
6726 // to HeapObject during old space traversal.
6727 #if V8_TARGET_LITTLE_ENDIAN
6728 static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
6729 static const int kFormalParameterCountOffset =
6730 kLengthOffset + kIntSize;
6732 static const int kExpectedNofPropertiesOffset =
6733 kFormalParameterCountOffset + kIntSize;
6734 static const int kNumLiteralsOffset =
6735 kExpectedNofPropertiesOffset + kIntSize;
6737 static const int kEndPositionOffset =
6738 kNumLiteralsOffset + kIntSize;
6739 static const int kStartPositionAndTypeOffset =
6740 kEndPositionOffset + kIntSize;
6742 static const int kFunctionTokenPositionOffset =
6743 kStartPositionAndTypeOffset + kIntSize;
6744 static const int kCompilerHintsOffset =
6745 kFunctionTokenPositionOffset + kIntSize;
6747 static const int kOptCountAndBailoutReasonOffset =
6748 kCompilerHintsOffset + kIntSize;
6749 static const int kCountersOffset =
6750 kOptCountAndBailoutReasonOffset + kIntSize;
6752 static const int kAstNodeCountOffset =
6753 kCountersOffset + kIntSize;
6754 static const int kProfilerTicksOffset =
6755 kAstNodeCountOffset + kIntSize;
6758 static const int kSize = kProfilerTicksOffset + kIntSize;
6760 #elif V8_TARGET_BIG_ENDIAN
6761 static const int kFormalParameterCountOffset =
6762 kLastPointerFieldOffset + kPointerSize;
6763 static const int kLengthOffset = kFormalParameterCountOffset + kIntSize;
6765 static const int kNumLiteralsOffset = kLengthOffset + kIntSize;
6766 static const int kExpectedNofPropertiesOffset = kNumLiteralsOffset + kIntSize;
6768 static const int kStartPositionAndTypeOffset =
6769 kExpectedNofPropertiesOffset + kIntSize;
6770 static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;
6772 static const int kCompilerHintsOffset = kEndPositionOffset + kIntSize;
6773 static const int kFunctionTokenPositionOffset =
6774 kCompilerHintsOffset + kIntSize;
6776 static const int kCountersOffset = kFunctionTokenPositionOffset + kIntSize;
6777 static const int kOptCountAndBailoutReasonOffset = kCountersOffset + kIntSize;
6779 static const int kProfilerTicksOffset =
6780 kOptCountAndBailoutReasonOffset + kIntSize;
6781 static const int kAstNodeCountOffset = kProfilerTicksOffset + kIntSize;
6784 static const int kSize = kAstNodeCountOffset + kIntSize;
6787 #error Unknown byte ordering
6788 #endif // Big endian
6792 static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
6794 typedef FixedBodyDescriptor<kNameOffset,
6795 kLastPointerFieldOffset + kPointerSize,
6796 kSize> BodyDescriptor;
6798 // Bit positions in start_position_and_type.
6799 // The source code start position is in the 30 most significant bits of
6800 // the start_position_and_type field.
6801 static const int kIsExpressionBit = 0;
6802 static const int kIsTopLevelBit = 1;
6803 static const int kStartPositionShift = 2;
6804 static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
6806 // Bit positions in compiler_hints.
6807 enum CompilerHints {
6808 kAllowLazyCompilation,
6809 kAllowLazyCompilationWithoutContext,
6810 kOptimizationDisabled,
6811 kStrictModeFunction,
6812 kStrongModeFunction,
6815 kHasDuplicateParameters,
6820 kNameShouldPrintAsAnonymous,
6827 kIsAccessorFunction,
6828 kIsDefaultConstructor,
6829 kIsSubclassConstructor,
6835 kCompilerHintsCount // Pseudo entry
6837 // Add hints for other modes when they're added.
6838 STATIC_ASSERT(LANGUAGE_END == 3);
6840 class FunctionKindBits : public BitField<FunctionKind, kIsArrow, 8> {};
6842 class DeoptCountBits : public BitField<int, 0, 4> {};
6843 class OptReenableTriesBits : public BitField<int, 4, 18> {};
6844 class ICAgeBits : public BitField<int, 22, 8> {};
6846 class OptCountBits : public BitField<int, 0, 22> {};
6847 class DisabledOptimizationReasonBits : public BitField<int, 22, 8> {};
6850 #if V8_HOST_ARCH_32_BIT
6851 // On 32 bit platforms, compiler hints is a smi.
6852 static const int kCompilerHintsSmiTagSize = kSmiTagSize;
6853 static const int kCompilerHintsSize = kPointerSize;
6855 // On 64 bit platforms, compiler hints is not a smi, see comment above.
6856 static const int kCompilerHintsSmiTagSize = 0;
6857 static const int kCompilerHintsSize = kIntSize;
6860 STATIC_ASSERT(SharedFunctionInfo::kCompilerHintsCount <=
6861 SharedFunctionInfo::kCompilerHintsSize * kBitsPerByte);
6864 // Constants for optimizing codegen for strict mode function and
6866 // Allows to use byte-width instructions.
6867 static const int kStrictModeBitWithinByte =
6868 (kStrictModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
6869 static const int kStrongModeBitWithinByte =
6870 (kStrongModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
6872 static const int kNativeBitWithinByte =
6873 (kNative + kCompilerHintsSmiTagSize) % kBitsPerByte;
6875 #if defined(V8_TARGET_LITTLE_ENDIAN)
6876 static const int kStrictModeByteOffset = kCompilerHintsOffset +
6877 (kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
6878 static const int kStrongModeByteOffset =
6879 kCompilerHintsOffset +
6880 (kStrongModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
6881 static const int kNativeByteOffset = kCompilerHintsOffset +
6882 (kNative + kCompilerHintsSmiTagSize) / kBitsPerByte;
6883 #elif defined(V8_TARGET_BIG_ENDIAN)
6884 static const int kStrictModeByteOffset = kCompilerHintsOffset +
6885 (kCompilerHintsSize - 1) -
6886 ((kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
6887 static const int kStrongModeByteOffset =
6888 kCompilerHintsOffset + (kCompilerHintsSize - 1) -
6889 ((kStrongModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
6890 static const int kNativeByteOffset = kCompilerHintsOffset +
6891 (kCompilerHintsSize - 1) -
6892 ((kNative + kCompilerHintsSmiTagSize) / kBitsPerByte);
6894 #error Unknown byte ordering
6898 DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
6902 // Printing support.
6903 struct SourceCodeOf {
6904 explicit SourceCodeOf(SharedFunctionInfo* v, int max = -1)
6905 : value(v), max_length(max) {}
6906 const SharedFunctionInfo* value;
6911 std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v);
6914 class JSGeneratorObject: public JSObject {
6916 // [function]: The function corresponding to this generator object.
6917 DECL_ACCESSORS(function, JSFunction)
6919 // [context]: The context of the suspended computation.
6920 DECL_ACCESSORS(context, Context)
6922 // [receiver]: The receiver of the suspended computation.
6923 DECL_ACCESSORS(receiver, Object)
6925 // [continuation]: Offset into code of continuation.
6927 // A positive offset indicates a suspended generator. The special
6928 // kGeneratorExecuting and kGeneratorClosed values indicate that a generator
6929 // cannot be resumed.
6930 inline int continuation() const;
6931 inline void set_continuation(int continuation);
6932 inline bool is_closed();
6933 inline bool is_executing();
6934 inline bool is_suspended();
6936 // [operand_stack]: Saved operand stack.
6937 DECL_ACCESSORS(operand_stack, FixedArray)
6939 DECLARE_CAST(JSGeneratorObject)
6941 // Dispatched behavior.
6942 DECLARE_PRINTER(JSGeneratorObject)
6943 DECLARE_VERIFIER(JSGeneratorObject)
6945 // Magic sentinel values for the continuation.
6946 static const int kGeneratorExecuting = -1;
6947 static const int kGeneratorClosed = 0;
6949 // Layout description.
6950 static const int kFunctionOffset = JSObject::kHeaderSize;
6951 static const int kContextOffset = kFunctionOffset + kPointerSize;
6952 static const int kReceiverOffset = kContextOffset + kPointerSize;
6953 static const int kContinuationOffset = kReceiverOffset + kPointerSize;
6954 static const int kOperandStackOffset = kContinuationOffset + kPointerSize;
6955 static const int kSize = kOperandStackOffset + kPointerSize;
6957 // Resume mode, for use by runtime functions.
6958 enum ResumeMode { NEXT, THROW };
6960 // Yielding from a generator returns an object with the following inobject
6961 // properties. See Context::iterator_result_map() for the map.
6962 static const int kResultValuePropertyIndex = 0;
6963 static const int kResultDonePropertyIndex = 1;
6964 static const int kResultPropertyCount = 2;
6966 static const int kResultValuePropertyOffset = JSObject::kHeaderSize;
6967 static const int kResultDonePropertyOffset =
6968 kResultValuePropertyOffset + kPointerSize;
6969 static const int kResultSize = kResultDonePropertyOffset + kPointerSize;
6972 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGeneratorObject);
6976 // Representation for module instance objects.
6977 class JSModule: public JSObject {
6979 // [context]: the context holding the module's locals, or undefined if none.
6980 DECL_ACCESSORS(context, Object)
6982 // [scope_info]: Scope info.
6983 DECL_ACCESSORS(scope_info, ScopeInfo)
6985 DECLARE_CAST(JSModule)
6987 // Dispatched behavior.
6988 DECLARE_PRINTER(JSModule)
6989 DECLARE_VERIFIER(JSModule)
6991 // Layout description.
6992 static const int kContextOffset = JSObject::kHeaderSize;
6993 static const int kScopeInfoOffset = kContextOffset + kPointerSize;
6994 static const int kSize = kScopeInfoOffset + kPointerSize;
6997 DISALLOW_IMPLICIT_CONSTRUCTORS(JSModule);
7001 // JSFunction describes JavaScript functions.
7002 class JSFunction: public JSObject {
7004 // [prototype_or_initial_map]:
7005 DECL_ACCESSORS(prototype_or_initial_map, Object)
7007 // [shared]: The information about the function that
7008 // can be shared by instances.
7009 DECL_ACCESSORS(shared, SharedFunctionInfo)
7011 // [context]: The context for this function.
7012 inline Context* context();
7013 inline void set_context(Object* context);
7014 inline JSObject* global_proxy();
7016 // [code]: The generated code object for this function. Executed
7017 // when the function is invoked, e.g. foo() or new foo(). See
7018 // [[Call]] and [[Construct]] description in ECMA-262, section
7020 inline Code* code();
7021 inline void set_code(Code* code);
7022 inline void set_code_no_write_barrier(Code* code);
7023 inline void ReplaceCode(Code* code);
7025 // Tells whether this function is builtin.
7026 inline bool IsBuiltin();
7028 // Tells whether this function inlines the given shared function info.
7029 bool Inlines(SharedFunctionInfo* candidate);
7031 // Tells whether this function should be subject to debugging.
7032 inline bool IsSubjectToDebugging();
7034 // Tells whether or not the function needs arguments adaption.
7035 inline bool NeedsArgumentsAdaption();
7037 // Tells whether or not this function has been optimized.
7038 inline bool IsOptimized();
7040 // Mark this function for lazy recompilation. The function will be
7041 // recompiled the next time it is executed.
7042 void MarkForOptimization();
7043 void AttemptConcurrentOptimization();
7045 // Tells whether or not the function is already marked for lazy
7047 inline bool IsMarkedForOptimization();
7048 inline bool IsMarkedForConcurrentOptimization();
7050 // Tells whether or not the function is on the concurrent recompilation queue.
7051 inline bool IsInOptimizationQueue();
7053 // Inobject slack tracking is the way to reclaim unused inobject space.
7055 // The instance size is initially determined by adding some slack to
7056 // expected_nof_properties (to allow for a few extra properties added
7057 // after the constructor). There is no guarantee that the extra space
7058 // will not be wasted.
7060 // Here is the algorithm to reclaim the unused inobject space:
7061 // - Detect the first constructor call for this JSFunction.
7062 // When it happens enter the "in progress" state: initialize construction
7063 // counter in the initial_map.
7064 // - While the tracking is in progress create objects filled with
7065 // one_pointer_filler_map instead of undefined_value. This way they can be
7066 // resized quickly and safely.
7067 // - Once enough objects have been created compute the 'slack'
7068 // (traverse the map transition tree starting from the
7069 // initial_map and find the lowest value of unused_property_fields).
7070 // - Traverse the transition tree again and decrease the instance size
7071 // of every map. Existing objects will resize automatically (they are
7072 // filled with one_pointer_filler_map). All further allocations will
7073 // use the adjusted instance size.
7074 // - SharedFunctionInfo's expected_nof_properties left unmodified since
7075 // allocations made using different closures could actually create different
7076 // kind of objects (see prototype inheritance pattern).
7078 // Important: inobject slack tracking is not attempted during the snapshot
7081 // True if the initial_map is set and the object constructions countdown
7082 // counter is not zero.
7083 static const int kGenerousAllocationCount =
7084 Map::kSlackTrackingCounterStart - Map::kSlackTrackingCounterEnd + 1;
7085 inline bool IsInobjectSlackTrackingInProgress();
7087 // Starts the tracking.
7088 // Initializes object constructions countdown counter in the initial map.
7089 void StartInobjectSlackTracking();
7091 // Completes the tracking.
7092 void CompleteInobjectSlackTracking();
7094 // [literals_or_bindings]: Fixed array holding either
7095 // the materialized literals or the bindings of a bound function.
7097 // If the function contains object, regexp or array literals, the
7098 // literals array prefix contains the object, regexp, and array
7099 // function to be used when creating these literals. This is
7100 // necessary so that we do not dynamically lookup the object, regexp
7101 // or array functions. Performing a dynamic lookup, we might end up
7102 // using the functions from a new context that we should not have
7105 // On bound functions, the array is a (copy-on-write) fixed-array containing
7106 // the function that was bound, bound this-value and any bound
7107 // arguments. Bound functions never contain literals.
7108 DECL_ACCESSORS(literals_or_bindings, FixedArray)
7110 inline FixedArray* literals();
7111 inline void set_literals(FixedArray* literals);
7113 inline FixedArray* function_bindings();
7114 inline void set_function_bindings(FixedArray* bindings);
7116 // The initial map for an object created by this constructor.
7117 inline Map* initial_map();
7118 static void SetInitialMap(Handle<JSFunction> function, Handle<Map> map,
7119 Handle<Object> prototype);
7120 inline bool has_initial_map();
7121 static void EnsureHasInitialMap(Handle<JSFunction> function);
7123 // Get and set the prototype property on a JSFunction. If the
7124 // function has an initial map the prototype is set on the initial
7125 // map. Otherwise, the prototype is put in the initial map field
7126 // until an initial map is needed.
7127 inline bool has_prototype();
7128 inline bool has_instance_prototype();
7129 inline Object* prototype();
7130 inline Object* instance_prototype();
7131 static void SetPrototype(Handle<JSFunction> function,
7132 Handle<Object> value);
7133 static void SetInstancePrototype(Handle<JSFunction> function,
7134 Handle<Object> value);
7136 // Creates a new closure for the fucntion with the same bindings,
7137 // bound values, and prototype. An equivalent of spec operations
7138 // ``CloneMethod`` and ``CloneBoundFunction``.
7139 static Handle<JSFunction> CloneClosure(Handle<JSFunction> function);
7141 // After prototype is removed, it will not be created when accessed, and
7142 // [[Construct]] from this function will not be allowed.
7143 bool RemovePrototype();
7144 inline bool should_have_prototype();
7146 // Accessor for this function's initial map's [[class]]
7147 // property. This is primarily used by ECMA native functions. This
7148 // method sets the class_name field of this function's initial map
7149 // to a given value. It creates an initial map if this function does
7150 // not have one. Note that this method does not copy the initial map
7151 // if it has one already, but simply replaces it with the new value.
7152 // Instances created afterwards will have a map whose [[class]] is
7153 // set to 'value', but there is no guarantees on instances created
7155 void SetInstanceClassName(String* name);
7157 // Returns if this function has been compiled to native code yet.
7158 inline bool is_compiled();
7160 // Returns `false` if formal parameters include rest parameters, optional
7161 // parameters, or destructuring parameters.
7162 // TODO(caitp): make this a flag set during parsing
7163 inline bool has_simple_parameters();
7165 // [next_function_link]: Links functions into various lists, e.g. the list
7166 // of optimized functions hanging off the native_context. The CodeFlusher
7167 // uses this link to chain together flushing candidates. Treated weakly
7168 // by the garbage collector.
7169 DECL_ACCESSORS(next_function_link, Object)
7171 // Prints the name of the function using PrintF.
7172 void PrintName(FILE* out = stdout);
7174 DECLARE_CAST(JSFunction)
7176 // Iterates the objects, including code objects indirectly referenced
7177 // through pointers to the first instruction in the code object.
7178 void JSFunctionIterateBody(int object_size, ObjectVisitor* v);
7180 // Dispatched behavior.
7181 DECLARE_PRINTER(JSFunction)
7182 DECLARE_VERIFIER(JSFunction)
7184 // Returns the number of allocated literals.
7185 inline int NumberOfLiterals();
7187 // Used for flags such as --hydrogen-filter.
7188 bool PassesFilter(const char* raw_filter);
7190 // The function's name if it is configured, otherwise shared function info
7192 static Handle<String> GetDebugName(Handle<JSFunction> function);
7194 // Layout descriptors. The last property (from kNonWeakFieldsEndOffset to
7195 // kSize) is weak and has special handling during garbage collection.
7196 static const int kCodeEntryOffset = JSObject::kHeaderSize;
7197 static const int kPrototypeOrInitialMapOffset =
7198 kCodeEntryOffset + kPointerSize;
7199 static const int kSharedFunctionInfoOffset =
7200 kPrototypeOrInitialMapOffset + kPointerSize;
7201 static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
7202 static const int kLiteralsOffset = kContextOffset + kPointerSize;
7203 static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize;
7204 static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset;
7205 static const int kSize = kNextFunctionLinkOffset + kPointerSize;
7207 // Layout of the bound-function binding array.
7208 static const int kBoundFunctionIndex = 0;
7209 static const int kBoundThisIndex = 1;
7210 static const int kBoundArgumentsStartIndex = 2;
7213 DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
7217 // JSGlobalProxy's prototype must be a JSGlobalObject or null,
7218 // and the prototype is hidden. JSGlobalProxy always delegates
7219 // property accesses to its prototype if the prototype is not null.
7221 // A JSGlobalProxy can be reinitialized which will preserve its identity.
7223 // Accessing a JSGlobalProxy requires security check.
7225 class JSGlobalProxy : public JSObject {
7227 // [native_context]: the owner native context of this global proxy object.
7228 // It is null value if this object is not used by any context.
7229 DECL_ACCESSORS(native_context, Object)
7231 // [hash]: The hash code property (undefined if not initialized yet).
7232 DECL_ACCESSORS(hash, Object)
7234 DECLARE_CAST(JSGlobalProxy)
7236 inline bool IsDetachedFrom(GlobalObject* global) const;
7238 // Dispatched behavior.
7239 DECLARE_PRINTER(JSGlobalProxy)
7240 DECLARE_VERIFIER(JSGlobalProxy)
7242 // Layout description.
7243 static const int kNativeContextOffset = JSObject::kHeaderSize;
7244 static const int kHashOffset = kNativeContextOffset + kPointerSize;
7245 static const int kSize = kHashOffset + kPointerSize;
7248 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
7252 // Common super class for JavaScript global objects and the special
7253 // builtins global objects.
7254 class GlobalObject: public JSObject {
7256 // [builtins]: the object holding the runtime routines written in JS.
7257 DECL_ACCESSORS(builtins, JSBuiltinsObject)
7259 // [native context]: the natives corresponding to this global object.
7260 DECL_ACCESSORS(native_context, Context)
7262 // [global proxy]: the global proxy object of the context
7263 DECL_ACCESSORS(global_proxy, JSObject)
7265 DECLARE_CAST(GlobalObject)
7267 static void InvalidatePropertyCell(Handle<GlobalObject> object,
7269 // Ensure that the global object has a cell for the given property name.
7270 static Handle<PropertyCell> EnsurePropertyCell(Handle<GlobalObject> global,
7273 // Layout description.
7274 static const int kBuiltinsOffset = JSObject::kHeaderSize;
7275 static const int kNativeContextOffset = kBuiltinsOffset + kPointerSize;
7276 static const int kGlobalProxyOffset = kNativeContextOffset + kPointerSize;
7277 static const int kHeaderSize = kGlobalProxyOffset + kPointerSize;
7280 DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
7284 // JavaScript global object.
7285 class JSGlobalObject: public GlobalObject {
7287 DECLARE_CAST(JSGlobalObject)
7289 inline bool IsDetached();
7291 // Dispatched behavior.
7292 DECLARE_PRINTER(JSGlobalObject)
7293 DECLARE_VERIFIER(JSGlobalObject)
7295 // Layout description.
7296 static const int kSize = GlobalObject::kHeaderSize;
7299 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
7303 // Builtins global object which holds the runtime routines written in
7305 class JSBuiltinsObject: public GlobalObject {
7307 // Accessors for the runtime routines written in JavaScript.
7308 inline Object* javascript_builtin(Builtins::JavaScript id);
7309 inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
7311 DECLARE_CAST(JSBuiltinsObject)
7313 // Dispatched behavior.
7314 DECLARE_PRINTER(JSBuiltinsObject)
7315 DECLARE_VERIFIER(JSBuiltinsObject)
7317 // Layout description. The size of the builtins object includes
7318 // room for two pointers per runtime routine written in javascript
7319 // (function and code object).
7320 static const int kJSBuiltinsCount = Builtins::id_count;
7321 static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
7322 static const int kSize =
7323 GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize);
7325 static int OffsetOfFunctionWithId(Builtins::JavaScript id) {
7326 return kJSBuiltinsOffset + id * kPointerSize;
7330 DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
7334 // Representation for JS Wrapper objects, String, Number, Boolean, etc.
7335 class JSValue: public JSObject {
7337 // [value]: the object being wrapped.
7338 DECL_ACCESSORS(value, Object)
7340 DECLARE_CAST(JSValue)
7342 // Dispatched behavior.
7343 DECLARE_PRINTER(JSValue)
7344 DECLARE_VERIFIER(JSValue)
7346 // Layout description.
7347 static const int kValueOffset = JSObject::kHeaderSize;
7348 static const int kSize = kValueOffset + kPointerSize;
7351 DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
7357 // Representation for JS date objects.
7358 class JSDate: public JSObject {
7360 // If one component is NaN, all of them are, indicating a NaN time value.
7361 // [value]: the time value.
7362 DECL_ACCESSORS(value, Object)
7363 // [year]: caches year. Either undefined, smi, or NaN.
7364 DECL_ACCESSORS(year, Object)
7365 // [month]: caches month. Either undefined, smi, or NaN.
7366 DECL_ACCESSORS(month, Object)
7367 // [day]: caches day. Either undefined, smi, or NaN.
7368 DECL_ACCESSORS(day, Object)
7369 // [weekday]: caches day of week. Either undefined, smi, or NaN.
7370 DECL_ACCESSORS(weekday, Object)
7371 // [hour]: caches hours. Either undefined, smi, or NaN.
7372 DECL_ACCESSORS(hour, Object)
7373 // [min]: caches minutes. Either undefined, smi, or NaN.
7374 DECL_ACCESSORS(min, Object)
7375 // [sec]: caches seconds. Either undefined, smi, or NaN.
7376 DECL_ACCESSORS(sec, Object)
7377 // [cache stamp]: sample of the date cache stamp at the
7378 // moment when chached fields were cached.
7379 DECL_ACCESSORS(cache_stamp, Object)
7381 DECLARE_CAST(JSDate)
7383 // Returns the date field with the specified index.
7384 // See FieldIndex for the list of date fields.
7385 static Object* GetField(Object* date, Smi* index);
7387 void SetValue(Object* value, bool is_value_nan);
7390 // Dispatched behavior.
7391 DECLARE_PRINTER(JSDate)
7392 DECLARE_VERIFIER(JSDate)
7394 // The order is important. It must be kept in sync with date macros
7405 kFirstUncachedField,
7406 kMillisecond = kFirstUncachedField,
7410 kYearUTC = kFirstUTCField,
7423 // Layout description.
7424 static const int kValueOffset = JSObject::kHeaderSize;
7425 static const int kYearOffset = kValueOffset + kPointerSize;
7426 static const int kMonthOffset = kYearOffset + kPointerSize;
7427 static const int kDayOffset = kMonthOffset + kPointerSize;
7428 static const int kWeekdayOffset = kDayOffset + kPointerSize;
7429 static const int kHourOffset = kWeekdayOffset + kPointerSize;
7430 static const int kMinOffset = kHourOffset + kPointerSize;
7431 static const int kSecOffset = kMinOffset + kPointerSize;
7432 static const int kCacheStampOffset = kSecOffset + kPointerSize;
7433 static const int kSize = kCacheStampOffset + kPointerSize;
7436 inline Object* DoGetField(FieldIndex index);
7438 Object* GetUTCField(FieldIndex index, double value, DateCache* date_cache);
7440 // Computes and caches the cacheable fields of the date.
7441 inline void SetCachedFields(int64_t local_time_ms, DateCache* date_cache);
7444 DISALLOW_IMPLICIT_CONSTRUCTORS(JSDate);
7448 // Representation of message objects used for error reporting through
7449 // the API. The messages are formatted in JavaScript so this object is
7450 // a real JavaScript object. The information used for formatting the
7451 // error messages are not directly accessible from JavaScript to
7452 // prevent leaking information to user code called during error
7454 class JSMessageObject: public JSObject {
7456 // [type]: the type of error message.
7457 inline int type() const;
7458 inline void set_type(int value);
7460 // [arguments]: the arguments for formatting the error message.
7461 DECL_ACCESSORS(argument, Object)
7463 // [script]: the script from which the error message originated.
7464 DECL_ACCESSORS(script, Object)
7466 // [stack_frames]: an array of stack frames for this error object.
7467 DECL_ACCESSORS(stack_frames, Object)
7469 // [start_position]: the start position in the script for the error message.
7470 inline int start_position() const;
7471 inline void set_start_position(int value);
7473 // [end_position]: the end position in the script for the error message.
7474 inline int end_position() const;
7475 inline void set_end_position(int value);
7477 DECLARE_CAST(JSMessageObject)
7479 // Dispatched behavior.
7480 DECLARE_PRINTER(JSMessageObject)
7481 DECLARE_VERIFIER(JSMessageObject)
7483 // Layout description.
7484 static const int kTypeOffset = JSObject::kHeaderSize;
7485 static const int kArgumentsOffset = kTypeOffset + kPointerSize;
7486 static const int kScriptOffset = kArgumentsOffset + kPointerSize;
7487 static const int kStackFramesOffset = kScriptOffset + kPointerSize;
7488 static const int kStartPositionOffset = kStackFramesOffset + kPointerSize;
7489 static const int kEndPositionOffset = kStartPositionOffset + kPointerSize;
7490 static const int kSize = kEndPositionOffset + kPointerSize;
7492 typedef FixedBodyDescriptor<HeapObject::kMapOffset,
7493 kStackFramesOffset + kPointerSize,
7494 kSize> BodyDescriptor;
7498 // Regular expressions
7499 // The regular expression holds a single reference to a FixedArray in
7500 // the kDataOffset field.
7501 // The FixedArray contains the following data:
7502 // - tag : type of regexp implementation (not compiled yet, atom or irregexp)
7503 // - reference to the original source string
7504 // - reference to the original flag string
7505 // If it is an atom regexp
7506 // - a reference to a literal string to search for
7507 // If it is an irregexp regexp:
7508 // - a reference to code for Latin1 inputs (bytecode or compiled), or a smi
7509 // used for tracking the last usage (used for code flushing).
7510 // - a reference to code for UC16 inputs (bytecode or compiled), or a smi
7511 // used for tracking the last usage (used for code flushing)..
7512 // - max number of registers used by irregexp implementations.
7513 // - number of capture registers (output values) of the regexp.
7514 class JSRegExp: public JSObject {
7517 // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
7518 // ATOM: A simple string to match against using an indexOf operation.
7519 // IRREGEXP: Compiled with Irregexp.
7520 // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
7521 enum Type { NOT_COMPILED, ATOM, IRREGEXP };
7528 UNICODE_ESCAPES = 16
7533 explicit Flags(uint32_t value) : value_(value) { }
7534 bool is_global() { return (value_ & GLOBAL) != 0; }
7535 bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
7536 bool is_multiline() { return (value_ & MULTILINE) != 0; }
7537 bool is_sticky() { return (value_ & STICKY) != 0; }
7538 bool is_unicode() { return (value_ & UNICODE_ESCAPES) != 0; }
7539 uint32_t value() { return value_; }
7544 DECL_ACCESSORS(data, Object)
7546 inline Type TypeTag();
7547 inline int CaptureCount();
7548 inline Flags GetFlags();
7549 inline String* Pattern();
7550 inline Object* DataAt(int index);
7551 // Set implementation data after the object has been prepared.
7552 inline void SetDataAt(int index, Object* value);
7554 static int code_index(bool is_latin1) {
7556 return kIrregexpLatin1CodeIndex;
7558 return kIrregexpUC16CodeIndex;
7562 static int saved_code_index(bool is_latin1) {
7564 return kIrregexpLatin1CodeSavedIndex;
7566 return kIrregexpUC16CodeSavedIndex;
7570 DECLARE_CAST(JSRegExp)
7572 // Dispatched behavior.
7573 DECLARE_VERIFIER(JSRegExp)
7575 static const int kDataOffset = JSObject::kHeaderSize;
7576 static const int kSize = kDataOffset + kPointerSize;
7578 // Indices in the data array.
7579 static const int kTagIndex = 0;
7580 static const int kSourceIndex = kTagIndex + 1;
7581 static const int kFlagsIndex = kSourceIndex + 1;
7582 static const int kDataIndex = kFlagsIndex + 1;
7583 // The data fields are used in different ways depending on the
7584 // value of the tag.
7585 // Atom regexps (literal strings).
7586 static const int kAtomPatternIndex = kDataIndex;
7588 static const int kAtomDataSize = kAtomPatternIndex + 1;
7590 // Irregexp compiled code or bytecode for Latin1. If compilation
7591 // fails, this fields hold an exception object that should be
7592 // thrown if the regexp is used again.
7593 static const int kIrregexpLatin1CodeIndex = kDataIndex;
7594 // Irregexp compiled code or bytecode for UC16. If compilation
7595 // fails, this fields hold an exception object that should be
7596 // thrown if the regexp is used again.
7597 static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
7599 // Saved instance of Irregexp compiled code or bytecode for Latin1 that
7600 // is a potential candidate for flushing.
7601 static const int kIrregexpLatin1CodeSavedIndex = kDataIndex + 2;
7602 // Saved instance of Irregexp compiled code or bytecode for UC16 that is
7603 // a potential candidate for flushing.
7604 static const int kIrregexpUC16CodeSavedIndex = kDataIndex + 3;
7606 // Maximal number of registers used by either Latin1 or UC16.
7607 // Only used to check that there is enough stack space
7608 static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 4;
7609 // Number of captures in the compiled regexp.
7610 static const int kIrregexpCaptureCountIndex = kDataIndex + 5;
7612 static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
7614 // Offsets directly into the data fixed array.
7615 static const int kDataTagOffset =
7616 FixedArray::kHeaderSize + kTagIndex * kPointerSize;
7617 static const int kDataOneByteCodeOffset =
7618 FixedArray::kHeaderSize + kIrregexpLatin1CodeIndex * kPointerSize;
7619 static const int kDataUC16CodeOffset =
7620 FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
7621 static const int kIrregexpCaptureCountOffset =
7622 FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
7624 // In-object fields.
7625 static const int kSourceFieldIndex = 0;
7626 static const int kGlobalFieldIndex = 1;
7627 static const int kIgnoreCaseFieldIndex = 2;
7628 static const int kMultilineFieldIndex = 3;
7629 static const int kLastIndexFieldIndex = 4;
7630 static const int kInObjectFieldCount = 5;
7632 // The uninitialized value for a regexp code object.
7633 static const int kUninitializedValue = -1;
7635 // The compilation error value for the regexp code object. The real error
7636 // object is in the saved code field.
7637 static const int kCompilationErrorValue = -2;
7639 // When we store the sweep generation at which we moved the code from the
7640 // code index to the saved code index we mask it of to be in the [0:255]
7642 static const int kCodeAgeMask = 0xff;
7646 class CompilationCacheShape : public BaseShape<HashTableKey*> {
7648 static inline bool IsMatch(HashTableKey* key, Object* value) {
7649 return key->IsMatch(value);
7652 static inline uint32_t Hash(HashTableKey* key) {
7656 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
7657 return key->HashForObject(object);
7660 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
7662 static const int kPrefixSize = 0;
7663 static const int kEntrySize = 2;
7667 // This cache is used in two different variants. For regexp caching, it simply
7668 // maps identifying info of the regexp to the cached regexp object. Scripts and
7669 // eval code only gets cached after a second probe for the code object. To do
7670 // so, on first "put" only a hash identifying the source is entered into the
7671 // cache, mapping it to a lifetime count of the hash. On each call to Age all
7672 // such lifetimes get reduced, and removed once they reach zero. If a second put
7673 // is called while such a hash is live in the cache, the hash gets replaced by
7674 // an actual cache entry. Age also removes stale live entries from the cache.
7675 // Such entries are identified by SharedFunctionInfos pointing to either the
7676 // recompilation stub, or to "old" code. This avoids memory leaks due to
7677 // premature caching of scripts and eval strings that are never needed later.
7678 class CompilationCacheTable: public HashTable<CompilationCacheTable,
7679 CompilationCacheShape,
7682 // Find cached value for a string key, otherwise return null.
7683 Handle<Object> Lookup(
7684 Handle<String> src, Handle<Context> context, LanguageMode language_mode);
7685 Handle<Object> LookupEval(
7686 Handle<String> src, Handle<SharedFunctionInfo> shared,
7687 LanguageMode language_mode, int scope_position);
7688 Handle<Object> LookupRegExp(Handle<String> source, JSRegExp::Flags flags);
7689 static Handle<CompilationCacheTable> Put(
7690 Handle<CompilationCacheTable> cache, Handle<String> src,
7691 Handle<Context> context, LanguageMode language_mode,
7692 Handle<Object> value);
7693 static Handle<CompilationCacheTable> PutEval(
7694 Handle<CompilationCacheTable> cache, Handle<String> src,
7695 Handle<SharedFunctionInfo> context, Handle<SharedFunctionInfo> value,
7696 int scope_position);
7697 static Handle<CompilationCacheTable> PutRegExp(
7698 Handle<CompilationCacheTable> cache, Handle<String> src,
7699 JSRegExp::Flags flags, Handle<FixedArray> value);
7700 void Remove(Object* value);
7702 static const int kHashGenerations = 10;
7704 DECLARE_CAST(CompilationCacheTable)
7707 DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
7711 class CodeCache: public Struct {
7713 DECL_ACCESSORS(default_cache, FixedArray)
7714 DECL_ACCESSORS(normal_type_cache, Object)
7716 // Add the code object to the cache.
7718 Handle<CodeCache> cache, Handle<Name> name, Handle<Code> code);
7720 // Lookup code object in the cache. Returns code object if found and undefined
7722 Object* Lookup(Name* name, Code::Flags flags);
7724 // Get the internal index of a code object in the cache. Returns -1 if the
7725 // code object is not in that cache. This index can be used to later call
7726 // RemoveByIndex. The cache cannot be modified between a call to GetIndex and
7728 int GetIndex(Object* name, Code* code);
7730 // Remove an object from the cache with the provided internal index.
7731 void RemoveByIndex(Object* name, Code* code, int index);
7733 DECLARE_CAST(CodeCache)
7735 // Dispatched behavior.
7736 DECLARE_PRINTER(CodeCache)
7737 DECLARE_VERIFIER(CodeCache)
7739 static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
7740 static const int kNormalTypeCacheOffset =
7741 kDefaultCacheOffset + kPointerSize;
7742 static const int kSize = kNormalTypeCacheOffset + kPointerSize;
7745 static void UpdateDefaultCache(
7746 Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
7747 static void UpdateNormalTypeCache(
7748 Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
7749 Object* LookupDefaultCache(Name* name, Code::Flags flags);
7750 Object* LookupNormalTypeCache(Name* name, Code::Flags flags);
7752 // Code cache layout of the default cache. Elements are alternating name and
7753 // code objects for non normal load/store/call IC's.
7754 static const int kCodeCacheEntrySize = 2;
7755 static const int kCodeCacheEntryNameOffset = 0;
7756 static const int kCodeCacheEntryCodeOffset = 1;
7758 DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
7762 class CodeCacheHashTableShape : public BaseShape<HashTableKey*> {
7764 static inline bool IsMatch(HashTableKey* key, Object* value) {
7765 return key->IsMatch(value);
7768 static inline uint32_t Hash(HashTableKey* key) {
7772 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
7773 return key->HashForObject(object);
7776 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
7778 static const int kPrefixSize = 0;
7779 static const int kEntrySize = 2;
7783 class CodeCacheHashTable: public HashTable<CodeCacheHashTable,
7784 CodeCacheHashTableShape,
7787 Object* Lookup(Name* name, Code::Flags flags);
7788 static Handle<CodeCacheHashTable> Put(
7789 Handle<CodeCacheHashTable> table,
7793 int GetIndex(Name* name, Code::Flags flags);
7794 void RemoveByIndex(int index);
7796 DECLARE_CAST(CodeCacheHashTable)
7798 // Initial size of the fixed array backing the hash table.
7799 static const int kInitialSize = 64;
7802 DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
7806 class PolymorphicCodeCache: public Struct {
7808 DECL_ACCESSORS(cache, Object)
7810 static void Update(Handle<PolymorphicCodeCache> cache,
7811 MapHandleList* maps,
7816 // Returns an undefined value if the entry is not found.
7817 Handle<Object> Lookup(MapHandleList* maps, Code::Flags flags);
7819 DECLARE_CAST(PolymorphicCodeCache)
7821 // Dispatched behavior.
7822 DECLARE_PRINTER(PolymorphicCodeCache)
7823 DECLARE_VERIFIER(PolymorphicCodeCache)
7825 static const int kCacheOffset = HeapObject::kHeaderSize;
7826 static const int kSize = kCacheOffset + kPointerSize;
7829 DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCache);
7833 class PolymorphicCodeCacheHashTable
7834 : public HashTable<PolymorphicCodeCacheHashTable,
7835 CodeCacheHashTableShape,
7838 Object* Lookup(MapHandleList* maps, int code_kind);
7840 static Handle<PolymorphicCodeCacheHashTable> Put(
7841 Handle<PolymorphicCodeCacheHashTable> hash_table,
7842 MapHandleList* maps,
7846 DECLARE_CAST(PolymorphicCodeCacheHashTable)
7848 static const int kInitialSize = 64;
7850 DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCacheHashTable);
7854 class TypeFeedbackInfo: public Struct {
7856 inline int ic_total_count();
7857 inline void set_ic_total_count(int count);
7859 inline int ic_with_type_info_count();
7860 inline void change_ic_with_type_info_count(int delta);
7862 inline int ic_generic_count();
7863 inline void change_ic_generic_count(int delta);
7865 inline void initialize_storage();
7867 inline void change_own_type_change_checksum();
7868 inline int own_type_change_checksum();
7870 inline void set_inlined_type_change_checksum(int checksum);
7871 inline bool matches_inlined_type_change_checksum(int checksum);
7873 DECLARE_CAST(TypeFeedbackInfo)
7875 // Dispatched behavior.
7876 DECLARE_PRINTER(TypeFeedbackInfo)
7877 DECLARE_VERIFIER(TypeFeedbackInfo)
7879 static const int kStorage1Offset = HeapObject::kHeaderSize;
7880 static const int kStorage2Offset = kStorage1Offset + kPointerSize;
7881 static const int kStorage3Offset = kStorage2Offset + kPointerSize;
7882 static const int kSize = kStorage3Offset + kPointerSize;
7885 static const int kTypeChangeChecksumBits = 7;
7887 class ICTotalCountField: public BitField<int, 0,
7888 kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
7889 class OwnTypeChangeChecksum: public BitField<int,
7890 kSmiValueSize - kTypeChangeChecksumBits,
7891 kTypeChangeChecksumBits> {}; // NOLINT
7892 class ICsWithTypeInfoCountField: public BitField<int, 0,
7893 kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
7894 class InlinedTypeChangeChecksum: public BitField<int,
7895 kSmiValueSize - kTypeChangeChecksumBits,
7896 kTypeChangeChecksumBits> {}; // NOLINT
7898 DISALLOW_IMPLICIT_CONSTRUCTORS(TypeFeedbackInfo);
7902 enum AllocationSiteMode {
7903 DONT_TRACK_ALLOCATION_SITE,
7904 TRACK_ALLOCATION_SITE,
7905 LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
7909 class AllocationSite: public Struct {
7911 static const uint32_t kMaximumArrayBytesToPretransition = 8 * 1024;
7912 static const double kPretenureRatio;
7913 static const int kPretenureMinimumCreated = 100;
7915 // Values for pretenure decision field.
7916 enum PretenureDecision {
7922 kLastPretenureDecisionValue = kZombie
7925 const char* PretenureDecisionName(PretenureDecision decision);
7927 DECL_ACCESSORS(transition_info, Object)
7928 // nested_site threads a list of sites that represent nested literals
7929 // walked in a particular order. So [[1, 2], 1, 2] will have one
7930 // nested_site, but [[1, 2], 3, [4]] will have a list of two.
7931 DECL_ACCESSORS(nested_site, Object)
7932 DECL_ACCESSORS(pretenure_data, Smi)
7933 DECL_ACCESSORS(pretenure_create_count, Smi)
7934 DECL_ACCESSORS(dependent_code, DependentCode)
7935 DECL_ACCESSORS(weak_next, Object)
7937 inline void Initialize();
7939 // This method is expensive, it should only be called for reporting.
7940 bool IsNestedSite();
7942 // transition_info bitfields, for constructed array transition info.
7943 class ElementsKindBits: public BitField<ElementsKind, 0, 15> {};
7944 class UnusedBits: public BitField<int, 15, 14> {};
7945 class DoNotInlineBit: public BitField<bool, 29, 1> {};
7947 // Bitfields for pretenure_data
7948 class MementoFoundCountBits: public BitField<int, 0, 26> {};
7949 class PretenureDecisionBits: public BitField<PretenureDecision, 26, 3> {};
7950 class DeoptDependentCodeBit: public BitField<bool, 29, 1> {};
7951 STATIC_ASSERT(PretenureDecisionBits::kMax >= kLastPretenureDecisionValue);
7953 // Increments the mementos found counter and returns true when the first
7954 // memento was found for a given allocation site.
7955 inline bool IncrementMementoFoundCount();
7957 inline void IncrementMementoCreateCount();
7959 PretenureFlag GetPretenureMode();
7961 void ResetPretenureDecision();
7963 PretenureDecision pretenure_decision() {
7964 int value = pretenure_data()->value();
7965 return PretenureDecisionBits::decode(value);
7968 void set_pretenure_decision(PretenureDecision decision) {
7969 int value = pretenure_data()->value();
7971 Smi::FromInt(PretenureDecisionBits::update(value, decision)),
7972 SKIP_WRITE_BARRIER);
7975 bool deopt_dependent_code() {
7976 int value = pretenure_data()->value();
7977 return DeoptDependentCodeBit::decode(value);
7980 void set_deopt_dependent_code(bool deopt) {
7981 int value = pretenure_data()->value();
7983 Smi::FromInt(DeoptDependentCodeBit::update(value, deopt)),
7984 SKIP_WRITE_BARRIER);
7987 int memento_found_count() {
7988 int value = pretenure_data()->value();
7989 return MementoFoundCountBits::decode(value);
7992 inline void set_memento_found_count(int count);
7994 int memento_create_count() {
7995 return pretenure_create_count()->value();
7998 void set_memento_create_count(int count) {
7999 set_pretenure_create_count(Smi::FromInt(count), SKIP_WRITE_BARRIER);
8002 // The pretenuring decision is made during gc, and the zombie state allows
8003 // us to recognize when an allocation site is just being kept alive because
8004 // a later traversal of new space may discover AllocationMementos that point
8005 // to this AllocationSite.
8007 return pretenure_decision() == kZombie;
8010 bool IsMaybeTenure() {
8011 return pretenure_decision() == kMaybeTenure;
8014 inline void MarkZombie();
8016 inline bool MakePretenureDecision(PretenureDecision current_decision,
8018 bool maximum_size_scavenge);
8020 inline bool DigestPretenuringFeedback(bool maximum_size_scavenge);
8022 ElementsKind GetElementsKind() {
8023 DCHECK(!SitePointsToLiteral());
8024 int value = Smi::cast(transition_info())->value();
8025 return ElementsKindBits::decode(value);
8028 void SetElementsKind(ElementsKind kind) {
8029 int value = Smi::cast(transition_info())->value();
8030 set_transition_info(Smi::FromInt(ElementsKindBits::update(value, kind)),
8031 SKIP_WRITE_BARRIER);
8034 bool CanInlineCall() {
8035 int value = Smi::cast(transition_info())->value();
8036 return DoNotInlineBit::decode(value) == 0;
8039 void SetDoNotInlineCall() {
8040 int value = Smi::cast(transition_info())->value();
8041 set_transition_info(Smi::FromInt(DoNotInlineBit::update(value, true)),
8042 SKIP_WRITE_BARRIER);
8045 bool SitePointsToLiteral() {
8046 // If transition_info is a smi, then it represents an ElementsKind
8047 // for a constructed array. Otherwise, it must be a boilerplate
8048 // for an object or array literal.
8049 return transition_info()->IsJSArray() || transition_info()->IsJSObject();
8052 static void DigestTransitionFeedback(Handle<AllocationSite> site,
8053 ElementsKind to_kind);
8055 DECLARE_PRINTER(AllocationSite)
8056 DECLARE_VERIFIER(AllocationSite)
8058 DECLARE_CAST(AllocationSite)
8059 static inline AllocationSiteMode GetMode(
8060 ElementsKind boilerplate_elements_kind);
8061 static inline AllocationSiteMode GetMode(ElementsKind from, ElementsKind to);
8062 static inline bool CanTrack(InstanceType type);
8064 static const int kTransitionInfoOffset = HeapObject::kHeaderSize;
8065 static const int kNestedSiteOffset = kTransitionInfoOffset + kPointerSize;
8066 static const int kPretenureDataOffset = kNestedSiteOffset + kPointerSize;
8067 static const int kPretenureCreateCountOffset =
8068 kPretenureDataOffset + kPointerSize;
8069 static const int kDependentCodeOffset =
8070 kPretenureCreateCountOffset + kPointerSize;
8071 static const int kWeakNextOffset = kDependentCodeOffset + kPointerSize;
8072 static const int kSize = kWeakNextOffset + kPointerSize;
8074 // During mark compact we need to take special care for the dependent code
8076 static const int kPointerFieldsBeginOffset = kTransitionInfoOffset;
8077 static const int kPointerFieldsEndOffset = kWeakNextOffset;
8079 // For other visitors, use the fixed body descriptor below.
8080 typedef FixedBodyDescriptor<HeapObject::kHeaderSize,
8081 kDependentCodeOffset + kPointerSize,
8082 kSize> BodyDescriptor;
8085 bool PretenuringDecisionMade() {
8086 return pretenure_decision() != kUndecided;
8089 DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationSite);
8093 class AllocationMemento: public Struct {
8095 static const int kAllocationSiteOffset = HeapObject::kHeaderSize;
8096 static const int kSize = kAllocationSiteOffset + kPointerSize;
8098 DECL_ACCESSORS(allocation_site, Object)
8101 return allocation_site()->IsAllocationSite() &&
8102 !AllocationSite::cast(allocation_site())->IsZombie();
8104 AllocationSite* GetAllocationSite() {
8106 return AllocationSite::cast(allocation_site());
8109 DECLARE_PRINTER(AllocationMemento)
8110 DECLARE_VERIFIER(AllocationMemento)
8112 DECLARE_CAST(AllocationMemento)
8115 DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationMemento);
8119 // Representation of a slow alias as part of a sloppy arguments objects.
8120 // For fast aliases (if HasSloppyArgumentsElements()):
8121 // - the parameter map contains an index into the context
8122 // - all attributes of the element have default values
8123 // For slow aliases (if HasDictionaryArgumentsElements()):
8124 // - the parameter map contains no fast alias mapping (i.e. the hole)
8125 // - this struct (in the slow backing store) contains an index into the context
8126 // - all attributes are available as part if the property details
8127 class AliasedArgumentsEntry: public Struct {
8129 inline int aliased_context_slot() const;
8130 inline void set_aliased_context_slot(int count);
8132 DECLARE_CAST(AliasedArgumentsEntry)
8134 // Dispatched behavior.
8135 DECLARE_PRINTER(AliasedArgumentsEntry)
8136 DECLARE_VERIFIER(AliasedArgumentsEntry)
8138 static const int kAliasedContextSlot = HeapObject::kHeaderSize;
8139 static const int kSize = kAliasedContextSlot + kPointerSize;
8142 DISALLOW_IMPLICIT_CONSTRUCTORS(AliasedArgumentsEntry);
8146 enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
8147 enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
8150 class StringHasher {
8152 explicit inline StringHasher(int length, uint32_t seed);
8154 template <typename schar>
8155 static inline uint32_t HashSequentialString(const schar* chars,
8159 // Reads all the data, even for long strings and computes the utf16 length.
8160 static uint32_t ComputeUtf8Hash(Vector<const char> chars,
8162 int* utf16_length_out);
8164 // Calculated hash value for a string consisting of 1 to
8165 // String::kMaxArrayIndexSize digits with no leading zeros (except "0").
8166 // value is represented decimal value.
8167 static uint32_t MakeArrayIndexHash(uint32_t value, int length);
8169 // No string is allowed to have a hash of zero. That value is reserved
8170 // for internal properties. If the hash calculation yields zero then we
8172 static const int kZeroHash = 27;
8174 // Reusable parts of the hashing algorithm.
8175 INLINE(static uint32_t AddCharacterCore(uint32_t running_hash, uint16_t c));
8176 INLINE(static uint32_t GetHashCore(uint32_t running_hash));
8177 INLINE(static uint32_t ComputeRunningHash(uint32_t running_hash,
8178 const uc16* chars, int length));
8179 INLINE(static uint32_t ComputeRunningHashOneByte(uint32_t running_hash,
8184 // Returns the value to store in the hash field of a string with
8185 // the given length and contents.
8186 uint32_t GetHashField();
8187 // Returns true if the hash of this string can be computed without
8188 // looking at the contents.
8189 inline bool has_trivial_hash();
8190 // Adds a block of characters to the hash.
8191 template<typename Char>
8192 inline void AddCharacters(const Char* chars, int len);
8195 // Add a character to the hash.
8196 inline void AddCharacter(uint16_t c);
8197 // Update index. Returns true if string is still an index.
8198 inline bool UpdateIndex(uint16_t c);
8201 uint32_t raw_running_hash_;
8202 uint32_t array_index_;
8203 bool is_array_index_;
8204 bool is_first_char_;
8205 DISALLOW_COPY_AND_ASSIGN(StringHasher);
8209 class IteratingStringHasher : public StringHasher {
8211 static inline uint32_t Hash(String* string, uint32_t seed);
8212 inline void VisitOneByteString(const uint8_t* chars, int length);
8213 inline void VisitTwoByteString(const uint16_t* chars, int length);
8216 inline IteratingStringHasher(int len, uint32_t seed)
8217 : StringHasher(len, seed) {}
8218 void VisitConsString(ConsString* cons_string);
8219 DISALLOW_COPY_AND_ASSIGN(IteratingStringHasher);
8223 // The characteristics of a string are stored in its map. Retrieving these
8224 // few bits of information is moderately expensive, involving two memory
8225 // loads where the second is dependent on the first. To improve efficiency
8226 // the shape of the string is given its own class so that it can be retrieved
8227 // once and used for several string operations. A StringShape is small enough
8228 // to be passed by value and is immutable, but be aware that flattening a
8229 // string can potentially alter its shape. Also be aware that a GC caused by
8230 // something else can alter the shape of a string due to ConsString
8231 // shortcutting. Keeping these restrictions in mind has proven to be error-
8232 // prone and so we no longer put StringShapes in variables unless there is a
8233 // concrete performance benefit at that particular point in the code.
8234 class StringShape BASE_EMBEDDED {
8236 inline explicit StringShape(const String* s);
8237 inline explicit StringShape(Map* s);
8238 inline explicit StringShape(InstanceType t);
8239 inline bool IsSequential();
8240 inline bool IsExternal();
8241 inline bool IsCons();
8242 inline bool IsSliced();
8243 inline bool IsIndirect();
8244 inline bool IsExternalOneByte();
8245 inline bool IsExternalTwoByte();
8246 inline bool IsSequentialOneByte();
8247 inline bool IsSequentialTwoByte();
8248 inline bool IsInternalized();
8249 inline StringRepresentationTag representation_tag();
8250 inline uint32_t encoding_tag();
8251 inline uint32_t full_representation_tag();
8252 inline uint32_t size_tag();
8254 inline uint32_t type() { return type_; }
8255 inline void invalidate() { valid_ = false; }
8256 inline bool valid() { return valid_; }
8258 inline void invalidate() { }
8264 inline void set_valid() { valid_ = true; }
8267 inline void set_valid() { }
8272 // The Name abstract class captures anything that can be used as a property
8273 // name, i.e., strings and symbols. All names store a hash value.
8274 class Name: public HeapObject {
8276 // Get and set the hash field of the name.
8277 inline uint32_t hash_field();
8278 inline void set_hash_field(uint32_t value);
8280 // Tells whether the hash code has been computed.
8281 inline bool HasHashCode();
8283 // Returns a hash value used for the property table
8284 inline uint32_t Hash();
8286 // Equality operations.
8287 inline bool Equals(Name* other);
8288 inline static bool Equals(Handle<Name> one, Handle<Name> two);
8291 inline bool AsArrayIndex(uint32_t* index);
8293 // If the name is private, it can only name own properties.
8294 inline bool IsPrivate();
8296 // If the name is a non-flat string, this method returns a flat version of the
8297 // string. Otherwise it'll just return the input.
8298 static inline Handle<Name> Flatten(Handle<Name> name,
8299 PretenureFlag pretenure = NOT_TENURED);
8303 DECLARE_PRINTER(Name)
8305 void NameShortPrint();
8306 int NameShortPrint(Vector<char> str);
8309 // Layout description.
8310 static const int kHashFieldSlot = HeapObject::kHeaderSize;
8311 #if V8_TARGET_LITTLE_ENDIAN || !V8_HOST_ARCH_64_BIT
8312 static const int kHashFieldOffset = kHashFieldSlot;
8314 static const int kHashFieldOffset = kHashFieldSlot + kIntSize;
8316 static const int kSize = kHashFieldSlot + kPointerSize;
8318 // Mask constant for checking if a name has a computed hash code
8319 // and if it is a string that is an array index. The least significant bit
8320 // indicates whether a hash code has been computed. If the hash code has
8321 // been computed the 2nd bit tells whether the string can be used as an
8323 static const int kHashNotComputedMask = 1;
8324 static const int kIsNotArrayIndexMask = 1 << 1;
8325 static const int kNofHashBitFields = 2;
8327 // Shift constant retrieving hash code from hash field.
8328 static const int kHashShift = kNofHashBitFields;
8330 // Only these bits are relevant in the hash, since the top two are shifted
8332 static const uint32_t kHashBitMask = 0xffffffffu >> kHashShift;
8334 // Array index strings this short can keep their index in the hash field.
8335 static const int kMaxCachedArrayIndexLength = 7;
8337 // For strings which are array indexes the hash value has the string length
8338 // mixed into the hash, mainly to avoid a hash value of zero which would be
8339 // the case for the string '0'. 24 bits are used for the array index value.
8340 static const int kArrayIndexValueBits = 24;
8341 static const int kArrayIndexLengthBits =
8342 kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
8344 STATIC_ASSERT((kArrayIndexLengthBits > 0));
8346 class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
8347 kArrayIndexValueBits> {}; // NOLINT
8348 class ArrayIndexLengthBits : public BitField<unsigned int,
8349 kNofHashBitFields + kArrayIndexValueBits,
8350 kArrayIndexLengthBits> {}; // NOLINT
8352 // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
8353 // could use a mask to test if the length of string is less than or equal to
8354 // kMaxCachedArrayIndexLength.
8355 STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
8357 static const unsigned int kContainsCachedArrayIndexMask =
8358 (~static_cast<unsigned>(kMaxCachedArrayIndexLength)
8359 << ArrayIndexLengthBits::kShift) |
8360 kIsNotArrayIndexMask;
8362 // Value of empty hash field indicating that the hash is not computed.
8363 static const int kEmptyHashField =
8364 kIsNotArrayIndexMask | kHashNotComputedMask;
8367 static inline bool IsHashFieldComputed(uint32_t field);
8370 DISALLOW_IMPLICIT_CONSTRUCTORS(Name);
8375 class Symbol: public Name {
8377 // [name]: The print name of a symbol, or undefined if none.
8378 DECL_ACCESSORS(name, Object)
8380 DECL_ACCESSORS(flags, Smi)
8382 // [is_private]: Whether this is a private symbol. Private symbols can only
8383 // be used to designate own properties of objects.
8384 DECL_BOOLEAN_ACCESSORS(is_private)
8386 DECLARE_CAST(Symbol)
8388 // Dispatched behavior.
8389 DECLARE_PRINTER(Symbol)
8390 DECLARE_VERIFIER(Symbol)
8392 // Layout description.
8393 static const int kNameOffset = Name::kSize;
8394 static const int kFlagsOffset = kNameOffset + kPointerSize;
8395 static const int kSize = kFlagsOffset + kPointerSize;
8397 typedef FixedBodyDescriptor<kNameOffset, kFlagsOffset, kSize> BodyDescriptor;
8399 void SymbolShortPrint(std::ostream& os);
8402 static const int kPrivateBit = 0;
8404 const char* PrivateSymbolToName() const;
8407 friend class Name; // For PrivateSymbolToName.
8410 DISALLOW_IMPLICIT_CONSTRUCTORS(Symbol);
8416 // The String abstract class captures JavaScript string values:
8419 // 4.3.16 String Value
8420 // A string value is a member of the type String and is a finite
8421 // ordered sequence of zero or more 16-bit unsigned integer values.
8423 // All string values have a length field.
8424 class String: public Name {
8426 enum Encoding { ONE_BYTE_ENCODING, TWO_BYTE_ENCODING };
8428 // Array index strings this short can keep their index in the hash field.
8429 static const int kMaxCachedArrayIndexLength = 7;
8431 // For strings which are array indexes the hash value has the string length
8432 // mixed into the hash, mainly to avoid a hash value of zero which would be
8433 // the case for the string '0'. 24 bits are used for the array index value.
8434 static const int kArrayIndexValueBits = 24;
8435 static const int kArrayIndexLengthBits =
8436 kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
8438 STATIC_ASSERT((kArrayIndexLengthBits > 0));
8440 class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
8441 kArrayIndexValueBits> {}; // NOLINT
8442 class ArrayIndexLengthBits : public BitField<unsigned int,
8443 kNofHashBitFields + kArrayIndexValueBits,
8444 kArrayIndexLengthBits> {}; // NOLINT
8446 // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
8447 // could use a mask to test if the length of string is less than or equal to
8448 // kMaxCachedArrayIndexLength.
8449 STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
8451 static const unsigned int kContainsCachedArrayIndexMask =
8452 (~static_cast<unsigned>(kMaxCachedArrayIndexLength)
8453 << ArrayIndexLengthBits::kShift) |
8454 kIsNotArrayIndexMask;
8456 class SubStringRange {
8458 explicit SubStringRange(String* string, int first = 0, int length = -1)
8461 length_(length == -1 ? string->length() : length) {}
8463 inline iterator begin();
8464 inline iterator end();
8472 // Representation of the flat content of a String.
8473 // A non-flat string doesn't have flat content.
8474 // A flat string has content that's encoded as a sequence of either
8475 // one-byte chars or two-byte UC16.
8476 // Returned by String::GetFlatContent().
8479 // Returns true if the string is flat and this structure contains content.
8480 bool IsFlat() { return state_ != NON_FLAT; }
8481 // Returns true if the structure contains one-byte content.
8482 bool IsOneByte() { return state_ == ONE_BYTE; }
8483 // Returns true if the structure contains two-byte content.
8484 bool IsTwoByte() { return state_ == TWO_BYTE; }
8486 // Return the one byte content of the string. Only use if IsOneByte()
8488 Vector<const uint8_t> ToOneByteVector() {
8489 DCHECK_EQ(ONE_BYTE, state_);
8490 return Vector<const uint8_t>(onebyte_start, length_);
8492 // Return the two-byte content of the string. Only use if IsTwoByte()
8494 Vector<const uc16> ToUC16Vector() {
8495 DCHECK_EQ(TWO_BYTE, state_);
8496 return Vector<const uc16>(twobyte_start, length_);
8500 DCHECK(i < length_);
8501 DCHECK(state_ != NON_FLAT);
8502 if (state_ == ONE_BYTE) return onebyte_start[i];
8503 return twobyte_start[i];
8506 bool UsesSameString(const FlatContent& other) const {
8507 return onebyte_start == other.onebyte_start;
8511 enum State { NON_FLAT, ONE_BYTE, TWO_BYTE };
8513 // Constructors only used by String::GetFlatContent().
8514 explicit FlatContent(const uint8_t* start, int length)
8515 : onebyte_start(start), length_(length), state_(ONE_BYTE) {}
8516 explicit FlatContent(const uc16* start, int length)
8517 : twobyte_start(start), length_(length), state_(TWO_BYTE) { }
8518 FlatContent() : onebyte_start(NULL), length_(0), state_(NON_FLAT) { }
8521 const uint8_t* onebyte_start;
8522 const uc16* twobyte_start;
8527 friend class String;
8528 friend class IterableSubString;
8531 template <typename Char>
8532 INLINE(Vector<const Char> GetCharVector());
8534 // Get and set the length of the string.
8535 inline int length() const;
8536 inline void set_length(int value);
8538 // Get and set the length of the string using acquire loads and release
8540 inline int synchronized_length() const;
8541 inline void synchronized_set_length(int value);
8543 // Returns whether this string has only one-byte chars, i.e. all of them can
8544 // be one-byte encoded. This might be the case even if the string is
8545 // two-byte. Such strings may appear when the embedder prefers
8546 // two-byte external representations even for one-byte data.
8547 inline bool IsOneByteRepresentation() const;
8548 inline bool IsTwoByteRepresentation() const;
8550 // Cons and slices have an encoding flag that may not represent the actual
8551 // encoding of the underlying string. This is taken into account here.
8552 // Requires: this->IsFlat()
8553 inline bool IsOneByteRepresentationUnderneath();
8554 inline bool IsTwoByteRepresentationUnderneath();
8556 // NOTE: this should be considered only a hint. False negatives are
8558 inline bool HasOnlyOneByteChars();
8560 // Get and set individual two byte chars in the string.
8561 inline void Set(int index, uint16_t value);
8562 // Get individual two byte char in the string. Repeated calls
8563 // to this method are not efficient unless the string is flat.
8564 INLINE(uint16_t Get(int index));
8566 // Flattens the string. Checks first inline to see if it is
8567 // necessary. Does nothing if the string is not a cons string.
8568 // Flattening allocates a sequential string with the same data as
8569 // the given string and mutates the cons string to a degenerate
8570 // form, where the first component is the new sequential string and
8571 // the second component is the empty string. If allocation fails,
8572 // this function returns a failure. If flattening succeeds, this
8573 // function returns the sequential string that is now the first
8574 // component of the cons string.
8576 // Degenerate cons strings are handled specially by the garbage
8577 // collector (see IsShortcutCandidate).
8579 static inline Handle<String> Flatten(Handle<String> string,
8580 PretenureFlag pretenure = NOT_TENURED);
8582 // Tries to return the content of a flat string as a structure holding either
8583 // a flat vector of char or of uc16.
8584 // If the string isn't flat, and therefore doesn't have flat content, the
8585 // returned structure will report so, and can't provide a vector of either
8587 FlatContent GetFlatContent();
8589 // Returns the parent of a sliced string or first part of a flat cons string.
8590 // Requires: StringShape(this).IsIndirect() && this->IsFlat()
8591 inline String* GetUnderlying();
8593 // String equality operations.
8594 inline bool Equals(String* other);
8595 inline static bool Equals(Handle<String> one, Handle<String> two);
8596 bool IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match = false);
8597 bool IsOneByteEqualTo(Vector<const uint8_t> str);
8598 bool IsTwoByteEqualTo(Vector<const uc16> str);
8600 // Return a UTF8 representation of the string. The string is null
8601 // terminated but may optionally contain nulls. Length is returned
8602 // in length_output if length_output is not a null pointer The string
8603 // should be nearly flat, otherwise the performance of this method may
8604 // be very slow (quadratic in the length). Setting robustness_flag to
8605 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
8606 // handles unexpected data without causing assert failures and it does not
8607 // do any heap allocations. This is useful when printing stack traces.
8608 base::SmartArrayPointer<char> ToCString(AllowNullsFlag allow_nulls,
8609 RobustnessFlag robustness_flag,
8610 int offset, int length,
8611 int* length_output = 0);
8612 base::SmartArrayPointer<char> ToCString(
8613 AllowNullsFlag allow_nulls = DISALLOW_NULLS,
8614 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
8615 int* length_output = 0);
8617 // Return a 16 bit Unicode representation of the string.
8618 // The string should be nearly flat, otherwise the performance of
8619 // of this method may be very bad. Setting robustness_flag to
8620 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
8621 // handles unexpected data without causing assert failures and it does not
8622 // do any heap allocations. This is useful when printing stack traces.
8623 base::SmartArrayPointer<uc16> ToWideCString(
8624 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
8626 bool ComputeArrayIndex(uint32_t* index);
8629 bool MakeExternal(v8::String::ExternalStringResource* resource);
8630 bool MakeExternal(v8::String::ExternalOneByteStringResource* resource);
8633 inline bool AsArrayIndex(uint32_t* index);
8635 DECLARE_CAST(String)
8637 void PrintOn(FILE* out);
8639 // For use during stack traces. Performs rudimentary sanity check.
8642 // Dispatched behavior.
8643 void StringShortPrint(StringStream* accumulator);
8644 void PrintUC16(std::ostream& os, int start = 0, int end = -1); // NOLINT
8645 #if defined(DEBUG) || defined(OBJECT_PRINT)
8646 char* ToAsciiArray();
8648 DECLARE_PRINTER(String)
8649 DECLARE_VERIFIER(String)
8651 inline bool IsFlat();
8653 // Layout description.
8654 static const int kLengthOffset = Name::kSize;
8655 static const int kSize = kLengthOffset + kPointerSize;
8657 // Maximum number of characters to consider when trying to convert a string
8658 // value into an array index.
8659 static const int kMaxArrayIndexSize = 10;
8660 STATIC_ASSERT(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits));
8663 static const int32_t kMaxOneByteCharCode = unibrow::Latin1::kMaxChar;
8664 static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar;
8665 static const int kMaxUtf16CodeUnit = 0xffff;
8666 static const uint32_t kMaxUtf16CodeUnitU = kMaxUtf16CodeUnit;
8668 // Value of hash field containing computed hash equal to zero.
8669 static const int kEmptyStringHash = kIsNotArrayIndexMask;
8671 // Maximal string length.
8672 static const int kMaxLength = (1 << 28) - 16;
8674 // Max length for computing hash. For strings longer than this limit the
8675 // string length is used as the hash value.
8676 static const int kMaxHashCalcLength = 16383;
8678 // Limit for truncation in short printing.
8679 static const int kMaxShortPrintLength = 1024;
8681 // Support for regular expressions.
8682 const uc16* GetTwoByteData(unsigned start);
8684 // Helper function for flattening strings.
8685 template <typename sinkchar>
8686 static void WriteToFlat(String* source,
8691 // The return value may point to the first aligned word containing the first
8692 // non-one-byte character, rather than directly to the non-one-byte character.
8693 // If the return value is >= the passed length, the entire string was
8695 static inline int NonAsciiStart(const char* chars, int length) {
8696 const char* start = chars;
8697 const char* limit = chars + length;
8699 if (length >= kIntptrSize) {
8700 // Check unaligned bytes.
8701 while (!IsAligned(reinterpret_cast<intptr_t>(chars), sizeof(uintptr_t))) {
8702 if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
8703 return static_cast<int>(chars - start);
8707 // Check aligned words.
8708 DCHECK(unibrow::Utf8::kMaxOneByteChar == 0x7F);
8709 const uintptr_t non_one_byte_mask = kUintptrAllBitsSet / 0xFF * 0x80;
8710 while (chars + sizeof(uintptr_t) <= limit) {
8711 if (*reinterpret_cast<const uintptr_t*>(chars) & non_one_byte_mask) {
8712 return static_cast<int>(chars - start);
8714 chars += sizeof(uintptr_t);
8717 // Check remaining unaligned bytes.
8718 while (chars < limit) {
8719 if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
8720 return static_cast<int>(chars - start);
8725 return static_cast<int>(chars - start);
8728 static inline bool IsAscii(const char* chars, int length) {
8729 return NonAsciiStart(chars, length) >= length;
8732 static inline bool IsAscii(const uint8_t* chars, int length) {
8734 NonAsciiStart(reinterpret_cast<const char*>(chars), length) >= length;
8737 static inline int NonOneByteStart(const uc16* chars, int length) {
8738 const uc16* limit = chars + length;
8739 const uc16* start = chars;
8740 while (chars < limit) {
8741 if (*chars > kMaxOneByteCharCodeU) return static_cast<int>(chars - start);
8744 return static_cast<int>(chars - start);
8747 static inline bool IsOneByte(const uc16* chars, int length) {
8748 return NonOneByteStart(chars, length) >= length;
8751 template<class Visitor>
8752 static inline ConsString* VisitFlat(Visitor* visitor,
8756 static Handle<FixedArray> CalculateLineEnds(Handle<String> string,
8757 bool include_ending_line);
8759 // Use the hash field to forward to the canonical internalized string
8760 // when deserializing an internalized string.
8761 inline void SetForwardedInternalizedString(String* string);
8762 inline String* GetForwardedInternalizedString();
8766 friend class StringTableInsertionKey;
8768 static Handle<String> SlowFlatten(Handle<ConsString> cons,
8769 PretenureFlag tenure);
8771 // Slow case of String::Equals. This implementation works on any strings
8772 // but it is most efficient on strings that are almost flat.
8773 bool SlowEquals(String* other);
8775 static bool SlowEquals(Handle<String> one, Handle<String> two);
8777 // Slow case of AsArrayIndex.
8778 bool SlowAsArrayIndex(uint32_t* index);
8780 // Compute and set the hash code.
8781 uint32_t ComputeAndSetHash();
8783 DISALLOW_IMPLICIT_CONSTRUCTORS(String);
8787 // The SeqString abstract class captures sequential string values.
8788 class SeqString: public String {
8790 DECLARE_CAST(SeqString)
8792 // Layout description.
8793 static const int kHeaderSize = String::kSize;
8795 // Truncate the string in-place if possible and return the result.
8796 // In case of new_length == 0, the empty string is returned without
8797 // truncating the original string.
8798 MUST_USE_RESULT static Handle<String> Truncate(Handle<SeqString> string,
8801 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
8805 // The OneByteString class captures sequential one-byte string objects.
8806 // Each character in the OneByteString is an one-byte character.
8807 class SeqOneByteString: public SeqString {
8809 static const bool kHasOneByteEncoding = true;
8811 // Dispatched behavior.
8812 inline uint16_t SeqOneByteStringGet(int index);
8813 inline void SeqOneByteStringSet(int index, uint16_t value);
8815 // Get the address of the characters in this string.
8816 inline Address GetCharsAddress();
8818 inline uint8_t* GetChars();
8820 DECLARE_CAST(SeqOneByteString)
8822 // Garbage collection support. This method is called by the
8823 // garbage collector to compute the actual size of an OneByteString
8825 inline int SeqOneByteStringSize(InstanceType instance_type);
8827 // Computes the size for an OneByteString instance of a given length.
8828 static int SizeFor(int length) {
8829 return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
8832 // Maximal memory usage for a single sequential one-byte string.
8833 static const int kMaxSize = 512 * MB - 1;
8834 STATIC_ASSERT((kMaxSize - kHeaderSize) >= String::kMaxLength);
8837 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqOneByteString);
8841 // The TwoByteString class captures sequential unicode string objects.
8842 // Each character in the TwoByteString is a two-byte uint16_t.
8843 class SeqTwoByteString: public SeqString {
8845 static const bool kHasOneByteEncoding = false;
8847 // Dispatched behavior.
8848 inline uint16_t SeqTwoByteStringGet(int index);
8849 inline void SeqTwoByteStringSet(int index, uint16_t value);
8851 // Get the address of the characters in this string.
8852 inline Address GetCharsAddress();
8854 inline uc16* GetChars();
8857 const uint16_t* SeqTwoByteStringGetData(unsigned start);
8859 DECLARE_CAST(SeqTwoByteString)
8861 // Garbage collection support. This method is called by the
8862 // garbage collector to compute the actual size of a TwoByteString
8864 inline int SeqTwoByteStringSize(InstanceType instance_type);
8866 // Computes the size for a TwoByteString instance of a given length.
8867 static int SizeFor(int length) {
8868 return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
8871 // Maximal memory usage for a single sequential two-byte string.
8872 static const int kMaxSize = 512 * MB - 1;
8873 STATIC_ASSERT(static_cast<int>((kMaxSize - kHeaderSize)/sizeof(uint16_t)) >=
8874 String::kMaxLength);
8877 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
8881 // The ConsString class describes string values built by using the
8882 // addition operator on strings. A ConsString is a pair where the
8883 // first and second components are pointers to other string values.
8884 // One or both components of a ConsString can be pointers to other
8885 // ConsStrings, creating a binary tree of ConsStrings where the leaves
8886 // are non-ConsString string values. The string value represented by
8887 // a ConsString can be obtained by concatenating the leaf string
8888 // values in a left-to-right depth-first traversal of the tree.
8889 class ConsString: public String {
8891 // First string of the cons cell.
8892 inline String* first();
8893 // Doesn't check that the result is a string, even in debug mode. This is
8894 // useful during GC where the mark bits confuse the checks.
8895 inline Object* unchecked_first();
8896 inline void set_first(String* first,
8897 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8899 // Second string of the cons cell.
8900 inline String* second();
8901 // Doesn't check that the result is a string, even in debug mode. This is
8902 // useful during GC where the mark bits confuse the checks.
8903 inline Object* unchecked_second();
8904 inline void set_second(String* second,
8905 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8907 // Dispatched behavior.
8908 uint16_t ConsStringGet(int index);
8910 DECLARE_CAST(ConsString)
8912 // Layout description.
8913 static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
8914 static const int kSecondOffset = kFirstOffset + kPointerSize;
8915 static const int kSize = kSecondOffset + kPointerSize;
8917 // Minimum length for a cons string.
8918 static const int kMinLength = 13;
8920 typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize>
8923 DECLARE_VERIFIER(ConsString)
8926 DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
8930 // The Sliced String class describes strings that are substrings of another
8931 // sequential string. The motivation is to save time and memory when creating
8932 // a substring. A Sliced String is described as a pointer to the parent,
8933 // the offset from the start of the parent string and the length. Using
8934 // a Sliced String therefore requires unpacking of the parent string and
8935 // adding the offset to the start address. A substring of a Sliced String
8936 // are not nested since the double indirection is simplified when creating
8937 // such a substring.
8938 // Currently missing features are:
8939 // - handling externalized parent strings
8940 // - external strings as parent
8941 // - truncating sliced string to enable otherwise unneeded parent to be GC'ed.
8942 class SlicedString: public String {
8944 inline String* parent();
8945 inline void set_parent(String* parent,
8946 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8947 inline int offset() const;
8948 inline void set_offset(int offset);
8950 // Dispatched behavior.
8951 uint16_t SlicedStringGet(int index);
8953 DECLARE_CAST(SlicedString)
8955 // Layout description.
8956 static const int kParentOffset = POINTER_SIZE_ALIGN(String::kSize);
8957 static const int kOffsetOffset = kParentOffset + kPointerSize;
8958 static const int kSize = kOffsetOffset + kPointerSize;
8960 // Minimum length for a sliced string.
8961 static const int kMinLength = 13;
8963 typedef FixedBodyDescriptor<kParentOffset,
8964 kOffsetOffset + kPointerSize, kSize>
8967 DECLARE_VERIFIER(SlicedString)
8970 DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString);
8974 // The ExternalString class describes string values that are backed by
8975 // a string resource that lies outside the V8 heap. ExternalStrings
8976 // consist of the length field common to all strings, a pointer to the
8977 // external resource. It is important to ensure (externally) that the
8978 // resource is not deallocated while the ExternalString is live in the
8981 // The API expects that all ExternalStrings are created through the
8982 // API. Therefore, ExternalStrings should not be used internally.
8983 class ExternalString: public String {
8985 DECLARE_CAST(ExternalString)
8987 // Layout description.
8988 static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
8989 static const int kShortSize = kResourceOffset + kPointerSize;
8990 static const int kResourceDataOffset = kResourceOffset + kPointerSize;
8991 static const int kSize = kResourceDataOffset + kPointerSize;
8993 static const int kMaxShortLength =
8994 (kShortSize - SeqString::kHeaderSize) / kCharSize;
8996 // Return whether external string is short (data pointer is not cached).
8997 inline bool is_short();
8999 STATIC_ASSERT(kResourceOffset == Internals::kStringResourceOffset);
9002 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
9006 // The ExternalOneByteString class is an external string backed by an
9008 class ExternalOneByteString : public ExternalString {
9010 static const bool kHasOneByteEncoding = true;
9012 typedef v8::String::ExternalOneByteStringResource Resource;
9014 // The underlying resource.
9015 inline const Resource* resource();
9016 inline void set_resource(const Resource* buffer);
9018 // Update the pointer cache to the external character array.
9019 // The cached pointer is always valid, as the external character array does =
9020 // not move during lifetime. Deserialization is the only exception, after
9021 // which the pointer cache has to be refreshed.
9022 inline void update_data_cache();
9024 inline const uint8_t* GetChars();
9026 // Dispatched behavior.
9027 inline uint16_t ExternalOneByteStringGet(int index);
9029 DECLARE_CAST(ExternalOneByteString)
9031 // Garbage collection support.
9032 inline void ExternalOneByteStringIterateBody(ObjectVisitor* v);
9034 template <typename StaticVisitor>
9035 inline void ExternalOneByteStringIterateBody();
9038 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalOneByteString);
9042 // The ExternalTwoByteString class is an external string backed by a UTF-16
9044 class ExternalTwoByteString: public ExternalString {
9046 static const bool kHasOneByteEncoding = false;
9048 typedef v8::String::ExternalStringResource Resource;
9050 // The underlying string resource.
9051 inline const Resource* resource();
9052 inline void set_resource(const Resource* buffer);
9054 // Update the pointer cache to the external character array.
9055 // The cached pointer is always valid, as the external character array does =
9056 // not move during lifetime. Deserialization is the only exception, after
9057 // which the pointer cache has to be refreshed.
9058 inline void update_data_cache();
9060 inline const uint16_t* GetChars();
9062 // Dispatched behavior.
9063 inline uint16_t ExternalTwoByteStringGet(int index);
9066 inline const uint16_t* ExternalTwoByteStringGetData(unsigned start);
9068 DECLARE_CAST(ExternalTwoByteString)
9070 // Garbage collection support.
9071 inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
9073 template<typename StaticVisitor>
9074 inline void ExternalTwoByteStringIterateBody();
9077 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
9081 // Utility superclass for stack-allocated objects that must be updated
9082 // on gc. It provides two ways for the gc to update instances, either
9083 // iterating or updating after gc.
9084 class Relocatable BASE_EMBEDDED {
9086 explicit inline Relocatable(Isolate* isolate);
9087 inline virtual ~Relocatable();
9088 virtual void IterateInstance(ObjectVisitor* v) { }
9089 virtual void PostGarbageCollection() { }
9091 static void PostGarbageCollectionProcessing(Isolate* isolate);
9092 static int ArchiveSpacePerThread();
9093 static char* ArchiveState(Isolate* isolate, char* to);
9094 static char* RestoreState(Isolate* isolate, char* from);
9095 static void Iterate(Isolate* isolate, ObjectVisitor* v);
9096 static void Iterate(ObjectVisitor* v, Relocatable* top);
9097 static char* Iterate(ObjectVisitor* v, char* t);
9105 // A flat string reader provides random access to the contents of a
9106 // string independent of the character width of the string. The handle
9107 // must be valid as long as the reader is being used.
9108 class FlatStringReader : public Relocatable {
9110 FlatStringReader(Isolate* isolate, Handle<String> str);
9111 FlatStringReader(Isolate* isolate, Vector<const char> input);
9112 void PostGarbageCollection();
9113 inline uc32 Get(int index);
9114 template <typename Char>
9115 inline Char Get(int index);
9116 int length() { return length_; }
9125 // This maintains an off-stack representation of the stack frames required
9126 // to traverse a ConsString, allowing an entirely iterative and restartable
9127 // traversal of the entire string
9128 class ConsStringIterator {
9130 inline ConsStringIterator() {}
9131 inline explicit ConsStringIterator(ConsString* cons_string, int offset = 0) {
9132 Reset(cons_string, offset);
9134 inline void Reset(ConsString* cons_string, int offset = 0) {
9136 // Next will always return NULL.
9137 if (cons_string == NULL) return;
9138 Initialize(cons_string, offset);
9140 // Returns NULL when complete.
9141 inline String* Next(int* offset_out) {
9143 if (depth_ == 0) return NULL;
9144 return Continue(offset_out);
9148 static const int kStackSize = 32;
9149 // Use a mask instead of doing modulo operations for stack wrapping.
9150 static const int kDepthMask = kStackSize-1;
9151 STATIC_ASSERT(IS_POWER_OF_TWO(kStackSize));
9152 static inline int OffsetForDepth(int depth);
9154 inline void PushLeft(ConsString* string);
9155 inline void PushRight(ConsString* string);
9156 inline void AdjustMaximumDepth();
9158 inline bool StackBlown() { return maximum_depth_ - depth_ == kStackSize; }
9159 void Initialize(ConsString* cons_string, int offset);
9160 String* Continue(int* offset_out);
9161 String* NextLeaf(bool* blew_stack);
9162 String* Search(int* offset_out);
9164 // Stack must always contain only frames for which right traversal
9165 // has not yet been performed.
9166 ConsString* frames_[kStackSize];
9171 DISALLOW_COPY_AND_ASSIGN(ConsStringIterator);
9175 class StringCharacterStream {
9177 inline StringCharacterStream(String* string,
9179 inline uint16_t GetNext();
9180 inline bool HasMore();
9181 inline void Reset(String* string, int offset = 0);
9182 inline void VisitOneByteString(const uint8_t* chars, int length);
9183 inline void VisitTwoByteString(const uint16_t* chars, int length);
9186 ConsStringIterator iter_;
9189 const uint8_t* buffer8_;
9190 const uint16_t* buffer16_;
9192 const uint8_t* end_;
9193 DISALLOW_COPY_AND_ASSIGN(StringCharacterStream);
9197 template <typename T>
9198 class VectorIterator {
9200 VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
9201 explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
9202 T GetNext() { return data_[index_++]; }
9203 bool has_more() { return index_ < data_.length(); }
9205 Vector<const T> data_;
9210 // The Oddball describes objects null, undefined, true, and false.
9211 class Oddball: public HeapObject {
9213 // [to_string]: Cached to_string computed at startup.
9214 DECL_ACCESSORS(to_string, String)
9216 // [to_number]: Cached to_number computed at startup.
9217 DECL_ACCESSORS(to_number, Object)
9219 inline byte kind() const;
9220 inline void set_kind(byte kind);
9222 DECLARE_CAST(Oddball)
9224 // Dispatched behavior.
9225 DECLARE_VERIFIER(Oddball)
9227 // Initialize the fields.
9228 static void Initialize(Isolate* isolate,
9229 Handle<Oddball> oddball,
9230 const char* to_string,
9231 Handle<Object> to_number,
9234 // Layout description.
9235 static const int kToStringOffset = HeapObject::kHeaderSize;
9236 static const int kToNumberOffset = kToStringOffset + kPointerSize;
9237 static const int kKindOffset = kToNumberOffset + kPointerSize;
9238 static const int kSize = kKindOffset + kPointerSize;
9240 static const byte kFalse = 0;
9241 static const byte kTrue = 1;
9242 static const byte kNotBooleanMask = ~1;
9243 static const byte kTheHole = 2;
9244 static const byte kNull = 3;
9245 static const byte kArgumentMarker = 4;
9246 static const byte kUndefined = 5;
9247 static const byte kUninitialized = 6;
9248 static const byte kOther = 7;
9249 static const byte kException = 8;
9251 typedef FixedBodyDescriptor<kToStringOffset,
9252 kToNumberOffset + kPointerSize,
9253 kSize> BodyDescriptor;
9255 STATIC_ASSERT(kKindOffset == Internals::kOddballKindOffset);
9256 STATIC_ASSERT(kNull == Internals::kNullOddballKind);
9257 STATIC_ASSERT(kUndefined == Internals::kUndefinedOddballKind);
9260 DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
9264 class Cell: public HeapObject {
9266 // [value]: value of the cell.
9267 DECL_ACCESSORS(value, Object)
9271 static inline Cell* FromValueAddress(Address value) {
9272 Object* result = FromAddress(value - kValueOffset);
9273 return static_cast<Cell*>(result);
9276 inline Address ValueAddress() {
9277 return address() + kValueOffset;
9280 // Dispatched behavior.
9281 DECLARE_PRINTER(Cell)
9282 DECLARE_VERIFIER(Cell)
9284 // Layout description.
9285 static const int kValueOffset = HeapObject::kHeaderSize;
9286 static const int kSize = kValueOffset + kPointerSize;
9288 typedef FixedBodyDescriptor<kValueOffset,
9289 kValueOffset + kPointerSize,
9290 kSize> BodyDescriptor;
9293 DISALLOW_IMPLICIT_CONSTRUCTORS(Cell);
9297 class PropertyCell : public HeapObject {
9299 // [property_details]: details of the global property.
9300 DECL_ACCESSORS(property_details_raw, Object)
9301 // [value]: value of the global property.
9302 DECL_ACCESSORS(value, Object)
9303 // [dependent_code]: dependent code that depends on the type of the global
9305 DECL_ACCESSORS(dependent_code, DependentCode)
9307 PropertyDetails property_details() {
9308 return PropertyDetails(Smi::cast(property_details_raw()));
9311 void set_property_details(PropertyDetails details) {
9312 set_property_details_raw(details.AsSmi());
9315 PropertyCellConstantType GetConstantType();
9317 // Computes the new type of the cell's contents for the given value, but
9318 // without actually modifying the details.
9319 static PropertyCellType UpdatedType(Handle<PropertyCell> cell,
9320 Handle<Object> value,
9321 PropertyDetails details);
9322 static void UpdateCell(Handle<GlobalDictionary> dictionary, int entry,
9323 Handle<Object> value, PropertyDetails details);
9325 static Handle<PropertyCell> InvalidateEntry(
9326 Handle<GlobalDictionary> dictionary, int entry);
9328 static void SetValueWithInvalidation(Handle<PropertyCell> cell,
9329 Handle<Object> new_value);
9331 DECLARE_CAST(PropertyCell)
9333 // Dispatched behavior.
9334 DECLARE_PRINTER(PropertyCell)
9335 DECLARE_VERIFIER(PropertyCell)
9337 // Layout description.
9338 static const int kDetailsOffset = HeapObject::kHeaderSize;
9339 static const int kValueOffset = kDetailsOffset + kPointerSize;
9340 static const int kDependentCodeOffset = kValueOffset + kPointerSize;
9341 static const int kSize = kDependentCodeOffset + kPointerSize;
9343 static const int kPointerFieldsBeginOffset = kValueOffset;
9344 static const int kPointerFieldsEndOffset = kSize;
9346 typedef FixedBodyDescriptor<kValueOffset,
9348 kSize> BodyDescriptor;
9351 DISALLOW_IMPLICIT_CONSTRUCTORS(PropertyCell);
9355 class WeakCell : public HeapObject {
9357 inline Object* value() const;
9359 // This should not be called by anyone except GC.
9360 inline void clear();
9362 // This should not be called by anyone except allocator.
9363 inline void initialize(HeapObject* value);
9365 inline bool cleared() const;
9367 DECL_ACCESSORS(next, Object)
9369 inline void clear_next(Heap* heap);
9371 inline bool next_cleared();
9373 DECLARE_CAST(WeakCell)
9375 DECLARE_PRINTER(WeakCell)
9376 DECLARE_VERIFIER(WeakCell)
9378 // Layout description.
9379 static const int kValueOffset = HeapObject::kHeaderSize;
9380 static const int kNextOffset = kValueOffset + kPointerSize;
9381 static const int kSize = kNextOffset + kPointerSize;
9383 typedef FixedBodyDescriptor<kValueOffset, kSize, kSize> BodyDescriptor;
9386 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakCell);
9390 // The JSProxy describes EcmaScript Harmony proxies
9391 class JSProxy: public JSReceiver {
9393 // [handler]: The handler property.
9394 DECL_ACCESSORS(handler, Object)
9396 // [hash]: The hash code property (undefined if not initialized yet).
9397 DECL_ACCESSORS(hash, Object)
9399 DECLARE_CAST(JSProxy)
9401 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithHandler(
9402 Handle<JSProxy> proxy,
9403 Handle<Object> receiver,
9406 // If the handler defines an accessor property with a setter, invoke it.
9407 // If it defines an accessor property without a setter, or a data property
9408 // that is read-only, throw. In all these cases set '*done' to true,
9409 // otherwise set it to false.
9411 static MaybeHandle<Object> SetPropertyViaPrototypesWithHandler(
9412 Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
9413 Handle<Object> value, LanguageMode language_mode, bool* done);
9415 MUST_USE_RESULT static Maybe<PropertyAttributes>
9416 GetPropertyAttributesWithHandler(Handle<JSProxy> proxy,
9417 Handle<Object> receiver,
9419 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithHandler(
9420 Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
9421 Handle<Object> value, LanguageMode language_mode);
9423 // Turn the proxy into an (empty) JSObject.
9424 static void Fix(Handle<JSProxy> proxy);
9426 // Initializes the body after the handler slot.
9427 inline void InitializeBody(int object_size, Object* value);
9429 // Invoke a trap by name. If the trap does not exist on this's handler,
9430 // but derived_trap is non-NULL, invoke that instead. May cause GC.
9431 MUST_USE_RESULT static MaybeHandle<Object> CallTrap(
9432 Handle<JSProxy> proxy,
9434 Handle<Object> derived_trap,
9436 Handle<Object> args[]);
9438 // Dispatched behavior.
9439 DECLARE_PRINTER(JSProxy)
9440 DECLARE_VERIFIER(JSProxy)
9442 // Layout description. We add padding so that a proxy has the same
9443 // size as a virgin JSObject. This is essential for becoming a JSObject
9445 static const int kHandlerOffset = HeapObject::kHeaderSize;
9446 static const int kHashOffset = kHandlerOffset + kPointerSize;
9447 static const int kPaddingOffset = kHashOffset + kPointerSize;
9448 static const int kSize = JSObject::kHeaderSize;
9449 static const int kHeaderSize = kPaddingOffset;
9450 static const int kPaddingSize = kSize - kPaddingOffset;
9452 STATIC_ASSERT(kPaddingSize >= 0);
9454 typedef FixedBodyDescriptor<kHandlerOffset,
9456 kSize> BodyDescriptor;
9459 friend class JSReceiver;
9461 MUST_USE_RESULT static Maybe<bool> HasPropertyWithHandler(
9462 Handle<JSProxy> proxy, Handle<Name> name);
9464 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithHandler(
9465 Handle<JSProxy> proxy, Handle<Name> name, LanguageMode language_mode);
9467 MUST_USE_RESULT Object* GetIdentityHash();
9469 static Handle<Smi> GetOrCreateIdentityHash(Handle<JSProxy> proxy);
9471 DISALLOW_IMPLICIT_CONSTRUCTORS(JSProxy);
9475 class JSFunctionProxy: public JSProxy {
9477 // [call_trap]: The call trap.
9478 DECL_ACCESSORS(call_trap, Object)
9480 // [construct_trap]: The construct trap.
9481 DECL_ACCESSORS(construct_trap, Object)
9483 DECLARE_CAST(JSFunctionProxy)
9485 // Dispatched behavior.
9486 DECLARE_PRINTER(JSFunctionProxy)
9487 DECLARE_VERIFIER(JSFunctionProxy)
9489 // Layout description.
9490 static const int kCallTrapOffset = JSProxy::kPaddingOffset;
9491 static const int kConstructTrapOffset = kCallTrapOffset + kPointerSize;
9492 static const int kPaddingOffset = kConstructTrapOffset + kPointerSize;
9493 static const int kSize = JSFunction::kSize;
9494 static const int kPaddingSize = kSize - kPaddingOffset;
9496 STATIC_ASSERT(kPaddingSize >= 0);
9498 typedef FixedBodyDescriptor<kHandlerOffset,
9499 kConstructTrapOffset + kPointerSize,
9500 kSize> BodyDescriptor;
9503 DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunctionProxy);
9507 class JSCollection : public JSObject {
9509 // [table]: the backing hash table
9510 DECL_ACCESSORS(table, Object)
9512 static const int kTableOffset = JSObject::kHeaderSize;
9513 static const int kSize = kTableOffset + kPointerSize;
9516 DISALLOW_IMPLICIT_CONSTRUCTORS(JSCollection);
9520 // The JSSet describes EcmaScript Harmony sets
9521 class JSSet : public JSCollection {
9525 // Dispatched behavior.
9526 DECLARE_PRINTER(JSSet)
9527 DECLARE_VERIFIER(JSSet)
9530 DISALLOW_IMPLICIT_CONSTRUCTORS(JSSet);
9534 // The JSMap describes EcmaScript Harmony maps
9535 class JSMap : public JSCollection {
9539 // Dispatched behavior.
9540 DECLARE_PRINTER(JSMap)
9541 DECLARE_VERIFIER(JSMap)
9544 DISALLOW_IMPLICIT_CONSTRUCTORS(JSMap);
9548 // OrderedHashTableIterator is an iterator that iterates over the keys and
9549 // values of an OrderedHashTable.
9551 // The iterator has a reference to the underlying OrderedHashTable data,
9552 // [table], as well as the current [index] the iterator is at.
9554 // When the OrderedHashTable is rehashed it adds a reference from the old table
9555 // to the new table as well as storing enough data about the changes so that the
9556 // iterator [index] can be adjusted accordingly.
9558 // When the [Next] result from the iterator is requested, the iterator checks if
9559 // there is a newer table that it needs to transition to.
9560 template<class Derived, class TableType>
9561 class OrderedHashTableIterator: public JSObject {
9563 // [table]: the backing hash table mapping keys to values.
9564 DECL_ACCESSORS(table, Object)
9566 // [index]: The index into the data table.
9567 DECL_ACCESSORS(index, Object)
9569 // [kind]: The kind of iteration this is. One of the [Kind] enum values.
9570 DECL_ACCESSORS(kind, Object)
9573 void OrderedHashTableIteratorPrint(std::ostream& os); // NOLINT
9576 static const int kTableOffset = JSObject::kHeaderSize;
9577 static const int kIndexOffset = kTableOffset + kPointerSize;
9578 static const int kKindOffset = kIndexOffset + kPointerSize;
9579 static const int kSize = kKindOffset + kPointerSize;
9587 // Whether the iterator has more elements. This needs to be called before
9588 // calling |CurrentKey| and/or |CurrentValue|.
9591 // Move the index forward one.
9593 set_index(Smi::FromInt(Smi::cast(index())->value() + 1));
9596 // Populates the array with the next key and value and then moves the iterator
9598 // This returns the |kind| or 0 if the iterator is already at the end.
9599 Smi* Next(JSArray* value_array);
9601 // Returns the current key of the iterator. This should only be called when
9602 // |HasMore| returns true.
9603 inline Object* CurrentKey();
9606 // Transitions the iterator to the non obsolete backing store. This is a NOP
9607 // if the [table] is not obsolete.
9610 DISALLOW_IMPLICIT_CONSTRUCTORS(OrderedHashTableIterator);
9614 class JSSetIterator: public OrderedHashTableIterator<JSSetIterator,
9617 // Dispatched behavior.
9618 DECLARE_PRINTER(JSSetIterator)
9619 DECLARE_VERIFIER(JSSetIterator)
9621 DECLARE_CAST(JSSetIterator)
9623 // Called by |Next| to populate the array. This allows the subclasses to
9624 // populate the array differently.
9625 inline void PopulateValueArray(FixedArray* array);
9628 DISALLOW_IMPLICIT_CONSTRUCTORS(JSSetIterator);
9632 class JSMapIterator: public OrderedHashTableIterator<JSMapIterator,
9635 // Dispatched behavior.
9636 DECLARE_PRINTER(JSMapIterator)
9637 DECLARE_VERIFIER(JSMapIterator)
9639 DECLARE_CAST(JSMapIterator)
9641 // Called by |Next| to populate the array. This allows the subclasses to
9642 // populate the array differently.
9643 inline void PopulateValueArray(FixedArray* array);
9646 // Returns the current value of the iterator. This should only be called when
9647 // |HasMore| returns true.
9648 inline Object* CurrentValue();
9650 DISALLOW_IMPLICIT_CONSTRUCTORS(JSMapIterator);
9654 // Base class for both JSWeakMap and JSWeakSet
9655 class JSWeakCollection: public JSObject {
9657 // [table]: the backing hash table mapping keys to values.
9658 DECL_ACCESSORS(table, Object)
9660 // [next]: linked list of encountered weak maps during GC.
9661 DECL_ACCESSORS(next, Object)
9663 static const int kTableOffset = JSObject::kHeaderSize;
9664 static const int kNextOffset = kTableOffset + kPointerSize;
9665 static const int kSize = kNextOffset + kPointerSize;
9668 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakCollection);
9672 // The JSWeakMap describes EcmaScript Harmony weak maps
9673 class JSWeakMap: public JSWeakCollection {
9675 DECLARE_CAST(JSWeakMap)
9677 // Dispatched behavior.
9678 DECLARE_PRINTER(JSWeakMap)
9679 DECLARE_VERIFIER(JSWeakMap)
9682 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakMap);
9686 // The JSWeakSet describes EcmaScript Harmony weak sets
9687 class JSWeakSet: public JSWeakCollection {
9689 DECLARE_CAST(JSWeakSet)
9691 // Dispatched behavior.
9692 DECLARE_PRINTER(JSWeakSet)
9693 DECLARE_VERIFIER(JSWeakSet)
9696 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakSet);
9700 // Whether a JSArrayBuffer is a SharedArrayBuffer or not.
9701 enum class SharedFlag { kNotShared, kShared };
9704 class JSArrayBuffer: public JSObject {
9706 // [backing_store]: backing memory for this array
9707 DECL_ACCESSORS(backing_store, void)
9709 // [byte_length]: length in bytes
9710 DECL_ACCESSORS(byte_length, Object)
9712 inline uint32_t bit_field() const;
9713 inline void set_bit_field(uint32_t bits);
9715 inline bool is_external();
9716 inline void set_is_external(bool value);
9718 inline bool is_neuterable();
9719 inline void set_is_neuterable(bool value);
9721 inline bool was_neutered();
9722 inline void set_was_neutered(bool value);
9724 inline bool is_shared();
9725 inline void set_is_shared(bool value);
9727 DECLARE_CAST(JSArrayBuffer)
9731 // Dispatched behavior.
9732 DECLARE_PRINTER(JSArrayBuffer)
9733 DECLARE_VERIFIER(JSArrayBuffer)
9735 static const int kBackingStoreOffset = JSObject::kHeaderSize;
9736 static const int kByteLengthOffset = kBackingStoreOffset + kPointerSize;
9737 static const int kBitFieldSlot = kByteLengthOffset + kPointerSize;
9738 #if V8_TARGET_LITTLE_ENDIAN || !V8_HOST_ARCH_64_BIT
9739 static const int kBitFieldOffset = kBitFieldSlot;
9741 static const int kBitFieldOffset = kBitFieldSlot + kIntSize;
9743 static const int kSize = kBitFieldSlot + kPointerSize;
9745 static const int kSizeWithInternalFields =
9746 kSize + v8::ArrayBuffer::kInternalFieldCount * kPointerSize;
9748 class IsExternal : public BitField<bool, 1, 1> {};
9749 class IsNeuterable : public BitField<bool, 2, 1> {};
9750 class WasNeutered : public BitField<bool, 3, 1> {};
9751 class IsShared : public BitField<bool, 4, 1> {};
9754 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBuffer);
9758 class JSArrayBufferView: public JSObject {
9760 // [buffer]: ArrayBuffer that this typed array views.
9761 DECL_ACCESSORS(buffer, Object)
9763 // [byte_offset]: offset of typed array in bytes.
9764 DECL_ACCESSORS(byte_offset, Object)
9766 // [byte_length]: length of typed array in bytes.
9767 DECL_ACCESSORS(byte_length, Object)
9769 DECLARE_CAST(JSArrayBufferView)
9771 DECLARE_VERIFIER(JSArrayBufferView)
9773 inline bool WasNeutered() const;
9775 static const int kBufferOffset = JSObject::kHeaderSize;
9776 static const int kByteOffsetOffset = kBufferOffset + kPointerSize;
9777 static const int kByteLengthOffset = kByteOffsetOffset + kPointerSize;
9778 static const int kViewSize = kByteLengthOffset + kPointerSize;
9782 DECL_ACCESSORS(raw_byte_offset, Object)
9783 DECL_ACCESSORS(raw_byte_length, Object)
9786 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBufferView);
9790 class JSTypedArray: public JSArrayBufferView {
9792 // [length]: length of typed array in elements.
9793 DECL_ACCESSORS(length, Object)
9794 inline uint32_t length_value() const;
9796 DECLARE_CAST(JSTypedArray)
9798 ExternalArrayType type();
9799 size_t element_size();
9801 Handle<JSArrayBuffer> GetBuffer();
9803 // Dispatched behavior.
9804 DECLARE_PRINTER(JSTypedArray)
9805 DECLARE_VERIFIER(JSTypedArray)
9807 static const int kLengthOffset = kViewSize + kPointerSize;
9808 static const int kSize = kLengthOffset + kPointerSize;
9810 static const int kSizeWithInternalFields =
9811 kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
9814 static Handle<JSArrayBuffer> MaterializeArrayBuffer(
9815 Handle<JSTypedArray> typed_array);
9817 DECL_ACCESSORS(raw_length, Object)
9820 DISALLOW_IMPLICIT_CONSTRUCTORS(JSTypedArray);
9824 class JSDataView: public JSArrayBufferView {
9826 DECLARE_CAST(JSDataView)
9828 // Dispatched behavior.
9829 DECLARE_PRINTER(JSDataView)
9830 DECLARE_VERIFIER(JSDataView)
9832 static const int kSize = kViewSize;
9834 static const int kSizeWithInternalFields =
9835 kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
9838 DISALLOW_IMPLICIT_CONSTRUCTORS(JSDataView);
9842 // Foreign describes objects pointing from JavaScript to C structures.
9843 class Foreign: public HeapObject {
9845 // [address]: field containing the address.
9846 inline Address foreign_address();
9847 inline void set_foreign_address(Address value);
9849 DECLARE_CAST(Foreign)
9851 // Dispatched behavior.
9852 inline void ForeignIterateBody(ObjectVisitor* v);
9854 template<typename StaticVisitor>
9855 inline void ForeignIterateBody();
9857 // Dispatched behavior.
9858 DECLARE_PRINTER(Foreign)
9859 DECLARE_VERIFIER(Foreign)
9861 // Layout description.
9863 static const int kForeignAddressOffset = HeapObject::kHeaderSize;
9864 static const int kSize = kForeignAddressOffset + kPointerSize;
9866 STATIC_ASSERT(kForeignAddressOffset == Internals::kForeignAddressOffset);
9869 DISALLOW_IMPLICIT_CONSTRUCTORS(Foreign);
9873 // The JSArray describes JavaScript Arrays
9874 // Such an array can be in one of two modes:
9875 // - fast, backing storage is a FixedArray and length <= elements.length();
9876 // Please note: push and pop can be used to grow and shrink the array.
9877 // - slow, backing storage is a HashTable with numbers as keys.
9878 class JSArray: public JSObject {
9880 // [length]: The length property.
9881 DECL_ACCESSORS(length, Object)
9883 // Overload the length setter to skip write barrier when the length
9884 // is set to a smi. This matches the set function on FixedArray.
9885 inline void set_length(Smi* length);
9887 static bool HasReadOnlyLength(Handle<JSArray> array);
9888 static bool WouldChangeReadOnlyLength(Handle<JSArray> array, uint32_t index);
9889 static MaybeHandle<Object> ReadOnlyLengthError(Handle<JSArray> array);
9891 // Initialize the array with the given capacity. The function may
9892 // fail due to out-of-memory situations, but only if the requested
9893 // capacity is non-zero.
9894 static void Initialize(Handle<JSArray> array, int capacity, int length = 0);
9896 // If the JSArray has fast elements, and new_length would result in
9897 // normalization, returns true.
9898 bool SetLengthWouldNormalize(uint32_t new_length);
9899 static inline bool SetLengthWouldNormalize(Heap* heap, uint32_t new_length);
9901 // Initializes the array to a certain length.
9902 inline bool AllowsSetLength();
9904 static void SetLength(Handle<JSArray> array, uint32_t length);
9905 // Same as above but will also queue splice records if |array| is observed.
9906 static MaybeHandle<Object> ObservableSetLength(Handle<JSArray> array,
9909 // Set the content of the array to the content of storage.
9910 static inline void SetContent(Handle<JSArray> array,
9911 Handle<FixedArrayBase> storage);
9913 DECLARE_CAST(JSArray)
9915 // Dispatched behavior.
9916 DECLARE_PRINTER(JSArray)
9917 DECLARE_VERIFIER(JSArray)
9919 // Number of element slots to pre-allocate for an empty array.
9920 static const int kPreallocatedArrayElements = 4;
9922 // Layout description.
9923 static const int kLengthOffset = JSObject::kHeaderSize;
9924 static const int kSize = kLengthOffset + kPointerSize;
9927 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
9931 Handle<Object> CacheInitialJSArrayMaps(Handle<Context> native_context,
9932 Handle<Map> initial_map);
9935 // JSRegExpResult is just a JSArray with a specific initial map.
9936 // This initial map adds in-object properties for "index" and "input"
9937 // properties, as assigned by RegExp.prototype.exec, which allows
9938 // faster creation of RegExp exec results.
9939 // This class just holds constants used when creating the result.
9940 // After creation the result must be treated as a JSArray in all regards.
9941 class JSRegExpResult: public JSArray {
9943 // Offsets of object fields.
9944 static const int kIndexOffset = JSArray::kSize;
9945 static const int kInputOffset = kIndexOffset + kPointerSize;
9946 static const int kSize = kInputOffset + kPointerSize;
9947 // Indices of in-object properties.
9948 static const int kIndexIndex = 0;
9949 static const int kInputIndex = 1;
9951 DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
9955 class AccessorInfo: public Struct {
9957 DECL_ACCESSORS(name, Object)
9958 DECL_ACCESSORS(flag, Smi)
9959 DECL_ACCESSORS(expected_receiver_type, Object)
9961 inline bool all_can_read();
9962 inline void set_all_can_read(bool value);
9964 inline bool all_can_write();
9965 inline void set_all_can_write(bool value);
9967 inline bool is_special_data_property();
9968 inline void set_is_special_data_property(bool value);
9970 inline PropertyAttributes property_attributes();
9971 inline void set_property_attributes(PropertyAttributes attributes);
9973 // Checks whether the given receiver is compatible with this accessor.
9974 static bool IsCompatibleReceiverMap(Isolate* isolate,
9975 Handle<AccessorInfo> info,
9977 inline bool IsCompatibleReceiver(Object* receiver);
9979 DECLARE_CAST(AccessorInfo)
9981 // Dispatched behavior.
9982 DECLARE_VERIFIER(AccessorInfo)
9984 // Append all descriptors to the array that are not already there.
9985 // Return number added.
9986 static int AppendUnique(Handle<Object> descriptors,
9987 Handle<FixedArray> array,
9988 int valid_descriptors);
9990 static const int kNameOffset = HeapObject::kHeaderSize;
9991 static const int kFlagOffset = kNameOffset + kPointerSize;
9992 static const int kExpectedReceiverTypeOffset = kFlagOffset + kPointerSize;
9993 static const int kSize = kExpectedReceiverTypeOffset + kPointerSize;
9996 inline bool HasExpectedReceiverType() {
9997 return expected_receiver_type()->IsFunctionTemplateInfo();
9999 // Bit positions in flag.
10000 static const int kAllCanReadBit = 0;
10001 static const int kAllCanWriteBit = 1;
10002 static const int kSpecialDataProperty = 2;
10003 class AttributesField : public BitField<PropertyAttributes, 3, 3> {};
10005 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
10009 // An accessor must have a getter, but can have no setter.
10011 // When setting a property, V8 searches accessors in prototypes.
10012 // If an accessor was found and it does not have a setter,
10013 // the request is ignored.
10015 // If the accessor in the prototype has the READ_ONLY property attribute, then
10016 // a new value is added to the derived object when the property is set.
10017 // This shadows the accessor in the prototype.
10018 class ExecutableAccessorInfo: public AccessorInfo {
10020 DECL_ACCESSORS(getter, Object)
10021 DECL_ACCESSORS(setter, Object)
10022 DECL_ACCESSORS(data, Object)
10024 DECLARE_CAST(ExecutableAccessorInfo)
10026 // Dispatched behavior.
10027 DECLARE_PRINTER(ExecutableAccessorInfo)
10028 DECLARE_VERIFIER(ExecutableAccessorInfo)
10030 static const int kGetterOffset = AccessorInfo::kSize;
10031 static const int kSetterOffset = kGetterOffset + kPointerSize;
10032 static const int kDataOffset = kSetterOffset + kPointerSize;
10033 static const int kSize = kDataOffset + kPointerSize;
10035 static void ClearSetter(Handle<ExecutableAccessorInfo> info);
10038 DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutableAccessorInfo);
10042 // Support for JavaScript accessors: A pair of a getter and a setter. Each
10043 // accessor can either be
10044 // * a pointer to a JavaScript function or proxy: a real accessor
10045 // * undefined: considered an accessor by the spec, too, strangely enough
10046 // * the hole: an accessor which has not been set
10047 // * a pointer to a map: a transition used to ensure map sharing
10048 class AccessorPair: public Struct {
10050 DECL_ACCESSORS(getter, Object)
10051 DECL_ACCESSORS(setter, Object)
10053 DECLARE_CAST(AccessorPair)
10055 static Handle<AccessorPair> Copy(Handle<AccessorPair> pair);
10057 Object* get(AccessorComponent component) {
10058 return component == ACCESSOR_GETTER ? getter() : setter();
10061 void set(AccessorComponent component, Object* value) {
10062 if (component == ACCESSOR_GETTER) {
10069 // Note: Returns undefined instead in case of a hole.
10070 Object* GetComponent(AccessorComponent component);
10072 // Set both components, skipping arguments which are a JavaScript null.
10073 void SetComponents(Object* getter, Object* setter) {
10074 if (!getter->IsNull()) set_getter(getter);
10075 if (!setter->IsNull()) set_setter(setter);
10078 bool Equals(AccessorPair* pair) {
10079 return (this == pair) || pair->Equals(getter(), setter());
10082 bool Equals(Object* getter_value, Object* setter_value) {
10083 return (getter() == getter_value) && (setter() == setter_value);
10086 bool ContainsAccessor() {
10087 return IsJSAccessor(getter()) || IsJSAccessor(setter());
10090 // Dispatched behavior.
10091 DECLARE_PRINTER(AccessorPair)
10092 DECLARE_VERIFIER(AccessorPair)
10094 static const int kGetterOffset = HeapObject::kHeaderSize;
10095 static const int kSetterOffset = kGetterOffset + kPointerSize;
10096 static const int kSize = kSetterOffset + kPointerSize;
10099 // Strangely enough, in addition to functions and harmony proxies, the spec
10100 // requires us to consider undefined as a kind of accessor, too:
10102 // Object.defineProperty(obj, "foo", {get: undefined});
10103 // assertTrue("foo" in obj);
10104 bool IsJSAccessor(Object* obj) {
10105 return obj->IsSpecFunction() || obj->IsUndefined();
10108 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorPair);
10112 class AccessCheckInfo: public Struct {
10114 DECL_ACCESSORS(named_callback, Object)
10115 DECL_ACCESSORS(indexed_callback, Object)
10116 DECL_ACCESSORS(data, Object)
10118 DECLARE_CAST(AccessCheckInfo)
10120 // Dispatched behavior.
10121 DECLARE_PRINTER(AccessCheckInfo)
10122 DECLARE_VERIFIER(AccessCheckInfo)
10124 static const int kNamedCallbackOffset = HeapObject::kHeaderSize;
10125 static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
10126 static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
10127 static const int kSize = kDataOffset + kPointerSize;
10130 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
10134 class InterceptorInfo: public Struct {
10136 DECL_ACCESSORS(getter, Object)
10137 DECL_ACCESSORS(setter, Object)
10138 DECL_ACCESSORS(query, Object)
10139 DECL_ACCESSORS(deleter, Object)
10140 DECL_ACCESSORS(enumerator, Object)
10141 DECL_ACCESSORS(data, Object)
10142 DECL_BOOLEAN_ACCESSORS(can_intercept_symbols)
10143 DECL_BOOLEAN_ACCESSORS(all_can_read)
10144 DECL_BOOLEAN_ACCESSORS(non_masking)
10146 inline int flags() const;
10147 inline void set_flags(int flags);
10149 DECLARE_CAST(InterceptorInfo)
10151 // Dispatched behavior.
10152 DECLARE_PRINTER(InterceptorInfo)
10153 DECLARE_VERIFIER(InterceptorInfo)
10155 static const int kGetterOffset = HeapObject::kHeaderSize;
10156 static const int kSetterOffset = kGetterOffset + kPointerSize;
10157 static const int kQueryOffset = kSetterOffset + kPointerSize;
10158 static const int kDeleterOffset = kQueryOffset + kPointerSize;
10159 static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
10160 static const int kDataOffset = kEnumeratorOffset + kPointerSize;
10161 static const int kFlagsOffset = kDataOffset + kPointerSize;
10162 static const int kSize = kFlagsOffset + kPointerSize;
10164 static const int kCanInterceptSymbolsBit = 0;
10165 static const int kAllCanReadBit = 1;
10166 static const int kNonMasking = 2;
10169 DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
10173 class CallHandlerInfo: public Struct {
10175 DECL_ACCESSORS(callback, Object)
10176 DECL_ACCESSORS(data, Object)
10178 DECLARE_CAST(CallHandlerInfo)
10180 // Dispatched behavior.
10181 DECLARE_PRINTER(CallHandlerInfo)
10182 DECLARE_VERIFIER(CallHandlerInfo)
10184 static const int kCallbackOffset = HeapObject::kHeaderSize;
10185 static const int kDataOffset = kCallbackOffset + kPointerSize;
10186 static const int kSize = kDataOffset + kPointerSize;
10189 DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
10193 class TemplateInfo: public Struct {
10195 DECL_ACCESSORS(tag, Object)
10196 inline int number_of_properties() const;
10197 inline void set_number_of_properties(int value);
10198 DECL_ACCESSORS(property_list, Object)
10199 DECL_ACCESSORS(property_accessors, Object)
10201 DECLARE_VERIFIER(TemplateInfo)
10203 static const int kTagOffset = HeapObject::kHeaderSize;
10204 static const int kNumberOfProperties = kTagOffset + kPointerSize;
10205 static const int kPropertyListOffset = kNumberOfProperties + kPointerSize;
10206 static const int kPropertyAccessorsOffset =
10207 kPropertyListOffset + kPointerSize;
10208 static const int kHeaderSize = kPropertyAccessorsOffset + kPointerSize;
10211 DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
10215 class FunctionTemplateInfo: public TemplateInfo {
10217 DECL_ACCESSORS(serial_number, Object)
10218 DECL_ACCESSORS(call_code, Object)
10219 DECL_ACCESSORS(prototype_template, Object)
10220 DECL_ACCESSORS(parent_template, Object)
10221 DECL_ACCESSORS(named_property_handler, Object)
10222 DECL_ACCESSORS(indexed_property_handler, Object)
10223 DECL_ACCESSORS(instance_template, Object)
10224 DECL_ACCESSORS(class_name, Object)
10225 DECL_ACCESSORS(signature, Object)
10226 DECL_ACCESSORS(instance_call_handler, Object)
10227 DECL_ACCESSORS(access_check_info, Object)
10228 DECL_ACCESSORS(flag, Smi)
10230 inline int length() const;
10231 inline void set_length(int value);
10233 // Following properties use flag bits.
10234 DECL_BOOLEAN_ACCESSORS(hidden_prototype)
10235 DECL_BOOLEAN_ACCESSORS(undetectable)
10236 // If the bit is set, object instances created by this function
10237 // requires access check.
10238 DECL_BOOLEAN_ACCESSORS(needs_access_check)
10239 DECL_BOOLEAN_ACCESSORS(read_only_prototype)
10240 DECL_BOOLEAN_ACCESSORS(remove_prototype)
10241 DECL_BOOLEAN_ACCESSORS(do_not_cache)
10242 DECL_BOOLEAN_ACCESSORS(instantiated)
10243 DECL_BOOLEAN_ACCESSORS(accept_any_receiver)
10245 DECLARE_CAST(FunctionTemplateInfo)
10247 // Dispatched behavior.
10248 DECLARE_PRINTER(FunctionTemplateInfo)
10249 DECLARE_VERIFIER(FunctionTemplateInfo)
10251 static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
10252 static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
10253 static const int kPrototypeTemplateOffset =
10254 kCallCodeOffset + kPointerSize;
10255 static const int kParentTemplateOffset =
10256 kPrototypeTemplateOffset + kPointerSize;
10257 static const int kNamedPropertyHandlerOffset =
10258 kParentTemplateOffset + kPointerSize;
10259 static const int kIndexedPropertyHandlerOffset =
10260 kNamedPropertyHandlerOffset + kPointerSize;
10261 static const int kInstanceTemplateOffset =
10262 kIndexedPropertyHandlerOffset + kPointerSize;
10263 static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
10264 static const int kSignatureOffset = kClassNameOffset + kPointerSize;
10265 static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
10266 static const int kAccessCheckInfoOffset =
10267 kInstanceCallHandlerOffset + kPointerSize;
10268 static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
10269 static const int kLengthOffset = kFlagOffset + kPointerSize;
10270 static const int kSize = kLengthOffset + kPointerSize;
10272 // Returns true if |object| is an instance of this function template.
10273 bool IsTemplateFor(Object* object);
10274 bool IsTemplateFor(Map* map);
10276 // Returns the holder JSObject if the function can legally be called with this
10277 // receiver. Returns Heap::null_value() if the call is illegal.
10278 Object* GetCompatibleReceiver(Isolate* isolate, Object* receiver);
10281 // Bit position in the flag, from least significant bit position.
10282 static const int kHiddenPrototypeBit = 0;
10283 static const int kUndetectableBit = 1;
10284 static const int kNeedsAccessCheckBit = 2;
10285 static const int kReadOnlyPrototypeBit = 3;
10286 static const int kRemovePrototypeBit = 4;
10287 static const int kDoNotCacheBit = 5;
10288 static const int kInstantiatedBit = 6;
10289 static const int kAcceptAnyReceiver = 7;
10291 DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
10295 class ObjectTemplateInfo: public TemplateInfo {
10297 DECL_ACCESSORS(constructor, Object)
10298 DECL_ACCESSORS(internal_field_count, Object)
10300 DECLARE_CAST(ObjectTemplateInfo)
10302 // Dispatched behavior.
10303 DECLARE_PRINTER(ObjectTemplateInfo)
10304 DECLARE_VERIFIER(ObjectTemplateInfo)
10306 static const int kConstructorOffset = TemplateInfo::kHeaderSize;
10307 static const int kInternalFieldCountOffset =
10308 kConstructorOffset + kPointerSize;
10309 static const int kSize = kInternalFieldCountOffset + kPointerSize;
10313 class TypeSwitchInfo: public Struct {
10315 DECL_ACCESSORS(types, Object)
10317 DECLARE_CAST(TypeSwitchInfo)
10319 // Dispatched behavior.
10320 DECLARE_PRINTER(TypeSwitchInfo)
10321 DECLARE_VERIFIER(TypeSwitchInfo)
10323 static const int kTypesOffset = Struct::kHeaderSize;
10324 static const int kSize = kTypesOffset + kPointerSize;
10328 // The DebugInfo class holds additional information for a function being
10330 class DebugInfo: public Struct {
10332 // The shared function info for the source being debugged.
10333 DECL_ACCESSORS(shared, SharedFunctionInfo)
10334 // Code object for the patched code. This code object is the code object
10335 // currently active for the function.
10336 DECL_ACCESSORS(code, Code)
10337 // Fixed array holding status information for each active break point.
10338 DECL_ACCESSORS(break_points, FixedArray)
10340 // Check if there is a break point at a code position.
10341 bool HasBreakPoint(int code_position);
10342 // Get the break point info object for a code position.
10343 Object* GetBreakPointInfo(int code_position);
10344 // Clear a break point.
10345 static void ClearBreakPoint(Handle<DebugInfo> debug_info,
10347 Handle<Object> break_point_object);
10348 // Set a break point.
10349 static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
10350 int source_position, int statement_position,
10351 Handle<Object> break_point_object);
10352 // Get the break point objects for a code position.
10353 Handle<Object> GetBreakPointObjects(int code_position);
10354 // Find the break point info holding this break point object.
10355 static Handle<Object> FindBreakPointInfo(Handle<DebugInfo> debug_info,
10356 Handle<Object> break_point_object);
10357 // Get the number of break points for this function.
10358 int GetBreakPointCount();
10360 DECLARE_CAST(DebugInfo)
10362 // Dispatched behavior.
10363 DECLARE_PRINTER(DebugInfo)
10364 DECLARE_VERIFIER(DebugInfo)
10366 static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
10367 static const int kCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
10368 static const int kBreakPointsStateIndex = kCodeIndex + kPointerSize;
10369 static const int kSize = kBreakPointsStateIndex + kPointerSize;
10371 static const int kEstimatedNofBreakPointsInFunction = 16;
10374 static const int kNoBreakPointInfo = -1;
10376 // Lookup the index in the break_points array for a code position.
10377 int GetBreakPointInfoIndex(int code_position);
10379 DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
10383 // The BreakPointInfo class holds information for break points set in a
10384 // function. The DebugInfo object holds a BreakPointInfo object for each code
10385 // position with one or more break points.
10386 class BreakPointInfo: public Struct {
10388 // The position in the code for the break point.
10389 DECL_ACCESSORS(code_position, Smi)
10390 // The position in the source for the break position.
10391 DECL_ACCESSORS(source_position, Smi)
10392 // The position in the source for the last statement before this break
10394 DECL_ACCESSORS(statement_position, Smi)
10395 // List of related JavaScript break points.
10396 DECL_ACCESSORS(break_point_objects, Object)
10398 // Removes a break point.
10399 static void ClearBreakPoint(Handle<BreakPointInfo> info,
10400 Handle<Object> break_point_object);
10401 // Set a break point.
10402 static void SetBreakPoint(Handle<BreakPointInfo> info,
10403 Handle<Object> break_point_object);
10404 // Check if break point info has this break point object.
10405 static bool HasBreakPointObject(Handle<BreakPointInfo> info,
10406 Handle<Object> break_point_object);
10407 // Get the number of break points for this code position.
10408 int GetBreakPointCount();
10410 DECLARE_CAST(BreakPointInfo)
10412 // Dispatched behavior.
10413 DECLARE_PRINTER(BreakPointInfo)
10414 DECLARE_VERIFIER(BreakPointInfo)
10416 static const int kCodePositionIndex = Struct::kHeaderSize;
10417 static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
10418 static const int kStatementPositionIndex =
10419 kSourcePositionIndex + kPointerSize;
10420 static const int kBreakPointObjectsIndex =
10421 kStatementPositionIndex + kPointerSize;
10422 static const int kSize = kBreakPointObjectsIndex + kPointerSize;
10425 DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
10429 #undef DECL_BOOLEAN_ACCESSORS
10430 #undef DECL_ACCESSORS
10431 #undef DECLARE_CAST
10432 #undef DECLARE_VERIFIER
10434 #define VISITOR_SYNCHRONIZATION_TAGS_LIST(V) \
10435 V(kStringTable, "string_table", "(Internalized strings)") \
10436 V(kExternalStringsTable, "external_strings_table", "(External strings)") \
10437 V(kStrongRootList, "strong_root_list", "(Strong roots)") \
10438 V(kSmiRootList, "smi_root_list", "(Smi roots)") \
10439 V(kInternalizedString, "internalized_string", "(Internal string)") \
10440 V(kBootstrapper, "bootstrapper", "(Bootstrapper)") \
10441 V(kTop, "top", "(Isolate)") \
10442 V(kRelocatable, "relocatable", "(Relocatable)") \
10443 V(kDebug, "debug", "(Debugger)") \
10444 V(kCompilationCache, "compilationcache", "(Compilation cache)") \
10445 V(kHandleScope, "handlescope", "(Handle scope)") \
10446 V(kBuiltins, "builtins", "(Builtins)") \
10447 V(kGlobalHandles, "globalhandles", "(Global handles)") \
10448 V(kEternalHandles, "eternalhandles", "(Eternal handles)") \
10449 V(kThreadManager, "threadmanager", "(Thread manager)") \
10450 V(kStrongRoots, "strong roots", "(Strong roots)") \
10451 V(kExtensions, "Extensions", "(Extensions)")
10453 class VisitorSynchronization : public AllStatic {
10455 #define DECLARE_ENUM(enum_item, ignore1, ignore2) enum_item,
10457 VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_ENUM)
10460 #undef DECLARE_ENUM
10462 static const char* const kTags[kNumberOfSyncTags];
10463 static const char* const kTagNames[kNumberOfSyncTags];
10466 // Abstract base class for visiting, and optionally modifying, the
10467 // pointers contained in Objects. Used in GC and serialization/deserialization.
10468 class ObjectVisitor BASE_EMBEDDED {
10470 virtual ~ObjectVisitor() {}
10472 // Visits a contiguous arrays of pointers in the half-open range
10473 // [start, end). Any or all of the values may be modified on return.
10474 virtual void VisitPointers(Object** start, Object** end) = 0;
10476 // Handy shorthand for visiting a single pointer.
10477 virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
10479 // Visit weak next_code_link in Code object.
10480 virtual void VisitNextCodeLink(Object** p) { VisitPointers(p, p + 1); }
10482 // To allow lazy clearing of inline caches the visitor has
10483 // a rich interface for iterating over Code objects..
10485 // Visits a code target in the instruction stream.
10486 virtual void VisitCodeTarget(RelocInfo* rinfo);
10488 // Visits a code entry in a JS function.
10489 virtual void VisitCodeEntry(Address entry_address);
10491 // Visits a global property cell reference in the instruction stream.
10492 virtual void VisitCell(RelocInfo* rinfo);
10494 // Visits a runtime entry in the instruction stream.
10495 virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
10497 // Visits the resource of an one-byte or two-byte string.
10498 virtual void VisitExternalOneByteString(
10499 v8::String::ExternalOneByteStringResource** resource) {}
10500 virtual void VisitExternalTwoByteString(
10501 v8::String::ExternalStringResource** resource) {}
10503 // Visits a debug call target in the instruction stream.
10504 virtual void VisitDebugTarget(RelocInfo* rinfo);
10506 // Visits the byte sequence in a function's prologue that contains information
10507 // about the code's age.
10508 virtual void VisitCodeAgeSequence(RelocInfo* rinfo);
10510 // Visit pointer embedded into a code object.
10511 virtual void VisitEmbeddedPointer(RelocInfo* rinfo);
10513 // Visits an external reference embedded into a code object.
10514 virtual void VisitExternalReference(RelocInfo* rinfo);
10516 // Visits an external reference.
10517 virtual void VisitExternalReference(Address* p) {}
10519 // Visits an (encoded) internal reference.
10520 virtual void VisitInternalReference(RelocInfo* rinfo) {}
10522 // Visits a handle that has an embedder-assigned class ID.
10523 virtual void VisitEmbedderReference(Object** p, uint16_t class_id) {}
10525 // Intended for serialization/deserialization checking: insert, or
10526 // check for the presence of, a tag at this position in the stream.
10527 // Also used for marking up GC roots in heap snapshots.
10528 virtual void Synchronize(VisitorSynchronization::SyncTag tag) {}
10532 class StructBodyDescriptor : public
10533 FlexibleBodyDescriptor<HeapObject::kHeaderSize> {
10535 static inline int SizeOf(Map* map, HeapObject* object) {
10536 return map->instance_size();
10541 // BooleanBit is a helper class for setting and getting a bit in an
10543 class BooleanBit : public AllStatic {
10545 static inline bool get(Smi* smi, int bit_position) {
10546 return get(smi->value(), bit_position);
10549 static inline bool get(int value, int bit_position) {
10550 return (value & (1 << bit_position)) != 0;
10553 static inline Smi* set(Smi* smi, int bit_position, bool v) {
10554 return Smi::FromInt(set(smi->value(), bit_position, v));
10557 static inline int set(int value, int bit_position, bool v) {
10559 value |= (1 << bit_position);
10561 value &= ~(1 << bit_position);
10567 } } // namespace v8::internal
10569 #endif // V8_OBJECTS_H_