1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
10 #include "src/allocation.h"
11 #include "src/assert-scope.h"
12 #include "src/bailout-reason.h"
13 #include "src/base/bits.h"
14 #include "src/base/smart-pointers.h"
15 #include "src/builtins.h"
16 #include "src/checks.h"
17 #include "src/elements-kind.h"
18 #include "src/field-index.h"
19 #include "src/flags.h"
21 #include "src/property-details.h"
22 #include "src/unicode.h"
23 #include "src/unicode-decoder.h"
26 #if V8_TARGET_ARCH_ARM
27 #include "src/arm/constants-arm.h" // NOLINT
28 #elif V8_TARGET_ARCH_ARM64
29 #include "src/arm64/constants-arm64.h" // NOLINT
30 #elif V8_TARGET_ARCH_MIPS
31 #include "src/mips/constants-mips.h" // NOLINT
32 #elif V8_TARGET_ARCH_MIPS64
33 #include "src/mips64/constants-mips64.h" // NOLINT
34 #elif V8_TARGET_ARCH_PPC
35 #include "src/ppc/constants-ppc.h" // NOLINT
40 // Most object types in the V8 JavaScript are described in this file.
42 // Inheritance hierarchy:
44 // - Smi (immediate small integer)
45 // - HeapObject (superclass for everything allocated in the heap)
46 // - JSReceiver (suitable for property access)
50 // - JSArrayBufferView
63 // - JSGeneratorObject
82 // - CompilationCacheTable
83 // - CodeCacheHashTable
89 // - TypeFeedbackVector
92 // - ScriptContextTable
103 // - ExternalOneByteString
104 // - ExternalTwoByteString
105 // - InternalizedString
106 // - SeqInternalizedString
107 // - SeqOneByteInternalizedString
108 // - SeqTwoByteInternalizedString
109 // - ConsInternalizedString
110 // - ExternalInternalizedString
111 // - ExternalOneByteInternalizedString
112 // - ExternalTwoByteInternalizedString
132 // - SharedFunctionInfo
136 // - ExecutableAccessorInfo
142 // - FunctionTemplateInfo
143 // - ObjectTemplateInfo
152 // Formats of Object*:
153 // Smi: [31 bit signed int] 0
154 // HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
159 enum KeyedAccessStoreMode {
161 STORE_TRANSITION_TO_OBJECT,
162 STORE_TRANSITION_TO_DOUBLE,
163 STORE_AND_GROW_NO_TRANSITION,
164 STORE_AND_GROW_TRANSITION_TO_OBJECT,
165 STORE_AND_GROW_TRANSITION_TO_DOUBLE,
166 STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS,
167 STORE_NO_TRANSITION_HANDLE_COW
171 // Valid hints for the abstract operation ToPrimitive,
172 // implemented according to ES6, section 7.1.1.
173 enum class ToPrimitiveHint { kDefault, kNumber, kString };
176 // Valid hints for the abstract operation OrdinaryToPrimitive,
177 // implemented according to ES6, section 7.1.1.
178 enum class OrdinaryToPrimitiveHint { kNumber, kString };
181 enum TypeofMode { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
190 enum ExternalArrayType {
191 kExternalInt8Array = 1,
194 kExternalUint16Array,
196 kExternalUint32Array,
197 kExternalFloat32Array,
198 kExternalFloat64Array,
199 kExternalUint8ClampedArray,
203 static inline bool IsTransitionStoreMode(KeyedAccessStoreMode store_mode) {
204 return store_mode == STORE_TRANSITION_TO_OBJECT ||
205 store_mode == STORE_TRANSITION_TO_DOUBLE ||
206 store_mode == STORE_AND_GROW_TRANSITION_TO_OBJECT ||
207 store_mode == STORE_AND_GROW_TRANSITION_TO_DOUBLE;
211 static inline KeyedAccessStoreMode GetNonTransitioningStoreMode(
212 KeyedAccessStoreMode store_mode) {
213 if (store_mode >= STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
216 if (store_mode >= STORE_AND_GROW_NO_TRANSITION) {
217 return STORE_AND_GROW_NO_TRANSITION;
219 return STANDARD_STORE;
223 static inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) {
224 return store_mode >= STORE_AND_GROW_NO_TRANSITION &&
225 store_mode <= STORE_AND_GROW_TRANSITION_TO_DOUBLE;
229 enum IcCheckType { ELEMENT, PROPERTY };
232 // SKIP_WRITE_BARRIER skips the write barrier.
233 // UPDATE_WEAK_WRITE_BARRIER skips the marking part of the write barrier and
234 // only performs the generational part.
235 // UPDATE_WRITE_BARRIER is doing the full barrier, marking and generational.
236 enum WriteBarrierMode {
238 UPDATE_WEAK_WRITE_BARRIER,
243 // Indicates whether a value can be loaded as a constant.
244 enum StoreMode { ALLOW_IN_DESCRIPTOR, FORCE_FIELD };
247 // PropertyNormalizationMode is used to specify whether to keep
248 // inobject properties when normalizing properties of a JSObject.
249 enum PropertyNormalizationMode {
250 CLEAR_INOBJECT_PROPERTIES,
251 KEEP_INOBJECT_PROPERTIES
255 // Indicates how aggressively the prototype should be optimized. FAST_PROTOTYPE
256 // will give the fastest result by tailoring the map to the prototype, but that
257 // will cause polymorphism with other objects. REGULAR_PROTOTYPE is to be used
258 // (at least for now) when dynamically modifying the prototype chain of an
259 // object using __proto__ or Object.setPrototypeOf.
260 enum PrototypeOptimizationMode { REGULAR_PROTOTYPE, FAST_PROTOTYPE };
263 // Indicates whether transitions can be added to a source map or not.
264 enum TransitionFlag {
270 // Indicates whether the transition is simple: the target map of the transition
271 // either extends the current map with a new property, or it modifies the
272 // property that was added last to the current map.
273 enum SimpleTransitionFlag {
274 SIMPLE_PROPERTY_TRANSITION,
280 // Indicates whether we are only interested in the descriptors of a particular
281 // map, or in all descriptors in the descriptor array.
282 enum DescriptorFlag {
287 // The GC maintains a bit of information, the MarkingParity, which toggles
288 // from odd to even and back every time marking is completed. Incremental
289 // marking can visit an object twice during a marking phase, so algorithms that
290 // that piggy-back on marking can use the parity to ensure that they only
291 // perform an operation on an object once per marking phase: they record the
292 // MarkingParity when they visit an object, and only re-visit the object when it
293 // is marked again and the MarkingParity changes.
300 // ICs store extra state in a Code object. The default extra state is
302 typedef int ExtraICState;
303 static const ExtraICState kNoExtraICState = 0;
305 // Instance size sentinel for objects of variable size.
306 const int kVariableSizeSentinel = 0;
308 // We may store the unsigned bit field as signed Smi value and do not
310 const int kStubMajorKeyBits = 7;
311 const int kStubMinorKeyBits = kSmiValueSize - kStubMajorKeyBits - 1;
313 // All Maps have a field instance_type containing a InstanceType.
314 // It describes the type of the instances.
316 // As an example, a JavaScript object is a heap object and its map
317 // instance_type is JS_OBJECT_TYPE.
319 // The names of the string instance types are intended to systematically
320 // mirror their encoding in the instance_type field of the map. The default
321 // encoding is considered TWO_BYTE. It is not mentioned in the name. ONE_BYTE
322 // encoding is mentioned explicitly in the name. Likewise, the default
323 // representation is considered sequential. It is not mentioned in the
324 // name. The other representations (e.g. CONS, EXTERNAL) are explicitly
325 // mentioned. Finally, the string is either a STRING_TYPE (if it is a normal
326 // string) or a INTERNALIZED_STRING_TYPE (if it is a internalized string).
328 // NOTE: The following things are some that depend on the string types having
329 // instance_types that are less than those of all other types:
330 // HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
333 // NOTE: Everything following JS_VALUE_TYPE is considered a
334 // JSObject for GC purposes. The first four entries here have typeof
335 // 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
336 #define INSTANCE_TYPE_LIST(V) \
338 V(ONE_BYTE_STRING_TYPE) \
339 V(CONS_STRING_TYPE) \
340 V(CONS_ONE_BYTE_STRING_TYPE) \
341 V(SLICED_STRING_TYPE) \
342 V(SLICED_ONE_BYTE_STRING_TYPE) \
343 V(EXTERNAL_STRING_TYPE) \
344 V(EXTERNAL_ONE_BYTE_STRING_TYPE) \
345 V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
346 V(SHORT_EXTERNAL_STRING_TYPE) \
347 V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE) \
348 V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE) \
350 V(INTERNALIZED_STRING_TYPE) \
351 V(ONE_BYTE_INTERNALIZED_STRING_TYPE) \
352 V(EXTERNAL_INTERNALIZED_STRING_TYPE) \
353 V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
354 V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
355 V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE) \
356 V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE) \
357 V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
360 V(SIMD128_VALUE_TYPE) \
366 V(PROPERTY_CELL_TYPE) \
368 V(HEAP_NUMBER_TYPE) \
369 V(MUTABLE_HEAP_NUMBER_TYPE) \
372 V(BYTECODE_ARRAY_TYPE) \
375 V(FIXED_INT8_ARRAY_TYPE) \
376 V(FIXED_UINT8_ARRAY_TYPE) \
377 V(FIXED_INT16_ARRAY_TYPE) \
378 V(FIXED_UINT16_ARRAY_TYPE) \
379 V(FIXED_INT32_ARRAY_TYPE) \
380 V(FIXED_UINT32_ARRAY_TYPE) \
381 V(FIXED_FLOAT32_ARRAY_TYPE) \
382 V(FIXED_FLOAT64_ARRAY_TYPE) \
383 V(FIXED_UINT8_CLAMPED_ARRAY_TYPE) \
387 V(DECLARED_ACCESSOR_DESCRIPTOR_TYPE) \
388 V(DECLARED_ACCESSOR_INFO_TYPE) \
389 V(EXECUTABLE_ACCESSOR_INFO_TYPE) \
390 V(ACCESSOR_PAIR_TYPE) \
391 V(ACCESS_CHECK_INFO_TYPE) \
392 V(INTERCEPTOR_INFO_TYPE) \
393 V(CALL_HANDLER_INFO_TYPE) \
394 V(FUNCTION_TEMPLATE_INFO_TYPE) \
395 V(OBJECT_TEMPLATE_INFO_TYPE) \
396 V(SIGNATURE_INFO_TYPE) \
397 V(TYPE_SWITCH_INFO_TYPE) \
398 V(ALLOCATION_MEMENTO_TYPE) \
399 V(ALLOCATION_SITE_TYPE) \
402 V(POLYMORPHIC_CODE_CACHE_TYPE) \
403 V(TYPE_FEEDBACK_INFO_TYPE) \
404 V(ALIASED_ARGUMENTS_ENTRY_TYPE) \
406 V(PROTOTYPE_INFO_TYPE) \
407 V(SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE) \
409 V(FIXED_ARRAY_TYPE) \
410 V(FIXED_DOUBLE_ARRAY_TYPE) \
411 V(SHARED_FUNCTION_INFO_TYPE) \
414 V(JS_MESSAGE_OBJECT_TYPE) \
419 V(JS_CONTEXT_EXTENSION_OBJECT_TYPE) \
420 V(JS_GENERATOR_OBJECT_TYPE) \
422 V(JS_GLOBAL_OBJECT_TYPE) \
423 V(JS_BUILTINS_OBJECT_TYPE) \
424 V(JS_GLOBAL_PROXY_TYPE) \
426 V(JS_ARRAY_BUFFER_TYPE) \
427 V(JS_TYPED_ARRAY_TYPE) \
428 V(JS_DATA_VIEW_TYPE) \
432 V(JS_SET_ITERATOR_TYPE) \
433 V(JS_MAP_ITERATOR_TYPE) \
434 V(JS_ITERATOR_RESULT_TYPE) \
435 V(JS_WEAK_MAP_TYPE) \
436 V(JS_WEAK_SET_TYPE) \
439 V(JS_FUNCTION_TYPE) \
440 V(JS_FUNCTION_PROXY_TYPE) \
442 V(BREAK_POINT_INFO_TYPE)
445 // Since string types are not consecutive, this macro is used to
446 // iterate over them.
447 #define STRING_TYPE_LIST(V) \
448 V(STRING_TYPE, kVariableSizeSentinel, string, String) \
449 V(ONE_BYTE_STRING_TYPE, kVariableSizeSentinel, one_byte_string, \
451 V(CONS_STRING_TYPE, ConsString::kSize, cons_string, ConsString) \
452 V(CONS_ONE_BYTE_STRING_TYPE, ConsString::kSize, cons_one_byte_string, \
454 V(SLICED_STRING_TYPE, SlicedString::kSize, sliced_string, SlicedString) \
455 V(SLICED_ONE_BYTE_STRING_TYPE, SlicedString::kSize, sliced_one_byte_string, \
456 SlicedOneByteString) \
457 V(EXTERNAL_STRING_TYPE, ExternalTwoByteString::kSize, external_string, \
459 V(EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kSize, \
460 external_one_byte_string, ExternalOneByteString) \
461 V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, ExternalTwoByteString::kSize, \
462 external_string_with_one_byte_data, ExternalStringWithOneByteData) \
463 V(SHORT_EXTERNAL_STRING_TYPE, ExternalTwoByteString::kShortSize, \
464 short_external_string, ShortExternalString) \
465 V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kShortSize, \
466 short_external_one_byte_string, ShortExternalOneByteString) \
467 V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, \
468 ExternalTwoByteString::kShortSize, \
469 short_external_string_with_one_byte_data, \
470 ShortExternalStringWithOneByteData) \
472 V(INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, internalized_string, \
473 InternalizedString) \
474 V(ONE_BYTE_INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, \
475 one_byte_internalized_string, OneByteInternalizedString) \
476 V(EXTERNAL_INTERNALIZED_STRING_TYPE, ExternalTwoByteString::kSize, \
477 external_internalized_string, ExternalInternalizedString) \
478 V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, ExternalOneByteString::kSize, \
479 external_one_byte_internalized_string, ExternalOneByteInternalizedString) \
480 V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
481 ExternalTwoByteString::kSize, \
482 external_internalized_string_with_one_byte_data, \
483 ExternalInternalizedStringWithOneByteData) \
484 V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE, \
485 ExternalTwoByteString::kShortSize, short_external_internalized_string, \
486 ShortExternalInternalizedString) \
487 V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, \
488 ExternalOneByteString::kShortSize, \
489 short_external_one_byte_internalized_string, \
490 ShortExternalOneByteInternalizedString) \
491 V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE, \
492 ExternalTwoByteString::kShortSize, \
493 short_external_internalized_string_with_one_byte_data, \
494 ShortExternalInternalizedStringWithOneByteData)
496 // A struct is a simple object a set of object-valued fields. Including an
497 // object type in this causes the compiler to generate most of the boilerplate
498 // code for the class including allocation and garbage collection routines,
499 // casts and predicates. All you need to define is the class, methods and
500 // object verification routines. Easy, no?
502 // Note that for subtle reasons related to the ordering or numerical values of
503 // type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
505 #define STRUCT_LIST(V) \
507 V(EXECUTABLE_ACCESSOR_INFO, ExecutableAccessorInfo, \
508 executable_accessor_info) \
509 V(ACCESSOR_PAIR, AccessorPair, accessor_pair) \
510 V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info) \
511 V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info) \
512 V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info) \
513 V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info) \
514 V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info) \
515 V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info) \
516 V(SCRIPT, Script, script) \
517 V(ALLOCATION_SITE, AllocationSite, allocation_site) \
518 V(ALLOCATION_MEMENTO, AllocationMemento, allocation_memento) \
519 V(CODE_CACHE, CodeCache, code_cache) \
520 V(POLYMORPHIC_CODE_CACHE, PolymorphicCodeCache, polymorphic_code_cache) \
521 V(TYPE_FEEDBACK_INFO, TypeFeedbackInfo, type_feedback_info) \
522 V(ALIASED_ARGUMENTS_ENTRY, AliasedArgumentsEntry, aliased_arguments_entry) \
523 V(DEBUG_INFO, DebugInfo, debug_info) \
524 V(BREAK_POINT_INFO, BreakPointInfo, break_point_info) \
525 V(PROTOTYPE_INFO, PrototypeInfo, prototype_info) \
526 V(SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION, \
527 SloppyBlockWithEvalContextExtension, \
528 sloppy_block_with_eval_context_extension)
530 // We use the full 8 bits of the instance_type field to encode heap object
531 // instance types. The high-order bit (bit 7) is set if the object is not a
532 // string, and cleared if it is a string.
533 const uint32_t kIsNotStringMask = 0x80;
534 const uint32_t kStringTag = 0x0;
535 const uint32_t kNotStringTag = 0x80;
537 // Bit 6 indicates that the object is an internalized string (if set) or not.
538 // Bit 7 has to be clear as well.
539 const uint32_t kIsNotInternalizedMask = 0x40;
540 const uint32_t kNotInternalizedTag = 0x40;
541 const uint32_t kInternalizedTag = 0x0;
543 // If bit 7 is clear then bit 2 indicates whether the string consists of
544 // two-byte characters or one-byte characters.
545 const uint32_t kStringEncodingMask = 0x4;
546 const uint32_t kTwoByteStringTag = 0x0;
547 const uint32_t kOneByteStringTag = 0x4;
549 // If bit 7 is clear, the low-order 2 bits indicate the representation
551 const uint32_t kStringRepresentationMask = 0x03;
552 enum StringRepresentationTag {
554 kConsStringTag = 0x1,
555 kExternalStringTag = 0x2,
556 kSlicedStringTag = 0x3
558 const uint32_t kIsIndirectStringMask = 0x1;
559 const uint32_t kIsIndirectStringTag = 0x1;
560 STATIC_ASSERT((kSeqStringTag & kIsIndirectStringMask) == 0); // NOLINT
561 STATIC_ASSERT((kExternalStringTag & kIsIndirectStringMask) == 0); // NOLINT
562 STATIC_ASSERT((kConsStringTag &
563 kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
564 STATIC_ASSERT((kSlicedStringTag &
565 kIsIndirectStringMask) == kIsIndirectStringTag); // NOLINT
567 // Use this mask to distinguish between cons and slice only after making
568 // sure that the string is one of the two (an indirect string).
569 const uint32_t kSlicedNotConsMask = kSlicedStringTag & ~kConsStringTag;
570 STATIC_ASSERT(IS_POWER_OF_TWO(kSlicedNotConsMask));
572 // If bit 7 is clear, then bit 3 indicates whether this two-byte
573 // string actually contains one byte data.
574 const uint32_t kOneByteDataHintMask = 0x08;
575 const uint32_t kOneByteDataHintTag = 0x08;
577 // If bit 7 is clear and string representation indicates an external string,
578 // then bit 4 indicates whether the data pointer is cached.
579 const uint32_t kShortExternalStringMask = 0x10;
580 const uint32_t kShortExternalStringTag = 0x10;
583 // A ConsString with an empty string as the right side is a candidate
584 // for being shortcut by the garbage collector. We don't allocate any
585 // non-flat internalized strings, so we do not shortcut them thereby
586 // avoiding turning internalized strings into strings. The bit-masks
587 // below contain the internalized bit as additional safety.
588 // See heap.cc, mark-compact.cc and objects-visiting.cc.
589 const uint32_t kShortcutTypeMask =
591 kIsNotInternalizedMask |
592 kStringRepresentationMask;
593 const uint32_t kShortcutTypeTag = kConsStringTag | kNotInternalizedTag;
595 static inline bool IsShortcutCandidate(int type) {
596 return ((type & kShortcutTypeMask) == kShortcutTypeTag);
602 INTERNALIZED_STRING_TYPE = kTwoByteStringTag | kSeqStringTag |
603 kInternalizedTag, // FIRST_PRIMITIVE_TYPE
604 ONE_BYTE_INTERNALIZED_STRING_TYPE =
605 kOneByteStringTag | kSeqStringTag | kInternalizedTag,
606 EXTERNAL_INTERNALIZED_STRING_TYPE =
607 kTwoByteStringTag | kExternalStringTag | kInternalizedTag,
608 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
609 kOneByteStringTag | kExternalStringTag | kInternalizedTag,
610 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
611 EXTERNAL_INTERNALIZED_STRING_TYPE | kOneByteDataHintTag |
613 SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE = EXTERNAL_INTERNALIZED_STRING_TYPE |
614 kShortExternalStringTag |
616 SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
617 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kShortExternalStringTag |
619 SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
620 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
621 kShortExternalStringTag | kInternalizedTag,
622 STRING_TYPE = INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
623 ONE_BYTE_STRING_TYPE =
624 ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
625 CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag | kNotInternalizedTag,
626 CONS_ONE_BYTE_STRING_TYPE =
627 kOneByteStringTag | kConsStringTag | kNotInternalizedTag,
629 kTwoByteStringTag | kSlicedStringTag | kNotInternalizedTag,
630 SLICED_ONE_BYTE_STRING_TYPE =
631 kOneByteStringTag | kSlicedStringTag | kNotInternalizedTag,
632 EXTERNAL_STRING_TYPE =
633 EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
634 EXTERNAL_ONE_BYTE_STRING_TYPE =
635 EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
636 EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
637 EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
639 SHORT_EXTERNAL_STRING_TYPE =
640 SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
641 SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE =
642 SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
643 SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
644 SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
648 SYMBOL_TYPE = kNotStringTag, // FIRST_NONSTRING_TYPE, LAST_NAME_TYPE
650 // Other primitives (cannot contain non-map-word pointers to heap objects).
653 ODDBALL_TYPE, // LAST_PRIMITIVE_TYPE
655 // Objects allocated in their own spaces (never in new space).
659 // "Data", objects that cannot contain non-map-word pointers to heap
661 MUTABLE_HEAP_NUMBER_TYPE,
666 FIXED_INT8_ARRAY_TYPE, // FIRST_FIXED_TYPED_ARRAY_TYPE
667 FIXED_UINT8_ARRAY_TYPE,
668 FIXED_INT16_ARRAY_TYPE,
669 FIXED_UINT16_ARRAY_TYPE,
670 FIXED_INT32_ARRAY_TYPE,
671 FIXED_UINT32_ARRAY_TYPE,
672 FIXED_FLOAT32_ARRAY_TYPE,
673 FIXED_FLOAT64_ARRAY_TYPE,
674 FIXED_UINT8_CLAMPED_ARRAY_TYPE, // LAST_FIXED_TYPED_ARRAY_TYPE
675 FIXED_DOUBLE_ARRAY_TYPE,
676 FILLER_TYPE, // LAST_DATA_TYPE
679 DECLARED_ACCESSOR_DESCRIPTOR_TYPE,
680 DECLARED_ACCESSOR_INFO_TYPE,
681 EXECUTABLE_ACCESSOR_INFO_TYPE,
683 ACCESS_CHECK_INFO_TYPE,
684 INTERCEPTOR_INFO_TYPE,
685 CALL_HANDLER_INFO_TYPE,
686 FUNCTION_TEMPLATE_INFO_TYPE,
687 OBJECT_TEMPLATE_INFO_TYPE,
689 TYPE_SWITCH_INFO_TYPE,
690 ALLOCATION_SITE_TYPE,
691 ALLOCATION_MEMENTO_TYPE,
694 POLYMORPHIC_CODE_CACHE_TYPE,
695 TYPE_FEEDBACK_INFO_TYPE,
696 ALIASED_ARGUMENTS_ENTRY_TYPE,
699 BREAK_POINT_INFO_TYPE,
701 SHARED_FUNCTION_INFO_TYPE,
706 SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE,
708 // All the following types are subtypes of JSReceiver, which corresponds to
709 // objects in the JS sense. The first and the last type in this range are
710 // the two forms of function. This organization enables using the same
711 // compares for checking the JS_RECEIVER/SPEC_OBJECT range and the
712 // NONCALLABLE_JS_OBJECT range.
713 JS_FUNCTION_PROXY_TYPE, // FIRST_JS_RECEIVER_TYPE, FIRST_JS_PROXY_TYPE
714 JS_PROXY_TYPE, // LAST_JS_PROXY_TYPE
715 JS_VALUE_TYPE, // FIRST_JS_OBJECT_TYPE
716 JS_MESSAGE_OBJECT_TYPE,
719 JS_CONTEXT_EXTENSION_OBJECT_TYPE,
720 JS_GENERATOR_OBJECT_TYPE,
722 JS_GLOBAL_OBJECT_TYPE,
723 JS_BUILTINS_OBJECT_TYPE,
724 JS_GLOBAL_PROXY_TYPE,
726 JS_ARRAY_BUFFER_TYPE,
731 JS_SET_ITERATOR_TYPE,
732 JS_MAP_ITERATOR_TYPE,
733 JS_ITERATOR_RESULT_TYPE,
737 JS_FUNCTION_TYPE, // LAST_JS_OBJECT_TYPE, LAST_JS_RECEIVER_TYPE
741 LAST_TYPE = JS_FUNCTION_TYPE,
742 FIRST_NAME_TYPE = FIRST_TYPE,
743 LAST_NAME_TYPE = SYMBOL_TYPE,
744 FIRST_UNIQUE_NAME_TYPE = INTERNALIZED_STRING_TYPE,
745 LAST_UNIQUE_NAME_TYPE = SYMBOL_TYPE,
746 FIRST_NONSTRING_TYPE = SYMBOL_TYPE,
747 FIRST_PRIMITIVE_TYPE = FIRST_NAME_TYPE,
748 LAST_PRIMITIVE_TYPE = ODDBALL_TYPE,
749 // Boundaries for testing for a fixed typed array.
750 FIRST_FIXED_TYPED_ARRAY_TYPE = FIXED_INT8_ARRAY_TYPE,
751 LAST_FIXED_TYPED_ARRAY_TYPE = FIXED_UINT8_CLAMPED_ARRAY_TYPE,
752 // Boundary for promotion to old space.
753 LAST_DATA_TYPE = FILLER_TYPE,
754 // Boundary for objects represented as JSReceiver (i.e. JSObject or JSProxy).
755 // Note that there is no range for JSObject or JSProxy, since their subtypes
756 // are not continuous in this enum! The enum ranges instead reflect the
757 // external class names, where proxies are treated as either ordinary objects,
759 FIRST_JS_RECEIVER_TYPE = JS_FUNCTION_PROXY_TYPE,
760 LAST_JS_RECEIVER_TYPE = LAST_TYPE,
761 // Boundaries for testing the types represented as JSObject
762 FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
763 LAST_JS_OBJECT_TYPE = LAST_TYPE,
764 // Boundaries for testing the types represented as JSProxy
765 FIRST_JS_PROXY_TYPE = JS_FUNCTION_PROXY_TYPE,
766 LAST_JS_PROXY_TYPE = JS_PROXY_TYPE,
767 // Boundaries for testing whether the type is a JavaScript object.
768 FIRST_SPEC_OBJECT_TYPE = FIRST_JS_RECEIVER_TYPE,
769 LAST_SPEC_OBJECT_TYPE = LAST_JS_RECEIVER_TYPE,
770 // Boundaries for testing the types for which typeof is "object".
771 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_PROXY_TYPE,
772 LAST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_REGEXP_TYPE,
773 // Note that the types for which typeof is "function" are not continuous.
774 // Define this so that we can put assertions on discrete checks.
775 NUM_OF_CALLABLE_SPEC_OBJECT_TYPES = 2
778 STATIC_ASSERT(JS_OBJECT_TYPE == Internals::kJSObjectType);
779 STATIC_ASSERT(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
780 STATIC_ASSERT(ODDBALL_TYPE == Internals::kOddballType);
781 STATIC_ASSERT(FOREIGN_TYPE == Internals::kForeignType);
784 #define FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(V) \
785 V(FAST_ELEMENTS_SUB_TYPE) \
786 V(DICTIONARY_ELEMENTS_SUB_TYPE) \
787 V(FAST_PROPERTIES_SUB_TYPE) \
788 V(DICTIONARY_PROPERTIES_SUB_TYPE) \
789 V(MAP_CODE_CACHE_SUB_TYPE) \
790 V(SCOPE_INFO_SUB_TYPE) \
791 V(STRING_TABLE_SUB_TYPE) \
792 V(DESCRIPTOR_ARRAY_SUB_TYPE) \
793 V(TRANSITION_ARRAY_SUB_TYPE)
795 enum FixedArraySubInstanceType {
796 #define DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE(name) name,
797 FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE)
798 #undef DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE
799 LAST_FIXED_ARRAY_SUB_TYPE = TRANSITION_ARRAY_SUB_TYPE
812 #define DECL_BOOLEAN_ACCESSORS(name) \
813 inline bool name() const; \
814 inline void set_##name(bool value); \
817 #define DECL_ACCESSORS(name, type) \
818 inline type* name() const; \
819 inline void set_##name(type* value, \
820 WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
823 #define DECLARE_CAST(type) \
824 INLINE(static type* cast(Object* object)); \
825 INLINE(static const type* cast(const Object* object));
829 class AllocationSite;
830 class AllocationSiteCreationContext;
831 class AllocationSiteUsageContext;
834 class ElementsAccessor;
835 class FixedArrayBase;
836 class FunctionLiteral;
838 class JSBuiltinsObject;
839 class LayoutDescriptor;
840 class LookupIterator;
841 class ObjectHashTable;
844 class SafepointEntry;
845 class SharedFunctionInfo;
847 class TypeFeedbackInfo;
848 class TypeFeedbackVector;
851 // We cannot just say "class HeapType;" if it is created from a template... =8-?
852 template<class> class TypeImpl;
853 struct HeapTypeConfig;
854 typedef TypeImpl<HeapTypeConfig> HeapType;
857 // A template-ized version of the IsXXX functions.
858 template <class C> inline bool Is(Object* obj);
861 #define DECLARE_VERIFIER(Name) void Name##Verify();
863 #define DECLARE_VERIFIER(Name)
867 #define DECLARE_PRINTER(Name) void Name##Print(std::ostream& os); // NOLINT
869 #define DECLARE_PRINTER(Name)
873 #define OBJECT_TYPE_LIST(V) \
878 #define HEAP_OBJECT_TYPE_LIST(V) \
880 V(MutableHeapNumber) \
899 V(ExternalTwoByteString) \
900 V(ExternalOneByteString) \
901 V(SeqTwoByteString) \
902 V(SeqOneByteString) \
903 V(InternalizedString) \
906 V(FixedTypedArrayBase) \
909 V(FixedUint16Array) \
911 V(FixedUint32Array) \
913 V(FixedFloat32Array) \
914 V(FixedFloat64Array) \
915 V(FixedUint8ClampedArray) \
921 V(JSContextExtensionObject) \
922 V(JSGeneratorObject) \
924 V(LayoutDescriptor) \
928 V(TypeFeedbackVector) \
929 V(DeoptimizationInputData) \
930 V(DeoptimizationOutputData) \
934 V(FixedDoubleArray) \
938 V(ScriptContextTable) \
944 V(SharedFunctionInfo) \
953 V(JSArrayBufferView) \
962 V(JSIteratorResult) \
963 V(JSWeakCollection) \
970 V(NormalizedMapCache) \
971 V(CompilationCacheTable) \
972 V(CodeCacheHashTable) \
973 V(PolymorphicCodeCacheHashTable) \
978 V(JSBuiltinsObject) \
980 V(UndetectableObject) \
981 V(AccessCheckNeeded) \
989 // Object is the abstract superclass for all classes in the
991 // Object does not use any virtual functions to avoid the
992 // allocation of the C++ vtable.
993 // Since both Smi and HeapObject are subclasses of Object no
994 // data members can be present in Object.
998 bool IsObject() const { return true; }
1000 #define IS_TYPE_FUNCTION_DECL(type_) INLINE(bool Is##type_() const);
1001 OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
1002 HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
1003 #undef IS_TYPE_FUNCTION_DECL
1005 // A non-keyed store is of the form a.x = foo or a["x"] = foo whereas
1006 // a keyed store is of the form a[expression] = foo.
1007 enum StoreFromKeyed {
1008 MAY_BE_STORE_FROM_KEYED,
1009 CERTAINLY_NOT_STORE_FROM_KEYED
1012 INLINE(bool IsFixedArrayBase() const);
1013 INLINE(bool IsExternal() const);
1014 INLINE(bool IsAccessorInfo() const);
1016 INLINE(bool IsStruct() const);
1017 #define DECLARE_STRUCT_PREDICATE(NAME, Name, name) \
1018 INLINE(bool Is##Name() const);
1019 STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
1020 #undef DECLARE_STRUCT_PREDICATE
1022 // ES6, section 7.2.3 IsCallable.
1023 INLINE(bool IsCallable() const);
1025 INLINE(bool IsSpecObject()) const;
1026 // TODO(rossberg): IsSpecFunction should be removed in favor of IsCallable.
1027 INLINE(bool IsSpecFunction()) const;
1028 INLINE(bool IsTemplateInfo()) const;
1029 INLINE(bool IsNameDictionary() const);
1030 INLINE(bool IsGlobalDictionary() const);
1031 INLINE(bool IsSeededNumberDictionary() const);
1032 INLINE(bool IsUnseededNumberDictionary() const);
1033 INLINE(bool IsOrderedHashSet() const);
1034 INLINE(bool IsOrderedHashMap() const);
1035 static bool IsPromise(Handle<Object> object);
1038 INLINE(bool IsUndefined() const);
1039 INLINE(bool IsNull() const);
1040 INLINE(bool IsTheHole() const);
1041 INLINE(bool IsException() const);
1042 INLINE(bool IsUninitialized() const);
1043 INLINE(bool IsTrue() const);
1044 INLINE(bool IsFalse() const);
1045 INLINE(bool IsArgumentsMarker() const);
1047 // Filler objects (fillers and free space objects).
1048 INLINE(bool IsFiller() const);
1050 // Extract the number.
1051 inline double Number() const;
1052 INLINE(bool IsNaN() const);
1053 INLINE(bool IsMinusZero() const);
1054 bool ToInt32(int32_t* value);
1055 bool ToUint32(uint32_t* value);
1057 inline Representation OptimalRepresentation();
1059 inline ElementsKind OptimalElementsKind();
1061 inline bool FitsRepresentation(Representation representation);
1063 // Checks whether two valid primitive encodings of a property name resolve to
1064 // the same logical property. E.g., the smi 1, the string "1" and the double
1065 // 1 all refer to the same property, so this helper will return true.
1066 inline bool KeyEquals(Object* other);
1068 Handle<HeapType> OptimalType(Isolate* isolate, Representation representation);
1070 inline static Handle<Object> NewStorageFor(Isolate* isolate,
1071 Handle<Object> object,
1072 Representation representation);
1074 inline static Handle<Object> WrapForRead(Isolate* isolate,
1075 Handle<Object> object,
1076 Representation representation);
1078 // Returns true if the object is of the correct type to be used as a
1079 // implementation of a JSObject's elements.
1080 inline bool HasValidElements();
1082 inline bool HasSpecificClassOf(String* name);
1084 bool BooleanValue(); // ECMA-262 9.2.
1086 // ES6 section 7.2.12 Abstract Equality Comparison
1087 MUST_USE_RESULT static Maybe<bool> Equals(Handle<Object> x, Handle<Object> y);
1089 // ES6 section 7.2.13 Strict Equality Comparison
1090 bool StrictEquals(Object* that);
1092 // Convert to a JSObject if needed.
1093 // native_context is used when creating wrapper object.
1094 static inline MaybeHandle<JSReceiver> ToObject(Isolate* isolate,
1095 Handle<Object> object);
1096 MUST_USE_RESULT static MaybeHandle<JSReceiver> ToObject(
1097 Isolate* isolate, Handle<Object> object, Handle<Context> context);
1099 // ES6 section 7.1.14 ToPropertyKey
1100 MUST_USE_RESULT static inline MaybeHandle<Name> ToName(Isolate* isolate,
1101 Handle<Object> input);
1103 // ES6 section 7.1.1 ToPrimitive
1104 MUST_USE_RESULT static inline MaybeHandle<Object> ToPrimitive(
1105 Handle<Object> input, ToPrimitiveHint hint = ToPrimitiveHint::kDefault);
1107 // ES6 section 7.1.3 ToNumber
1108 MUST_USE_RESULT static MaybeHandle<Object> ToNumber(Handle<Object> input);
1110 // ES6 section 7.1.12 ToString
1111 MUST_USE_RESULT static MaybeHandle<String> ToString(Isolate* isolate,
1112 Handle<Object> input);
1114 // ES6 section 7.3.9 GetMethod
1115 MUST_USE_RESULT static MaybeHandle<Object> GetMethod(
1116 Handle<JSReceiver> receiver, Handle<Name> name);
1118 // ES6 section 12.5.6 The typeof Operator
1119 static Handle<String> TypeOf(Isolate* isolate, Handle<Object> object);
1121 // ES6 section 12.6 Multiplicative Operators
1122 MUST_USE_RESULT static MaybeHandle<Object> Multiply(
1123 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1124 Strength strength = Strength::WEAK);
1125 MUST_USE_RESULT static MaybeHandle<Object> Divide(
1126 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1127 Strength strength = Strength::WEAK);
1128 MUST_USE_RESULT static MaybeHandle<Object> Modulus(
1129 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1130 Strength strength = Strength::WEAK);
1132 // ES6 section 12.7 Additive Operators
1133 MUST_USE_RESULT static MaybeHandle<Object> Add(
1134 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1135 Strength strength = Strength::WEAK);
1136 MUST_USE_RESULT static MaybeHandle<Object> Subtract(
1137 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1138 Strength strength = Strength::WEAK);
1140 // ES6 section 12.8 Bitwise Shift Operators
1141 MUST_USE_RESULT static MaybeHandle<Object> ShiftLeft(
1142 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1143 Strength strength = Strength::WEAK);
1144 MUST_USE_RESULT static MaybeHandle<Object> ShiftRight(
1145 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1146 Strength strength = Strength::WEAK);
1147 MUST_USE_RESULT static MaybeHandle<Object> ShiftRightLogical(
1148 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1149 Strength strength = Strength::WEAK);
1151 // ES6 section 12.11 Binary Bitwise Operators
1152 MUST_USE_RESULT static MaybeHandle<Object> BitwiseAnd(
1153 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1154 Strength strength = Strength::WEAK);
1155 MUST_USE_RESULT static MaybeHandle<Object> BitwiseOr(
1156 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1157 Strength strength = Strength::WEAK);
1158 MUST_USE_RESULT static MaybeHandle<Object> BitwiseXor(
1159 Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs,
1160 Strength strength = Strength::WEAK);
1162 MUST_USE_RESULT static MaybeHandle<Object> GetProperty(
1163 LookupIterator* it, LanguageMode language_mode = SLOPPY);
1165 // Implementation of [[Put]], ECMA-262 5th edition, section 8.12.5.
1166 MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
1167 Handle<Object> object, Handle<Name> name, Handle<Object> value,
1168 LanguageMode language_mode,
1169 StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED);
1171 MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
1172 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1173 StoreFromKeyed store_mode);
1175 MUST_USE_RESULT static MaybeHandle<Object> SetSuperProperty(
1176 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1177 StoreFromKeyed store_mode);
1179 MUST_USE_RESULT static MaybeHandle<Object> ReadAbsentProperty(
1180 LookupIterator* it, LanguageMode language_mode);
1181 MUST_USE_RESULT static MaybeHandle<Object> ReadAbsentProperty(
1182 Isolate* isolate, Handle<Object> receiver, Handle<Object> name,
1183 LanguageMode language_mode);
1184 MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyProperty(
1185 LookupIterator* it, Handle<Object> value, LanguageMode language_mode);
1186 MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyProperty(
1187 Isolate* isolate, Handle<Object> receiver, Handle<Object> name,
1188 Handle<Object> value, LanguageMode language_mode);
1189 MUST_USE_RESULT static MaybeHandle<Object> RedefineNonconfigurableProperty(
1190 Isolate* isolate, Handle<Object> name, Handle<Object> value,
1191 LanguageMode language_mode);
1192 MUST_USE_RESULT static MaybeHandle<Object> SetDataProperty(
1193 LookupIterator* it, Handle<Object> value);
1194 MUST_USE_RESULT static MaybeHandle<Object> AddDataProperty(
1195 LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
1196 LanguageMode language_mode, StoreFromKeyed store_mode);
1197 MUST_USE_RESULT static inline MaybeHandle<Object> GetPropertyOrElement(
1198 Handle<Object> object, Handle<Name> name,
1199 LanguageMode language_mode = SLOPPY);
1200 MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
1201 Isolate* isolate, Handle<Object> object, const char* key,
1202 LanguageMode language_mode = SLOPPY);
1203 MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
1204 Handle<Object> object, Handle<Name> name,
1205 LanguageMode language_mode = SLOPPY);
1207 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithAccessor(
1208 LookupIterator* it, LanguageMode language_mode);
1209 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithAccessor(
1210 LookupIterator* it, Handle<Object> value, LanguageMode language_mode);
1212 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithDefinedGetter(
1213 Handle<Object> receiver,
1214 Handle<JSReceiver> getter);
1215 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithDefinedSetter(
1216 Handle<Object> receiver,
1217 Handle<JSReceiver> setter,
1218 Handle<Object> value);
1220 MUST_USE_RESULT static inline MaybeHandle<Object> GetElement(
1221 Isolate* isolate, Handle<Object> object, uint32_t index,
1222 LanguageMode language_mode = SLOPPY);
1224 MUST_USE_RESULT static inline MaybeHandle<Object> SetElement(
1225 Isolate* isolate, Handle<Object> object, uint32_t index,
1226 Handle<Object> value, LanguageMode language_mode);
1228 static inline Handle<Object> GetPrototypeSkipHiddenPrototypes(
1229 Isolate* isolate, Handle<Object> receiver);
1231 bool HasInPrototypeChain(Isolate* isolate, Object* object);
1233 // Returns the permanent hash code associated with this object. May return
1234 // undefined if not yet created.
1237 // Returns undefined for JSObjects, but returns the hash code for simple
1238 // objects. This avoids a double lookup in the cases where we know we will
1239 // add the hash to the JSObject if it does not already exist.
1240 Object* GetSimpleHash();
1242 // Returns the permanent hash code associated with this object depending on
1243 // the actual object type. May create and store a hash code if needed and none
1245 static Handle<Smi> GetOrCreateHash(Isolate* isolate, Handle<Object> object);
1247 // Checks whether this object has the same value as the given one. This
1248 // function is implemented according to ES5, section 9.12 and can be used
1249 // to implement the Harmony "egal" function.
1250 bool SameValue(Object* other);
1252 // Checks whether this object has the same value as the given one.
1253 // +0 and -0 are treated equal. Everything else is the same as SameValue.
1254 // This function is implemented according to ES6, section 7.2.4 and is used
1255 // by ES6 Map and Set.
1256 bool SameValueZero(Object* other);
1258 // Tries to convert an object to an array length. Returns true and sets the
1259 // output parameter if it succeeds.
1260 inline bool ToArrayLength(uint32_t* index);
1262 // Tries to convert an object to an array index. Returns true and sets the
1263 // output parameter if it succeeds. Equivalent to ToArrayLength, but does not
1264 // allow kMaxUInt32.
1265 inline bool ToArrayIndex(uint32_t* index);
1267 // Returns true if this is a JSValue containing a string and the index is
1268 // < the length of the string. Used to implement [] on strings.
1269 inline bool IsStringObjectWithCharacterAt(uint32_t index);
1271 DECLARE_VERIFIER(Object)
1273 // Verify a pointer is a valid object pointer.
1274 static void VerifyPointer(Object* p);
1277 inline void VerifyApiCallResultType();
1279 // Prints this object without details.
1280 void ShortPrint(FILE* out = stdout);
1282 // Prints this object without details to a message accumulator.
1283 void ShortPrint(StringStream* accumulator);
1285 void ShortPrint(std::ostream& os); // NOLINT
1287 DECLARE_CAST(Object)
1289 // Layout description.
1290 static const int kHeaderSize = 0; // Object does not take up any space.
1293 // For our gdb macros, we should perhaps change these in the future.
1296 // Prints this object with details.
1297 void Print(std::ostream& os); // NOLINT
1299 void Print() { ShortPrint(); }
1300 void Print(std::ostream& os) { ShortPrint(os); } // NOLINT
1304 friend class LookupIterator;
1305 friend class PrototypeIterator;
1307 // Return the map of the root of object's prototype chain.
1308 Map* GetRootMap(Isolate* isolate);
1310 // Helper for SetProperty and SetSuperProperty.
1311 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyInternal(
1312 LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
1313 StoreFromKeyed store_mode, bool* found);
1315 DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
1319 // In objects.h to be usable without objects-inl.h inclusion.
1320 bool Object::IsSmi() const { return HAS_SMI_TAG(this); }
1321 bool Object::IsHeapObject() const { return Internals::HasHeapObjectTag(this); }
1325 explicit Brief(const Object* const v) : value(v) {}
1326 const Object* value;
1330 std::ostream& operator<<(std::ostream& os, const Brief& v);
1333 // Smi represents integer Numbers that can be stored in 31 bits.
1334 // Smis are immediate which means they are NOT allocated in the heap.
1335 // The this pointer has the following format: [31 bit signed int] 0
1336 // For long smis it has the following format:
1337 // [32 bit signed int] [31 bits zero padding] 0
1338 // Smi stands for small integer.
1339 class Smi: public Object {
1341 // Returns the integer value.
1342 inline int value() const { return Internals::SmiValue(this); }
1344 // Convert a value to a Smi object.
1345 static inline Smi* FromInt(int value) {
1346 DCHECK(Smi::IsValid(value));
1347 return reinterpret_cast<Smi*>(Internals::IntToSmi(value));
1350 static inline Smi* FromIntptr(intptr_t value) {
1351 DCHECK(Smi::IsValid(value));
1352 int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
1353 return reinterpret_cast<Smi*>((value << smi_shift_bits) | kSmiTag);
1356 // Returns whether value can be represented in a Smi.
1357 static inline bool IsValid(intptr_t value) {
1358 bool result = Internals::IsValidSmi(value);
1359 DCHECK_EQ(result, value >= kMinValue && value <= kMaxValue);
1365 // Dispatched behavior.
1366 void SmiPrint(std::ostream& os) const; // NOLINT
1367 DECLARE_VERIFIER(Smi)
1369 static const int kMinValue =
1370 (static_cast<unsigned int>(-1)) << (kSmiValueSize - 1);
1371 static const int kMaxValue = -(kMinValue + 1);
1374 DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
1378 // Heap objects typically have a map pointer in their first word. However,
1379 // during GC other data (e.g. mark bits, forwarding addresses) is sometimes
1380 // encoded in the first word. The class MapWord is an abstraction of the
1381 // value in a heap object's first word.
1382 class MapWord BASE_EMBEDDED {
1384 // Normal state: the map word contains a map pointer.
1386 // Create a map word from a map pointer.
1387 static inline MapWord FromMap(const Map* map);
1389 // View this map word as a map pointer.
1390 inline Map* ToMap();
1393 // Scavenge collection: the map word of live objects in the from space
1394 // contains a forwarding address (a heap object pointer in the to space).
1396 // True if this map word is a forwarding address for a scavenge
1397 // collection. Only valid during a scavenge collection (specifically,
1398 // when all map words are heap object pointers, i.e. not during a full GC).
1399 inline bool IsForwardingAddress();
1401 // Create a map word from a forwarding address.
1402 static inline MapWord FromForwardingAddress(HeapObject* object);
1404 // View this map word as a forwarding address.
1405 inline HeapObject* ToForwardingAddress();
1407 static inline MapWord FromRawValue(uintptr_t value) {
1408 return MapWord(value);
1411 inline uintptr_t ToRawValue() {
1416 // HeapObject calls the private constructor and directly reads the value.
1417 friend class HeapObject;
1419 explicit MapWord(uintptr_t value) : value_(value) {}
1425 // The content of an heap object (except for the map pointer). kTaggedValues
1426 // objects can contain both heap pointers and Smis, kMixedValues can contain
1427 // heap pointers, Smis, and raw values (e.g. doubles or strings), and kRawValues
1428 // objects can contain raw values and Smis.
1429 enum class HeapObjectContents { kTaggedValues, kMixedValues, kRawValues };
1432 // HeapObject is the superclass for all classes describing heap allocated
1434 class HeapObject: public Object {
1436 // [map]: Contains a map which contains the object's reflective
1438 inline Map* map() const;
1439 inline void set_map(Map* value);
1440 // The no-write-barrier version. This is OK if the object is white and in
1441 // new space, or if the value is an immortal immutable object, like the maps
1442 // of primitive (non-JS) objects like strings, heap numbers etc.
1443 inline void set_map_no_write_barrier(Map* value);
1445 // Get the map using acquire load.
1446 inline Map* synchronized_map();
1447 inline MapWord synchronized_map_word() const;
1449 // Set the map using release store
1450 inline void synchronized_set_map(Map* value);
1451 inline void synchronized_set_map_no_write_barrier(Map* value);
1452 inline void synchronized_set_map_word(MapWord map_word);
1454 // During garbage collection, the map word of a heap object does not
1455 // necessarily contain a map pointer.
1456 inline MapWord map_word() const;
1457 inline void set_map_word(MapWord map_word);
1459 // The Heap the object was allocated in. Used also to access Isolate.
1460 inline Heap* GetHeap() const;
1462 // Convenience method to get current isolate.
1463 inline Isolate* GetIsolate() const;
1465 // Converts an address to a HeapObject pointer.
1466 static inline HeapObject* FromAddress(Address address) {
1467 DCHECK_TAG_ALIGNED(address);
1468 return reinterpret_cast<HeapObject*>(address + kHeapObjectTag);
1471 // Returns the address of this HeapObject.
1472 inline Address address() {
1473 return reinterpret_cast<Address>(this) - kHeapObjectTag;
1476 // Iterates over pointers contained in the object (including the Map)
1477 void Iterate(ObjectVisitor* v);
1479 // Iterates over all pointers contained in the object except the
1480 // first map pointer. The object type is given in the first
1481 // parameter. This function does not access the map pointer in the
1482 // object, and so is safe to call while the map pointer is modified.
1483 void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
1485 // Returns the heap object's size in bytes
1488 // Indicates what type of values this heap object may contain.
1489 inline HeapObjectContents ContentType();
1491 // Given a heap object's map pointer, returns the heap size in bytes
1492 // Useful when the map pointer field is used for other purposes.
1494 inline int SizeFromMap(Map* map);
1496 // Returns the field at offset in obj, as a read/write Object* reference.
1497 // Does no checking, and is safe to use during GC, while maps are invalid.
1498 // Does not invoke write barrier, so should only be assigned to
1499 // during marking GC.
1500 static inline Object** RawField(HeapObject* obj, int offset);
1502 // Adds the |code| object related to |name| to the code cache of this map. If
1503 // this map is a dictionary map that is shared, the map copied and installed
1505 static void UpdateMapCodeCache(Handle<HeapObject> object,
1509 DECLARE_CAST(HeapObject)
1511 // Return the write barrier mode for this. Callers of this function
1512 // must be able to present a reference to an DisallowHeapAllocation
1513 // object as a sign that they are not going to use this function
1514 // from code that allocates and thus invalidates the returned write
1516 inline WriteBarrierMode GetWriteBarrierMode(
1517 const DisallowHeapAllocation& promise);
1519 // Dispatched behavior.
1520 void HeapObjectShortPrint(std::ostream& os); // NOLINT
1522 void PrintHeader(std::ostream& os, const char* id); // NOLINT
1524 DECLARE_PRINTER(HeapObject)
1525 DECLARE_VERIFIER(HeapObject)
1527 inline void VerifyObjectField(int offset);
1528 inline void VerifySmiField(int offset);
1530 // Verify a pointer is a valid HeapObject pointer that points to object
1531 // areas in the heap.
1532 static void VerifyHeapPointer(Object* p);
1535 inline AllocationAlignment RequiredAlignment();
1537 // Layout description.
1538 // First field in a heap object is map.
1539 static const int kMapOffset = Object::kHeaderSize;
1540 static const int kHeaderSize = kMapOffset + kPointerSize;
1542 STATIC_ASSERT(kMapOffset == Internals::kHeapObjectMapOffset);
1545 // helpers for calling an ObjectVisitor to iterate over pointers in the
1546 // half-open range [start, end) specified as integer offsets
1547 inline void IteratePointers(ObjectVisitor* v, int start, int end);
1548 // as above, for the single element at "offset"
1549 inline void IteratePointer(ObjectVisitor* v, int offset);
1550 // as above, for the next code link of a code object.
1551 inline void IterateNextCodeLink(ObjectVisitor* v, int offset);
1554 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1558 // This class describes a body of an object of a fixed size
1559 // in which all pointer fields are located in the [start_offset, end_offset)
1561 template<int start_offset, int end_offset, int size>
1562 class FixedBodyDescriptor {
1564 static const int kStartOffset = start_offset;
1565 static const int kEndOffset = end_offset;
1566 static const int kSize = size;
1568 static inline void IterateBody(HeapObject* obj, ObjectVisitor* v);
1570 template<typename StaticVisitor>
1571 static inline void IterateBody(HeapObject* obj) {
1572 StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
1573 HeapObject::RawField(obj, end_offset));
1578 // This class describes a body of an object of a variable size
1579 // in which all pointer fields are located in the [start_offset, object_size)
1581 template<int start_offset>
1582 class FlexibleBodyDescriptor {
1584 static const int kStartOffset = start_offset;
1586 static inline void IterateBody(HeapObject* obj,
1590 template<typename StaticVisitor>
1591 static inline void IterateBody(HeapObject* obj, int object_size) {
1592 StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
1593 HeapObject::RawField(obj, object_size));
1598 // The HeapNumber class describes heap allocated numbers that cannot be
1599 // represented in a Smi (small integer)
1600 class HeapNumber: public HeapObject {
1602 // [value]: number value.
1603 inline double value() const;
1604 inline void set_value(double value);
1606 DECLARE_CAST(HeapNumber)
1608 // Dispatched behavior.
1609 bool HeapNumberBooleanValue();
1611 void HeapNumberPrint(std::ostream& os); // NOLINT
1612 DECLARE_VERIFIER(HeapNumber)
1614 inline int get_exponent();
1615 inline int get_sign();
1617 // Layout description.
1618 static const int kValueOffset = HeapObject::kHeaderSize;
1619 // IEEE doubles are two 32 bit words. The first is just mantissa, the second
1620 // is a mixture of sign, exponent and mantissa. The offsets of two 32 bit
1621 // words within double numbers are endian dependent and they are set
1623 #if defined(V8_TARGET_LITTLE_ENDIAN)
1624 static const int kMantissaOffset = kValueOffset;
1625 static const int kExponentOffset = kValueOffset + 4;
1626 #elif defined(V8_TARGET_BIG_ENDIAN)
1627 static const int kMantissaOffset = kValueOffset + 4;
1628 static const int kExponentOffset = kValueOffset;
1630 #error Unknown byte ordering
1633 static const int kSize = kValueOffset + kDoubleSize;
1634 static const uint32_t kSignMask = 0x80000000u;
1635 static const uint32_t kExponentMask = 0x7ff00000u;
1636 static const uint32_t kMantissaMask = 0xfffffu;
1637 static const int kMantissaBits = 52;
1638 static const int kExponentBits = 11;
1639 static const int kExponentBias = 1023;
1640 static const int kExponentShift = 20;
1641 static const int kInfinityOrNanExponent =
1642 (kExponentMask >> kExponentShift) - kExponentBias;
1643 static const int kMantissaBitsInTopWord = 20;
1644 static const int kNonMantissaBitsInTopWord = 12;
1647 DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1651 // The Simd128Value class describes heap allocated 128 bit SIMD values.
1652 class Simd128Value : public HeapObject {
1654 DECLARE_CAST(Simd128Value)
1656 DECLARE_PRINTER(Simd128Value)
1657 DECLARE_VERIFIER(Simd128Value)
1659 static Handle<String> ToString(Handle<Simd128Value> input);
1661 // Equality operations.
1662 inline bool Equals(Simd128Value* that);
1663 static inline bool Equals(Handle<Simd128Value> one, Handle<Simd128Value> two);
1665 // Checks that another instance is bit-wise equal.
1666 bool BitwiseEquals(const Simd128Value* other) const;
1667 // Computes a hash from the 128 bit value, viewed as 4 32-bit integers.
1668 uint32_t Hash() const;
1669 // Copies the 16 bytes of SIMD data to the destination address.
1670 void CopyBits(void* destination) const;
1672 // Layout description.
1673 static const int kValueOffset = HeapObject::kHeaderSize;
1674 static const int kSize = kValueOffset + kSimd128Size;
1677 DISALLOW_IMPLICIT_CONSTRUCTORS(Simd128Value);
1681 // V has parameters (TYPE, Type, type, lane count, lane type)
1682 #define SIMD128_TYPES(V) \
1683 V(FLOAT32X4, Float32x4, float32x4, 4, float) \
1684 V(INT32X4, Int32x4, int32x4, 4, int32_t) \
1685 V(UINT32X4, Uint32x4, uint32x4, 4, uint32_t) \
1686 V(BOOL32X4, Bool32x4, bool32x4, 4, bool) \
1687 V(INT16X8, Int16x8, int16x8, 8, int16_t) \
1688 V(UINT16X8, Uint16x8, uint16x8, 8, uint16_t) \
1689 V(BOOL16X8, Bool16x8, bool16x8, 8, bool) \
1690 V(INT8X16, Int8x16, int8x16, 16, int8_t) \
1691 V(UINT8X16, Uint8x16, uint8x16, 16, uint8_t) \
1692 V(BOOL8X16, Bool8x16, bool8x16, 16, bool)
1694 #define SIMD128_VALUE_CLASS(TYPE, Type, type, lane_count, lane_type) \
1695 class Type final : public Simd128Value { \
1697 inline lane_type get_lane(int lane) const; \
1698 inline void set_lane(int lane, lane_type value); \
1700 DECLARE_CAST(Type) \
1702 DECLARE_PRINTER(Type) \
1704 static Handle<String> ToString(Handle<Type> input); \
1706 inline bool Equals(Type* that); \
1709 DISALLOW_IMPLICIT_CONSTRUCTORS(Type); \
1711 SIMD128_TYPES(SIMD128_VALUE_CLASS)
1712 #undef SIMD128_VALUE_CLASS
1715 enum EnsureElementsMode {
1716 DONT_ALLOW_DOUBLE_ELEMENTS,
1717 ALLOW_COPIED_DOUBLE_ELEMENTS,
1718 ALLOW_CONVERTED_DOUBLE_ELEMENTS
1722 // Indicator for one component of an AccessorPair.
1723 enum AccessorComponent {
1729 // JSReceiver includes types on which properties can be defined, i.e.,
1730 // JSObject and JSProxy.
1731 class JSReceiver: public HeapObject {
1733 DECLARE_CAST(JSReceiver)
1735 // ES6 section 7.1.1 ToPrimitive
1736 MUST_USE_RESULT static MaybeHandle<Object> ToPrimitive(
1737 Handle<JSReceiver> receiver,
1738 ToPrimitiveHint hint = ToPrimitiveHint::kDefault);
1739 MUST_USE_RESULT static MaybeHandle<Object> OrdinaryToPrimitive(
1740 Handle<JSReceiver> receiver, OrdinaryToPrimitiveHint hint);
1742 // Implementation of [[HasProperty]], ECMA-262 5th edition, section 8.12.6.
1743 MUST_USE_RESULT static inline Maybe<bool> HasProperty(
1744 Handle<JSReceiver> object, Handle<Name> name);
1745 MUST_USE_RESULT static inline Maybe<bool> HasOwnProperty(Handle<JSReceiver>,
1747 MUST_USE_RESULT static inline Maybe<bool> HasElement(
1748 Handle<JSReceiver> object, uint32_t index);
1749 MUST_USE_RESULT static inline Maybe<bool> HasOwnElement(
1750 Handle<JSReceiver> object, uint32_t index);
1752 // Implementation of [[Delete]], ECMA-262 5th edition, section 8.12.7.
1753 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyOrElement(
1754 Handle<JSReceiver> object, Handle<Name> name,
1755 LanguageMode language_mode = SLOPPY);
1756 MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
1757 Handle<JSReceiver> object, Handle<Name> name,
1758 LanguageMode language_mode = SLOPPY);
1759 MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
1760 LookupIterator* it, LanguageMode language_mode);
1761 MUST_USE_RESULT static MaybeHandle<Object> DeleteElement(
1762 Handle<JSReceiver> object, uint32_t index,
1763 LanguageMode language_mode = SLOPPY);
1765 // Tests for the fast common case for property enumeration.
1766 bool IsSimpleEnum();
1768 // Returns the class name ([[Class]] property in the specification).
1769 String* class_name();
1771 // Returns the constructor name (the name (possibly, inferred name) of the
1772 // function that was used to instantiate the object).
1773 String* constructor_name();
1775 MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetPropertyAttributes(
1776 Handle<JSReceiver> object, Handle<Name> name);
1777 MUST_USE_RESULT static inline Maybe<PropertyAttributes>
1778 GetOwnPropertyAttributes(Handle<JSReceiver> object, Handle<Name> name);
1780 MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetElementAttributes(
1781 Handle<JSReceiver> object, uint32_t index);
1782 MUST_USE_RESULT static inline Maybe<PropertyAttributes>
1783 GetOwnElementAttributes(Handle<JSReceiver> object, uint32_t index);
1785 MUST_USE_RESULT static Maybe<PropertyAttributes> GetPropertyAttributes(
1786 LookupIterator* it);
1789 static Handle<Object> GetDataProperty(Handle<JSReceiver> object,
1791 static Handle<Object> GetDataProperty(LookupIterator* it);
1794 // Retrieves a permanent object identity hash code. The undefined value might
1795 // be returned in case no hash was created yet.
1796 inline Object* GetIdentityHash();
1798 // Retrieves a permanent object identity hash code. May create and store a
1799 // hash code if needed and none exists.
1800 inline static Handle<Smi> GetOrCreateIdentityHash(
1801 Handle<JSReceiver> object);
1803 enum KeyCollectionType { OWN_ONLY, INCLUDE_PROTOS };
1805 // Computes the enumerable keys for a JSObject. Used for implementing
1806 // "for (n in object) { }".
1807 MUST_USE_RESULT static MaybeHandle<FixedArray> GetKeys(
1808 Handle<JSReceiver> object,
1809 KeyCollectionType type);
1812 DISALLOW_IMPLICIT_CONSTRUCTORS(JSReceiver);
1816 // The JSObject describes real heap allocated JavaScript objects with
1818 // Note that the map of JSObject changes during execution to enable inline
1820 class JSObject: public JSReceiver {
1822 // [properties]: Backing storage for properties.
1823 // properties is a FixedArray in the fast case and a Dictionary in the
1825 DECL_ACCESSORS(properties, FixedArray) // Get and set fast properties.
1826 inline void initialize_properties();
1827 inline bool HasFastProperties();
1828 // Gets slow properties for non-global objects.
1829 inline NameDictionary* property_dictionary();
1830 // Gets global object properties.
1831 inline GlobalDictionary* global_dictionary();
1833 // [elements]: The elements (properties with names that are integers).
1835 // Elements can be in two general modes: fast and slow. Each mode
1836 // corrensponds to a set of object representations of elements that
1837 // have something in common.
1839 // In the fast mode elements is a FixedArray and so each element can
1840 // be quickly accessed. This fact is used in the generated code. The
1841 // elements array can have one of three maps in this mode:
1842 // fixed_array_map, sloppy_arguments_elements_map or
1843 // fixed_cow_array_map (for copy-on-write arrays). In the latter case
1844 // the elements array may be shared by a few objects and so before
1845 // writing to any element the array must be copied. Use
1846 // EnsureWritableFastElements in this case.
1848 // In the slow mode the elements is either a NumberDictionary, a
1849 // FixedArray parameter map for a (sloppy) arguments object.
1850 DECL_ACCESSORS(elements, FixedArrayBase)
1851 inline void initialize_elements();
1852 static void ResetElements(Handle<JSObject> object);
1853 static inline void SetMapAndElements(Handle<JSObject> object,
1855 Handle<FixedArrayBase> elements);
1856 inline ElementsKind GetElementsKind();
1857 ElementsAccessor* GetElementsAccessor();
1858 // Returns true if an object has elements of FAST_SMI_ELEMENTS ElementsKind.
1859 inline bool HasFastSmiElements();
1860 // Returns true if an object has elements of FAST_ELEMENTS ElementsKind.
1861 inline bool HasFastObjectElements();
1862 // Returns true if an object has elements of FAST_ELEMENTS or
1863 // FAST_SMI_ONLY_ELEMENTS.
1864 inline bool HasFastSmiOrObjectElements();
1865 // Returns true if an object has any of the fast elements kinds.
1866 inline bool HasFastElements();
1867 // Returns true if an object has elements of FAST_DOUBLE_ELEMENTS
1869 inline bool HasFastDoubleElements();
1870 // Returns true if an object has elements of FAST_HOLEY_*_ELEMENTS
1872 inline bool HasFastHoleyElements();
1873 inline bool HasSloppyArgumentsElements();
1874 inline bool HasDictionaryElements();
1876 inline bool HasFixedTypedArrayElements();
1878 inline bool HasFixedUint8ClampedElements();
1879 inline bool HasFixedArrayElements();
1880 inline bool HasFixedInt8Elements();
1881 inline bool HasFixedUint8Elements();
1882 inline bool HasFixedInt16Elements();
1883 inline bool HasFixedUint16Elements();
1884 inline bool HasFixedInt32Elements();
1885 inline bool HasFixedUint32Elements();
1886 inline bool HasFixedFloat32Elements();
1887 inline bool HasFixedFloat64Elements();
1889 inline bool HasFastArgumentsElements();
1890 inline bool HasSlowArgumentsElements();
1891 inline SeededNumberDictionary* element_dictionary(); // Gets slow elements.
1893 // Requires: HasFastElements().
1894 static Handle<FixedArray> EnsureWritableFastElements(
1895 Handle<JSObject> object);
1897 // Collects elements starting at index 0.
1898 // Undefined values are placed after non-undefined values.
1899 // Returns the number of non-undefined values.
1900 static Handle<Object> PrepareElementsForSort(Handle<JSObject> object,
1902 // As PrepareElementsForSort, but only on objects where elements is
1903 // a dictionary, and it will stay a dictionary. Collates undefined and
1904 // unexisting elements below limit from position zero of the elements.
1905 static Handle<Object> PrepareSlowElementsForSort(Handle<JSObject> object,
1908 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithInterceptor(
1909 LookupIterator* it, Handle<Object> value);
1911 // SetLocalPropertyIgnoreAttributes converts callbacks to fields. We need to
1912 // grant an exemption to ExecutableAccessor callbacks in some cases.
1913 enum ExecutableAccessorInfoHandling { DEFAULT_HANDLING, DONT_FORCE_FIELD };
1915 MUST_USE_RESULT static MaybeHandle<Object> DefineOwnPropertyIgnoreAttributes(
1916 LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
1917 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1919 MUST_USE_RESULT static MaybeHandle<Object> SetOwnPropertyIgnoreAttributes(
1920 Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
1921 PropertyAttributes attributes,
1922 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1924 MUST_USE_RESULT static MaybeHandle<Object> SetOwnElementIgnoreAttributes(
1925 Handle<JSObject> object, uint32_t index, Handle<Object> value,
1926 PropertyAttributes attributes,
1927 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1929 // Equivalent to one of the above depending on whether |name| can be converted
1930 // to an array index.
1931 MUST_USE_RESULT static MaybeHandle<Object>
1932 DefinePropertyOrElementIgnoreAttributes(
1933 Handle<JSObject> object, Handle<Name> name, Handle<Object> value,
1934 PropertyAttributes attributes = NONE,
1935 ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);
1937 // Adds or reconfigures a property to attributes NONE. It will fail when it
1939 MUST_USE_RESULT static Maybe<bool> CreateDataProperty(LookupIterator* it,
1940 Handle<Object> value);
1942 static void AddProperty(Handle<JSObject> object, Handle<Name> name,
1943 Handle<Object> value, PropertyAttributes attributes);
1945 MUST_USE_RESULT static MaybeHandle<Object> AddDataElement(
1946 Handle<JSObject> receiver, uint32_t index, Handle<Object> value,
1947 PropertyAttributes attributes);
1949 // Extend the receiver with a single fast property appeared first in the
1950 // passed map. This also extends the property backing store if necessary.
1951 static void AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map);
1953 // Migrates the given object to a map whose field representations are the
1954 // lowest upper bound of all known representations for that field.
1955 static void MigrateInstance(Handle<JSObject> instance);
1957 // Migrates the given object only if the target map is already available,
1958 // or returns false if such a map is not yet available.
1959 static bool TryMigrateInstance(Handle<JSObject> instance);
1961 // Sets the property value in a normalized object given (key, value, details).
1962 // Handles the special representation of JS global objects.
1963 static void SetNormalizedProperty(Handle<JSObject> object, Handle<Name> name,
1964 Handle<Object> value,
1965 PropertyDetails details);
1966 static void SetDictionaryElement(Handle<JSObject> object, uint32_t index,
1967 Handle<Object> value,
1968 PropertyAttributes attributes);
1969 static void SetDictionaryArgumentsElement(Handle<JSObject> object,
1971 Handle<Object> value,
1972 PropertyAttributes attributes);
1974 static void OptimizeAsPrototype(Handle<JSObject> object,
1975 PrototypeOptimizationMode mode);
1976 static void ReoptimizeIfPrototype(Handle<JSObject> object);
1977 static void LazyRegisterPrototypeUser(Handle<Map> user, Isolate* isolate);
1978 static bool UnregisterPrototypeUser(Handle<Map> user, Isolate* isolate);
1979 static void InvalidatePrototypeChains(Map* map);
1981 // Alternative implementation of WeakFixedArray::NullCallback.
1982 class PrototypeRegistryCompactionCallback {
1984 static void Callback(Object* value, int old_index, int new_index);
1987 // Retrieve interceptors.
1988 InterceptorInfo* GetNamedInterceptor();
1989 InterceptorInfo* GetIndexedInterceptor();
1991 // Used from JSReceiver.
1992 MUST_USE_RESULT static Maybe<PropertyAttributes>
1993 GetPropertyAttributesWithInterceptor(LookupIterator* it);
1994 MUST_USE_RESULT static Maybe<PropertyAttributes>
1995 GetPropertyAttributesWithFailedAccessCheck(LookupIterator* it);
1997 // Retrieves an AccessorPair property from the given object. Might return
1998 // undefined if the property doesn't exist or is of a different kind.
1999 MUST_USE_RESULT static MaybeHandle<Object> GetAccessor(
2000 Handle<JSObject> object,
2002 AccessorComponent component);
2004 // Defines an AccessorPair property on the given object.
2005 // TODO(mstarzinger): Rename to SetAccessor().
2006 static MaybeHandle<Object> DefineAccessor(Handle<JSObject> object,
2008 Handle<Object> getter,
2009 Handle<Object> setter,
2010 PropertyAttributes attributes);
2012 // Defines an AccessorInfo property on the given object.
2013 MUST_USE_RESULT static MaybeHandle<Object> SetAccessor(
2014 Handle<JSObject> object,
2015 Handle<AccessorInfo> info);
2017 // The result must be checked first for exceptions. If there's no exception,
2018 // the output parameter |done| indicates whether the interceptor has a result
2020 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithInterceptor(
2021 LookupIterator* it, bool* done);
2023 // Accessors for hidden properties object.
2025 // Hidden properties are not own properties of the object itself.
2026 // Instead they are stored in an auxiliary structure kept as an own
2027 // property with a special name Heap::hidden_string(). But if the
2028 // receiver is a JSGlobalProxy then the auxiliary object is a property
2029 // of its prototype, and if it's a detached proxy, then you can't have
2030 // hidden properties.
2032 // Sets a hidden property on this object. Returns this object if successful,
2033 // undefined if called on a detached proxy.
2034 static Handle<Object> SetHiddenProperty(Handle<JSObject> object,
2036 Handle<Object> value);
2037 // Gets the value of a hidden property with the given key. Returns the hole
2038 // if the property doesn't exist (or if called on a detached proxy),
2039 // otherwise returns the value set for the key.
2040 Object* GetHiddenProperty(Handle<Name> key);
2041 // Deletes a hidden property. Deleting a non-existing property is
2042 // considered successful.
2043 static void DeleteHiddenProperty(Handle<JSObject> object,
2045 // Returns true if the object has a property with the hidden string as name.
2046 static bool HasHiddenProperties(Handle<JSObject> object);
2048 static void SetIdentityHash(Handle<JSObject> object, Handle<Smi> hash);
2050 static void ValidateElements(Handle<JSObject> object);
2052 // Makes sure that this object can contain HeapObject as elements.
2053 static inline void EnsureCanContainHeapObjectElements(Handle<JSObject> obj);
2055 // Makes sure that this object can contain the specified elements.
2056 static inline void EnsureCanContainElements(
2057 Handle<JSObject> object,
2060 EnsureElementsMode mode);
2061 static inline void EnsureCanContainElements(
2062 Handle<JSObject> object,
2063 Handle<FixedArrayBase> elements,
2065 EnsureElementsMode mode);
2066 static void EnsureCanContainElements(
2067 Handle<JSObject> object,
2068 Arguments* arguments,
2071 EnsureElementsMode mode);
2073 // Would we convert a fast elements array to dictionary mode given
2074 // an access at key?
2075 bool WouldConvertToSlowElements(uint32_t index);
2077 // Computes the new capacity when expanding the elements of a JSObject.
2078 static uint32_t NewElementsCapacity(uint32_t old_capacity) {
2079 // (old_capacity + 50%) + 16
2080 return old_capacity + (old_capacity >> 1) + 16;
2083 // These methods do not perform access checks!
2084 static void UpdateAllocationSite(Handle<JSObject> object,
2085 ElementsKind to_kind);
2087 // Lookup interceptors are used for handling properties controlled by host
2089 inline bool HasNamedInterceptor();
2090 inline bool HasIndexedInterceptor();
2092 // Computes the enumerable keys from interceptors. Used for debug mirrors and
2093 // by JSReceiver::GetKeys.
2094 MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForNamedInterceptor(
2095 Handle<JSObject> object,
2096 Handle<JSReceiver> receiver);
2097 MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForIndexedInterceptor(
2098 Handle<JSObject> object,
2099 Handle<JSReceiver> receiver);
2101 // Support functions for v8 api (needed for correct interceptor behavior).
2102 MUST_USE_RESULT static Maybe<bool> HasRealNamedProperty(
2103 Handle<JSObject> object, Handle<Name> name);
2104 MUST_USE_RESULT static Maybe<bool> HasRealElementProperty(
2105 Handle<JSObject> object, uint32_t index);
2106 MUST_USE_RESULT static Maybe<bool> HasRealNamedCallbackProperty(
2107 Handle<JSObject> object, Handle<Name> name);
2109 // Get the header size for a JSObject. Used to compute the index of
2110 // internal fields as well as the number of internal fields.
2111 inline int GetHeaderSize();
2113 inline int GetInternalFieldCount();
2114 inline int GetInternalFieldOffset(int index);
2115 inline Object* GetInternalField(int index);
2116 inline void SetInternalField(int index, Object* value);
2117 inline void SetInternalField(int index, Smi* value);
2119 // Returns the number of properties on this object filtering out properties
2120 // with the specified attributes (ignoring interceptors).
2121 int NumberOfOwnProperties(PropertyAttributes filter = NONE);
2122 // Fill in details for properties into storage starting at the specified
2123 // index. Returns the number of properties added.
2124 int GetOwnPropertyNames(FixedArray* storage, int index,
2125 PropertyAttributes filter = NONE);
2127 // Returns the number of properties on this object filtering out properties
2128 // with the specified attributes (ignoring interceptors).
2129 int NumberOfOwnElements(PropertyAttributes filter);
2130 // Returns the number of enumerable elements (ignoring interceptors).
2131 int NumberOfEnumElements();
2132 // Returns the number of elements on this object filtering out elements
2133 // with the specified attributes (ignoring interceptors).
2134 int GetOwnElementKeys(FixedArray* storage, PropertyAttributes filter);
2135 // Count and fill in the enumerable elements into storage.
2136 // (storage->length() == NumberOfEnumElements()).
2137 // If storage is NULL, will count the elements without adding
2138 // them to any storage.
2139 // Returns the number of enumerable elements.
2140 int GetEnumElementKeys(FixedArray* storage);
2142 static Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
2145 // Returns a new map with all transitions dropped from the object's current
2146 // map and the ElementsKind set.
2147 static Handle<Map> GetElementsTransitionMap(Handle<JSObject> object,
2148 ElementsKind to_kind);
2149 static void TransitionElementsKind(Handle<JSObject> object,
2150 ElementsKind to_kind);
2152 // Always use this to migrate an object to a new map.
2153 // |expected_additional_properties| is only used for fast-to-slow transitions
2154 // and ignored otherwise.
2155 static void MigrateToMap(Handle<JSObject> object, Handle<Map> new_map,
2156 int expected_additional_properties = 0);
2158 // Convert the object to use the canonical dictionary
2159 // representation. If the object is expected to have additional properties
2160 // added this number can be indicated to have the backing store allocated to
2161 // an initial capacity for holding these properties.
2162 static void NormalizeProperties(Handle<JSObject> object,
2163 PropertyNormalizationMode mode,
2164 int expected_additional_properties,
2165 const char* reason);
2167 // Convert and update the elements backing store to be a
2168 // SeededNumberDictionary dictionary. Returns the backing after conversion.
2169 static Handle<SeededNumberDictionary> NormalizeElements(
2170 Handle<JSObject> object);
2172 void RequireSlowElements(SeededNumberDictionary* dictionary);
2174 // Transform slow named properties to fast variants.
2175 static void MigrateSlowToFast(Handle<JSObject> object,
2176 int unused_property_fields, const char* reason);
2178 inline bool IsUnboxedDoubleField(FieldIndex index);
2180 // Access fast-case object properties at index.
2181 static Handle<Object> FastPropertyAt(Handle<JSObject> object,
2182 Representation representation,
2184 inline Object* RawFastPropertyAt(FieldIndex index);
2185 inline double RawFastDoublePropertyAt(FieldIndex index);
2187 inline void FastPropertyAtPut(FieldIndex index, Object* value);
2188 inline void RawFastPropertyAtPut(FieldIndex index, Object* value);
2189 inline void RawFastDoublePropertyAtPut(FieldIndex index, double value);
2190 inline void WriteToField(int descriptor, Object* value);
2192 // Access to in object properties.
2193 inline int GetInObjectPropertyOffset(int index);
2194 inline Object* InObjectPropertyAt(int index);
2195 inline Object* InObjectPropertyAtPut(int index,
2197 WriteBarrierMode mode
2198 = UPDATE_WRITE_BARRIER);
2200 // Set the object's prototype (only JSReceiver and null are allowed values).
2201 MUST_USE_RESULT static MaybeHandle<Object> SetPrototype(
2202 Handle<JSObject> object, Handle<Object> value, bool from_javascript);
2204 // Initializes the body after properties slot, properties slot is
2205 // initialized by set_properties. Fill the pre-allocated fields with
2206 // pre_allocated_value and the rest with filler_value.
2207 // Note: this call does not update write barrier, the caller is responsible
2208 // to ensure that |filler_value| can be collected without WB here.
2209 inline void InitializeBody(Map* map,
2210 Object* pre_allocated_value,
2211 Object* filler_value);
2213 // Check whether this object references another object
2214 bool ReferencesObject(Object* obj);
2216 // Disalow further properties to be added to the oject.
2217 MUST_USE_RESULT static MaybeHandle<Object> PreventExtensions(
2218 Handle<JSObject> object);
2220 bool IsExtensible();
2223 MUST_USE_RESULT static MaybeHandle<Object> Seal(Handle<JSObject> object);
2225 // ES5 Object.freeze
2226 MUST_USE_RESULT static MaybeHandle<Object> Freeze(Handle<JSObject> object);
2228 // Called the first time an object is observed with ES7 Object.observe.
2229 static void SetObserved(Handle<JSObject> object);
2232 enum DeepCopyHints { kNoHints = 0, kObjectIsShallow = 1 };
2234 MUST_USE_RESULT static MaybeHandle<JSObject> DeepCopy(
2235 Handle<JSObject> object,
2236 AllocationSiteUsageContext* site_context,
2237 DeepCopyHints hints = kNoHints);
2238 MUST_USE_RESULT static MaybeHandle<JSObject> DeepWalk(
2239 Handle<JSObject> object,
2240 AllocationSiteCreationContext* site_context);
2242 DECLARE_CAST(JSObject)
2244 // Dispatched behavior.
2245 void JSObjectShortPrint(StringStream* accumulator);
2246 DECLARE_PRINTER(JSObject)
2247 DECLARE_VERIFIER(JSObject)
2249 void PrintProperties(std::ostream& os); // NOLINT
2250 void PrintElements(std::ostream& os); // NOLINT
2252 #if defined(DEBUG) || defined(OBJECT_PRINT)
2253 void PrintTransitions(std::ostream& os); // NOLINT
2256 static void PrintElementsTransition(
2257 FILE* file, Handle<JSObject> object,
2258 ElementsKind from_kind, Handle<FixedArrayBase> from_elements,
2259 ElementsKind to_kind, Handle<FixedArrayBase> to_elements);
2261 void PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map);
2264 // Structure for collecting spill information about JSObjects.
2265 class SpillInformation {
2269 int number_of_objects_;
2270 int number_of_objects_with_fast_properties_;
2271 int number_of_objects_with_fast_elements_;
2272 int number_of_fast_used_fields_;
2273 int number_of_fast_unused_fields_;
2274 int number_of_slow_used_properties_;
2275 int number_of_slow_unused_properties_;
2276 int number_of_fast_used_elements_;
2277 int number_of_fast_unused_elements_;
2278 int number_of_slow_used_elements_;
2279 int number_of_slow_unused_elements_;
2282 void IncrementSpillStatistics(SpillInformation* info);
2286 // If a GC was caused while constructing this object, the elements pointer
2287 // may point to a one pointer filler map. The object won't be rooted, but
2288 // our heap verification code could stumble across it.
2289 bool ElementsAreSafeToExamine();
2292 Object* SlowReverseLookup(Object* value);
2294 // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
2295 // Also maximal value of JSArray's length property.
2296 static const uint32_t kMaxElementCount = 0xffffffffu;
2298 // Constants for heuristics controlling conversion of fast elements
2299 // to slow elements.
2301 // Maximal gap that can be introduced by adding an element beyond
2302 // the current elements length.
2303 static const uint32_t kMaxGap = 1024;
2305 // Maximal length of fast elements array that won't be checked for
2306 // being dense enough on expansion.
2307 static const int kMaxUncheckedFastElementsLength = 5000;
2309 // Same as above but for old arrays. This limit is more strict. We
2310 // don't want to be wasteful with long lived objects.
2311 static const int kMaxUncheckedOldFastElementsLength = 500;
2313 // Note that Page::kMaxRegularHeapObjectSize puts a limit on
2314 // permissible values (see the DCHECK in heap.cc).
2315 static const int kInitialMaxFastElementArray = 100000;
2317 // This constant applies only to the initial map of "global.Object" and
2318 // not to arbitrary other JSObject maps.
2319 static const int kInitialGlobalObjectUnusedPropertiesCount = 4;
2321 static const int kMaxInstanceSize = 255 * kPointerSize;
2322 // When extending the backing storage for property values, we increase
2323 // its size by more than the 1 entry necessary, so sequentially adding fields
2324 // to the same object requires fewer allocations and copies.
2325 static const int kFieldsAdded = 3;
2327 // Layout description.
2328 static const int kPropertiesOffset = HeapObject::kHeaderSize;
2329 static const int kElementsOffset = kPropertiesOffset + kPointerSize;
2330 static const int kHeaderSize = kElementsOffset + kPointerSize;
2332 STATIC_ASSERT(kHeaderSize == Internals::kJSObjectHeaderSize);
2334 class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> {
2336 static inline int SizeOf(Map* map, HeapObject* object);
2339 Context* GetCreationContext();
2341 // Enqueue change record for Object.observe. May cause GC.
2342 MUST_USE_RESULT static MaybeHandle<Object> EnqueueChangeRecord(
2343 Handle<JSObject> object, const char* type, Handle<Name> name,
2344 Handle<Object> old_value);
2346 // Gets the number of currently used elements.
2347 int GetFastElementsUsage();
2349 // Deletes an existing named property in a normalized object.
2350 static void DeleteNormalizedProperty(Handle<JSObject> object,
2351 Handle<Name> name, int entry);
2353 static bool AllCanRead(LookupIterator* it);
2354 static bool AllCanWrite(LookupIterator* it);
2357 friend class JSReceiver;
2358 friend class Object;
2360 static void MigrateFastToFast(Handle<JSObject> object, Handle<Map> new_map);
2361 static void MigrateFastToSlow(Handle<JSObject> object,
2362 Handle<Map> new_map,
2363 int expected_additional_properties);
2365 // Used from Object::GetProperty().
2366 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithFailedAccessCheck(
2367 LookupIterator* it);
2369 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithFailedAccessCheck(
2370 LookupIterator* it, Handle<Object> value);
2372 // Add a property to a slow-case object.
2373 static void AddSlowProperty(Handle<JSObject> object,
2375 Handle<Object> value,
2376 PropertyAttributes attributes);
2378 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithInterceptor(
2379 LookupIterator* it);
2381 bool ReferencesObjectFromElements(FixedArray* elements,
2385 // Return the hash table backing store or the inline stored identity hash,
2386 // whatever is found.
2387 MUST_USE_RESULT Object* GetHiddenPropertiesHashTable();
2389 // Return the hash table backing store for hidden properties. If there is no
2390 // backing store, allocate one.
2391 static Handle<ObjectHashTable> GetOrCreateHiddenPropertiesHashtable(
2392 Handle<JSObject> object);
2394 // Set the hidden property backing store to either a hash table or
2395 // the inline-stored identity hash.
2396 static Handle<Object> SetHiddenPropertiesHashTable(
2397 Handle<JSObject> object,
2398 Handle<Object> value);
2400 MUST_USE_RESULT Object* GetIdentityHash();
2402 static Handle<Smi> GetOrCreateIdentityHash(Handle<JSObject> object);
2404 static Handle<SeededNumberDictionary> GetNormalizedElementDictionary(
2405 Handle<JSObject> object, Handle<FixedArrayBase> elements);
2407 // Helper for fast versions of preventExtensions, seal, and freeze.
2408 // attrs is one of NONE, SEALED, or FROZEN (depending on the operation).
2409 template <PropertyAttributes attrs>
2410 MUST_USE_RESULT static MaybeHandle<Object> PreventExtensionsWithTransition(
2411 Handle<JSObject> object);
2413 DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
2417 // Common superclass for FixedArrays that allow implementations to share
2418 // common accessors and some code paths.
2419 class FixedArrayBase: public HeapObject {
2421 // [length]: length of the array.
2422 inline int length() const;
2423 inline void set_length(int value);
2425 // Get and set the length using acquire loads and release stores.
2426 inline int synchronized_length() const;
2427 inline void synchronized_set_length(int value);
2429 DECLARE_CAST(FixedArrayBase)
2431 // Layout description.
2432 // Length is smi tagged when it is stored.
2433 static const int kLengthOffset = HeapObject::kHeaderSize;
2434 static const int kHeaderSize = kLengthOffset + kPointerSize;
2438 class FixedDoubleArray;
2439 class IncrementalMarking;
2442 // FixedArray describes fixed-sized arrays with element type Object*.
2443 class FixedArray: public FixedArrayBase {
2445 // Setter and getter for elements.
2446 inline Object* get(int index) const;
2447 static inline Handle<Object> get(Handle<FixedArray> array, int index);
2448 // Setter that uses write barrier.
2449 inline void set(int index, Object* value);
2450 inline bool is_the_hole(int index);
2452 // Setter that doesn't need write barrier.
2453 inline void set(int index, Smi* value);
2454 // Setter with explicit barrier mode.
2455 inline void set(int index, Object* value, WriteBarrierMode mode);
2457 // Setters for frequently used oddballs located in old space.
2458 inline void set_undefined(int index);
2459 inline void set_null(int index);
2460 inline void set_the_hole(int index);
2462 inline Object** GetFirstElementAddress();
2463 inline bool ContainsOnlySmisOrHoles();
2465 // Gives access to raw memory which stores the array's data.
2466 inline Object** data_start();
2468 inline void FillWithHoles(int from, int to);
2470 // Shrink length and insert filler objects.
2471 void Shrink(int length);
2473 enum KeyFilter { ALL_KEYS, NON_SYMBOL_KEYS };
2475 // Copy a sub array from the receiver to dest.
2476 void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
2478 // Garbage collection support.
2479 static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
2481 // Code Generation support.
2482 static int OffsetOfElementAt(int index) { return SizeFor(index); }
2484 // Garbage collection support.
2485 inline Object** RawFieldOfElementAt(int index);
2487 DECLARE_CAST(FixedArray)
2489 // Maximal allowed size, in bytes, of a single FixedArray.
2490 // Prevents overflowing size computations, as well as extreme memory
2492 static const int kMaxSize = 128 * MB * kPointerSize;
2493 // Maximally allowed length of a FixedArray.
2494 static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
2496 // Dispatched behavior.
2497 DECLARE_PRINTER(FixedArray)
2498 DECLARE_VERIFIER(FixedArray)
2500 // Checks if two FixedArrays have identical contents.
2501 bool IsEqualTo(FixedArray* other);
2504 // Swap two elements in a pair of arrays. If this array and the
2505 // numbers array are the same object, the elements are only swapped
2507 void SwapPairs(FixedArray* numbers, int i, int j);
2509 // Sort prefix of this array and the numbers array as pairs wrt. the
2510 // numbers. If the numbers array and the this array are the same
2511 // object, the prefix of this array is sorted.
2512 void SortPairs(FixedArray* numbers, uint32_t len);
2514 class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> {
2516 static inline int SizeOf(Map* map, HeapObject* object);
2520 // Set operation on FixedArray without using write barriers. Can
2521 // only be used for storing old space objects or smis.
2522 static inline void NoWriteBarrierSet(FixedArray* array,
2526 // Set operation on FixedArray without incremental write barrier. Can
2527 // only be used if the object is guaranteed to be white (whiteness witness
2529 static inline void NoIncrementalWriteBarrierSet(FixedArray* array,
2534 STATIC_ASSERT(kHeaderSize == Internals::kFixedArrayHeaderSize);
2536 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
2540 // FixedDoubleArray describes fixed-sized arrays with element type double.
2541 class FixedDoubleArray: public FixedArrayBase {
2543 // Setter and getter for elements.
2544 inline double get_scalar(int index);
2545 inline uint64_t get_representation(int index);
2546 static inline Handle<Object> get(Handle<FixedDoubleArray> array, int index);
2547 inline void set(int index, double value);
2548 inline void set_the_hole(int index);
2550 // Checking for the hole.
2551 inline bool is_the_hole(int index);
2553 // Garbage collection support.
2554 inline static int SizeFor(int length) {
2555 return kHeaderSize + length * kDoubleSize;
2558 // Gives access to raw memory which stores the array's data.
2559 inline double* data_start();
2561 inline void FillWithHoles(int from, int to);
2563 // Code Generation support.
2564 static int OffsetOfElementAt(int index) { return SizeFor(index); }
2566 DECLARE_CAST(FixedDoubleArray)
2568 // Maximal allowed size, in bytes, of a single FixedDoubleArray.
2569 // Prevents overflowing size computations, as well as extreme memory
2571 static const int kMaxSize = 512 * MB;
2572 // Maximally allowed length of a FixedArray.
2573 static const int kMaxLength = (kMaxSize - kHeaderSize) / kDoubleSize;
2575 // Dispatched behavior.
2576 DECLARE_PRINTER(FixedDoubleArray)
2577 DECLARE_VERIFIER(FixedDoubleArray)
2580 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedDoubleArray);
2584 class WeakFixedArray : public FixedArray {
2586 // If |maybe_array| is not a WeakFixedArray, a fresh one will be allocated.
2587 // This function does not check if the value exists already, callers must
2588 // ensure this themselves if necessary.
2589 static Handle<WeakFixedArray> Add(Handle<Object> maybe_array,
2590 Handle<HeapObject> value,
2591 int* assigned_index = NULL);
2593 // Returns true if an entry was found and removed.
2594 bool Remove(Handle<HeapObject> value);
2596 class NullCallback {
2598 static void Callback(Object* value, int old_index, int new_index) {}
2601 template <class CompactionCallback>
2604 inline Object* Get(int index) const;
2605 inline void Clear(int index);
2606 inline int Length() const;
2608 inline bool IsEmptySlot(int index) const;
2609 static Object* Empty() { return Smi::FromInt(0); }
2613 explicit Iterator(Object* maybe_array) : list_(NULL) { Reset(maybe_array); }
2614 void Reset(Object* maybe_array);
2621 WeakFixedArray* list_;
2623 int last_used_index_;
2624 DisallowHeapAllocation no_gc_;
2626 DISALLOW_COPY_AND_ASSIGN(Iterator);
2629 DECLARE_CAST(WeakFixedArray)
2632 static const int kLastUsedIndexIndex = 0;
2633 static const int kFirstIndex = 1;
2635 static Handle<WeakFixedArray> Allocate(
2636 Isolate* isolate, int size, Handle<WeakFixedArray> initialize_from);
2638 static void Set(Handle<WeakFixedArray> array, int index,
2639 Handle<HeapObject> value);
2640 inline void clear(int index);
2642 inline int last_used_index() const;
2643 inline void set_last_used_index(int index);
2645 // Disallow inherited setters.
2646 void set(int index, Smi* value);
2647 void set(int index, Object* value);
2648 void set(int index, Object* value, WriteBarrierMode mode);
2649 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakFixedArray);
2653 // Generic array grows dynamically with O(1) amortized insertion.
2654 class ArrayList : public FixedArray {
2658 // Use this if GC can delete elements from the array.
2659 kReloadLengthAfterAllocation,
2661 static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj,
2662 AddMode mode = kNone);
2663 static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj1,
2664 Handle<Object> obj2, AddMode = kNone);
2665 inline int Length();
2666 inline void SetLength(int length);
2667 inline Object* Get(int index);
2668 inline Object** Slot(int index);
2669 inline void Set(int index, Object* obj);
2670 inline void Clear(int index, Object* undefined);
2671 DECLARE_CAST(ArrayList)
2674 static Handle<ArrayList> EnsureSpace(Handle<ArrayList> array, int length);
2675 static const int kLengthIndex = 0;
2676 static const int kFirstIndex = 1;
2677 DISALLOW_IMPLICIT_CONSTRUCTORS(ArrayList);
2681 // DescriptorArrays are fixed arrays used to hold instance descriptors.
2682 // The format of the these objects is:
2683 // [0]: Number of descriptors
2684 // [1]: Either Smi(0) if uninitialized, or a pointer to small fixed array:
2685 // [0]: pointer to fixed array with enum cache
2686 // [1]: either Smi(0) or pointer to fixed array with indices
2688 // [2 + number of descriptors * kDescriptorSize]: start of slack
2689 class DescriptorArray: public FixedArray {
2691 // Returns true for both shared empty_descriptor_array and for smis, which the
2692 // map uses to encode additional bit fields when the descriptor array is not
2694 inline bool IsEmpty();
2696 // Returns the number of descriptors in the array.
2697 inline int number_of_descriptors();
2699 inline int number_of_descriptors_storage();
2701 inline int NumberOfSlackDescriptors();
2703 inline void SetNumberOfDescriptors(int number_of_descriptors);
2704 inline int number_of_entries();
2706 inline bool HasEnumCache();
2708 inline void CopyEnumCacheFrom(DescriptorArray* array);
2710 inline FixedArray* GetEnumCache();
2712 inline bool HasEnumIndicesCache();
2714 inline FixedArray* GetEnumIndicesCache();
2716 inline Object** GetEnumCacheSlot();
2718 void ClearEnumCache();
2720 // Initialize or change the enum cache,
2721 // using the supplied storage for the small "bridge".
2722 void SetEnumCache(FixedArray* bridge_storage,
2723 FixedArray* new_cache,
2724 Object* new_index_cache);
2726 bool CanHoldValue(int descriptor, Object* value);
2728 // Accessors for fetching instance descriptor at descriptor number.
2729 inline Name* GetKey(int descriptor_number);
2730 inline Object** GetKeySlot(int descriptor_number);
2731 inline Object* GetValue(int descriptor_number);
2732 inline void SetValue(int descriptor_number, Object* value);
2733 inline Object** GetValueSlot(int descriptor_number);
2734 static inline int GetValueOffset(int descriptor_number);
2735 inline Object** GetDescriptorStartSlot(int descriptor_number);
2736 inline Object** GetDescriptorEndSlot(int descriptor_number);
2737 inline PropertyDetails GetDetails(int descriptor_number);
2738 inline PropertyType GetType(int descriptor_number);
2739 inline int GetFieldIndex(int descriptor_number);
2740 inline HeapType* GetFieldType(int descriptor_number);
2741 inline Object* GetConstant(int descriptor_number);
2742 inline Object* GetCallbacksObject(int descriptor_number);
2743 inline AccessorDescriptor* GetCallbacks(int descriptor_number);
2745 inline Name* GetSortedKey(int descriptor_number);
2746 inline int GetSortedKeyIndex(int descriptor_number);
2747 inline void SetSortedKey(int pointer, int descriptor_number);
2748 inline void SetRepresentation(int descriptor_number,
2749 Representation representation);
2751 // Accessor for complete descriptor.
2752 inline void Get(int descriptor_number, Descriptor* desc);
2753 inline void Set(int descriptor_number, Descriptor* desc);
2754 void Replace(int descriptor_number, Descriptor* descriptor);
2756 // Append automatically sets the enumeration index. This should only be used
2757 // to add descriptors in bulk at the end, followed by sorting the descriptor
2759 inline void Append(Descriptor* desc);
2761 static Handle<DescriptorArray> CopyUpTo(Handle<DescriptorArray> desc,
2762 int enumeration_index,
2765 static Handle<DescriptorArray> CopyUpToAddAttributes(
2766 Handle<DescriptorArray> desc,
2767 int enumeration_index,
2768 PropertyAttributes attributes,
2771 // Sort the instance descriptors by the hash codes of their keys.
2774 // Search the instance descriptors for given name.
2775 INLINE(int Search(Name* name, int number_of_own_descriptors));
2777 // As the above, but uses DescriptorLookupCache and updates it when
2779 INLINE(int SearchWithCache(Name* name, Map* map));
2781 // Allocates a DescriptorArray, but returns the singleton
2782 // empty descriptor array object if number_of_descriptors is 0.
2783 static Handle<DescriptorArray> Allocate(Isolate* isolate,
2784 int number_of_descriptors,
2787 DECLARE_CAST(DescriptorArray)
2789 // Constant for denoting key was not found.
2790 static const int kNotFound = -1;
2792 static const int kDescriptorLengthIndex = 0;
2793 static const int kEnumCacheIndex = 1;
2794 static const int kFirstIndex = 2;
2796 // The length of the "bridge" to the enum cache.
2797 static const int kEnumCacheBridgeLength = 2;
2798 static const int kEnumCacheBridgeCacheIndex = 0;
2799 static const int kEnumCacheBridgeIndicesCacheIndex = 1;
2801 // Layout description.
2802 static const int kDescriptorLengthOffset = FixedArray::kHeaderSize;
2803 static const int kEnumCacheOffset = kDescriptorLengthOffset + kPointerSize;
2804 static const int kFirstOffset = kEnumCacheOffset + kPointerSize;
2806 // Layout description for the bridge array.
2807 static const int kEnumCacheBridgeCacheOffset = FixedArray::kHeaderSize;
2809 // Layout of descriptor.
2810 static const int kDescriptorKey = 0;
2811 static const int kDescriptorDetails = 1;
2812 static const int kDescriptorValue = 2;
2813 static const int kDescriptorSize = 3;
2815 #if defined(DEBUG) || defined(OBJECT_PRINT)
2816 // For our gdb macros, we should perhaps change these in the future.
2819 // Print all the descriptors.
2820 void PrintDescriptors(std::ostream& os); // NOLINT
2824 // Is the descriptor array sorted and without duplicates?
2825 bool IsSortedNoDuplicates(int valid_descriptors = -1);
2827 // Is the descriptor array consistent with the back pointers in targets?
2828 bool IsConsistentWithBackPointers(Map* current_map);
2830 // Are two DescriptorArrays equal?
2831 bool IsEqualTo(DescriptorArray* other);
2834 // Returns the fixed array length required to hold number_of_descriptors
2836 static int LengthFor(int number_of_descriptors) {
2837 return ToKeyIndex(number_of_descriptors);
2841 // WhitenessWitness is used to prove that a descriptor array is white
2842 // (unmarked), so incremental write barriers can be skipped because the
2843 // marking invariant cannot be broken and slots pointing into evacuation
2844 // candidates will be discovered when the object is scanned. A witness is
2845 // always stack-allocated right after creating an array. By allocating a
2846 // witness, incremental marking is globally disabled. The witness is then
2847 // passed along wherever needed to statically prove that the array is known to
2849 class WhitenessWitness {
2851 inline explicit WhitenessWitness(DescriptorArray* array);
2852 inline ~WhitenessWitness();
2855 IncrementalMarking* marking_;
2858 // An entry in a DescriptorArray, represented as an (array, index) pair.
2861 inline explicit Entry(DescriptorArray* descs, int index) :
2862 descs_(descs), index_(index) { }
2864 inline PropertyType type();
2865 inline Object* GetCallbackObject();
2868 DescriptorArray* descs_;
2872 // Conversion from descriptor number to array indices.
2873 static int ToKeyIndex(int descriptor_number) {
2874 return kFirstIndex +
2875 (descriptor_number * kDescriptorSize) +
2879 static int ToDetailsIndex(int descriptor_number) {
2880 return kFirstIndex +
2881 (descriptor_number * kDescriptorSize) +
2885 static int ToValueIndex(int descriptor_number) {
2886 return kFirstIndex +
2887 (descriptor_number * kDescriptorSize) +
2891 // Transfer a complete descriptor from the src descriptor array to this
2892 // descriptor array.
2893 void CopyFrom(int index, DescriptorArray* src, const WhitenessWitness&);
2895 inline void Set(int descriptor_number,
2897 const WhitenessWitness&);
2899 // Swap first and second descriptor.
2900 inline void SwapSortedKeys(int first, int second);
2902 DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
2906 enum SearchMode { ALL_ENTRIES, VALID_ENTRIES };
2908 template <SearchMode search_mode, typename T>
2909 inline int Search(T* array, Name* name, int valid_entries = 0,
2910 int* out_insertion_index = NULL);
2913 // HashTable is a subclass of FixedArray that implements a hash table
2914 // that uses open addressing and quadratic probing.
2916 // In order for the quadratic probing to work, elements that have not
2917 // yet been used and elements that have been deleted are
2918 // distinguished. Probing continues when deleted elements are
2919 // encountered and stops when unused elements are encountered.
2921 // - Elements with key == undefined have not been used yet.
2922 // - Elements with key == the_hole have been deleted.
2924 // The hash table class is parameterized with a Shape and a Key.
2925 // Shape must be a class with the following interface:
2926 // class ExampleShape {
2928 // // Tells whether key matches other.
2929 // static bool IsMatch(Key key, Object* other);
2930 // // Returns the hash value for key.
2931 // static uint32_t Hash(Key key);
2932 // // Returns the hash value for object.
2933 // static uint32_t HashForObject(Key key, Object* object);
2934 // // Convert key to an object.
2935 // static inline Handle<Object> AsHandle(Isolate* isolate, Key key);
2936 // // The prefix size indicates number of elements in the beginning
2937 // // of the backing storage.
2938 // static const int kPrefixSize = ..;
2939 // // The Element size indicates number of elements per entry.
2940 // static const int kEntrySize = ..;
2942 // The prefix size indicates an amount of memory in the
2943 // beginning of the backing storage that can be used for non-element
2944 // information by subclasses.
2946 template<typename Key>
2949 static const bool UsesSeed = false;
2950 static uint32_t Hash(Key key) { return 0; }
2951 static uint32_t SeededHash(Key key, uint32_t seed) {
2955 static uint32_t HashForObject(Key key, Object* object) { return 0; }
2956 static uint32_t SeededHashForObject(Key key, uint32_t seed, Object* object) {
2958 return HashForObject(key, object);
2963 class HashTableBase : public FixedArray {
2965 // Returns the number of elements in the hash table.
2966 inline int NumberOfElements();
2968 // Returns the number of deleted elements in the hash table.
2969 inline int NumberOfDeletedElements();
2971 // Returns the capacity of the hash table.
2972 inline int Capacity();
2974 // ElementAdded should be called whenever an element is added to a
2976 inline void ElementAdded();
2978 // ElementRemoved should be called whenever an element is removed from
2980 inline void ElementRemoved();
2981 inline void ElementsRemoved(int n);
2983 // Computes the required capacity for a table holding the given
2984 // number of elements. May be more than HashTable::kMaxCapacity.
2985 static inline int ComputeCapacity(int at_least_space_for);
2987 // Tells whether k is a real key. The hole and undefined are not allowed
2988 // as keys and can be used to indicate missing or deleted elements.
2989 inline bool IsKey(Object* k);
2991 // Compute the probe offset (quadratic probing).
2992 INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
2993 return (n + n * n) >> 1;
2996 static const int kNumberOfElementsIndex = 0;
2997 static const int kNumberOfDeletedElementsIndex = 1;
2998 static const int kCapacityIndex = 2;
2999 static const int kPrefixStartIndex = 3;
3001 // Constant used for denoting a absent entry.
3002 static const int kNotFound = -1;
3005 // Update the number of elements in the hash table.
3006 inline void SetNumberOfElements(int nof);
3008 // Update the number of deleted elements in the hash table.
3009 inline void SetNumberOfDeletedElements(int nod);
3011 // Returns probe entry.
3012 static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
3013 DCHECK(base::bits::IsPowerOfTwo32(size));
3014 return (hash + GetProbeOffset(number)) & (size - 1);
3017 inline static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
3018 return hash & (size - 1);
3021 inline static uint32_t NextProbe(
3022 uint32_t last, uint32_t number, uint32_t size) {
3023 return (last + number) & (size - 1);
3028 template <typename Derived, typename Shape, typename Key>
3029 class HashTable : public HashTableBase {
3032 inline uint32_t Hash(Key key) {
3033 if (Shape::UsesSeed) {
3034 return Shape::SeededHash(key, GetHeap()->HashSeed());
3036 return Shape::Hash(key);
3040 inline uint32_t HashForObject(Key key, Object* object) {
3041 if (Shape::UsesSeed) {
3042 return Shape::SeededHashForObject(key, GetHeap()->HashSeed(), object);
3044 return Shape::HashForObject(key, object);
3048 // Returns a new HashTable object.
3049 MUST_USE_RESULT static Handle<Derived> New(
3050 Isolate* isolate, int at_least_space_for,
3051 MinimumCapacity capacity_option = USE_DEFAULT_MINIMUM_CAPACITY,
3052 PretenureFlag pretenure = NOT_TENURED);
3054 DECLARE_CAST(HashTable)
3056 // Garbage collection support.
3057 void IteratePrefix(ObjectVisitor* visitor);
3058 void IterateElements(ObjectVisitor* visitor);
3060 // Find entry for key otherwise return kNotFound.
3061 inline int FindEntry(Key key);
3062 inline int FindEntry(Isolate* isolate, Key key, int32_t hash);
3063 int FindEntry(Isolate* isolate, Key key);
3065 // Rehashes the table in-place.
3066 void Rehash(Key key);
3068 // Returns the key at entry.
3069 Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
3071 static const int kElementsStartIndex = kPrefixStartIndex + Shape::kPrefixSize;
3072 static const int kEntrySize = Shape::kEntrySize;
3073 static const int kElementsStartOffset =
3074 kHeaderSize + kElementsStartIndex * kPointerSize;
3075 static const int kCapacityOffset =
3076 kHeaderSize + kCapacityIndex * kPointerSize;
3078 // Returns the index for an entry (of the key)
3079 static inline int EntryToIndex(int entry) {
3080 return (entry * kEntrySize) + kElementsStartIndex;
3084 friend class ObjectHashTable;
3086 // Find the entry at which to insert element with the given key that
3087 // has the given hash value.
3088 uint32_t FindInsertionEntry(uint32_t hash);
3090 // Attempt to shrink hash table after removal of key.
3091 MUST_USE_RESULT static Handle<Derived> Shrink(Handle<Derived> table, Key key);
3093 // Ensure enough space for n additional elements.
3094 MUST_USE_RESULT static Handle<Derived> EnsureCapacity(
3095 Handle<Derived> table,
3098 PretenureFlag pretenure = NOT_TENURED);
3100 // Sets the capacity of the hash table.
3101 void SetCapacity(int capacity) {
3102 // To scale a computed hash code to fit within the hash table, we
3103 // use bit-wise AND with a mask, so the capacity must be positive
3105 DCHECK(capacity > 0);
3106 DCHECK(capacity <= kMaxCapacity);
3107 set(kCapacityIndex, Smi::FromInt(capacity));
3110 // Maximal capacity of HashTable. Based on maximal length of underlying
3111 // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
3113 static const int kMaxCapacity =
3114 (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
3117 // Returns _expected_ if one of entries given by the first _probe_ probes is
3118 // equal to _expected_. Otherwise, returns the entry given by the probe
3120 uint32_t EntryForProbe(Key key, Object* k, int probe, uint32_t expected);
3122 void Swap(uint32_t entry1, uint32_t entry2, WriteBarrierMode mode);
3124 // Rehashes this hash-table into the new table.
3125 void Rehash(Handle<Derived> new_table, Key key);
3129 // HashTableKey is an abstract superclass for virtual key behavior.
3130 class HashTableKey {
3132 // Returns whether the other object matches this key.
3133 virtual bool IsMatch(Object* other) = 0;
3134 // Returns the hash value for this key.
3135 virtual uint32_t Hash() = 0;
3136 // Returns the hash value for object.
3137 virtual uint32_t HashForObject(Object* key) = 0;
3138 // Returns the key object for storing into the hash table.
3139 MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate) = 0;
3141 virtual ~HashTableKey() {}
3145 class StringTableShape : public BaseShape<HashTableKey*> {
3147 static inline bool IsMatch(HashTableKey* key, Object* value) {
3148 return key->IsMatch(value);
3151 static inline uint32_t Hash(HashTableKey* key) {
3155 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3156 return key->HashForObject(object);
3159 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
3161 static const int kPrefixSize = 0;
3162 static const int kEntrySize = 1;
3165 class SeqOneByteString;
3169 // No special elements in the prefix and the element size is 1
3170 // because only the string itself (the key) needs to be stored.
3171 class StringTable: public HashTable<StringTable,
3175 // Find string in the string table. If it is not there yet, it is
3176 // added. The return value is the string found.
3177 static Handle<String> LookupString(Isolate* isolate, Handle<String> key);
3178 static Handle<String> LookupKey(Isolate* isolate, HashTableKey* key);
3179 static String* LookupKeyIfExists(Isolate* isolate, HashTableKey* key);
3181 // Tries to internalize given string and returns string handle on success
3182 // or an empty handle otherwise.
3183 MUST_USE_RESULT static MaybeHandle<String> InternalizeStringIfExists(
3185 Handle<String> string);
3187 // Looks up a string that is equal to the given string and returns
3188 // string handle if it is found, or an empty handle otherwise.
3189 MUST_USE_RESULT static MaybeHandle<String> LookupStringIfExists(
3191 Handle<String> str);
3192 MUST_USE_RESULT static MaybeHandle<String> LookupTwoCharsStringIfExists(
3197 static void EnsureCapacityForDeserialization(Isolate* isolate, int expected);
3199 DECLARE_CAST(StringTable)
3202 template <bool seq_one_byte>
3203 friend class JsonParser;
3205 DISALLOW_IMPLICIT_CONSTRUCTORS(StringTable);
3209 template <typename Derived, typename Shape, typename Key>
3210 class Dictionary: public HashTable<Derived, Shape, Key> {
3211 typedef HashTable<Derived, Shape, Key> DerivedHashTable;
3214 // Returns the value at entry.
3215 Object* ValueAt(int entry) {
3216 return this->get(Derived::EntryToIndex(entry) + 1);
3219 // Set the value for entry.
3220 void ValueAtPut(int entry, Object* value) {
3221 this->set(Derived::EntryToIndex(entry) + 1, value);
3224 // Returns the property details for the property at entry.
3225 PropertyDetails DetailsAt(int entry) {
3226 return Shape::DetailsAt(static_cast<Derived*>(this), entry);
3229 // Set the details for entry.
3230 void DetailsAtPut(int entry, PropertyDetails value) {
3231 Shape::DetailsAtPut(static_cast<Derived*>(this), entry, value);
3234 // Returns true if property at given entry is deleted.
3235 bool IsDeleted(int entry) {
3236 return Shape::IsDeleted(static_cast<Derived*>(this), entry);
3239 // Delete a property from the dictionary.
3240 static Handle<Object> DeleteProperty(Handle<Derived> dictionary, int entry);
3242 // Attempt to shrink the dictionary after deletion of key.
3243 MUST_USE_RESULT static inline Handle<Derived> Shrink(
3244 Handle<Derived> dictionary,
3246 return DerivedHashTable::Shrink(dictionary, key);
3250 // TODO(dcarney): templatize or move to SeededNumberDictionary
3251 void CopyValuesTo(FixedArray* elements);
3253 // Returns the number of elements in the dictionary filtering out properties
3254 // with the specified attributes.
3255 int NumberOfElementsFilterAttributes(PropertyAttributes filter);
3257 // Returns the number of enumerable elements in the dictionary.
3258 int NumberOfEnumElements() {
3259 return NumberOfElementsFilterAttributes(
3260 static_cast<PropertyAttributes>(DONT_ENUM | SYMBOLIC));
3263 // Returns true if the dictionary contains any elements that are non-writable,
3264 // non-configurable, non-enumerable, or have getters/setters.
3265 bool HasComplexElements();
3267 enum SortMode { UNSORTED, SORTED };
3269 // Fill in details for properties into storage.
3270 // Returns the number of properties added.
3271 int CopyKeysTo(FixedArray* storage, int index, PropertyAttributes filter,
3272 SortMode sort_mode);
3274 // Copies enumerable keys to preallocated fixed array.
3275 void CopyEnumKeysTo(FixedArray* storage);
3277 // Accessors for next enumeration index.
3278 void SetNextEnumerationIndex(int index) {
3280 this->set(kNextEnumerationIndexIndex, Smi::FromInt(index));
3283 int NextEnumerationIndex() {
3284 return Smi::cast(this->get(kNextEnumerationIndexIndex))->value();
3287 // Creates a new dictionary.
3288 MUST_USE_RESULT static Handle<Derived> New(
3290 int at_least_space_for,
3291 PretenureFlag pretenure = NOT_TENURED);
3293 // Ensure enough space for n additional elements.
3294 static Handle<Derived> EnsureCapacity(Handle<Derived> obj, int n, Key key);
3297 void Print(std::ostream& os); // NOLINT
3299 // Returns the key (slow).
3300 Object* SlowReverseLookup(Object* value);
3302 // Sets the entry to (key, value) pair.
3303 inline void SetEntry(int entry,
3305 Handle<Object> value);
3306 inline void SetEntry(int entry,
3308 Handle<Object> value,
3309 PropertyDetails details);
3311 MUST_USE_RESULT static Handle<Derived> Add(
3312 Handle<Derived> dictionary,
3314 Handle<Object> value,
3315 PropertyDetails details);
3317 // Returns iteration indices array for the |dictionary|.
3318 // Values are direct indices in the |HashTable| array.
3319 static Handle<FixedArray> BuildIterationIndicesArray(
3320 Handle<Derived> dictionary);
3323 // Generic at put operation.
3324 MUST_USE_RESULT static Handle<Derived> AtPut(
3325 Handle<Derived> dictionary,
3327 Handle<Object> value);
3329 // Add entry to dictionary.
3330 static void AddEntry(
3331 Handle<Derived> dictionary,
3333 Handle<Object> value,
3334 PropertyDetails details,
3337 // Generate new enumeration indices to avoid enumeration index overflow.
3338 // Returns iteration indices array for the |dictionary|.
3339 static Handle<FixedArray> GenerateNewEnumerationIndices(
3340 Handle<Derived> dictionary);
3341 static const int kMaxNumberKeyIndex = DerivedHashTable::kPrefixStartIndex;
3342 static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
3346 template <typename Derived, typename Shape>
3347 class NameDictionaryBase : public Dictionary<Derived, Shape, Handle<Name> > {
3348 typedef Dictionary<Derived, Shape, Handle<Name> > DerivedDictionary;
3351 // Find entry for key, otherwise return kNotFound. Optimized version of
3352 // HashTable::FindEntry.
3353 int FindEntry(Handle<Name> key);
3357 template <typename Key>
3358 class BaseDictionaryShape : public BaseShape<Key> {
3360 template <typename Dictionary>
3361 static inline PropertyDetails DetailsAt(Dictionary* dict, int entry) {
3362 STATIC_ASSERT(Dictionary::kEntrySize == 3);
3363 DCHECK(entry >= 0); // Not found is -1, which is not caught by get().
3364 return PropertyDetails(
3365 Smi::cast(dict->get(Dictionary::EntryToIndex(entry) + 2)));
3368 template <typename Dictionary>
3369 static inline void DetailsAtPut(Dictionary* dict, int entry,
3370 PropertyDetails value) {
3371 STATIC_ASSERT(Dictionary::kEntrySize == 3);
3372 dict->set(Dictionary::EntryToIndex(entry) + 2, value.AsSmi());
3375 template <typename Dictionary>
3376 static bool IsDeleted(Dictionary* dict, int entry) {
3380 template <typename Dictionary>
3381 static inline void SetEntry(Dictionary* dict, int entry, Handle<Object> key,
3382 Handle<Object> value, PropertyDetails details);
3386 class NameDictionaryShape : public BaseDictionaryShape<Handle<Name> > {
3388 static inline bool IsMatch(Handle<Name> key, Object* other);
3389 static inline uint32_t Hash(Handle<Name> key);
3390 static inline uint32_t HashForObject(Handle<Name> key, Object* object);
3391 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Name> key);
3392 static const int kPrefixSize = 2;
3393 static const int kEntrySize = 3;
3394 static const bool kIsEnumerable = true;
3398 class NameDictionary
3399 : public NameDictionaryBase<NameDictionary, NameDictionaryShape> {
3400 typedef NameDictionaryBase<NameDictionary, NameDictionaryShape>
3404 DECLARE_CAST(NameDictionary)
3406 inline static Handle<FixedArray> DoGenerateNewEnumerationIndices(
3407 Handle<NameDictionary> dictionary);
3411 class GlobalDictionaryShape : public NameDictionaryShape {
3413 static const int kEntrySize = 2; // Overrides NameDictionaryShape::kEntrySize
3415 template <typename Dictionary>
3416 static inline PropertyDetails DetailsAt(Dictionary* dict, int entry);
3418 template <typename Dictionary>
3419 static inline void DetailsAtPut(Dictionary* dict, int entry,
3420 PropertyDetails value);
3422 template <typename Dictionary>
3423 static bool IsDeleted(Dictionary* dict, int entry);
3425 template <typename Dictionary>
3426 static inline void SetEntry(Dictionary* dict, int entry, Handle<Object> key,
3427 Handle<Object> value, PropertyDetails details);
3431 class GlobalDictionary
3432 : public NameDictionaryBase<GlobalDictionary, GlobalDictionaryShape> {
3434 DECLARE_CAST(GlobalDictionary)
3438 class NumberDictionaryShape : public BaseDictionaryShape<uint32_t> {
3440 static inline bool IsMatch(uint32_t key, Object* other);
3441 static inline Handle<Object> AsHandle(Isolate* isolate, uint32_t key);
3442 static const int kEntrySize = 3;
3443 static const bool kIsEnumerable = false;
3447 class SeededNumberDictionaryShape : public NumberDictionaryShape {
3449 static const bool UsesSeed = true;
3450 static const int kPrefixSize = 2;
3452 static inline uint32_t SeededHash(uint32_t key, uint32_t seed);
3453 static inline uint32_t SeededHashForObject(uint32_t key,
3459 class UnseededNumberDictionaryShape : public NumberDictionaryShape {
3461 static const int kPrefixSize = 0;
3463 static inline uint32_t Hash(uint32_t key);
3464 static inline uint32_t HashForObject(uint32_t key, Object* object);
3468 class SeededNumberDictionary
3469 : public Dictionary<SeededNumberDictionary,
3470 SeededNumberDictionaryShape,
3473 DECLARE_CAST(SeededNumberDictionary)
3475 // Type specific at put (default NONE attributes is used when adding).
3476 MUST_USE_RESULT static Handle<SeededNumberDictionary> AtNumberPut(
3477 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3478 Handle<Object> value, bool used_as_prototype);
3479 MUST_USE_RESULT static Handle<SeededNumberDictionary> AddNumberEntry(
3480 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3481 Handle<Object> value, PropertyDetails details, bool used_as_prototype);
3483 // Set an existing entry or add a new one if needed.
3484 // Return the updated dictionary.
3485 MUST_USE_RESULT static Handle<SeededNumberDictionary> Set(
3486 Handle<SeededNumberDictionary> dictionary, uint32_t key,
3487 Handle<Object> value, PropertyDetails details, bool used_as_prototype);
3489 void UpdateMaxNumberKey(uint32_t key, bool used_as_prototype);
3491 // If slow elements are required we will never go back to fast-case
3492 // for the elements kept in this dictionary. We require slow
3493 // elements if an element has been added at an index larger than
3494 // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
3495 // when defining a getter or setter with a number key.
3496 inline bool requires_slow_elements();
3497 inline void set_requires_slow_elements();
3499 // Get the value of the max number key that has been added to this
3500 // dictionary. max_number_key can only be called if
3501 // requires_slow_elements returns false.
3502 inline uint32_t max_number_key();
3505 static const int kRequiresSlowElementsMask = 1;
3506 static const int kRequiresSlowElementsTagSize = 1;
3507 static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
3511 class UnseededNumberDictionary
3512 : public Dictionary<UnseededNumberDictionary,
3513 UnseededNumberDictionaryShape,
3516 DECLARE_CAST(UnseededNumberDictionary)
3518 // Type specific at put (default NONE attributes is used when adding).
3519 MUST_USE_RESULT static Handle<UnseededNumberDictionary> AtNumberPut(
3520 Handle<UnseededNumberDictionary> dictionary,
3522 Handle<Object> value);
3523 MUST_USE_RESULT static Handle<UnseededNumberDictionary> AddNumberEntry(
3524 Handle<UnseededNumberDictionary> dictionary,
3526 Handle<Object> value);
3528 // Set an existing entry or add a new one if needed.
3529 // Return the updated dictionary.
3530 MUST_USE_RESULT static Handle<UnseededNumberDictionary> Set(
3531 Handle<UnseededNumberDictionary> dictionary,
3533 Handle<Object> value);
3537 class ObjectHashTableShape : public BaseShape<Handle<Object> > {
3539 static inline bool IsMatch(Handle<Object> key, Object* other);
3540 static inline uint32_t Hash(Handle<Object> key);
3541 static inline uint32_t HashForObject(Handle<Object> key, Object* object);
3542 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
3543 static const int kPrefixSize = 0;
3544 static const int kEntrySize = 2;
3548 // ObjectHashTable maps keys that are arbitrary objects to object values by
3549 // using the identity hash of the key for hashing purposes.
3550 class ObjectHashTable: public HashTable<ObjectHashTable,
3551 ObjectHashTableShape,
3554 ObjectHashTable, ObjectHashTableShape, Handle<Object> > DerivedHashTable;
3556 DECLARE_CAST(ObjectHashTable)
3558 // Attempt to shrink hash table after removal of key.
3559 MUST_USE_RESULT static inline Handle<ObjectHashTable> Shrink(
3560 Handle<ObjectHashTable> table,
3561 Handle<Object> key);
3563 // Looks up the value associated with the given key. The hole value is
3564 // returned in case the key is not present.
3565 Object* Lookup(Handle<Object> key);
3566 Object* Lookup(Handle<Object> key, int32_t hash);
3567 Object* Lookup(Isolate* isolate, Handle<Object> key, int32_t hash);
3569 // Adds (or overwrites) the value associated with the given key.
3570 static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
3572 Handle<Object> value);
3573 static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
3574 Handle<Object> key, Handle<Object> value,
3577 // Returns an ObjectHashTable (possibly |table|) where |key| has been removed.
3578 static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
3581 static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
3582 Handle<Object> key, bool* was_present,
3586 friend class MarkCompactCollector;
3588 void AddEntry(int entry, Object* key, Object* value);
3589 void RemoveEntry(int entry);
3591 // Returns the index to the value of an entry.
3592 static inline int EntryToValueIndex(int entry) {
3593 return EntryToIndex(entry) + 1;
3598 // OrderedHashTable is a HashTable with Object keys that preserves
3599 // insertion order. There are Map and Set interfaces (OrderedHashMap
3600 // and OrderedHashTable, below). It is meant to be used by JSMap/JSSet.
3602 // Only Object* keys are supported, with Object::SameValueZero() used as the
3603 // equality operator and Object::GetHash() for the hash function.
3605 // Based on the "Deterministic Hash Table" as described by Jason Orendorff at
3606 // https://wiki.mozilla.org/User:Jorend/Deterministic_hash_tables
3607 // Originally attributed to Tyler Close.
3610 // [0]: bucket count
3611 // [1]: element count
3612 // [2]: deleted element count
3613 // [3..(3 + NumberOfBuckets() - 1)]: "hash table", where each item is an
3614 // offset into the data table (see below) where the
3615 // first item in this bucket is stored.
3616 // [3 + NumberOfBuckets()..length]: "data table", an array of length
3617 // Capacity() * kEntrySize, where the first entrysize
3618 // items are handled by the derived class and the
3619 // item at kChainOffset is another entry into the
3620 // data table indicating the next entry in this hash
3623 // When we transition the table to a new version we obsolete it and reuse parts
3624 // of the memory to store information how to transition an iterator to the new
3627 // Memory layout for obsolete table:
3628 // [0]: bucket count
3629 // [1]: Next newer table
3630 // [2]: Number of removed holes or -1 when the table was cleared.
3631 // [3..(3 + NumberOfRemovedHoles() - 1)]: The indexes of the removed holes.
3632 // [3 + NumberOfRemovedHoles()..length]: Not used
3634 template<class Derived, class Iterator, int entrysize>
3635 class OrderedHashTable: public FixedArray {
3637 // Returns an OrderedHashTable with a capacity of at least |capacity|.
3638 static Handle<Derived> Allocate(
3639 Isolate* isolate, int capacity, PretenureFlag pretenure = NOT_TENURED);
3641 // Returns an OrderedHashTable (possibly |table|) with enough space
3642 // to add at least one new element.
3643 static Handle<Derived> EnsureGrowable(Handle<Derived> table);
3645 // Returns an OrderedHashTable (possibly |table|) that's shrunken
3647 static Handle<Derived> Shrink(Handle<Derived> table);
3649 // Returns a new empty OrderedHashTable and records the clearing so that
3650 // exisiting iterators can be updated.
3651 static Handle<Derived> Clear(Handle<Derived> table);
3653 // Returns a true if the OrderedHashTable contains the key
3654 static bool HasKey(Handle<Derived> table, Handle<Object> key);
3656 int NumberOfElements() {
3657 return Smi::cast(get(kNumberOfElementsIndex))->value();
3660 int NumberOfDeletedElements() {
3661 return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
3664 int UsedCapacity() { return NumberOfElements() + NumberOfDeletedElements(); }
3666 int NumberOfBuckets() {
3667 return Smi::cast(get(kNumberOfBucketsIndex))->value();
3670 // Returns an index into |this| for the given entry.
3671 int EntryToIndex(int entry) {
3672 return kHashTableStartIndex + NumberOfBuckets() + (entry * kEntrySize);
3675 int HashToBucket(int hash) { return hash & (NumberOfBuckets() - 1); }
3677 int HashToEntry(int hash) {
3678 int bucket = HashToBucket(hash);
3679 Object* entry = this->get(kHashTableStartIndex + bucket);
3680 return Smi::cast(entry)->value();
3683 int KeyToFirstEntry(Object* key) {
3684 Object* hash = key->GetHash();
3685 // If the object does not have an identity hash, it was never used as a key
3686 if (hash->IsUndefined()) return kNotFound;
3687 return HashToEntry(Smi::cast(hash)->value());
3690 int NextChainEntry(int entry) {
3691 Object* next_entry = get(EntryToIndex(entry) + kChainOffset);
3692 return Smi::cast(next_entry)->value();
3695 Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
3698 return !get(kNextTableIndex)->IsSmi();
3701 // The next newer table. This is only valid if the table is obsolete.
3702 Derived* NextTable() {
3703 return Derived::cast(get(kNextTableIndex));
3706 // When the table is obsolete we store the indexes of the removed holes.
3707 int RemovedIndexAt(int index) {
3708 return Smi::cast(get(kRemovedHolesIndex + index))->value();
3711 static const int kNotFound = -1;
3712 static const int kMinCapacity = 4;
3714 static const int kNumberOfBucketsIndex = 0;
3715 static const int kNumberOfElementsIndex = kNumberOfBucketsIndex + 1;
3716 static const int kNumberOfDeletedElementsIndex = kNumberOfElementsIndex + 1;
3717 static const int kHashTableStartIndex = kNumberOfDeletedElementsIndex + 1;
3718 static const int kNextTableIndex = kNumberOfElementsIndex;
3720 static const int kNumberOfBucketsOffset =
3721 kHeaderSize + kNumberOfBucketsIndex * kPointerSize;
3722 static const int kNumberOfElementsOffset =
3723 kHeaderSize + kNumberOfElementsIndex * kPointerSize;
3724 static const int kNumberOfDeletedElementsOffset =
3725 kHeaderSize + kNumberOfDeletedElementsIndex * kPointerSize;
3726 static const int kHashTableStartOffset =
3727 kHeaderSize + kHashTableStartIndex * kPointerSize;
3728 static const int kNextTableOffset =
3729 kHeaderSize + kNextTableIndex * kPointerSize;
3731 static const int kEntrySize = entrysize + 1;
3732 static const int kChainOffset = entrysize;
3734 static const int kLoadFactor = 2;
3736 // NumberOfDeletedElements is set to kClearedTableSentinel when
3737 // the table is cleared, which allows iterator transitions to
3738 // optimize that case.
3739 static const int kClearedTableSentinel = -1;
3742 static Handle<Derived> Rehash(Handle<Derived> table, int new_capacity);
3744 void SetNumberOfBuckets(int num) {
3745 set(kNumberOfBucketsIndex, Smi::FromInt(num));
3748 void SetNumberOfElements(int num) {
3749 set(kNumberOfElementsIndex, Smi::FromInt(num));
3752 void SetNumberOfDeletedElements(int num) {
3753 set(kNumberOfDeletedElementsIndex, Smi::FromInt(num));
3757 return NumberOfBuckets() * kLoadFactor;
3760 void SetNextTable(Derived* next_table) {
3761 set(kNextTableIndex, next_table);
3764 void SetRemovedIndexAt(int index, int removed_index) {
3765 return set(kRemovedHolesIndex + index, Smi::FromInt(removed_index));
3768 static const int kRemovedHolesIndex = kHashTableStartIndex;
3770 static const int kMaxCapacity =
3771 (FixedArray::kMaxLength - kHashTableStartIndex)
3772 / (1 + (kEntrySize * kLoadFactor));
3776 class JSSetIterator;
3779 class OrderedHashSet: public OrderedHashTable<
3780 OrderedHashSet, JSSetIterator, 1> {
3782 DECLARE_CAST(OrderedHashSet)
3784 static Handle<OrderedHashSet> Add(Handle<OrderedHashSet> table,
3785 Handle<Object> value);
3789 class JSMapIterator;
3792 class OrderedHashMap
3793 : public OrderedHashTable<OrderedHashMap, JSMapIterator, 2> {
3795 DECLARE_CAST(OrderedHashMap)
3797 inline Object* ValueAt(int entry);
3799 static const int kValueOffset = 1;
3803 template <int entrysize>
3804 class WeakHashTableShape : public BaseShape<Handle<Object> > {
3806 static inline bool IsMatch(Handle<Object> key, Object* other);
3807 static inline uint32_t Hash(Handle<Object> key);
3808 static inline uint32_t HashForObject(Handle<Object> key, Object* object);
3809 static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
3810 static const int kPrefixSize = 0;
3811 static const int kEntrySize = entrysize;
3815 // WeakHashTable maps keys that are arbitrary heap objects to heap object
3816 // values. The table wraps the keys in weak cells and store values directly.
3817 // Thus it references keys weakly and values strongly.
3818 class WeakHashTable: public HashTable<WeakHashTable,
3819 WeakHashTableShape<2>,
3822 WeakHashTable, WeakHashTableShape<2>, Handle<Object> > DerivedHashTable;
3824 DECLARE_CAST(WeakHashTable)
3826 // Looks up the value associated with the given key. The hole value is
3827 // returned in case the key is not present.
3828 Object* Lookup(Handle<HeapObject> key);
3830 // Adds (or overwrites) the value associated with the given key. Mapping a
3831 // key to the hole value causes removal of the whole entry.
3832 MUST_USE_RESULT static Handle<WeakHashTable> Put(Handle<WeakHashTable> table,
3833 Handle<HeapObject> key,
3834 Handle<HeapObject> value);
3836 static Handle<FixedArray> GetValues(Handle<WeakHashTable> table);
3839 friend class MarkCompactCollector;
3841 void AddEntry(int entry, Handle<WeakCell> key, Handle<HeapObject> value);
3843 // Returns the index to the value of an entry.
3844 static inline int EntryToValueIndex(int entry) {
3845 return EntryToIndex(entry) + 1;
3850 // ScopeInfo represents information about different scopes of a source
3851 // program and the allocation of the scope's variables. Scope information
3852 // is stored in a compressed form in ScopeInfo objects and is used
3853 // at runtime (stack dumps, deoptimization, etc.).
3855 // This object provides quick access to scope info details for runtime
3857 class ScopeInfo : public FixedArray {
3859 DECLARE_CAST(ScopeInfo)
3861 // Return the type of this scope.
3862 ScopeType scope_type();
3864 // Does this scope call eval?
3867 // Return the language mode of this scope.
3868 LanguageMode language_mode();
3870 // True if this scope is a (var) declaration scope.
3871 bool is_declaration_scope();
3873 // Does this scope make a sloppy eval call?
3874 bool CallsSloppyEval() { return CallsEval() && is_sloppy(language_mode()); }
3876 // Return the total number of locals allocated on the stack and in the
3877 // context. This includes the parameters that are allocated in the context.
3880 // Return the number of stack slots for code. This number consists of two
3882 // 1. One stack slot per stack allocated local.
3883 // 2. One stack slot for the function name if it is stack allocated.
3884 int StackSlotCount();
3886 // Return the number of context slots for code if a context is allocated. This
3887 // number consists of three parts:
3888 // 1. Size of fixed header for every context: Context::MIN_CONTEXT_SLOTS
3889 // 2. One context slot per context allocated local.
3890 // 3. One context slot for the function name if it is context allocated.
3891 // Parameters allocated in the context count as context allocated locals. If
3892 // no contexts are allocated for this scope ContextLength returns 0.
3893 int ContextLength();
3895 // Does this scope declare a "this" binding?
3898 // Does this scope declare a "this" binding, and the "this" binding is stack-
3899 // or context-allocated?
3900 bool HasAllocatedReceiver();
3902 // Is this scope the scope of a named function expression?
3903 bool HasFunctionName();
3905 // Return if this has context allocated locals.
3906 bool HasHeapAllocatedLocals();
3908 // Return if contexts are allocated for this scope.
3911 // Return if this is a function scope with "use asm".
3912 inline bool IsAsmModule();
3914 // Return if this is a nested function within an asm module scope.
3915 inline bool IsAsmFunction();
3917 inline bool HasSimpleParameters();
3919 // Return the function_name if present.
3920 String* FunctionName();
3922 // Return the name of the given parameter.
3923 String* ParameterName(int var);
3925 // Return the name of the given local.
3926 String* LocalName(int var);
3928 // Return the name of the given stack local.
3929 String* StackLocalName(int var);
3931 // Return the name of the given stack local.
3932 int StackLocalIndex(int var);
3934 // Return the name of the given context local.
3935 String* ContextLocalName(int var);
3937 // Return the mode of the given context local.
3938 VariableMode ContextLocalMode(int var);
3940 // Return the initialization flag of the given context local.
3941 InitializationFlag ContextLocalInitFlag(int var);
3943 // Return the initialization flag of the given context local.
3944 MaybeAssignedFlag ContextLocalMaybeAssignedFlag(int var);
3946 // Return true if this local was introduced by the compiler, and should not be
3947 // exposed to the user in a debugger.
3948 bool LocalIsSynthetic(int var);
3950 String* StrongModeFreeVariableName(int var);
3951 int StrongModeFreeVariableStartPosition(int var);
3952 int StrongModeFreeVariableEndPosition(int var);
3954 // Lookup support for serialized scope info. Returns the
3955 // the stack slot index for a given slot name if the slot is
3956 // present; otherwise returns a value < 0. The name must be an internalized
3958 int StackSlotIndex(String* name);
3960 // Lookup support for serialized scope info. Returns the local context slot
3961 // index for a given slot name if the slot is present; otherwise
3962 // returns a value < 0. The name must be an internalized string.
3963 // If the slot is present and mode != NULL, sets *mode to the corresponding
3964 // mode for that variable.
3965 static int ContextSlotIndex(Handle<ScopeInfo> scope_info, Handle<String> name,
3966 VariableMode* mode, InitializationFlag* init_flag,
3967 MaybeAssignedFlag* maybe_assigned_flag);
3969 // Similar to ContextSlotIndex() but this method searches only among
3970 // global slots of the serialized scope info. Returns the context slot index
3971 // for a given slot name if the slot is present; otherwise returns a
3972 // value < 0. The name must be an internalized string. If the slot is present
3973 // and mode != NULL, sets *mode to the corresponding mode for that variable.
3974 static int ContextGlobalSlotIndex(Handle<ScopeInfo> scope_info,
3975 Handle<String> name, VariableMode* mode,
3976 InitializationFlag* init_flag,
3977 MaybeAssignedFlag* maybe_assigned_flag);
3979 // Lookup the name of a certain context slot by its index.
3980 String* ContextSlotName(int slot_index);
3982 // Lookup support for serialized scope info. Returns the
3983 // parameter index for a given parameter name if the parameter is present;
3984 // otherwise returns a value < 0. The name must be an internalized string.
3985 int ParameterIndex(String* name);
3987 // Lookup support for serialized scope info. Returns the function context
3988 // slot index if the function name is present and context-allocated (named
3989 // function expressions, only), otherwise returns a value < 0. The name
3990 // must be an internalized string.
3991 int FunctionContextSlotIndex(String* name, VariableMode* mode);
3993 // Lookup support for serialized scope info. Returns the receiver context
3994 // slot index if scope has a "this" binding, and the binding is
3995 // context-allocated. Otherwise returns a value < 0.
3996 int ReceiverContextSlotIndex();
3998 FunctionKind function_kind();
4000 static Handle<ScopeInfo> Create(Isolate* isolate, Zone* zone, Scope* scope);
4001 static Handle<ScopeInfo> CreateGlobalThisBinding(Isolate* isolate);
4003 // Serializes empty scope info.
4004 static ScopeInfo* Empty(Isolate* isolate);
4010 // The layout of the static part of a ScopeInfo is as follows. Each entry is
4011 // numeric and occupies one array slot.
4012 // 1. A set of properties of the scope
4013 // 2. The number of parameters. This only applies to function scopes. For
4014 // non-function scopes this is 0.
4015 // 3. The number of non-parameter variables allocated on the stack.
4016 // 4. The number of non-parameter and parameter variables allocated in the
4018 #define FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(V) \
4021 V(StackLocalCount) \
4022 V(ContextLocalCount) \
4023 V(ContextGlobalCount) \
4024 V(StrongModeFreeVariableCount)
4026 #define FIELD_ACCESSORS(name) \
4027 inline void Set##name(int value); \
4029 FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(FIELD_ACCESSORS)
4030 #undef FIELD_ACCESSORS
4034 #define DECL_INDEX(name) k##name,
4035 FOR_EACH_SCOPE_INFO_NUMERIC_FIELD(DECL_INDEX)
4040 // The layout of the variable part of a ScopeInfo is as follows:
4041 // 1. ParameterEntries:
4042 // This part stores the names of the parameters for function scopes. One
4043 // slot is used per parameter, so in total this part occupies
4044 // ParameterCount() slots in the array. For other scopes than function
4045 // scopes ParameterCount() is 0.
4046 // 2. StackLocalFirstSlot:
4047 // Index of a first stack slot for stack local. Stack locals belonging to
4048 // this scope are located on a stack at slots starting from this index.
4049 // 3. StackLocalEntries:
4050 // Contains the names of local variables that are allocated on the stack,
4051 // in increasing order of the stack slot index. First local variable has
4052 // a stack slot index defined in StackLocalFirstSlot (point 2 above).
4053 // One slot is used per stack local, so in total this part occupies
4054 // StackLocalCount() slots in the array.
4055 // 4. ContextLocalNameEntries:
4056 // Contains the names of local variables and parameters that are allocated
4057 // in the context. They are stored in increasing order of the context slot
4058 // index starting with Context::MIN_CONTEXT_SLOTS. One slot is used per
4059 // context local, so in total this part occupies ContextLocalCount() slots
4061 // 5. ContextLocalInfoEntries:
4062 // Contains the variable modes and initialization flags corresponding to
4063 // the context locals in ContextLocalNameEntries. One slot is used per
4064 // context local, so in total this part occupies ContextLocalCount()
4065 // slots in the array.
4066 // 6. StrongModeFreeVariableNameEntries:
4067 // Stores the names of strong mode free variables.
4068 // 7. StrongModeFreeVariablePositionEntries:
4069 // Stores the locations (start and end position) of strong mode free
4071 // 8. RecieverEntryIndex:
4072 // If the scope binds a "this" value, one slot is reserved to hold the
4073 // context or stack slot index for the variable.
4074 // 9. FunctionNameEntryIndex:
4075 // If the scope belongs to a named function expression this part contains
4076 // information about the function variable. It always occupies two array
4077 // slots: a. The name of the function variable.
4078 // b. The context or stack slot index for the variable.
4079 int ParameterEntriesIndex();
4080 int StackLocalFirstSlotIndex();
4081 int StackLocalEntriesIndex();
4082 int ContextLocalNameEntriesIndex();
4083 int ContextGlobalNameEntriesIndex();
4084 int ContextLocalInfoEntriesIndex();
4085 int ContextGlobalInfoEntriesIndex();
4086 int StrongModeFreeVariableNameEntriesIndex();
4087 int StrongModeFreeVariablePositionEntriesIndex();
4088 int ReceiverEntryIndex();
4089 int FunctionNameEntryIndex();
4091 int Lookup(Handle<String> name, int start, int end, VariableMode* mode,
4092 VariableLocation* location, InitializationFlag* init_flag,
4093 MaybeAssignedFlag* maybe_assigned_flag);
4095 // Used for the function name variable for named function expressions, and for
4097 enum VariableAllocationInfo { NONE, STACK, CONTEXT, UNUSED };
4099 // Properties of scopes.
4100 class ScopeTypeField : public BitField<ScopeType, 0, 4> {};
4101 class CallsEvalField : public BitField<bool, ScopeTypeField::kNext, 1> {};
4102 STATIC_ASSERT(LANGUAGE_END == 3);
4103 class LanguageModeField
4104 : public BitField<LanguageMode, CallsEvalField::kNext, 2> {};
4105 class DeclarationScopeField
4106 : public BitField<bool, LanguageModeField::kNext, 1> {};
4107 class ReceiverVariableField
4108 : public BitField<VariableAllocationInfo, DeclarationScopeField::kNext,
4110 class FunctionVariableField
4111 : public BitField<VariableAllocationInfo, ReceiverVariableField::kNext,
4113 class FunctionVariableMode
4114 : public BitField<VariableMode, FunctionVariableField::kNext, 3> {};
4115 class AsmModuleField : public BitField<bool, FunctionVariableMode::kNext, 1> {
4117 class AsmFunctionField : public BitField<bool, AsmModuleField::kNext, 1> {};
4118 class HasSimpleParametersField
4119 : public BitField<bool, AsmFunctionField::kNext, 1> {};
4120 class FunctionKindField
4121 : public BitField<FunctionKind, HasSimpleParametersField::kNext, 8> {};
4123 // BitFields representing the encoded information for context locals in the
4124 // ContextLocalInfoEntries part.
4125 class ContextLocalMode: public BitField<VariableMode, 0, 3> {};
4126 class ContextLocalInitFlag: public BitField<InitializationFlag, 3, 1> {};
4127 class ContextLocalMaybeAssignedFlag
4128 : public BitField<MaybeAssignedFlag, 4, 1> {};
4130 friend class ScopeIterator;
4134 // The cache for maps used by normalized (dictionary mode) objects.
4135 // Such maps do not have property descriptors, so a typical program
4136 // needs very limited number of distinct normalized maps.
4137 class NormalizedMapCache: public FixedArray {
4139 static Handle<NormalizedMapCache> New(Isolate* isolate);
4141 MUST_USE_RESULT MaybeHandle<Map> Get(Handle<Map> fast_map,
4142 PropertyNormalizationMode mode);
4143 void Set(Handle<Map> fast_map, Handle<Map> normalized_map);
4147 DECLARE_CAST(NormalizedMapCache)
4149 static inline bool IsNormalizedMapCache(const Object* obj);
4151 DECLARE_VERIFIER(NormalizedMapCache)
4153 static const int kEntries = 64;
4155 static inline int GetIndex(Handle<Map> map);
4157 // The following declarations hide base class methods.
4158 Object* get(int index);
4159 void set(int index, Object* value);
4163 // ByteArray represents fixed sized byte arrays. Used for the relocation info
4164 // that is attached to code objects.
4165 class ByteArray: public FixedArrayBase {
4169 // Setter and getter.
4170 inline byte get(int index);
4171 inline void set(int index, byte value);
4173 // Treat contents as an int array.
4174 inline int get_int(int index);
4176 static int SizeFor(int length) {
4177 return OBJECT_POINTER_ALIGN(kHeaderSize + length);
4179 // We use byte arrays for free blocks in the heap. Given a desired size in
4180 // bytes that is a multiple of the word size and big enough to hold a byte
4181 // array, this function returns the number of elements a byte array should
4183 static int LengthFor(int size_in_bytes) {
4184 DCHECK(IsAligned(size_in_bytes, kPointerSize));
4185 DCHECK(size_in_bytes >= kHeaderSize);
4186 return size_in_bytes - kHeaderSize;
4189 // Returns data start address.
4190 inline Address GetDataStartAddress();
4192 // Returns a pointer to the ByteArray object for a given data start address.
4193 static inline ByteArray* FromDataStartAddress(Address address);
4195 DECLARE_CAST(ByteArray)
4197 // Dispatched behavior.
4198 inline int ByteArraySize();
4199 DECLARE_PRINTER(ByteArray)
4200 DECLARE_VERIFIER(ByteArray)
4202 // Layout description.
4203 static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
4205 // Maximal memory consumption for a single ByteArray.
4206 static const int kMaxSize = 512 * MB;
4207 // Maximal length of a single ByteArray.
4208 static const int kMaxLength = kMaxSize - kHeaderSize;
4211 DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
4215 // BytecodeArray represents a sequence of interpreter bytecodes.
4216 class BytecodeArray : public FixedArrayBase {
4218 static int SizeFor(int length) {
4219 return OBJECT_POINTER_ALIGN(kHeaderSize + length);
4222 // Setter and getter
4223 inline byte get(int index);
4224 inline void set(int index, byte value);
4226 // Returns data start address.
4227 inline Address GetFirstBytecodeAddress();
4229 // Accessors for frame size.
4230 inline int frame_size() const;
4231 inline void set_frame_size(int frame_size);
4233 // Accessor for register count (derived from frame_size).
4234 inline int register_count() const;
4236 // Accessors for parameter count (including implicit 'this' receiver).
4237 inline int parameter_count() const;
4238 inline void set_parameter_count(int number_of_parameters);
4240 // Accessors for the constant pool.
4241 DECL_ACCESSORS(constant_pool, FixedArray)
4243 DECLARE_CAST(BytecodeArray)
4245 // Dispatched behavior.
4246 inline int BytecodeArraySize();
4247 inline void BytecodeArrayIterateBody(ObjectVisitor* v);
4249 DECLARE_PRINTER(BytecodeArray)
4250 DECLARE_VERIFIER(BytecodeArray)
4252 void Disassemble(std::ostream& os);
4254 // Layout description.
4255 static const int kFrameSizeOffset = FixedArrayBase::kHeaderSize;
4256 static const int kParameterSizeOffset = kFrameSizeOffset + kIntSize;
4257 static const int kConstantPoolOffset = kParameterSizeOffset + kIntSize;
4258 static const int kHeaderSize = kConstantPoolOffset + kPointerSize;
4260 static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
4262 // Maximal memory consumption for a single BytecodeArray.
4263 static const int kMaxSize = 512 * MB;
4264 // Maximal length of a single BytecodeArray.
4265 static const int kMaxLength = kMaxSize - kHeaderSize;
4268 DISALLOW_IMPLICIT_CONSTRUCTORS(BytecodeArray);
4272 // FreeSpace are fixed-size free memory blocks used by the heap and GC.
4273 // They look like heap objects (are heap object tagged and have a map) so that
4274 // the heap remains iterable. They have a size and a next pointer.
4275 // The next pointer is the raw address of the next FreeSpace object (or NULL)
4276 // in the free list.
4277 class FreeSpace: public HeapObject {
4279 // [size]: size of the free space including the header.
4280 inline int size() const;
4281 inline void set_size(int value);
4283 inline int nobarrier_size() const;
4284 inline void nobarrier_set_size(int value);
4288 // Accessors for the next field.
4289 inline FreeSpace* next();
4290 inline FreeSpace** next_address();
4291 inline void set_next(FreeSpace* next);
4293 inline static FreeSpace* cast(HeapObject* obj);
4295 // Dispatched behavior.
4296 DECLARE_PRINTER(FreeSpace)
4297 DECLARE_VERIFIER(FreeSpace)
4299 // Layout description.
4300 // Size is smi tagged when it is stored.
4301 static const int kSizeOffset = HeapObject::kHeaderSize;
4302 static const int kNextOffset = POINTER_SIZE_ALIGN(kSizeOffset + kPointerSize);
4305 DISALLOW_IMPLICIT_CONSTRUCTORS(FreeSpace);
4309 // V has parameters (Type, type, TYPE, C type, element_size)
4310 #define TYPED_ARRAYS(V) \
4311 V(Uint8, uint8, UINT8, uint8_t, 1) \
4312 V(Int8, int8, INT8, int8_t, 1) \
4313 V(Uint16, uint16, UINT16, uint16_t, 2) \
4314 V(Int16, int16, INT16, int16_t, 2) \
4315 V(Uint32, uint32, UINT32, uint32_t, 4) \
4316 V(Int32, int32, INT32, int32_t, 4) \
4317 V(Float32, float32, FLOAT32, float, 4) \
4318 V(Float64, float64, FLOAT64, double, 8) \
4319 V(Uint8Clamped, uint8_clamped, UINT8_CLAMPED, uint8_t, 1)
4322 class FixedTypedArrayBase: public FixedArrayBase {
4324 // [base_pointer]: Either points to the FixedTypedArrayBase itself or nullptr.
4325 DECL_ACCESSORS(base_pointer, Object)
4327 // [external_pointer]: Contains the offset between base_pointer and the start
4328 // of the data. If the base_pointer is a nullptr, the external_pointer
4329 // therefore points to the actual backing store.
4330 DECL_ACCESSORS(external_pointer, void)
4332 // Dispatched behavior.
4333 inline void FixedTypedArrayBaseIterateBody(ObjectVisitor* v);
4335 template <typename StaticVisitor>
4336 inline void FixedTypedArrayBaseIterateBody();
4338 DECLARE_CAST(FixedTypedArrayBase)
4340 static const int kBasePointerOffset = FixedArrayBase::kHeaderSize;
4341 static const int kExternalPointerOffset = kBasePointerOffset + kPointerSize;
4342 static const int kHeaderSize =
4343 DOUBLE_POINTER_ALIGN(kExternalPointerOffset + kPointerSize);
4345 static const int kDataOffset = kHeaderSize;
4349 static inline int TypedArraySize(InstanceType type, int length);
4350 inline int TypedArraySize(InstanceType type);
4352 // Use with care: returns raw pointer into heap.
4353 inline void* DataPtr();
4355 inline int DataSize();
4358 static inline int ElementSize(InstanceType type);
4360 inline int DataSize(InstanceType type);
4362 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArrayBase);
4366 template <class Traits>
4367 class FixedTypedArray: public FixedTypedArrayBase {
4369 typedef typename Traits::ElementType ElementType;
4370 static const InstanceType kInstanceType = Traits::kInstanceType;
4372 DECLARE_CAST(FixedTypedArray<Traits>)
4374 inline ElementType get_scalar(int index);
4375 static inline Handle<Object> get(Handle<FixedTypedArray> array, int index);
4376 inline void set(int index, ElementType value);
4378 static inline ElementType from_int(int value);
4379 static inline ElementType from_double(double value);
4381 // This accessor applies the correct conversion from Smi, HeapNumber
4383 inline void SetValue(uint32_t index, Object* value);
4385 DECLARE_PRINTER(FixedTypedArray)
4386 DECLARE_VERIFIER(FixedTypedArray)
4389 DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArray);
4392 #define FIXED_TYPED_ARRAY_TRAITS(Type, type, TYPE, elementType, size) \
4393 class Type##ArrayTraits { \
4394 public: /* NOLINT */ \
4395 typedef elementType ElementType; \
4396 static const InstanceType kInstanceType = FIXED_##TYPE##_ARRAY_TYPE; \
4397 static const char* Designator() { return #type " array"; } \
4398 static inline Handle<Object> ToHandle(Isolate* isolate, \
4399 elementType scalar); \
4400 static inline elementType defaultValue(); \
4403 typedef FixedTypedArray<Type##ArrayTraits> Fixed##Type##Array;
4405 TYPED_ARRAYS(FIXED_TYPED_ARRAY_TRAITS)
4407 #undef FIXED_TYPED_ARRAY_TRAITS
4410 // DeoptimizationInputData is a fixed array used to hold the deoptimization
4411 // data for code generated by the Hydrogen/Lithium compiler. It also
4412 // contains information about functions that were inlined. If N different
4413 // functions were inlined then first N elements of the literal array will
4414 // contain these functions.
4417 class DeoptimizationInputData: public FixedArray {
4419 // Layout description. Indices in the array.
4420 static const int kTranslationByteArrayIndex = 0;
4421 static const int kInlinedFunctionCountIndex = 1;
4422 static const int kLiteralArrayIndex = 2;
4423 static const int kOsrAstIdIndex = 3;
4424 static const int kOsrPcOffsetIndex = 4;
4425 static const int kOptimizationIdIndex = 5;
4426 static const int kSharedFunctionInfoIndex = 6;
4427 static const int kWeakCellCacheIndex = 7;
4428 static const int kFirstDeoptEntryIndex = 8;
4430 // Offsets of deopt entry elements relative to the start of the entry.
4431 static const int kAstIdRawOffset = 0;
4432 static const int kTranslationIndexOffset = 1;
4433 static const int kArgumentsStackHeightOffset = 2;
4434 static const int kPcOffset = 3;
4435 static const int kDeoptEntrySize = 4;
4437 // Simple element accessors.
4438 #define DECLARE_ELEMENT_ACCESSORS(name, type) \
4439 inline type* name(); \
4440 inline void Set##name(type* value);
4442 DECLARE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
4443 DECLARE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
4444 DECLARE_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
4445 DECLARE_ELEMENT_ACCESSORS(OsrAstId, Smi)
4446 DECLARE_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
4447 DECLARE_ELEMENT_ACCESSORS(OptimizationId, Smi)
4448 DECLARE_ELEMENT_ACCESSORS(SharedFunctionInfo, Object)
4449 DECLARE_ELEMENT_ACCESSORS(WeakCellCache, Object)
4451 #undef DECLARE_ELEMENT_ACCESSORS
4453 // Accessors for elements of the ith deoptimization entry.
4454 #define DECLARE_ENTRY_ACCESSORS(name, type) \
4455 inline type* name(int i); \
4456 inline void Set##name(int i, type* value);
4458 DECLARE_ENTRY_ACCESSORS(AstIdRaw, Smi)
4459 DECLARE_ENTRY_ACCESSORS(TranslationIndex, Smi)
4460 DECLARE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi)
4461 DECLARE_ENTRY_ACCESSORS(Pc, Smi)
4463 #undef DECLARE_ENTRY_ACCESSORS
4465 inline BailoutId AstId(int i);
4467 inline void SetAstId(int i, BailoutId value);
4469 inline int DeoptCount();
4471 // Allocates a DeoptimizationInputData.
4472 static Handle<DeoptimizationInputData> New(Isolate* isolate,
4473 int deopt_entry_count,
4474 PretenureFlag pretenure);
4476 DECLARE_CAST(DeoptimizationInputData)
4478 #ifdef ENABLE_DISASSEMBLER
4479 void DeoptimizationInputDataPrint(std::ostream& os); // NOLINT
4483 static int IndexForEntry(int i) {
4484 return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
4488 static int LengthFor(int entry_count) { return IndexForEntry(entry_count); }
4492 // DeoptimizationOutputData is a fixed array used to hold the deoptimization
4493 // data for code generated by the full compiler.
4494 // The format of the these objects is
4495 // [i * 2]: Ast ID for ith deoptimization.
4496 // [i * 2 + 1]: PC and state of ith deoptimization
4497 class DeoptimizationOutputData: public FixedArray {
4499 inline int DeoptPoints();
4501 inline BailoutId AstId(int index);
4503 inline void SetAstId(int index, BailoutId id);
4505 inline Smi* PcAndState(int index);
4506 inline void SetPcAndState(int index, Smi* offset);
4508 static int LengthOfFixedArray(int deopt_points) {
4509 return deopt_points * 2;
4512 // Allocates a DeoptimizationOutputData.
4513 static Handle<DeoptimizationOutputData> New(Isolate* isolate,
4514 int number_of_deopt_points,
4515 PretenureFlag pretenure);
4517 DECLARE_CAST(DeoptimizationOutputData)
4519 #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
4520 void DeoptimizationOutputDataPrint(std::ostream& os); // NOLINT
4525 // HandlerTable is a fixed array containing entries for exception handlers in
4526 // the code object it is associated with. The tables comes in two flavors:
4527 // 1) Based on ranges: Used for unoptimized code. Contains one entry per
4528 // exception handler and a range representing the try-block covered by that
4529 // handler. Layout looks as follows:
4530 // [ range-start , range-end , handler-offset , stack-depth ]
4531 // 2) Based on return addresses: Used for turbofanned code. Contains one entry
4532 // per call-site that could throw an exception. Layout looks as follows:
4533 // [ return-address-offset , handler-offset ]
4534 class HandlerTable : public FixedArray {
4536 // Conservative prediction whether a given handler will locally catch an
4537 // exception or cause a re-throw to outside the code boundary. Since this is
4538 // undecidable it is merely an approximation (e.g. useful for debugger).
4539 enum CatchPrediction { UNCAUGHT, CAUGHT };
4541 // Accessors for handler table based on ranges.
4542 inline void SetRangeStart(int index, int value);
4543 inline void SetRangeEnd(int index, int value);
4544 inline void SetRangeHandler(int index, int offset, CatchPrediction pred);
4545 inline void SetRangeDepth(int index, int value);
4547 // Accessors for handler table based on return addresses.
4548 inline void SetReturnOffset(int index, int value);
4549 inline void SetReturnHandler(int index, int offset, CatchPrediction pred);
4551 // Lookup handler in a table based on ranges.
4552 int LookupRange(int pc_offset, int* stack_depth, CatchPrediction* prediction);
4554 // Lookup handler in a table based on return addresses.
4555 int LookupReturn(int pc_offset, CatchPrediction* prediction);
4557 // Returns the required length of the underlying fixed array.
4558 static int LengthForRange(int entries) { return entries * kRangeEntrySize; }
4559 static int LengthForReturn(int entries) { return entries * kReturnEntrySize; }
4561 DECLARE_CAST(HandlerTable)
4563 #if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
4564 void HandlerTableRangePrint(std::ostream& os); // NOLINT
4565 void HandlerTableReturnPrint(std::ostream& os); // NOLINT
4569 // Layout description for handler table based on ranges.
4570 static const int kRangeStartIndex = 0;
4571 static const int kRangeEndIndex = 1;
4572 static const int kRangeHandlerIndex = 2;
4573 static const int kRangeDepthIndex = 3;
4574 static const int kRangeEntrySize = 4;
4576 // Layout description for handler table based on return addresses.
4577 static const int kReturnOffsetIndex = 0;
4578 static const int kReturnHandlerIndex = 1;
4579 static const int kReturnEntrySize = 2;
4581 // Encoding of the {handler} field.
4582 class HandlerPredictionField : public BitField<CatchPrediction, 0, 1> {};
4583 class HandlerOffsetField : public BitField<int, 1, 30> {};
4587 // Code describes objects with on-the-fly generated machine code.
4588 class Code: public HeapObject {
4590 // Opaque data type for encapsulating code flags like kind, inline
4591 // cache state, and arguments count.
4592 typedef uint32_t Flags;
4594 #define NON_IC_KIND_LIST(V) \
4596 V(OPTIMIZED_FUNCTION) \
4603 #define IC_KIND_LIST(V) \
4614 #define CODE_KIND_LIST(V) \
4615 NON_IC_KIND_LIST(V) \
4619 #define DEFINE_CODE_KIND_ENUM(name) name,
4620 CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM)
4621 #undef DEFINE_CODE_KIND_ENUM
4625 // No more than 16 kinds. The value is currently encoded in four bits in
4627 STATIC_ASSERT(NUMBER_OF_KINDS <= 16);
4629 static const char* Kind2String(Kind kind);
4637 static const int kPrologueOffsetNotSet = -1;
4639 #ifdef ENABLE_DISASSEMBLER
4641 static const char* ICState2String(InlineCacheState state);
4642 static const char* StubType2String(StubType type);
4643 static void PrintExtraICState(std::ostream& os, // NOLINT
4644 Kind kind, ExtraICState extra);
4645 void Disassemble(const char* name, std::ostream& os); // NOLINT
4646 #endif // ENABLE_DISASSEMBLER
4648 // [instruction_size]: Size of the native instructions
4649 inline int instruction_size() const;
4650 inline void set_instruction_size(int value);
4652 // [relocation_info]: Code relocation information
4653 DECL_ACCESSORS(relocation_info, ByteArray)
4654 void InvalidateRelocation();
4655 void InvalidateEmbeddedObjects();
4657 // [handler_table]: Fixed array containing offsets of exception handlers.
4658 DECL_ACCESSORS(handler_table, FixedArray)
4660 // [deoptimization_data]: Array containing data for deopt.
4661 DECL_ACCESSORS(deoptimization_data, FixedArray)
4663 // [raw_type_feedback_info]: This field stores various things, depending on
4664 // the kind of the code object.
4665 // FUNCTION => type feedback information.
4666 // STUB and ICs => major/minor key as Smi.
4667 DECL_ACCESSORS(raw_type_feedback_info, Object)
4668 inline Object* type_feedback_info();
4669 inline void set_type_feedback_info(
4670 Object* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4671 inline uint32_t stub_key();
4672 inline void set_stub_key(uint32_t key);
4674 // [next_code_link]: Link for lists of optimized or deoptimized code.
4675 // Note that storage for this field is overlapped with typefeedback_info.
4676 DECL_ACCESSORS(next_code_link, Object)
4678 // [gc_metadata]: Field used to hold GC related metadata. The contents of this
4679 // field does not have to be traced during garbage collection since
4680 // it is only used by the garbage collector itself.
4681 DECL_ACCESSORS(gc_metadata, Object)
4683 // [ic_age]: Inline caching age: the value of the Heap::global_ic_age
4684 // at the moment when this object was created.
4685 inline void set_ic_age(int count);
4686 inline int ic_age() const;
4688 // [prologue_offset]: Offset of the function prologue, used for aging
4689 // FUNCTIONs and OPTIMIZED_FUNCTIONs.
4690 inline int prologue_offset() const;
4691 inline void set_prologue_offset(int offset);
4693 // [constant_pool offset]: Offset of the constant pool.
4694 // Valid for FLAG_enable_embedded_constant_pool only
4695 inline int constant_pool_offset() const;
4696 inline void set_constant_pool_offset(int offset);
4698 // Unchecked accessors to be used during GC.
4699 inline ByteArray* unchecked_relocation_info();
4701 inline int relocation_size();
4703 // [flags]: Various code flags.
4704 inline Flags flags();
4705 inline void set_flags(Flags flags);
4707 // [flags]: Access to specific code flags.
4709 inline InlineCacheState ic_state(); // Only valid for IC stubs.
4710 inline ExtraICState extra_ic_state(); // Only valid for IC stubs.
4712 inline StubType type(); // Only valid for monomorphic IC stubs.
4714 // Testers for IC stub kinds.
4715 inline bool is_inline_cache_stub();
4716 inline bool is_debug_stub();
4717 inline bool is_handler();
4718 inline bool is_load_stub();
4719 inline bool is_keyed_load_stub();
4720 inline bool is_store_stub();
4721 inline bool is_keyed_store_stub();
4722 inline bool is_call_stub();
4723 inline bool is_binary_op_stub();
4724 inline bool is_compare_ic_stub();
4725 inline bool is_compare_nil_ic_stub();
4726 inline bool is_to_boolean_ic_stub();
4727 inline bool is_keyed_stub();
4728 inline bool is_optimized_code();
4729 inline bool embeds_maps_weakly();
4731 inline bool IsCodeStubOrIC();
4732 inline bool IsJavaScriptCode();
4734 inline void set_raw_kind_specific_flags1(int value);
4735 inline void set_raw_kind_specific_flags2(int value);
4737 // [is_crankshafted]: For kind STUB or ICs, tells whether or not a code
4738 // object was generated by either the hydrogen or the TurboFan optimizing
4739 // compiler (but it may not be an optimized function).
4740 inline bool is_crankshafted();
4741 inline bool is_hydrogen_stub(); // Crankshafted, but not a function.
4742 inline void set_is_crankshafted(bool value);
4744 // [is_turbofanned]: For kind STUB or OPTIMIZED_FUNCTION, tells whether the
4745 // code object was generated by the TurboFan optimizing compiler.
4746 inline bool is_turbofanned();
4747 inline void set_is_turbofanned(bool value);
4749 // [can_have_weak_objects]: For kind OPTIMIZED_FUNCTION, tells whether the
4750 // embedded objects in code should be treated weakly.
4751 inline bool can_have_weak_objects();
4752 inline void set_can_have_weak_objects(bool value);
4754 // [has_deoptimization_support]: For FUNCTION kind, tells if it has
4755 // deoptimization support.
4756 inline bool has_deoptimization_support();
4757 inline void set_has_deoptimization_support(bool value);
4759 // [has_debug_break_slots]: For FUNCTION kind, tells if it has
4760 // been compiled with debug break slots.
4761 inline bool has_debug_break_slots();
4762 inline void set_has_debug_break_slots(bool value);
4764 // [has_reloc_info_for_serialization]: For FUNCTION kind, tells if its
4765 // reloc info includes runtime and external references to support
4766 // serialization/deserialization.
4767 inline bool has_reloc_info_for_serialization();
4768 inline void set_has_reloc_info_for_serialization(bool value);
4770 // [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for
4771 // how long the function has been marked for OSR and therefore which
4772 // level of loop nesting we are willing to do on-stack replacement
4774 inline void set_allow_osr_at_loop_nesting_level(int level);
4775 inline int allow_osr_at_loop_nesting_level();
4777 // [profiler_ticks]: For FUNCTION kind, tells for how many profiler ticks
4778 // the code object was seen on the stack with no IC patching going on.
4779 inline int profiler_ticks();
4780 inline void set_profiler_ticks(int ticks);
4782 // [builtin_index]: For BUILTIN kind, tells which builtin index it has.
4783 // For builtins, tells which builtin index it has.
4784 // Note that builtins can have a code kind other than BUILTIN, which means
4785 // that for arbitrary code objects, this index value may be random garbage.
4786 // To verify in that case, compare the code object to the indexed builtin.
4787 inline int builtin_index();
4788 inline void set_builtin_index(int id);
4790 // [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots
4791 // reserved in the code prologue.
4792 inline unsigned stack_slots();
4793 inline void set_stack_slots(unsigned slots);
4795 // [safepoint_table_start]: For kind OPTIMIZED_FUNCTION, the offset in
4796 // the instruction stream where the safepoint table starts.
4797 inline unsigned safepoint_table_offset();
4798 inline void set_safepoint_table_offset(unsigned offset);
4800 // [back_edge_table_start]: For kind FUNCTION, the offset in the
4801 // instruction stream where the back edge table starts.
4802 inline unsigned back_edge_table_offset();
4803 inline void set_back_edge_table_offset(unsigned offset);
4805 inline bool back_edges_patched_for_osr();
4807 // [to_boolean_foo]: For kind TO_BOOLEAN_IC tells what state the stub is in.
4808 inline uint16_t to_boolean_state();
4810 // [has_function_cache]: For kind STUB tells whether there is a function
4811 // cache is passed to the stub.
4812 inline bool has_function_cache();
4813 inline void set_has_function_cache(bool flag);
4816 // [marked_for_deoptimization]: For kind OPTIMIZED_FUNCTION tells whether
4817 // the code is going to be deoptimized because of dead embedded maps.
4818 inline bool marked_for_deoptimization();
4819 inline void set_marked_for_deoptimization(bool flag);
4821 // [constant_pool]: The constant pool for this function.
4822 inline Address constant_pool();
4824 // Get the safepoint entry for the given pc.
4825 SafepointEntry GetSafepointEntry(Address pc);
4827 // Find an object in a stub with a specified map
4828 Object* FindNthObject(int n, Map* match_map);
4830 // Find the first allocation site in an IC stub.
4831 AllocationSite* FindFirstAllocationSite();
4833 // Find the first map in an IC stub.
4834 Map* FindFirstMap();
4835 void FindAllMaps(MapHandleList* maps);
4837 // Find the first handler in an IC stub.
4838 Code* FindFirstHandler();
4840 // Find |length| handlers and put them into |code_list|. Returns false if not
4841 // enough handlers can be found.
4842 bool FindHandlers(CodeHandleList* code_list, int length = -1);
4844 // Find the handler for |map|.
4845 MaybeHandle<Code> FindHandlerForMap(Map* map);
4847 // Find the first name in an IC stub.
4848 Name* FindFirstName();
4850 class FindAndReplacePattern;
4851 // For each (map-to-find, object-to-replace) pair in the pattern, this
4852 // function replaces the corresponding placeholder in the code with the
4853 // object-to-replace. The function assumes that pairs in the pattern come in
4854 // the same order as the placeholders in the code.
4855 // If the placeholder is a weak cell, then the value of weak cell is matched
4856 // against the map-to-find.
4857 void FindAndReplace(const FindAndReplacePattern& pattern);
4859 // The entire code object including its header is copied verbatim to the
4860 // snapshot so that it can be written in one, fast, memcpy during
4861 // deserialization. The deserializer will overwrite some pointers, rather
4862 // like a runtime linker, but the random allocation addresses used in the
4863 // mksnapshot process would still be present in the unlinked snapshot data,
4864 // which would make snapshot production non-reproducible. This method wipes
4865 // out the to-be-overwritten header data for reproducible snapshots.
4866 inline void WipeOutHeader();
4868 // Flags operations.
4869 static inline Flags ComputeFlags(
4870 Kind kind, InlineCacheState ic_state = UNINITIALIZED,
4871 ExtraICState extra_ic_state = kNoExtraICState, StubType type = NORMAL,
4872 CacheHolderFlag holder = kCacheOnReceiver);
4874 static inline Flags ComputeMonomorphicFlags(
4875 Kind kind, ExtraICState extra_ic_state = kNoExtraICState,
4876 CacheHolderFlag holder = kCacheOnReceiver, StubType type = NORMAL);
4878 static inline Flags ComputeHandlerFlags(
4879 Kind handler_kind, StubType type = NORMAL,
4880 CacheHolderFlag holder = kCacheOnReceiver);
4882 static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
4883 static inline StubType ExtractTypeFromFlags(Flags flags);
4884 static inline CacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
4885 static inline Kind ExtractKindFromFlags(Flags flags);
4886 static inline ExtraICState ExtractExtraICStateFromFlags(Flags flags);
4888 static inline Flags RemoveTypeFromFlags(Flags flags);
4889 static inline Flags RemoveTypeAndHolderFromFlags(Flags flags);
4891 // Convert a target address into a code object.
4892 static inline Code* GetCodeFromTargetAddress(Address address);
4894 // Convert an entry address into an object.
4895 static inline Object* GetObjectFromEntryAddress(Address location_of_address);
4897 // Returns the address of the first instruction.
4898 inline byte* instruction_start();
4900 // Returns the address right after the last instruction.
4901 inline byte* instruction_end();
4903 // Returns the size of the instructions, padding, and relocation information.
4904 inline int body_size();
4906 // Returns the address of the first relocation info (read backwards!).
4907 inline byte* relocation_start();
4909 // Code entry point.
4910 inline byte* entry();
4912 // Returns true if pc is inside this object's instructions.
4913 inline bool contains(byte* pc);
4915 // Relocate the code by delta bytes. Called to signal that this code
4916 // object has been moved by delta bytes.
4917 void Relocate(intptr_t delta);
4919 // Migrate code described by desc.
4920 void CopyFrom(const CodeDesc& desc);
4922 // Returns the object size for a given body (used for allocation).
4923 static int SizeFor(int body_size) {
4924 DCHECK_SIZE_TAG_ALIGNED(body_size);
4925 return RoundUp(kHeaderSize + body_size, kCodeAlignment);
4928 // Calculate the size of the code object to report for log events. This takes
4929 // the layout of the code object into account.
4930 inline int ExecutableSize();
4932 // Locating source position.
4933 int SourcePosition(Address pc);
4934 int SourceStatementPosition(Address pc);
4938 // Dispatched behavior.
4939 inline int CodeSize();
4940 inline void CodeIterateBody(ObjectVisitor* v);
4942 template<typename StaticVisitor>
4943 inline void CodeIterateBody(Heap* heap);
4945 DECLARE_PRINTER(Code)
4946 DECLARE_VERIFIER(Code)
4948 void ClearInlineCaches();
4949 void ClearInlineCaches(Kind kind);
4951 BailoutId TranslatePcOffsetToAstId(uint32_t pc_offset);
4952 uint32_t TranslateAstIdToPcOffset(BailoutId ast_id);
4954 #define DECLARE_CODE_AGE_ENUM(X) k##X##CodeAge,
4956 kToBeExecutedOnceCodeAge = -3,
4957 kNotExecutedCodeAge = -2,
4958 kExecutedOnceCodeAge = -1,
4960 CODE_AGE_LIST(DECLARE_CODE_AGE_ENUM)
4962 kFirstCodeAge = kToBeExecutedOnceCodeAge,
4963 kLastCodeAge = kAfterLastCodeAge - 1,
4964 kCodeAgeCount = kAfterLastCodeAge - kFirstCodeAge - 1,
4965 kIsOldCodeAge = kSexagenarianCodeAge,
4966 kPreAgedCodeAge = kIsOldCodeAge - 1
4968 #undef DECLARE_CODE_AGE_ENUM
4970 // Code aging. Indicates how many full GCs this code has survived without
4971 // being entered through the prologue. Used to determine when it is
4972 // relatively safe to flush this code object and replace it with the lazy
4973 // compilation stub.
4974 static void MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate);
4975 static void MarkCodeAsExecuted(byte* sequence, Isolate* isolate);
4976 void MakeYoung(Isolate* isolate);
4977 void MarkToBeExecutedOnce(Isolate* isolate);
4978 void MakeOlder(MarkingParity);
4979 static bool IsYoungSequence(Isolate* isolate, byte* sequence);
4982 static inline Code* GetPreAgedCodeAgeStub(Isolate* isolate) {
4983 return GetCodeAgeStub(isolate, kNotExecutedCodeAge, NO_MARKING_PARITY);
4986 void PrintDeoptLocation(FILE* out, Address pc);
4987 bool CanDeoptAt(Address pc);
4990 void VerifyEmbeddedObjectsDependency();
4994 enum VerifyMode { kNoContextSpecificPointers, kNoContextRetainingPointers };
4995 void VerifyEmbeddedObjects(VerifyMode mode = kNoContextRetainingPointers);
4996 static void VerifyRecompiledCode(Code* old_code, Code* new_code);
4999 inline bool CanContainWeakObjects();
5001 inline bool IsWeakObject(Object* object);
5003 static inline bool IsWeakObjectInOptimizedCode(Object* object);
5005 static Handle<WeakCell> WeakCellFor(Handle<Code> code);
5006 WeakCell* CachedWeakCell();
5008 // Max loop nesting marker used to postpose OSR. We don't take loop
5009 // nesting that is deeper than 5 levels into account.
5010 static const int kMaxLoopNestingMarker = 6;
5012 static const int kConstantPoolSize =
5013 FLAG_enable_embedded_constant_pool ? kIntSize : 0;
5015 // Layout description.
5016 static const int kRelocationInfoOffset = HeapObject::kHeaderSize;
5017 static const int kHandlerTableOffset = kRelocationInfoOffset + kPointerSize;
5018 static const int kDeoptimizationDataOffset =
5019 kHandlerTableOffset + kPointerSize;
5020 // For FUNCTION kind, we store the type feedback info here.
5021 static const int kTypeFeedbackInfoOffset =
5022 kDeoptimizationDataOffset + kPointerSize;
5023 static const int kNextCodeLinkOffset = kTypeFeedbackInfoOffset + kPointerSize;
5024 static const int kGCMetadataOffset = kNextCodeLinkOffset + kPointerSize;
5025 static const int kInstructionSizeOffset = kGCMetadataOffset + kPointerSize;
5026 static const int kICAgeOffset = kInstructionSizeOffset + kIntSize;
5027 static const int kFlagsOffset = kICAgeOffset + kIntSize;
5028 static const int kKindSpecificFlags1Offset = kFlagsOffset + kIntSize;
5029 static const int kKindSpecificFlags2Offset =
5030 kKindSpecificFlags1Offset + kIntSize;
5031 // Note: We might be able to squeeze this into the flags above.
5032 static const int kPrologueOffset = kKindSpecificFlags2Offset + kIntSize;
5033 static const int kConstantPoolOffset = kPrologueOffset + kIntSize;
5034 static const int kHeaderPaddingStart =
5035 kConstantPoolOffset + kConstantPoolSize;
5037 // Add padding to align the instruction start following right after
5038 // the Code object header.
5039 static const int kHeaderSize =
5040 (kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;
5042 // Byte offsets within kKindSpecificFlags1Offset.
5043 static const int kFullCodeFlags = kKindSpecificFlags1Offset;
5044 class FullCodeFlagsHasDeoptimizationSupportField:
5045 public BitField<bool, 0, 1> {}; // NOLINT
5046 class FullCodeFlagsHasDebugBreakSlotsField: public BitField<bool, 1, 1> {};
5047 class FullCodeFlagsHasRelocInfoForSerialization
5048 : public BitField<bool, 2, 1> {};
5049 // Bit 3 in this bitfield is unused.
5050 class ProfilerTicksField : public BitField<int, 4, 28> {};
5052 // Flags layout. BitField<type, shift, size>.
5053 class ICStateField : public BitField<InlineCacheState, 0, 4> {};
5054 class TypeField : public BitField<StubType, 4, 1> {};
5055 class CacheHolderField : public BitField<CacheHolderFlag, 5, 2> {};
5056 class KindField : public BitField<Kind, 7, 4> {};
5057 class ExtraICStateField: public BitField<ExtraICState, 11,
5058 PlatformSmiTagging::kSmiValueSize - 11 + 1> {}; // NOLINT
5060 // KindSpecificFlags1 layout (STUB and OPTIMIZED_FUNCTION)
5061 static const int kStackSlotsFirstBit = 0;
5062 static const int kStackSlotsBitCount = 24;
5063 static const int kHasFunctionCacheBit =
5064 kStackSlotsFirstBit + kStackSlotsBitCount;
5065 static const int kMarkedForDeoptimizationBit = kHasFunctionCacheBit + 1;
5066 static const int kIsTurbofannedBit = kMarkedForDeoptimizationBit + 1;
5067 static const int kCanHaveWeakObjects = kIsTurbofannedBit + 1;
5069 STATIC_ASSERT(kStackSlotsFirstBit + kStackSlotsBitCount <= 32);
5070 STATIC_ASSERT(kCanHaveWeakObjects + 1 <= 32);
5072 class StackSlotsField: public BitField<int,
5073 kStackSlotsFirstBit, kStackSlotsBitCount> {}; // NOLINT
5074 class HasFunctionCacheField : public BitField<bool, kHasFunctionCacheBit, 1> {
5076 class MarkedForDeoptimizationField
5077 : public BitField<bool, kMarkedForDeoptimizationBit, 1> {}; // NOLINT
5078 class IsTurbofannedField : public BitField<bool, kIsTurbofannedBit, 1> {
5080 class CanHaveWeakObjectsField
5081 : public BitField<bool, kCanHaveWeakObjects, 1> {}; // NOLINT
5083 // KindSpecificFlags2 layout (ALL)
5084 static const int kIsCrankshaftedBit = 0;
5085 class IsCrankshaftedField: public BitField<bool,
5086 kIsCrankshaftedBit, 1> {}; // NOLINT
5088 // KindSpecificFlags2 layout (STUB and OPTIMIZED_FUNCTION)
5089 static const int kSafepointTableOffsetFirstBit = kIsCrankshaftedBit + 1;
5090 static const int kSafepointTableOffsetBitCount = 30;
5092 STATIC_ASSERT(kSafepointTableOffsetFirstBit +
5093 kSafepointTableOffsetBitCount <= 32);
5094 STATIC_ASSERT(1 + kSafepointTableOffsetBitCount <= 32);
5096 class SafepointTableOffsetField: public BitField<int,
5097 kSafepointTableOffsetFirstBit,
5098 kSafepointTableOffsetBitCount> {}; // NOLINT
5100 // KindSpecificFlags2 layout (FUNCTION)
5101 class BackEdgeTableOffsetField: public BitField<int,
5102 kIsCrankshaftedBit + 1, 27> {}; // NOLINT
5103 class AllowOSRAtLoopNestingLevelField: public BitField<int,
5104 kIsCrankshaftedBit + 1 + 27, 4> {}; // NOLINT
5105 STATIC_ASSERT(AllowOSRAtLoopNestingLevelField::kMax >= kMaxLoopNestingMarker);
5107 static const int kArgumentsBits = 16;
5108 static const int kMaxArguments = (1 << kArgumentsBits) - 1;
5110 // This constant should be encodable in an ARM instruction.
5111 static const int kFlagsNotUsedInLookup =
5112 TypeField::kMask | CacheHolderField::kMask;
5115 friend class RelocIterator;
5116 friend class Deoptimizer; // For FindCodeAgeSequence.
5118 void ClearInlineCaches(Kind* kind);
5121 byte* FindCodeAgeSequence();
5122 static void GetCodeAgeAndParity(Code* code, Age* age,
5123 MarkingParity* parity);
5124 static void GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
5125 MarkingParity* parity);
5126 static Code* GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity);
5128 // Code aging -- platform-specific
5129 static void PatchPlatformCodeAge(Isolate* isolate,
5130 byte* sequence, Age age,
5131 MarkingParity parity);
5133 DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
5137 // This class describes the layout of dependent codes array of a map. The
5138 // array is partitioned into several groups of dependent codes. Each group
5139 // contains codes with the same dependency on the map. The array has the
5140 // following layout for n dependency groups:
5142 // +----+----+-----+----+---------+----------+-----+---------+-----------+
5143 // | C1 | C2 | ... | Cn | group 1 | group 2 | ... | group n | undefined |
5144 // +----+----+-----+----+---------+----------+-----+---------+-----------+
5146 // The first n elements are Smis, each of them specifies the number of codes
5147 // in the corresponding group. The subsequent elements contain grouped code
5148 // objects in weak cells. The suffix of the array can be filled with the
5149 // undefined value if the number of codes is less than the length of the
5150 // array. The order of the code objects within a group is not preserved.
5152 // All code indexes used in the class are counted starting from the first
5153 // code object of the first group. In other words, code index 0 corresponds
5154 // to array index n = kCodesStartIndex.
5156 class DependentCode: public FixedArray {
5158 enum DependencyGroup {
5159 // Group of code that weakly embed this map and depend on being
5160 // deoptimized when the map is garbage collected.
5162 // Group of code that embed a transition to this map, and depend on being
5163 // deoptimized when the transition is replaced by a new version.
5165 // Group of code that omit run-time prototype checks for prototypes
5166 // described by this map. The group is deoptimized whenever an object
5167 // described by this map changes shape (and transitions to a new map),
5168 // possibly invalidating the assumptions embedded in the code.
5169 kPrototypeCheckGroup,
5170 // Group of code that depends on global property values in property cells
5171 // not being changed.
5172 kPropertyCellChangedGroup,
5173 // Group of code that omit run-time type checks for the field(s) introduced
5176 // Group of code that omit run-time type checks for initial maps of
5178 kInitialMapChangedGroup,
5179 // Group of code that depends on tenuring information in AllocationSites
5180 // not being changed.
5181 kAllocationSiteTenuringChangedGroup,
5182 // Group of code that depends on element transition information in
5183 // AllocationSites not being changed.
5184 kAllocationSiteTransitionChangedGroup
5187 static const int kGroupCount = kAllocationSiteTransitionChangedGroup + 1;
5189 // Array for holding the index of the first code object of each group.
5190 // The last element stores the total number of code objects.
5191 class GroupStartIndexes {
5193 explicit GroupStartIndexes(DependentCode* entries);
5194 void Recompute(DependentCode* entries);
5195 int at(int i) { return start_indexes_[i]; }
5196 int number_of_entries() { return start_indexes_[kGroupCount]; }
5198 int start_indexes_[kGroupCount + 1];
5201 bool Contains(DependencyGroup group, WeakCell* code_cell);
5203 static Handle<DependentCode> InsertCompilationDependencies(
5204 Handle<DependentCode> entries, DependencyGroup group,
5205 Handle<Foreign> info);
5207 static Handle<DependentCode> InsertWeakCode(Handle<DependentCode> entries,
5208 DependencyGroup group,
5209 Handle<WeakCell> code_cell);
5211 void UpdateToFinishedCode(DependencyGroup group, Foreign* info,
5212 WeakCell* code_cell);
5214 void RemoveCompilationDependencies(DependentCode::DependencyGroup group,
5217 void DeoptimizeDependentCodeGroup(Isolate* isolate,
5218 DependentCode::DependencyGroup group);
5220 bool MarkCodeForDeoptimization(Isolate* isolate,
5221 DependentCode::DependencyGroup group);
5223 // The following low-level accessors should only be used by this class
5224 // and the mark compact collector.
5225 inline int number_of_entries(DependencyGroup group);
5226 inline void set_number_of_entries(DependencyGroup group, int value);
5227 inline Object* object_at(int i);
5228 inline void set_object_at(int i, Object* object);
5229 inline void clear_at(int i);
5230 inline void copy(int from, int to);
5231 DECLARE_CAST(DependentCode)
5233 static const char* DependencyGroupName(DependencyGroup group);
5234 static void SetMarkedForDeoptimization(Code* code, DependencyGroup group);
5237 static Handle<DependentCode> Insert(Handle<DependentCode> entries,
5238 DependencyGroup group,
5239 Handle<Object> object);
5240 static Handle<DependentCode> EnsureSpace(Handle<DependentCode> entries);
5241 // Make a room at the end of the given group by moving out the first
5242 // code objects of the subsequent groups.
5243 inline void ExtendGroup(DependencyGroup group);
5244 // Compact by removing cleared weak cells and return true if there was
5245 // any cleared weak cell.
5247 static int Grow(int number_of_entries) {
5248 if (number_of_entries < 5) return number_of_entries + 1;
5249 return number_of_entries * 5 / 4;
5251 static const int kCodesStartIndex = kGroupCount;
5255 class PrototypeInfo;
5258 // All heap objects have a Map that describes their structure.
5259 // A Map contains information about:
5260 // - Size information about the object
5261 // - How to iterate over an object (for garbage collection)
5262 class Map: public HeapObject {
5265 // Size in bytes or kVariableSizeSentinel if instances do not have
5267 inline int instance_size();
5268 inline void set_instance_size(int value);
5270 // Only to clear an unused byte, remove once byte is used.
5271 inline void clear_unused();
5273 // [inobject_properties_or_constructor_function_index]: Provides access
5274 // to the inobject properties in case of JSObject maps, or the constructor
5275 // function index in case of primitive maps.
5276 inline int inobject_properties_or_constructor_function_index();
5277 inline void set_inobject_properties_or_constructor_function_index(int value);
5278 // Count of properties allocated in the object (JSObject only).
5279 inline int GetInObjectProperties();
5280 inline void SetInObjectProperties(int value);
5281 // Index of the constructor function in the native context (primitives only),
5282 // or the special sentinel value to indicate that there is no object wrapper
5283 // for the primitive (i.e. in case of null or undefined).
5284 static const int kNoConstructorFunctionIndex = 0;
5285 inline int GetConstructorFunctionIndex();
5286 inline void SetConstructorFunctionIndex(int value);
5289 inline InstanceType instance_type();
5290 inline void set_instance_type(InstanceType value);
5292 // Tells how many unused property fields are available in the
5293 // instance (only used for JSObject in fast mode).
5294 inline int unused_property_fields();
5295 inline void set_unused_property_fields(int value);
5298 inline byte bit_field() const;
5299 inline void set_bit_field(byte value);
5302 inline byte bit_field2() const;
5303 inline void set_bit_field2(byte value);
5306 inline uint32_t bit_field3() const;
5307 inline void set_bit_field3(uint32_t bits);
5309 class EnumLengthBits: public BitField<int,
5310 0, kDescriptorIndexBitCount> {}; // NOLINT
5311 class NumberOfOwnDescriptorsBits: public BitField<int,
5312 kDescriptorIndexBitCount, kDescriptorIndexBitCount> {}; // NOLINT
5313 STATIC_ASSERT(kDescriptorIndexBitCount + kDescriptorIndexBitCount == 20);
5314 class DictionaryMap : public BitField<bool, 20, 1> {};
5315 class OwnsDescriptors : public BitField<bool, 21, 1> {};
5316 class IsHiddenPrototype : public BitField<bool, 22, 1> {};
5317 class Deprecated : public BitField<bool, 23, 1> {};
5318 class IsUnstable : public BitField<bool, 24, 1> {};
5319 class IsMigrationTarget : public BitField<bool, 25, 1> {};
5320 class IsStrong : public BitField<bool, 26, 1> {};
5323 // Keep this bit field at the very end for better code in
5324 // Builtins::kJSConstructStubGeneric stub.
5325 // This counter is used for in-object slack tracking and for map aging.
5326 // The in-object slack tracking is considered enabled when the counter is
5327 // in the range [kSlackTrackingCounterStart, kSlackTrackingCounterEnd].
5328 class Counter : public BitField<int, 28, 4> {};
5329 static const int kSlackTrackingCounterStart = 14;
5330 static const int kSlackTrackingCounterEnd = 8;
5331 static const int kRetainingCounterStart = kSlackTrackingCounterEnd - 1;
5332 static const int kRetainingCounterEnd = 0;
5334 // Tells whether the object in the prototype property will be used
5335 // for instances created from this function. If the prototype
5336 // property is set to a value that is not a JSObject, the prototype
5337 // property will not be used to create instances of the function.
5338 // See ECMA-262, 13.2.2.
5339 inline void set_non_instance_prototype(bool value);
5340 inline bool has_non_instance_prototype();
5342 // Tells whether function has special prototype property. If not, prototype
5343 // property will not be created when accessed (will return undefined),
5344 // and construction from this function will not be allowed.
5345 inline void set_function_with_prototype(bool value);
5346 inline bool function_with_prototype();
5348 // Tells whether the instance with this map should be ignored by the
5349 // Object.getPrototypeOf() function and the __proto__ accessor.
5350 inline void set_is_hidden_prototype();
5351 inline bool is_hidden_prototype() const;
5353 // Records and queries whether the instance has a named interceptor.
5354 inline void set_has_named_interceptor();
5355 inline bool has_named_interceptor();
5357 // Records and queries whether the instance has an indexed interceptor.
5358 inline void set_has_indexed_interceptor();
5359 inline bool has_indexed_interceptor();
5361 // Tells whether the instance is undetectable.
5362 // An undetectable object is a special class of JSObject: 'typeof' operator
5363 // returns undefined, ToBoolean returns false. Otherwise it behaves like
5364 // a normal JS object. It is useful for implementing undetectable
5365 // document.all in Firefox & Safari.
5366 // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
5367 inline void set_is_undetectable();
5368 inline bool is_undetectable();
5370 // Tells whether the instance has a call-as-function handler.
5371 inline void set_is_observed();
5372 inline bool is_observed();
5374 // Tells whether the instance has a [[Call]] internal field.
5375 // This property is implemented according to ES6, section 7.2.3.
5376 inline void set_is_callable();
5377 inline bool is_callable() const;
5379 inline void set_is_strong();
5380 inline bool is_strong();
5381 inline void set_is_extensible(bool value);
5382 inline bool is_extensible();
5383 inline void set_is_prototype_map(bool value);
5384 inline bool is_prototype_map() const;
5386 inline void set_elements_kind(ElementsKind elements_kind);
5387 inline ElementsKind elements_kind();
5389 // Tells whether the instance has fast elements that are only Smis.
5390 inline bool has_fast_smi_elements();
5392 // Tells whether the instance has fast elements.
5393 inline bool has_fast_object_elements();
5394 inline bool has_fast_smi_or_object_elements();
5395 inline bool has_fast_double_elements();
5396 inline bool has_fast_elements();
5397 inline bool has_sloppy_arguments_elements();
5398 inline bool has_fixed_typed_array_elements();
5399 inline bool has_dictionary_elements();
5401 static bool IsValidElementsTransition(ElementsKind from_kind,
5402 ElementsKind to_kind);
5404 // Returns true if the current map doesn't have DICTIONARY_ELEMENTS but if a
5405 // map with DICTIONARY_ELEMENTS was found in the prototype chain.
5406 bool DictionaryElementsInPrototypeChainOnly();
5408 inline Map* ElementsTransitionMap();
5410 inline FixedArrayBase* GetInitialElements();
5412 // [raw_transitions]: Provides access to the transitions storage field.
5413 // Don't call set_raw_transitions() directly to overwrite transitions, use
5414 // the TransitionArray::ReplaceTransitions() wrapper instead!
5415 DECL_ACCESSORS(raw_transitions, Object)
5416 // [prototype_info]: Per-prototype metadata. Aliased with transitions
5417 // (which prototype maps don't have).
5418 DECL_ACCESSORS(prototype_info, Object)
5419 // PrototypeInfo is created lazily using this helper (which installs it on
5420 // the given prototype's map).
5421 static Handle<PrototypeInfo> GetOrCreatePrototypeInfo(
5422 Handle<JSObject> prototype, Isolate* isolate);
5423 static Handle<PrototypeInfo> GetOrCreatePrototypeInfo(
5424 Handle<Map> prototype_map, Isolate* isolate);
5426 // [prototype chain validity cell]: Associated with a prototype object,
5427 // stored in that object's map's PrototypeInfo, indicates that prototype
5428 // chains through this object are currently valid. The cell will be
5429 // invalidated and replaced when the prototype chain changes.
5430 static Handle<Cell> GetOrCreatePrototypeChainValidityCell(Handle<Map> map,
5432 static const int kPrototypeChainValid = 0;
5433 static const int kPrototypeChainInvalid = 1;
5436 Map* FindFieldOwner(int descriptor);
5438 inline int GetInObjectPropertyOffset(int index);
5440 int NumberOfFields();
5442 // TODO(ishell): candidate with JSObject::MigrateToMap().
5443 bool InstancesNeedRewriting(Map* target, int target_number_of_fields,
5444 int target_inobject, int target_unused,
5445 int* old_number_of_fields);
5446 // TODO(ishell): moveit!
5447 static Handle<Map> GeneralizeAllFieldRepresentations(Handle<Map> map);
5448 MUST_USE_RESULT static Handle<HeapType> GeneralizeFieldType(
5449 Handle<HeapType> type1,
5450 Handle<HeapType> type2,
5452 static void GeneralizeFieldType(Handle<Map> map, int modify_index,
5453 Representation new_representation,
5454 Handle<HeapType> new_field_type);
5455 static Handle<Map> ReconfigureProperty(Handle<Map> map, int modify_index,
5456 PropertyKind new_kind,
5457 PropertyAttributes new_attributes,
5458 Representation new_representation,
5459 Handle<HeapType> new_field_type,
5460 StoreMode store_mode);
5461 static Handle<Map> CopyGeneralizeAllRepresentations(
5462 Handle<Map> map, int modify_index, StoreMode store_mode,
5463 PropertyKind kind, PropertyAttributes attributes, const char* reason);
5465 static Handle<Map> PrepareForDataProperty(Handle<Map> old_map,
5466 int descriptor_number,
5467 Handle<Object> value);
5469 static Handle<Map> Normalize(Handle<Map> map, PropertyNormalizationMode mode,
5470 const char* reason);
5472 // Returns the constructor name (the name (possibly, inferred name) of the
5473 // function that was used to instantiate the object).
5474 String* constructor_name();
5476 // Tells whether the map is used for JSObjects in dictionary mode (ie
5477 // normalized objects, ie objects for which HasFastProperties returns false).
5478 // A map can never be used for both dictionary mode and fast mode JSObjects.
5479 // False by default and for HeapObjects that are not JSObjects.
5480 inline void set_dictionary_map(bool value);
5481 inline bool is_dictionary_map();
5483 // Tells whether the instance needs security checks when accessing its
5485 inline void set_is_access_check_needed(bool access_check_needed);
5486 inline bool is_access_check_needed();
5488 // Returns true if map has a non-empty stub code cache.
5489 inline bool has_code_cache();
5491 // [prototype]: implicit prototype object.
5492 DECL_ACCESSORS(prototype, Object)
5493 // TODO(jkummerow): make set_prototype private.
5494 static void SetPrototype(
5495 Handle<Map> map, Handle<Object> prototype,
5496 PrototypeOptimizationMode proto_mode = FAST_PROTOTYPE);
5498 // [constructor]: points back to the function responsible for this map.
5499 // The field overlaps with the back pointer. All maps in a transition tree
5500 // have the same constructor, so maps with back pointers can walk the
5501 // back pointer chain until they find the map holding their constructor.
5502 DECL_ACCESSORS(constructor_or_backpointer, Object)
5503 inline Object* GetConstructor() const;
5504 inline void SetConstructor(Object* constructor,
5505 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
5506 // [back pointer]: points back to the parent map from which a transition
5507 // leads to this map. The field overlaps with the constructor (see above).
5508 inline Object* GetBackPointer();
5509 inline void SetBackPointer(Object* value,
5510 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
5512 // [instance descriptors]: describes the object.
5513 DECL_ACCESSORS(instance_descriptors, DescriptorArray)
5515 // [layout descriptor]: describes the object layout.
5516 DECL_ACCESSORS(layout_descriptor, LayoutDescriptor)
5517 // |layout descriptor| accessor which can be used from GC.
5518 inline LayoutDescriptor* layout_descriptor_gc_safe();
5519 inline bool HasFastPointerLayout() const;
5521 // |layout descriptor| accessor that is safe to call even when
5522 // FLAG_unbox_double_fields is disabled (in this case Map does not contain
5523 // |layout_descriptor| field at all).
5524 inline LayoutDescriptor* GetLayoutDescriptor();
5526 inline void UpdateDescriptors(DescriptorArray* descriptors,
5527 LayoutDescriptor* layout_descriptor);
5528 inline void InitializeDescriptors(DescriptorArray* descriptors,
5529 LayoutDescriptor* layout_descriptor);
5531 // [stub cache]: contains stubs compiled for this map.
5532 DECL_ACCESSORS(code_cache, Object)
5534 // [dependent code]: list of optimized codes that weakly embed this map.
5535 DECL_ACCESSORS(dependent_code, DependentCode)
5537 // [weak cell cache]: cache that stores a weak cell pointing to this map.
5538 DECL_ACCESSORS(weak_cell_cache, Object)
5540 inline PropertyDetails GetLastDescriptorDetails();
5542 inline int LastAdded();
5544 inline int NumberOfOwnDescriptors();
5545 inline void SetNumberOfOwnDescriptors(int number);
5547 inline Cell* RetrieveDescriptorsPointer();
5549 inline int EnumLength();
5550 inline void SetEnumLength(int length);
5552 inline bool owns_descriptors();
5553 inline void set_owns_descriptors(bool owns_descriptors);
5554 inline void mark_unstable();
5555 inline bool is_stable();
5556 inline void set_migration_target(bool value);
5557 inline bool is_migration_target();
5558 inline void set_counter(int value);
5559 inline int counter();
5560 inline void deprecate();
5561 inline bool is_deprecated();
5562 inline bool CanBeDeprecated();
5563 // Returns a non-deprecated version of the input. If the input was not
5564 // deprecated, it is directly returned. Otherwise, the non-deprecated version
5565 // is found by re-transitioning from the root of the transition tree using the
5566 // descriptor array of the map. Returns MaybeHandle<Map>() if no updated map
5568 static MaybeHandle<Map> TryUpdate(Handle<Map> map) WARN_UNUSED_RESULT;
5570 // Returns a non-deprecated version of the input. This method may deprecate
5571 // existing maps along the way if encodings conflict. Not for use while
5572 // gathering type feedback. Use TryUpdate in those cases instead.
5573 static Handle<Map> Update(Handle<Map> map);
5575 static Handle<Map> CopyDropDescriptors(Handle<Map> map);
5576 static Handle<Map> CopyInsertDescriptor(Handle<Map> map,
5577 Descriptor* descriptor,
5578 TransitionFlag flag);
5580 MUST_USE_RESULT static MaybeHandle<Map> CopyWithField(
5583 Handle<HeapType> type,
5584 PropertyAttributes attributes,
5585 Representation representation,
5586 TransitionFlag flag);
5588 MUST_USE_RESULT static MaybeHandle<Map> CopyWithConstant(
5591 Handle<Object> constant,
5592 PropertyAttributes attributes,
5593 TransitionFlag flag);
5595 // Returns a new map with all transitions dropped from the given map and
5596 // the ElementsKind set.
5597 static Handle<Map> TransitionElementsTo(Handle<Map> map,
5598 ElementsKind to_kind);
5600 static Handle<Map> AsElementsKind(Handle<Map> map, ElementsKind kind);
5602 static Handle<Map> CopyAsElementsKind(Handle<Map> map,
5604 TransitionFlag flag);
5606 static Handle<Map> CopyForObserved(Handle<Map> map);
5608 static Handle<Map> CopyForPreventExtensions(Handle<Map> map,
5609 PropertyAttributes attrs_to_add,
5610 Handle<Symbol> transition_marker,
5611 const char* reason);
5613 static Handle<Map> FixProxy(Handle<Map> map, InstanceType type, int size);
5616 // Maximal number of fast properties. Used to restrict the number of map
5617 // transitions to avoid an explosion in the number of maps for objects used as
5619 inline bool TooManyFastProperties(StoreFromKeyed store_mode);
5620 static Handle<Map> TransitionToDataProperty(Handle<Map> map,
5622 Handle<Object> value,
5623 PropertyAttributes attributes,
5624 StoreFromKeyed store_mode);
5625 static Handle<Map> TransitionToAccessorProperty(
5626 Handle<Map> map, Handle<Name> name, AccessorComponent component,
5627 Handle<Object> accessor, PropertyAttributes attributes);
5628 static Handle<Map> ReconfigureExistingProperty(Handle<Map> map,
5631 PropertyAttributes attributes);
5633 inline void AppendDescriptor(Descriptor* desc);
5635 // Returns a copy of the map, prepared for inserting into the transition
5636 // tree (if the |map| owns descriptors then the new one will share
5637 // descriptors with |map|).
5638 static Handle<Map> CopyForTransition(Handle<Map> map, const char* reason);
5640 // Returns a copy of the map, with all transitions dropped from the
5641 // instance descriptors.
5642 static Handle<Map> Copy(Handle<Map> map, const char* reason);
5643 static Handle<Map> Create(Isolate* isolate, int inobject_properties);
5645 // Returns the next free property index (only valid for FAST MODE).
5646 int NextFreePropertyIndex();
5648 // Returns the number of properties described in instance_descriptors
5649 // filtering out properties with the specified attributes.
5650 int NumberOfDescribedProperties(DescriptorFlag which = OWN_DESCRIPTORS,
5651 PropertyAttributes filter = NONE);
5655 // Code cache operations.
5657 // Clears the code cache.
5658 inline void ClearCodeCache(Heap* heap);
5660 // Update code cache.
5661 static void UpdateCodeCache(Handle<Map> map,
5665 // Extend the descriptor array of the map with the list of descriptors.
5666 // In case of duplicates, the latest descriptor is used.
5667 static void AppendCallbackDescriptors(Handle<Map> map,
5668 Handle<Object> descriptors);
5670 static inline int SlackForArraySize(int old_size, int size_limit);
5672 static void EnsureDescriptorSlack(Handle<Map> map, int slack);
5674 // Returns the found code or undefined if absent.
5675 Object* FindInCodeCache(Name* name, Code::Flags flags);
5677 // Returns the non-negative index of the code object if it is in the
5678 // cache and -1 otherwise.
5679 int IndexInCodeCache(Object* name, Code* code);
5681 // Removes a code object from the code cache at the given index.
5682 void RemoveFromCodeCache(Name* name, Code* code, int index);
5684 // Computes a hash value for this map, to be used in HashTables and such.
5687 // Returns the map that this map transitions to if its elements_kind
5688 // is changed to |elements_kind|, or NULL if no such map is cached yet.
5689 // |safe_to_add_transitions| is set to false if adding transitions is not
5691 Map* LookupElementsTransitionMap(ElementsKind elements_kind);
5693 // Returns the transitioned map for this map with the most generic
5694 // elements_kind that's found in |candidates|, or null handle if no match is
5696 static Handle<Map> FindTransitionedMap(Handle<Map> map,
5697 MapHandleList* candidates);
5699 inline bool CanTransition();
5701 inline bool IsPrimitiveMap();
5702 inline bool IsJSObjectMap();
5703 inline bool IsJSArrayMap();
5704 inline bool IsStringMap();
5705 inline bool IsJSProxyMap();
5706 inline bool IsJSGlobalProxyMap();
5707 inline bool IsJSGlobalObjectMap();
5708 inline bool IsGlobalObjectMap();
5710 inline bool CanOmitMapChecks();
5712 static void AddDependentCode(Handle<Map> map,
5713 DependentCode::DependencyGroup group,
5716 bool IsMapInArrayPrototypeChain();
5718 static Handle<WeakCell> WeakCellForMap(Handle<Map> map);
5720 // Dispatched behavior.
5721 DECLARE_PRINTER(Map)
5722 DECLARE_VERIFIER(Map)
5725 void DictionaryMapVerify();
5726 void VerifyOmittedMapChecks();
5729 inline int visitor_id();
5730 inline void set_visitor_id(int visitor_id);
5732 static Handle<Map> TransitionToPrototype(Handle<Map> map,
5733 Handle<Object> prototype,
5734 PrototypeOptimizationMode mode);
5736 static const int kMaxPreAllocatedPropertyFields = 255;
5738 // Layout description.
5739 static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
5740 static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
5741 static const int kBitField3Offset = kInstanceAttributesOffset + kIntSize;
5742 static const int kPrototypeOffset = kBitField3Offset + kPointerSize;
5743 static const int kConstructorOrBackPointerOffset =
5744 kPrototypeOffset + kPointerSize;
5745 // When there is only one transition, it is stored directly in this field;
5746 // otherwise a transition array is used.
5747 // For prototype maps, this slot is used to store this map's PrototypeInfo
5749 static const int kTransitionsOrPrototypeInfoOffset =
5750 kConstructorOrBackPointerOffset + kPointerSize;
5751 static const int kDescriptorsOffset =
5752 kTransitionsOrPrototypeInfoOffset + kPointerSize;
5753 #if V8_DOUBLE_FIELDS_UNBOXING
5754 static const int kLayoutDecriptorOffset = kDescriptorsOffset + kPointerSize;
5755 static const int kCodeCacheOffset = kLayoutDecriptorOffset + kPointerSize;
5757 static const int kLayoutDecriptorOffset = 1; // Must not be ever accessed.
5758 static const int kCodeCacheOffset = kDescriptorsOffset + kPointerSize;
5760 static const int kDependentCodeOffset = kCodeCacheOffset + kPointerSize;
5761 static const int kWeakCellCacheOffset = kDependentCodeOffset + kPointerSize;
5762 static const int kSize = kWeakCellCacheOffset + kPointerSize;
5764 // Layout of pointer fields. Heap iteration code relies on them
5765 // being continuously allocated.
5766 static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
5767 static const int kPointerFieldsEndOffset = kSize;
5769 // Byte offsets within kInstanceSizesOffset.
5770 static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
5771 static const int kInObjectPropertiesOrConstructorFunctionIndexByte = 1;
5772 static const int kInObjectPropertiesOrConstructorFunctionIndexOffset =
5773 kInstanceSizesOffset + kInObjectPropertiesOrConstructorFunctionIndexByte;
5774 // Note there is one byte available for use here.
5775 static const int kUnusedByte = 2;
5776 static const int kUnusedOffset = kInstanceSizesOffset + kUnusedByte;
5777 static const int kVisitorIdByte = 3;
5778 static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte;
5780 // Byte offsets within kInstanceAttributesOffset attributes.
5781 #if V8_TARGET_LITTLE_ENDIAN
5782 // Order instance type and bit field together such that they can be loaded
5783 // together as a 16-bit word with instance type in the lower 8 bits regardless
5784 // of endianess. Also provide endian-independent offset to that 16-bit word.
5785 static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
5786 static const int kBitFieldOffset = kInstanceAttributesOffset + 1;
5788 static const int kBitFieldOffset = kInstanceAttributesOffset + 0;
5789 static const int kInstanceTypeOffset = kInstanceAttributesOffset + 1;
5791 static const int kInstanceTypeAndBitFieldOffset =
5792 kInstanceAttributesOffset + 0;
5793 static const int kBitField2Offset = kInstanceAttributesOffset + 2;
5794 static const int kUnusedPropertyFieldsByte = 3;
5795 static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 3;
5797 STATIC_ASSERT(kInstanceTypeAndBitFieldOffset ==
5798 Internals::kMapInstanceTypeAndBitFieldOffset);
5800 // Bit positions for bit field.
5801 static const int kHasNonInstancePrototype = 0;
5802 static const int kIsCallable = 1;
5803 static const int kHasNamedInterceptor = 2;
5804 static const int kHasIndexedInterceptor = 3;
5805 static const int kIsUndetectable = 4;
5806 static const int kIsObserved = 5;
5807 static const int kIsAccessCheckNeeded = 6;
5808 class FunctionWithPrototype: public BitField<bool, 7, 1> {};
5810 // Bit positions for bit field 2
5811 static const int kIsExtensible = 0;
5813 class IsPrototypeMapBits : public BitField<bool, 2, 1> {};
5814 class ElementsKindBits: public BitField<ElementsKind, 3, 5> {};
5816 // Derived values from bit field 2
5817 static const int8_t kMaximumBitField2FastElementValue = static_cast<int8_t>(
5818 (FAST_ELEMENTS + 1) << Map::ElementsKindBits::kShift) - 1;
5819 static const int8_t kMaximumBitField2FastSmiElementValue =
5820 static_cast<int8_t>((FAST_SMI_ELEMENTS + 1) <<
5821 Map::ElementsKindBits::kShift) - 1;
5822 static const int8_t kMaximumBitField2FastHoleyElementValue =
5823 static_cast<int8_t>((FAST_HOLEY_ELEMENTS + 1) <<
5824 Map::ElementsKindBits::kShift) - 1;
5825 static const int8_t kMaximumBitField2FastHoleySmiElementValue =
5826 static_cast<int8_t>((FAST_HOLEY_SMI_ELEMENTS + 1) <<
5827 Map::ElementsKindBits::kShift) - 1;
5829 typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
5830 kPointerFieldsEndOffset,
5831 kSize> BodyDescriptor;
5833 // Compares this map to another to see if they describe equivalent objects.
5834 // If |mode| is set to CLEAR_INOBJECT_PROPERTIES, |other| is treated as if
5835 // it had exactly zero inobject properties.
5836 // The "shared" flags of both this map and |other| are ignored.
5837 bool EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode);
5839 // Returns true if given field is unboxed double.
5840 inline bool IsUnboxedDoubleField(FieldIndex index);
5843 static void TraceTransition(const char* what, Map* from, Map* to, Name* name);
5844 static void TraceAllTransitions(Map* map);
5847 static inline Handle<Map> CopyInstallDescriptorsForTesting(
5848 Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
5849 Handle<LayoutDescriptor> layout_descriptor);
5852 static void ConnectTransition(Handle<Map> parent, Handle<Map> child,
5853 Handle<Name> name, SimpleTransitionFlag flag);
5855 bool EquivalentToForTransition(Map* other);
5856 static Handle<Map> RawCopy(Handle<Map> map, int instance_size);
5857 static Handle<Map> ShareDescriptor(Handle<Map> map,
5858 Handle<DescriptorArray> descriptors,
5859 Descriptor* descriptor);
5860 static Handle<Map> CopyInstallDescriptors(
5861 Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
5862 Handle<LayoutDescriptor> layout_descriptor);
5863 static Handle<Map> CopyAddDescriptor(Handle<Map> map,
5864 Descriptor* descriptor,
5865 TransitionFlag flag);
5866 static Handle<Map> CopyReplaceDescriptors(
5867 Handle<Map> map, Handle<DescriptorArray> descriptors,
5868 Handle<LayoutDescriptor> layout_descriptor, TransitionFlag flag,
5869 MaybeHandle<Name> maybe_name, const char* reason,
5870 SimpleTransitionFlag simple_flag);
5872 static Handle<Map> CopyReplaceDescriptor(Handle<Map> map,
5873 Handle<DescriptorArray> descriptors,
5874 Descriptor* descriptor,
5876 TransitionFlag flag);
5877 static MUST_USE_RESULT MaybeHandle<Map> TryReconfigureExistingProperty(
5878 Handle<Map> map, int descriptor, PropertyKind kind,
5879 PropertyAttributes attributes, const char** reason);
5881 static Handle<Map> CopyNormalized(Handle<Map> map,
5882 PropertyNormalizationMode mode);
5884 // Fires when the layout of an object with a leaf map changes.
5885 // This includes adding transitions to the leaf map or changing
5886 // the descriptor array.
5887 inline void NotifyLeafMapLayoutChange();
5889 void DeprecateTransitionTree();
5890 bool DeprecateTarget(PropertyKind kind, Name* key,
5891 PropertyAttributes attributes,
5892 DescriptorArray* new_descriptors,
5893 LayoutDescriptor* new_layout_descriptor);
5895 Map* FindLastMatchMap(int verbatim, int length, DescriptorArray* descriptors);
5897 // Update field type of the given descriptor to new representation and new
5898 // type. The type must be prepared for storing in descriptor array:
5899 // it must be either a simple type or a map wrapped in a weak cell.
5900 void UpdateFieldType(int descriptor_number, Handle<Name> name,
5901 Representation new_representation,
5902 Handle<Object> new_wrapped_type);
5904 void PrintReconfiguration(FILE* file, int modify_index, PropertyKind kind,
5905 PropertyAttributes attributes);
5906 void PrintGeneralization(FILE* file,
5911 bool constant_to_field,
5912 Representation old_representation,
5913 Representation new_representation,
5914 HeapType* old_field_type,
5915 HeapType* new_field_type);
5917 static const int kFastPropertiesSoftLimit = 12;
5918 static const int kMaxFastProperties = 128;
5920 DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
5924 // An abstract superclass, a marker class really, for simple structure classes.
5925 // It doesn't carry much functionality but allows struct classes to be
5926 // identified in the type system.
5927 class Struct: public HeapObject {
5929 inline void InitializeBody(int object_size);
5930 DECLARE_CAST(Struct)
5934 // A simple one-element struct, useful where smis need to be boxed.
5935 class Box : public Struct {
5937 // [value]: the boxed contents.
5938 DECL_ACCESSORS(value, Object)
5942 // Dispatched behavior.
5943 DECLARE_PRINTER(Box)
5944 DECLARE_VERIFIER(Box)
5946 static const int kValueOffset = HeapObject::kHeaderSize;
5947 static const int kSize = kValueOffset + kPointerSize;
5950 DISALLOW_IMPLICIT_CONSTRUCTORS(Box);
5954 // Container for metadata stored on each prototype map.
5955 class PrototypeInfo : public Struct {
5957 static const int UNREGISTERED = -1;
5959 // [prototype_users]: WeakFixedArray containing maps using this prototype,
5960 // or Smi(0) if uninitialized.
5961 DECL_ACCESSORS(prototype_users, Object)
5962 // [registry_slot]: Slot in prototype's user registry where this user
5963 // is stored. Returns UNREGISTERED if this prototype has not been registered.
5964 inline int registry_slot() const;
5965 inline void set_registry_slot(int slot);
5966 // [validity_cell]: Cell containing the validity bit for prototype chains
5967 // going through this object, or Smi(0) if uninitialized.
5968 DECL_ACCESSORS(validity_cell, Object)
5969 // [constructor_name]: User-friendly name of the original constructor.
5970 DECL_ACCESSORS(constructor_name, Object)
5972 DECLARE_CAST(PrototypeInfo)
5974 // Dispatched behavior.
5975 DECLARE_PRINTER(PrototypeInfo)
5976 DECLARE_VERIFIER(PrototypeInfo)
5978 static const int kPrototypeUsersOffset = HeapObject::kHeaderSize;
5979 static const int kRegistrySlotOffset = kPrototypeUsersOffset + kPointerSize;
5980 static const int kValidityCellOffset = kRegistrySlotOffset + kPointerSize;
5981 static const int kConstructorNameOffset = kValidityCellOffset + kPointerSize;
5982 static const int kSize = kConstructorNameOffset + kPointerSize;
5985 DISALLOW_IMPLICIT_CONSTRUCTORS(PrototypeInfo);
5989 // Pair used to store both a ScopeInfo and an extension object in the extension
5990 // slot of a block context. Needed in the rare case where a declaration block
5991 // scope (a "varblock" as used to desugar parameter destructuring) also contains
5992 // a sloppy direct eval. (In no other case both are needed at the same time.)
5993 class SloppyBlockWithEvalContextExtension : public Struct {
5995 // [scope_info]: Scope info.
5996 DECL_ACCESSORS(scope_info, ScopeInfo)
5997 // [extension]: Extension object.
5998 DECL_ACCESSORS(extension, JSObject)
6000 DECLARE_CAST(SloppyBlockWithEvalContextExtension)
6002 // Dispatched behavior.
6003 DECLARE_PRINTER(SloppyBlockWithEvalContextExtension)
6004 DECLARE_VERIFIER(SloppyBlockWithEvalContextExtension)
6006 static const int kScopeInfoOffset = HeapObject::kHeaderSize;
6007 static const int kExtensionOffset = kScopeInfoOffset + kPointerSize;
6008 static const int kSize = kExtensionOffset + kPointerSize;
6011 DISALLOW_IMPLICIT_CONSTRUCTORS(SloppyBlockWithEvalContextExtension);
6015 // Script describes a script which has been added to the VM.
6016 class Script: public Struct {
6025 // Script compilation types.
6026 enum CompilationType {
6027 COMPILATION_TYPE_HOST = 0,
6028 COMPILATION_TYPE_EVAL = 1
6031 // Script compilation state.
6032 enum CompilationState {
6033 COMPILATION_STATE_INITIAL = 0,
6034 COMPILATION_STATE_COMPILED = 1
6037 // [source]: the script source.
6038 DECL_ACCESSORS(source, Object)
6040 // [name]: the script name.
6041 DECL_ACCESSORS(name, Object)
6043 // [id]: the script id.
6044 DECL_ACCESSORS(id, Smi)
6046 // [line_offset]: script line offset in resource from where it was extracted.
6047 DECL_ACCESSORS(line_offset, Smi)
6049 // [column_offset]: script column offset in resource from where it was
6051 DECL_ACCESSORS(column_offset, Smi)
6053 // [context_data]: context data for the context this script was compiled in.
6054 DECL_ACCESSORS(context_data, Object)
6056 // [wrapper]: the wrapper cache. This is either undefined or a WeakCell.
6057 DECL_ACCESSORS(wrapper, HeapObject)
6059 // [type]: the script type.
6060 DECL_ACCESSORS(type, Smi)
6062 // [line_ends]: FixedArray of line ends positions.
6063 DECL_ACCESSORS(line_ends, Object)
6065 // [eval_from_shared]: for eval scripts the shared funcion info for the
6066 // function from which eval was called.
6067 DECL_ACCESSORS(eval_from_shared, Object)
6069 // [eval_from_instructions_offset]: the instruction offset in the code for the
6070 // function from which eval was called where eval was called.
6071 DECL_ACCESSORS(eval_from_instructions_offset, Smi)
6073 // [shared_function_infos]: weak fixed array containing all shared
6074 // function infos created from this script.
6075 DECL_ACCESSORS(shared_function_infos, Object)
6077 // [flags]: Holds an exciting bitfield.
6078 DECL_ACCESSORS(flags, Smi)
6080 // [source_url]: sourceURL from magic comment
6081 DECL_ACCESSORS(source_url, Object)
6083 // [source_url]: sourceMappingURL magic comment
6084 DECL_ACCESSORS(source_mapping_url, Object)
6086 // [compilation_type]: how the the script was compiled. Encoded in the
6088 inline CompilationType compilation_type();
6089 inline void set_compilation_type(CompilationType type);
6091 // [compilation_state]: determines whether the script has already been
6092 // compiled. Encoded in the 'flags' field.
6093 inline CompilationState compilation_state();
6094 inline void set_compilation_state(CompilationState state);
6096 // [hide_source]: determines whether the script source can be exposed as
6097 // function source. Encoded in the 'flags' field.
6098 inline bool hide_source();
6099 inline void set_hide_source(bool value);
6101 // [origin_options]: optional attributes set by the embedder via ScriptOrigin,
6102 // and used by the embedder to make decisions about the script. V8 just passes
6103 // this through. Encoded in the 'flags' field.
6104 inline v8::ScriptOriginOptions origin_options();
6105 inline void set_origin_options(ScriptOriginOptions origin_options);
6107 DECLARE_CAST(Script)
6109 // If script source is an external string, check that the underlying
6110 // resource is accessible. Otherwise, always return true.
6111 inline bool HasValidSource();
6113 // Convert code position into column number.
6114 static int GetColumnNumber(Handle<Script> script, int code_pos);
6116 // Convert code position into (zero-based) line number.
6117 // The non-handlified version does not allocate, but may be much slower.
6118 static int GetLineNumber(Handle<Script> script, int code_pos);
6119 int GetLineNumber(int code_pos);
6121 static Handle<Object> GetNameOrSourceURL(Handle<Script> script);
6123 // Init line_ends array with code positions of line ends inside script source.
6124 static void InitLineEnds(Handle<Script> script);
6126 // Get the JS object wrapping the given script; create it if none exists.
6127 static Handle<JSObject> GetWrapper(Handle<Script> script);
6129 // Look through the list of existing shared function infos to find one
6130 // that matches the function literal. Return empty handle if not found.
6131 MaybeHandle<SharedFunctionInfo> FindSharedFunctionInfo(FunctionLiteral* fun);
6133 // Iterate over all script objects on the heap.
6136 explicit Iterator(Isolate* isolate);
6140 WeakFixedArray::Iterator iterator_;
6141 DISALLOW_COPY_AND_ASSIGN(Iterator);
6144 // Dispatched behavior.
6145 DECLARE_PRINTER(Script)
6146 DECLARE_VERIFIER(Script)
6148 static const int kSourceOffset = HeapObject::kHeaderSize;
6149 static const int kNameOffset = kSourceOffset + kPointerSize;
6150 static const int kLineOffsetOffset = kNameOffset + kPointerSize;
6151 static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
6152 static const int kContextOffset = kColumnOffsetOffset + kPointerSize;
6153 static const int kWrapperOffset = kContextOffset + kPointerSize;
6154 static const int kTypeOffset = kWrapperOffset + kPointerSize;
6155 static const int kLineEndsOffset = kTypeOffset + kPointerSize;
6156 static const int kIdOffset = kLineEndsOffset + kPointerSize;
6157 static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
6158 static const int kEvalFrominstructionsOffsetOffset =
6159 kEvalFromSharedOffset + kPointerSize;
6160 static const int kSharedFunctionInfosOffset =
6161 kEvalFrominstructionsOffsetOffset + kPointerSize;
6162 static const int kFlagsOffset = kSharedFunctionInfosOffset + kPointerSize;
6163 static const int kSourceUrlOffset = kFlagsOffset + kPointerSize;
6164 static const int kSourceMappingUrlOffset = kSourceUrlOffset + kPointerSize;
6165 static const int kSize = kSourceMappingUrlOffset + kPointerSize;
6168 int GetLineNumberWithArray(int code_pos);
6170 // Bit positions in the flags field.
6171 static const int kCompilationTypeBit = 0;
6172 static const int kCompilationStateBit = 1;
6173 static const int kHideSourceBit = 2;
6174 static const int kOriginOptionsShift = 3;
6175 static const int kOriginOptionsSize = 3;
6176 static const int kOriginOptionsMask = ((1 << kOriginOptionsSize) - 1)
6177 << kOriginOptionsShift;
6179 DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
6183 // List of builtin functions we want to identify to improve code
6186 // Each entry has a name of a global object property holding an object
6187 // optionally followed by ".prototype", a name of a builtin function
6188 // on the object (the one the id is set for), and a label.
6190 // Installation of ids for the selected builtin functions is handled
6191 // by the bootstrapper.
6192 #define FUNCTIONS_WITH_ID_LIST(V) \
6193 V(Array.prototype, indexOf, ArrayIndexOf) \
6194 V(Array.prototype, lastIndexOf, ArrayLastIndexOf) \
6195 V(Array.prototype, push, ArrayPush) \
6196 V(Array.prototype, pop, ArrayPop) \
6197 V(Array.prototype, shift, ArrayShift) \
6198 V(Function.prototype, apply, FunctionApply) \
6199 V(Function.prototype, call, FunctionCall) \
6200 V(String.prototype, charCodeAt, StringCharCodeAt) \
6201 V(String.prototype, charAt, StringCharAt) \
6202 V(String, fromCharCode, StringFromCharCode) \
6203 V(Math, random, MathRandom) \
6204 V(Math, floor, MathFloor) \
6205 V(Math, round, MathRound) \
6206 V(Math, ceil, MathCeil) \
6207 V(Math, abs, MathAbs) \
6208 V(Math, log, MathLog) \
6209 V(Math, exp, MathExp) \
6210 V(Math, sqrt, MathSqrt) \
6211 V(Math, pow, MathPow) \
6212 V(Math, max, MathMax) \
6213 V(Math, min, MathMin) \
6214 V(Math, cos, MathCos) \
6215 V(Math, sin, MathSin) \
6216 V(Math, tan, MathTan) \
6217 V(Math, acos, MathAcos) \
6218 V(Math, asin, MathAsin) \
6219 V(Math, atan, MathAtan) \
6220 V(Math, atan2, MathAtan2) \
6221 V(Math, imul, MathImul) \
6222 V(Math, clz32, MathClz32) \
6223 V(Math, fround, MathFround)
6225 #define ATOMIC_FUNCTIONS_WITH_ID_LIST(V) \
6226 V(Atomics, load, AtomicsLoad) \
6227 V(Atomics, store, AtomicsStore)
6229 enum BuiltinFunctionId {
6231 #define DECLARE_FUNCTION_ID(ignored1, ignore2, name) \
6233 FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
6234 ATOMIC_FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
6235 #undef DECLARE_FUNCTION_ID
6236 // Fake id for a special case of Math.pow. Note, it continues the
6237 // list of math functions.
6242 // Result of searching in an optimized code map of a SharedFunctionInfo. Note
6243 // that both {code} and {literals} can be NULL to pass search result status.
6244 struct CodeAndLiterals {
6245 Code* code; // Cached optimized code.
6246 FixedArray* literals; // Cached literals array.
6250 // SharedFunctionInfo describes the JSFunction information that can be
6251 // shared by multiple instances of the function.
6252 class SharedFunctionInfo: public HeapObject {
6254 // [name]: Function name.
6255 DECL_ACCESSORS(name, Object)
6257 // [code]: Function code.
6258 DECL_ACCESSORS(code, Code)
6259 inline void ReplaceCode(Code* code);
6261 // [optimized_code_map]: Map from native context to optimized code
6262 // and a shared literals array or Smi(0) if none.
6263 DECL_ACCESSORS(optimized_code_map, Object)
6265 // Returns entry from optimized code map for specified context and OSR entry.
6266 // Note that {code == nullptr} indicates no matching entry has been found,
6267 // whereas {literals == nullptr} indicates the code is context-independent.
6268 CodeAndLiterals SearchOptimizedCodeMap(Context* native_context,
6269 BailoutId osr_ast_id);
6271 // Clear optimized code map.
6272 void ClearOptimizedCodeMap();
6274 // Removed a specific optimized code object from the optimized code map.
6275 void EvictFromOptimizedCodeMap(Code* optimized_code, const char* reason);
6277 // Trims the optimized code map after entries have been removed.
6278 void TrimOptimizedCodeMap(int shrink_by);
6280 // Add a new entry to the optimized code map for context-independent code.
6281 static void AddSharedCodeToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
6284 // Add a new entry to the optimized code map for context-dependent code.
6285 static void AddToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
6286 Handle<Context> native_context,
6288 Handle<FixedArray> literals,
6289 BailoutId osr_ast_id);
6291 // Set up the link between shared function info and the script. The shared
6292 // function info is added to the list on the script.
6293 static void SetScript(Handle<SharedFunctionInfo> shared,
6294 Handle<Object> script_object);
6296 // Layout description of the optimized code map.
6297 static const int kNextMapIndex = 0;
6298 static const int kSharedCodeIndex = 1;
6299 static const int kEntriesStart = 2;
6300 static const int kContextOffset = 0;
6301 static const int kCachedCodeOffset = 1;
6302 static const int kLiteralsOffset = 2;
6303 static const int kOsrAstIdOffset = 3;
6304 static const int kEntryLength = 4;
6305 static const int kInitialLength = kEntriesStart + kEntryLength;
6307 // [scope_info]: Scope info.
6308 DECL_ACCESSORS(scope_info, ScopeInfo)
6310 // [construct stub]: Code stub for constructing instances of this function.
6311 DECL_ACCESSORS(construct_stub, Code)
6313 // Returns if this function has been compiled to native code yet.
6314 inline bool is_compiled();
6316 // [length]: The function length - usually the number of declared parameters.
6317 // Use up to 2^30 parameters.
6318 inline int length() const;
6319 inline void set_length(int value);
6321 // [internal formal parameter count]: The declared number of parameters.
6322 // For subclass constructors, also includes new.target.
6323 // The size of function's frame is internal_formal_parameter_count + 1.
6324 inline int internal_formal_parameter_count() const;
6325 inline void set_internal_formal_parameter_count(int value);
6327 // Set the formal parameter count so the function code will be
6328 // called without using argument adaptor frames.
6329 inline void DontAdaptArguments();
6331 // [expected_nof_properties]: Expected number of properties for the function.
6332 inline int expected_nof_properties() const;
6333 inline void set_expected_nof_properties(int value);
6335 // [feedback_vector] - accumulates ast node feedback from full-codegen and
6336 // (increasingly) from crankshafted code where sufficient feedback isn't
6338 DECL_ACCESSORS(feedback_vector, TypeFeedbackVector)
6340 // Unconditionally clear the type feedback vector (including vector ICs).
6341 void ClearTypeFeedbackInfo();
6343 // Clear the type feedback vector with a more subtle policy at GC time.
6344 void ClearTypeFeedbackInfoAtGCTime();
6347 // [unique_id] - For --trace-maps purposes, an identifier that's persistent
6348 // even if the GC moves this SharedFunctionInfo.
6349 inline int unique_id() const;
6350 inline void set_unique_id(int value);
6353 // [instance class name]: class name for instances.
6354 DECL_ACCESSORS(instance_class_name, Object)
6356 // [function data]: This field holds some additional data for function.
6357 // Currently it has one of:
6358 // - a FunctionTemplateInfo to make benefit the API [IsApiFunction()].
6359 // - a Smi identifying a builtin function [HasBuiltinFunctionId()].
6360 // - a BytecodeArray for the interpreter [HasBytecodeArray()].
6361 // In the long run we don't want all functions to have this field but
6362 // we can fix that when we have a better model for storing hidden data
6364 DECL_ACCESSORS(function_data, Object)
6366 inline bool IsApiFunction();
6367 inline FunctionTemplateInfo* get_api_func_data();
6368 inline bool HasBuiltinFunctionId();
6369 inline BuiltinFunctionId builtin_function_id();
6370 inline bool HasBytecodeArray();
6371 inline BytecodeArray* bytecode_array();
6373 // [script info]: Script from which the function originates.
6374 DECL_ACCESSORS(script, Object)
6376 // [num_literals]: Number of literals used by this function.
6377 inline int num_literals() const;
6378 inline void set_num_literals(int value);
6380 // [start_position_and_type]: Field used to store both the source code
6381 // position, whether or not the function is a function expression,
6382 // and whether or not the function is a toplevel function. The two
6383 // least significants bit indicates whether the function is an
6384 // expression and the rest contains the source code position.
6385 inline int start_position_and_type() const;
6386 inline void set_start_position_and_type(int value);
6388 // The function is subject to debugging if a debug info is attached.
6389 inline bool HasDebugInfo();
6390 inline DebugInfo* GetDebugInfo();
6392 // A function has debug code if the compiled code has debug break slots.
6393 inline bool HasDebugCode();
6395 // [debug info]: Debug information.
6396 DECL_ACCESSORS(debug_info, Object)
6398 // [inferred name]: Name inferred from variable or property
6399 // assignment of this function. Used to facilitate debugging and
6400 // profiling of JavaScript code written in OO style, where almost
6401 // all functions are anonymous but are assigned to object
6403 DECL_ACCESSORS(inferred_name, String)
6405 // The function's name if it is non-empty, otherwise the inferred name.
6406 String* DebugName();
6408 // Position of the 'function' token in the script source.
6409 inline int function_token_position() const;
6410 inline void set_function_token_position(int function_token_position);
6412 // Position of this function in the script source.
6413 inline int start_position() const;
6414 inline void set_start_position(int start_position);
6416 // End position of this function in the script source.
6417 inline int end_position() const;
6418 inline void set_end_position(int end_position);
6420 // Is this function a function expression in the source code.
6421 DECL_BOOLEAN_ACCESSORS(is_expression)
6423 // Is this function a top-level function (scripts, evals).
6424 DECL_BOOLEAN_ACCESSORS(is_toplevel)
6426 // Bit field containing various information collected by the compiler to
6427 // drive optimization.
6428 inline int compiler_hints() const;
6429 inline void set_compiler_hints(int value);
6431 inline int ast_node_count() const;
6432 inline void set_ast_node_count(int count);
6434 inline int profiler_ticks() const;
6435 inline void set_profiler_ticks(int ticks);
6437 // Inline cache age is used to infer whether the function survived a context
6438 // disposal or not. In the former case we reset the opt_count.
6439 inline int ic_age();
6440 inline void set_ic_age(int age);
6442 // Indicates if this function can be lazy compiled.
6443 // This is used to determine if we can safely flush code from a function
6444 // when doing GC if we expect that the function will no longer be used.
6445 DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation)
6447 // Indicates if this function can be lazy compiled without a context.
6448 // This is used to determine if we can force compilation without reaching
6449 // the function through program execution but through other means (e.g. heap
6450 // iteration by the debugger).
6451 DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation_without_context)
6453 // Indicates whether optimizations have been disabled for this
6454 // shared function info. If a function is repeatedly optimized or if
6455 // we cannot optimize the function we disable optimization to avoid
6456 // spending time attempting to optimize it again.
6457 DECL_BOOLEAN_ACCESSORS(optimization_disabled)
6459 // Indicates the language mode.
6460 inline LanguageMode language_mode();
6461 inline void set_language_mode(LanguageMode language_mode);
6463 // False if the function definitely does not allocate an arguments object.
6464 DECL_BOOLEAN_ACCESSORS(uses_arguments)
6466 // Indicates that this function uses a super property (or an eval that may
6467 // use a super property).
6468 // This is needed to set up the [[HomeObject]] on the function instance.
6469 DECL_BOOLEAN_ACCESSORS(needs_home_object)
6471 // True if the function has any duplicated parameter names.
6472 DECL_BOOLEAN_ACCESSORS(has_duplicate_parameters)
6474 // Indicates whether the function is a native function.
6475 // These needs special treatment in .call and .apply since
6476 // null passed as the receiver should not be translated to the
6478 DECL_BOOLEAN_ACCESSORS(native)
6480 // Indicate that this function should always be inlined in optimized code.
6481 DECL_BOOLEAN_ACCESSORS(force_inline)
6483 // Indicates that the function was created by the Function function.
6484 // Though it's anonymous, toString should treat it as if it had the name
6485 // "anonymous". We don't set the name itself so that the system does not
6486 // see a binding for it.
6487 DECL_BOOLEAN_ACCESSORS(name_should_print_as_anonymous)
6489 // Indicates whether the function is a bound function created using
6490 // the bind function.
6491 DECL_BOOLEAN_ACCESSORS(bound)
6493 // Indicates that the function is anonymous (the name field can be set
6494 // through the API, which does not change this flag).
6495 DECL_BOOLEAN_ACCESSORS(is_anonymous)
6497 // Is this a function or top-level/eval code.
6498 DECL_BOOLEAN_ACCESSORS(is_function)
6500 // Indicates that code for this function cannot be compiled with Crankshaft.
6501 DECL_BOOLEAN_ACCESSORS(dont_crankshaft)
6503 // Indicates that code for this function cannot be flushed.
6504 DECL_BOOLEAN_ACCESSORS(dont_flush)
6506 // Indicates that this function is a generator.
6507 DECL_BOOLEAN_ACCESSORS(is_generator)
6509 // Indicates that this function is an arrow function.
6510 DECL_BOOLEAN_ACCESSORS(is_arrow)
6512 // Indicates that this function is a concise method.
6513 DECL_BOOLEAN_ACCESSORS(is_concise_method)
6515 // Indicates that this function is an accessor (getter or setter).
6516 DECL_BOOLEAN_ACCESSORS(is_accessor_function)
6518 // Indicates that this function is a default constructor.
6519 DECL_BOOLEAN_ACCESSORS(is_default_constructor)
6521 // Indicates that this function is an asm function.
6522 DECL_BOOLEAN_ACCESSORS(asm_function)
6524 // Indicates that the the shared function info is deserialized from cache.
6525 DECL_BOOLEAN_ACCESSORS(deserialized)
6527 // Indicates that the the shared function info has never been compiled before.
6528 DECL_BOOLEAN_ACCESSORS(never_compiled)
6530 inline FunctionKind kind();
6531 inline void set_kind(FunctionKind kind);
6533 // Indicates whether or not the code in the shared function support
6535 inline bool has_deoptimization_support();
6537 // Enable deoptimization support through recompiled code.
6538 void EnableDeoptimizationSupport(Code* recompiled);
6540 // Disable (further) attempted optimization of all functions sharing this
6541 // shared function info.
6542 void DisableOptimization(BailoutReason reason);
6544 inline BailoutReason disable_optimization_reason();
6546 // Lookup the bailout ID and DCHECK that it exists in the non-optimized
6547 // code, returns whether it asserted (i.e., always true if assertions are
6549 bool VerifyBailoutId(BailoutId id);
6551 // [source code]: Source code for the function.
6552 bool HasSourceCode() const;
6553 Handle<Object> GetSourceCode();
6555 // Number of times the function was optimized.
6556 inline int opt_count();
6557 inline void set_opt_count(int opt_count);
6559 // Number of times the function was deoptimized.
6560 inline void set_deopt_count(int value);
6561 inline int deopt_count();
6562 inline void increment_deopt_count();
6564 // Number of time we tried to re-enable optimization after it
6565 // was disabled due to high number of deoptimizations.
6566 inline void set_opt_reenable_tries(int value);
6567 inline int opt_reenable_tries();
6569 inline void TryReenableOptimization();
6571 // Stores deopt_count, opt_reenable_tries and ic_age as bit-fields.
6572 inline void set_counters(int value);
6573 inline int counters() const;
6575 // Stores opt_count and bailout_reason as bit-fields.
6576 inline void set_opt_count_and_bailout_reason(int value);
6577 inline int opt_count_and_bailout_reason() const;
6579 inline void set_disable_optimization_reason(BailoutReason reason);
6581 // Tells whether this function should be subject to debugging.
6582 inline bool IsSubjectToDebugging();
6584 // Whether this function is defined in native code or extensions.
6585 inline bool IsBuiltin();
6587 // Check whether or not this function is inlineable.
6588 bool IsInlineable();
6590 // Source size of this function.
6593 // Calculate the instance size.
6594 int CalculateInstanceSize();
6596 // Calculate the number of in-object properties.
6597 int CalculateInObjectProperties();
6599 inline bool has_simple_parameters();
6601 // Initialize a SharedFunctionInfo from a parsed function literal.
6602 static void InitFromFunctionLiteral(Handle<SharedFunctionInfo> shared_info,
6603 FunctionLiteral* lit);
6605 // Dispatched behavior.
6606 DECLARE_PRINTER(SharedFunctionInfo)
6607 DECLARE_VERIFIER(SharedFunctionInfo)
6609 void ResetForNewContext(int new_ic_age);
6611 // Iterate over all shared function infos that are created from a script.
6612 // That excludes shared function infos created for API functions and C++
6616 explicit Iterator(Isolate* isolate);
6617 SharedFunctionInfo* Next();
6622 Script::Iterator script_iterator_;
6623 WeakFixedArray::Iterator sfi_iterator_;
6624 DisallowHeapAllocation no_gc_;
6625 DISALLOW_COPY_AND_ASSIGN(Iterator);
6628 DECLARE_CAST(SharedFunctionInfo)
6631 static const int kDontAdaptArgumentsSentinel = -1;
6633 // Layout description.
6635 static const int kNameOffset = HeapObject::kHeaderSize;
6636 static const int kCodeOffset = kNameOffset + kPointerSize;
6637 static const int kOptimizedCodeMapOffset = kCodeOffset + kPointerSize;
6638 static const int kScopeInfoOffset = kOptimizedCodeMapOffset + kPointerSize;
6639 static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize;
6640 static const int kInstanceClassNameOffset =
6641 kConstructStubOffset + kPointerSize;
6642 static const int kFunctionDataOffset =
6643 kInstanceClassNameOffset + kPointerSize;
6644 static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
6645 static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
6646 static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
6647 static const int kFeedbackVectorOffset =
6648 kInferredNameOffset + kPointerSize;
6650 static const int kUniqueIdOffset = kFeedbackVectorOffset + kPointerSize;
6651 static const int kLastPointerFieldOffset = kUniqueIdOffset;
6653 // Just to not break the postmortrem support with conditional offsets
6654 static const int kUniqueIdOffset = kFeedbackVectorOffset;
6655 static const int kLastPointerFieldOffset = kFeedbackVectorOffset;
6658 #if V8_HOST_ARCH_32_BIT
6660 static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
6661 static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
6662 static const int kExpectedNofPropertiesOffset =
6663 kFormalParameterCountOffset + kPointerSize;
6664 static const int kNumLiteralsOffset =
6665 kExpectedNofPropertiesOffset + kPointerSize;
6666 static const int kStartPositionAndTypeOffset =
6667 kNumLiteralsOffset + kPointerSize;
6668 static const int kEndPositionOffset =
6669 kStartPositionAndTypeOffset + kPointerSize;
6670 static const int kFunctionTokenPositionOffset =
6671 kEndPositionOffset + kPointerSize;
6672 static const int kCompilerHintsOffset =
6673 kFunctionTokenPositionOffset + kPointerSize;
6674 static const int kOptCountAndBailoutReasonOffset =
6675 kCompilerHintsOffset + kPointerSize;
6676 static const int kCountersOffset =
6677 kOptCountAndBailoutReasonOffset + kPointerSize;
6678 static const int kAstNodeCountOffset =
6679 kCountersOffset + kPointerSize;
6680 static const int kProfilerTicksOffset =
6681 kAstNodeCountOffset + kPointerSize;
6684 static const int kSize = kProfilerTicksOffset + kPointerSize;
6686 // The only reason to use smi fields instead of int fields
6687 // is to allow iteration without maps decoding during
6688 // garbage collections.
6689 // To avoid wasting space on 64-bit architectures we use
6690 // the following trick: we group integer fields into pairs
6691 // The least significant integer in each pair is shifted left by 1.
6692 // By doing this we guarantee that LSB of each kPointerSize aligned
6693 // word is not set and thus this word cannot be treated as pointer
6694 // to HeapObject during old space traversal.
6695 #if V8_TARGET_LITTLE_ENDIAN
6696 static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
6697 static const int kFormalParameterCountOffset =
6698 kLengthOffset + kIntSize;
6700 static const int kExpectedNofPropertiesOffset =
6701 kFormalParameterCountOffset + kIntSize;
6702 static const int kNumLiteralsOffset =
6703 kExpectedNofPropertiesOffset + kIntSize;
6705 static const int kEndPositionOffset =
6706 kNumLiteralsOffset + kIntSize;
6707 static const int kStartPositionAndTypeOffset =
6708 kEndPositionOffset + kIntSize;
6710 static const int kFunctionTokenPositionOffset =
6711 kStartPositionAndTypeOffset + kIntSize;
6712 static const int kCompilerHintsOffset =
6713 kFunctionTokenPositionOffset + kIntSize;
6715 static const int kOptCountAndBailoutReasonOffset =
6716 kCompilerHintsOffset + kIntSize;
6717 static const int kCountersOffset =
6718 kOptCountAndBailoutReasonOffset + kIntSize;
6720 static const int kAstNodeCountOffset =
6721 kCountersOffset + kIntSize;
6722 static const int kProfilerTicksOffset =
6723 kAstNodeCountOffset + kIntSize;
6726 static const int kSize = kProfilerTicksOffset + kIntSize;
6728 #elif V8_TARGET_BIG_ENDIAN
6729 static const int kFormalParameterCountOffset =
6730 kLastPointerFieldOffset + kPointerSize;
6731 static const int kLengthOffset = kFormalParameterCountOffset + kIntSize;
6733 static const int kNumLiteralsOffset = kLengthOffset + kIntSize;
6734 static const int kExpectedNofPropertiesOffset = kNumLiteralsOffset + kIntSize;
6736 static const int kStartPositionAndTypeOffset =
6737 kExpectedNofPropertiesOffset + kIntSize;
6738 static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;
6740 static const int kCompilerHintsOffset = kEndPositionOffset + kIntSize;
6741 static const int kFunctionTokenPositionOffset =
6742 kCompilerHintsOffset + kIntSize;
6744 static const int kCountersOffset = kFunctionTokenPositionOffset + kIntSize;
6745 static const int kOptCountAndBailoutReasonOffset = kCountersOffset + kIntSize;
6747 static const int kProfilerTicksOffset =
6748 kOptCountAndBailoutReasonOffset + kIntSize;
6749 static const int kAstNodeCountOffset = kProfilerTicksOffset + kIntSize;
6752 static const int kSize = kAstNodeCountOffset + kIntSize;
6755 #error Unknown byte ordering
6756 #endif // Big endian
6760 static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
6762 typedef FixedBodyDescriptor<kNameOffset,
6763 kLastPointerFieldOffset + kPointerSize,
6764 kSize> BodyDescriptor;
6766 // Bit positions in start_position_and_type.
6767 // The source code start position is in the 30 most significant bits of
6768 // the start_position_and_type field.
6769 static const int kIsExpressionBit = 0;
6770 static const int kIsTopLevelBit = 1;
6771 static const int kStartPositionShift = 2;
6772 static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
6774 // Bit positions in compiler_hints.
6775 enum CompilerHints {
6776 kAllowLazyCompilation,
6777 kAllowLazyCompilationWithoutContext,
6778 kOptimizationDisabled,
6780 kStrictModeFunction,
6781 kStrongModeFunction,
6784 kHasDuplicateParameters,
6788 kNameShouldPrintAsAnonymous,
6795 kIsAccessorFunction,
6796 kIsDefaultConstructor,
6797 kIsSubclassConstructor,
6803 kCompilerHintsCount // Pseudo entry
6805 // Add hints for other modes when they're added.
6806 STATIC_ASSERT(LANGUAGE_END == 3);
6808 class FunctionKindBits : public BitField<FunctionKind, kIsArrow, 8> {};
6810 class DeoptCountBits : public BitField<int, 0, 4> {};
6811 class OptReenableTriesBits : public BitField<int, 4, 18> {};
6812 class ICAgeBits : public BitField<int, 22, 8> {};
6814 class OptCountBits : public BitField<int, 0, 22> {};
6815 class DisabledOptimizationReasonBits : public BitField<int, 22, 8> {};
6818 #if V8_HOST_ARCH_32_BIT
6819 // On 32 bit platforms, compiler hints is a smi.
6820 static const int kCompilerHintsSmiTagSize = kSmiTagSize;
6821 static const int kCompilerHintsSize = kPointerSize;
6823 // On 64 bit platforms, compiler hints is not a smi, see comment above.
6824 static const int kCompilerHintsSmiTagSize = 0;
6825 static const int kCompilerHintsSize = kIntSize;
6828 STATIC_ASSERT(SharedFunctionInfo::kCompilerHintsCount <=
6829 SharedFunctionInfo::kCompilerHintsSize * kBitsPerByte);
6832 // Constants for optimizing codegen for strict mode function and
6834 // Allows to use byte-width instructions.
6835 static const int kStrictModeBitWithinByte =
6836 (kStrictModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
6837 static const int kStrongModeBitWithinByte =
6838 (kStrongModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
6840 static const int kNativeBitWithinByte =
6841 (kNative + kCompilerHintsSmiTagSize) % kBitsPerByte;
6843 static const int kBoundBitWithinByte =
6844 (kBoundFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;
6846 #if defined(V8_TARGET_LITTLE_ENDIAN)
6847 static const int kStrictModeByteOffset = kCompilerHintsOffset +
6848 (kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
6849 static const int kStrongModeByteOffset =
6850 kCompilerHintsOffset +
6851 (kStrongModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
6852 static const int kNativeByteOffset = kCompilerHintsOffset +
6853 (kNative + kCompilerHintsSmiTagSize) / kBitsPerByte;
6854 static const int kBoundByteOffset =
6855 kCompilerHintsOffset +
6856 (kBoundFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
6857 #elif defined(V8_TARGET_BIG_ENDIAN)
6858 static const int kStrictModeByteOffset = kCompilerHintsOffset +
6859 (kCompilerHintsSize - 1) -
6860 ((kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
6861 static const int kStrongModeByteOffset =
6862 kCompilerHintsOffset + (kCompilerHintsSize - 1) -
6863 ((kStrongModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
6864 static const int kNativeByteOffset = kCompilerHintsOffset +
6865 (kCompilerHintsSize - 1) -
6866 ((kNative + kCompilerHintsSmiTagSize) / kBitsPerByte);
6867 static const int kBoundByteOffset =
6868 kCompilerHintsOffset + (kCompilerHintsSize - 1) -
6869 ((kBoundFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
6871 #error Unknown byte ordering
6875 DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
6879 // Printing support.
6880 struct SourceCodeOf {
6881 explicit SourceCodeOf(SharedFunctionInfo* v, int max = -1)
6882 : value(v), max_length(max) {}
6883 const SharedFunctionInfo* value;
6888 std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v);
6891 class JSGeneratorObject: public JSObject {
6893 // [function]: The function corresponding to this generator object.
6894 DECL_ACCESSORS(function, JSFunction)
6896 // [context]: The context of the suspended computation.
6897 DECL_ACCESSORS(context, Context)
6899 // [receiver]: The receiver of the suspended computation.
6900 DECL_ACCESSORS(receiver, Object)
6902 // [continuation]: Offset into code of continuation.
6904 // A positive offset indicates a suspended generator. The special
6905 // kGeneratorExecuting and kGeneratorClosed values indicate that a generator
6906 // cannot be resumed.
6907 inline int continuation() const;
6908 inline void set_continuation(int continuation);
6909 inline bool is_closed();
6910 inline bool is_executing();
6911 inline bool is_suspended();
6913 // [operand_stack]: Saved operand stack.
6914 DECL_ACCESSORS(operand_stack, FixedArray)
6916 DECLARE_CAST(JSGeneratorObject)
6918 // Dispatched behavior.
6919 DECLARE_PRINTER(JSGeneratorObject)
6920 DECLARE_VERIFIER(JSGeneratorObject)
6922 // Magic sentinel values for the continuation.
6923 static const int kGeneratorExecuting = -1;
6924 static const int kGeneratorClosed = 0;
6926 // Layout description.
6927 static const int kFunctionOffset = JSObject::kHeaderSize;
6928 static const int kContextOffset = kFunctionOffset + kPointerSize;
6929 static const int kReceiverOffset = kContextOffset + kPointerSize;
6930 static const int kContinuationOffset = kReceiverOffset + kPointerSize;
6931 static const int kOperandStackOffset = kContinuationOffset + kPointerSize;
6932 static const int kSize = kOperandStackOffset + kPointerSize;
6934 // Resume mode, for use by runtime functions.
6935 enum ResumeMode { NEXT, THROW };
6938 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGeneratorObject);
6942 // Representation for module instance objects.
6943 class JSModule: public JSObject {
6945 // [context]: the context holding the module's locals, or undefined if none.
6946 DECL_ACCESSORS(context, Object)
6948 // [scope_info]: Scope info.
6949 DECL_ACCESSORS(scope_info, ScopeInfo)
6951 DECLARE_CAST(JSModule)
6953 // Dispatched behavior.
6954 DECLARE_PRINTER(JSModule)
6955 DECLARE_VERIFIER(JSModule)
6957 // Layout description.
6958 static const int kContextOffset = JSObject::kHeaderSize;
6959 static const int kScopeInfoOffset = kContextOffset + kPointerSize;
6960 static const int kSize = kScopeInfoOffset + kPointerSize;
6963 DISALLOW_IMPLICIT_CONSTRUCTORS(JSModule);
6967 // JSFunction describes JavaScript functions.
6968 class JSFunction: public JSObject {
6970 // [prototype_or_initial_map]:
6971 DECL_ACCESSORS(prototype_or_initial_map, Object)
6973 // [shared]: The information about the function that
6974 // can be shared by instances.
6975 DECL_ACCESSORS(shared, SharedFunctionInfo)
6977 // [context]: The context for this function.
6978 inline Context* context();
6979 inline void set_context(Object* context);
6980 inline JSObject* global_proxy();
6982 // [code]: The generated code object for this function. Executed
6983 // when the function is invoked, e.g. foo() or new foo(). See
6984 // [[Call]] and [[Construct]] description in ECMA-262, section
6986 inline Code* code();
6987 inline void set_code(Code* code);
6988 inline void set_code_no_write_barrier(Code* code);
6989 inline void ReplaceCode(Code* code);
6991 // Tells whether this function is builtin.
6992 inline bool IsBuiltin();
6994 // Tells whether this function inlines the given shared function info.
6995 bool Inlines(SharedFunctionInfo* candidate);
6997 // Tells whether this function should be subject to debugging.
6998 inline bool IsSubjectToDebugging();
7000 // Tells whether or not the function needs arguments adaption.
7001 inline bool NeedsArgumentsAdaption();
7003 // Tells whether or not this function has been optimized.
7004 inline bool IsOptimized();
7006 // Mark this function for lazy recompilation. The function will be
7007 // recompiled the next time it is executed.
7008 void MarkForOptimization();
7009 void AttemptConcurrentOptimization();
7011 // Tells whether or not the function is already marked for lazy
7013 inline bool IsMarkedForOptimization();
7014 inline bool IsMarkedForConcurrentOptimization();
7016 // Tells whether or not the function is on the concurrent recompilation queue.
7017 inline bool IsInOptimizationQueue();
7019 // Inobject slack tracking is the way to reclaim unused inobject space.
7021 // The instance size is initially determined by adding some slack to
7022 // expected_nof_properties (to allow for a few extra properties added
7023 // after the constructor). There is no guarantee that the extra space
7024 // will not be wasted.
7026 // Here is the algorithm to reclaim the unused inobject space:
7027 // - Detect the first constructor call for this JSFunction.
7028 // When it happens enter the "in progress" state: initialize construction
7029 // counter in the initial_map.
7030 // - While the tracking is in progress create objects filled with
7031 // one_pointer_filler_map instead of undefined_value. This way they can be
7032 // resized quickly and safely.
7033 // - Once enough objects have been created compute the 'slack'
7034 // (traverse the map transition tree starting from the
7035 // initial_map and find the lowest value of unused_property_fields).
7036 // - Traverse the transition tree again and decrease the instance size
7037 // of every map. Existing objects will resize automatically (they are
7038 // filled with one_pointer_filler_map). All further allocations will
7039 // use the adjusted instance size.
7040 // - SharedFunctionInfo's expected_nof_properties left unmodified since
7041 // allocations made using different closures could actually create different
7042 // kind of objects (see prototype inheritance pattern).
7044 // Important: inobject slack tracking is not attempted during the snapshot
7047 // True if the initial_map is set and the object constructions countdown
7048 // counter is not zero.
7049 static const int kGenerousAllocationCount =
7050 Map::kSlackTrackingCounterStart - Map::kSlackTrackingCounterEnd + 1;
7051 inline bool IsInobjectSlackTrackingInProgress();
7053 // Starts the tracking.
7054 // Initializes object constructions countdown counter in the initial map.
7055 void StartInobjectSlackTracking();
7057 // Completes the tracking.
7058 void CompleteInobjectSlackTracking();
7060 // [literals_or_bindings]: Fixed array holding either
7061 // the materialized literals or the bindings of a bound function.
7063 // If the function contains object, regexp or array literals, the
7064 // literals array prefix contains the object, regexp, and array
7065 // function to be used when creating these literals. This is
7066 // necessary so that we do not dynamically lookup the object, regexp
7067 // or array functions. Performing a dynamic lookup, we might end up
7068 // using the functions from a new context that we should not have
7071 // On bound functions, the array is a (copy-on-write) fixed-array containing
7072 // the function that was bound, bound this-value and any bound
7073 // arguments. Bound functions never contain literals.
7074 DECL_ACCESSORS(literals_or_bindings, FixedArray)
7076 inline FixedArray* literals();
7077 inline void set_literals(FixedArray* literals);
7079 inline FixedArray* function_bindings();
7080 inline void set_function_bindings(FixedArray* bindings);
7082 // The initial map for an object created by this constructor.
7083 inline Map* initial_map();
7084 static void SetInitialMap(Handle<JSFunction> function, Handle<Map> map,
7085 Handle<Object> prototype);
7086 inline bool has_initial_map();
7087 static void EnsureHasInitialMap(Handle<JSFunction> function);
7089 // Get and set the prototype property on a JSFunction. If the
7090 // function has an initial map the prototype is set on the initial
7091 // map. Otherwise, the prototype is put in the initial map field
7092 // until an initial map is needed.
7093 inline bool has_prototype();
7094 inline bool has_instance_prototype();
7095 inline Object* prototype();
7096 inline Object* instance_prototype();
7097 static void SetPrototype(Handle<JSFunction> function,
7098 Handle<Object> value);
7099 static void SetInstancePrototype(Handle<JSFunction> function,
7100 Handle<Object> value);
7102 // Creates a new closure for the fucntion with the same bindings,
7103 // bound values, and prototype. An equivalent of spec operations
7104 // ``CloneMethod`` and ``CloneBoundFunction``.
7105 static Handle<JSFunction> CloneClosure(Handle<JSFunction> function);
7107 // After prototype is removed, it will not be created when accessed, and
7108 // [[Construct]] from this function will not be allowed.
7109 bool RemovePrototype();
7110 inline bool should_have_prototype();
7112 // Accessor for this function's initial map's [[class]]
7113 // property. This is primarily used by ECMA native functions. This
7114 // method sets the class_name field of this function's initial map
7115 // to a given value. It creates an initial map if this function does
7116 // not have one. Note that this method does not copy the initial map
7117 // if it has one already, but simply replaces it with the new value.
7118 // Instances created afterwards will have a map whose [[class]] is
7119 // set to 'value', but there is no guarantees on instances created
7121 void SetInstanceClassName(String* name);
7123 // Returns if this function has been compiled to native code yet.
7124 inline bool is_compiled();
7126 // Returns `false` if formal parameters include rest parameters, optional
7127 // parameters, or destructuring parameters.
7128 // TODO(caitp): make this a flag set during parsing
7129 inline bool has_simple_parameters();
7131 // [next_function_link]: Links functions into various lists, e.g. the list
7132 // of optimized functions hanging off the native_context. The CodeFlusher
7133 // uses this link to chain together flushing candidates. Treated weakly
7134 // by the garbage collector.
7135 DECL_ACCESSORS(next_function_link, Object)
7137 // Prints the name of the function using PrintF.
7138 void PrintName(FILE* out = stdout);
7140 DECLARE_CAST(JSFunction)
7142 // Iterates the objects, including code objects indirectly referenced
7143 // through pointers to the first instruction in the code object.
7144 void JSFunctionIterateBody(int object_size, ObjectVisitor* v);
7146 // Dispatched behavior.
7147 DECLARE_PRINTER(JSFunction)
7148 DECLARE_VERIFIER(JSFunction)
7150 // Returns the number of allocated literals.
7151 inline int NumberOfLiterals();
7153 // Used for flags such as --hydrogen-filter.
7154 bool PassesFilter(const char* raw_filter);
7156 // The function's name if it is configured, otherwise shared function info
7158 static Handle<String> GetDebugName(Handle<JSFunction> function);
7160 // Layout descriptors. The last property (from kNonWeakFieldsEndOffset to
7161 // kSize) is weak and has special handling during garbage collection.
7162 static const int kCodeEntryOffset = JSObject::kHeaderSize;
7163 static const int kPrototypeOrInitialMapOffset =
7164 kCodeEntryOffset + kPointerSize;
7165 static const int kSharedFunctionInfoOffset =
7166 kPrototypeOrInitialMapOffset + kPointerSize;
7167 static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
7168 static const int kLiteralsOffset = kContextOffset + kPointerSize;
7169 static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize;
7170 static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset;
7171 static const int kSize = kNextFunctionLinkOffset + kPointerSize;
7173 // Layout of the bound-function binding array.
7174 static const int kBoundFunctionIndex = 0;
7175 static const int kBoundThisIndex = 1;
7176 static const int kBoundArgumentsStartIndex = 2;
7179 DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
7183 // JSGlobalProxy's prototype must be a JSGlobalObject or null,
7184 // and the prototype is hidden. JSGlobalProxy always delegates
7185 // property accesses to its prototype if the prototype is not null.
7187 // A JSGlobalProxy can be reinitialized which will preserve its identity.
7189 // Accessing a JSGlobalProxy requires security check.
7191 class JSGlobalProxy : public JSObject {
7193 // [native_context]: the owner native context of this global proxy object.
7194 // It is null value if this object is not used by any context.
7195 DECL_ACCESSORS(native_context, Object)
7197 // [hash]: The hash code property (undefined if not initialized yet).
7198 DECL_ACCESSORS(hash, Object)
7200 DECLARE_CAST(JSGlobalProxy)
7202 inline bool IsDetachedFrom(GlobalObject* global) const;
7204 // Dispatched behavior.
7205 DECLARE_PRINTER(JSGlobalProxy)
7206 DECLARE_VERIFIER(JSGlobalProxy)
7208 // Layout description.
7209 static const int kNativeContextOffset = JSObject::kHeaderSize;
7210 static const int kHashOffset = kNativeContextOffset + kPointerSize;
7211 static const int kSize = kHashOffset + kPointerSize;
7214 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
7218 // Common super class for JavaScript global objects and the special
7219 // builtins global objects.
7220 class GlobalObject: public JSObject {
7222 // [builtins]: the object holding the runtime routines written in JS.
7223 DECL_ACCESSORS(builtins, JSBuiltinsObject)
7225 // [native context]: the natives corresponding to this global object.
7226 DECL_ACCESSORS(native_context, Context)
7228 // [global proxy]: the global proxy object of the context
7229 DECL_ACCESSORS(global_proxy, JSObject)
7231 DECLARE_CAST(GlobalObject)
7233 static void InvalidatePropertyCell(Handle<GlobalObject> object,
7235 // Ensure that the global object has a cell for the given property name.
7236 static Handle<PropertyCell> EnsurePropertyCell(Handle<GlobalObject> global,
7239 // Layout description.
7240 static const int kBuiltinsOffset = JSObject::kHeaderSize;
7241 static const int kNativeContextOffset = kBuiltinsOffset + kPointerSize;
7242 static const int kGlobalProxyOffset = kNativeContextOffset + kPointerSize;
7243 static const int kHeaderSize = kGlobalProxyOffset + kPointerSize;
7246 DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
7250 // JavaScript global object.
7251 class JSGlobalObject: public GlobalObject {
7253 DECLARE_CAST(JSGlobalObject)
7255 inline bool IsDetached();
7257 // Dispatched behavior.
7258 DECLARE_PRINTER(JSGlobalObject)
7259 DECLARE_VERIFIER(JSGlobalObject)
7261 // Layout description.
7262 static const int kSize = GlobalObject::kHeaderSize;
7265 DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
7269 // Builtins global object which holds the runtime routines written in
7271 class JSBuiltinsObject: public GlobalObject {
7273 DECLARE_CAST(JSBuiltinsObject)
7275 // Dispatched behavior.
7276 DECLARE_PRINTER(JSBuiltinsObject)
7277 DECLARE_VERIFIER(JSBuiltinsObject)
7279 // Layout description.
7280 static const int kSize = GlobalObject::kHeaderSize;
7283 DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
7287 // Representation for JS Wrapper objects, String, Number, Boolean, etc.
7288 class JSValue: public JSObject {
7290 // [value]: the object being wrapped.
7291 DECL_ACCESSORS(value, Object)
7293 DECLARE_CAST(JSValue)
7295 // Dispatched behavior.
7296 DECLARE_PRINTER(JSValue)
7297 DECLARE_VERIFIER(JSValue)
7299 // Layout description.
7300 static const int kValueOffset = JSObject::kHeaderSize;
7301 static const int kSize = kValueOffset + kPointerSize;
7304 DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
7310 // Representation for JS date objects.
7311 class JSDate: public JSObject {
7313 // If one component is NaN, all of them are, indicating a NaN time value.
7314 // [value]: the time value.
7315 DECL_ACCESSORS(value, Object)
7316 // [year]: caches year. Either undefined, smi, or NaN.
7317 DECL_ACCESSORS(year, Object)
7318 // [month]: caches month. Either undefined, smi, or NaN.
7319 DECL_ACCESSORS(month, Object)
7320 // [day]: caches day. Either undefined, smi, or NaN.
7321 DECL_ACCESSORS(day, Object)
7322 // [weekday]: caches day of week. Either undefined, smi, or NaN.
7323 DECL_ACCESSORS(weekday, Object)
7324 // [hour]: caches hours. Either undefined, smi, or NaN.
7325 DECL_ACCESSORS(hour, Object)
7326 // [min]: caches minutes. Either undefined, smi, or NaN.
7327 DECL_ACCESSORS(min, Object)
7328 // [sec]: caches seconds. Either undefined, smi, or NaN.
7329 DECL_ACCESSORS(sec, Object)
7330 // [cache stamp]: sample of the date cache stamp at the
7331 // moment when chached fields were cached.
7332 DECL_ACCESSORS(cache_stamp, Object)
7334 DECLARE_CAST(JSDate)
7336 // Returns the date field with the specified index.
7337 // See FieldIndex for the list of date fields.
7338 static Object* GetField(Object* date, Smi* index);
7340 void SetValue(Object* value, bool is_value_nan);
7342 // ES6 section 20.3.4.45 Date.prototype [ @@toPrimitive ]
7343 static MUST_USE_RESULT MaybeHandle<Object> ToPrimitive(
7344 Handle<JSReceiver> receiver, Handle<Object> hint);
7346 // Dispatched behavior.
7347 DECLARE_PRINTER(JSDate)
7348 DECLARE_VERIFIER(JSDate)
7350 // The order is important. It must be kept in sync with date macros
7361 kFirstUncachedField,
7362 kMillisecond = kFirstUncachedField,
7366 kYearUTC = kFirstUTCField,
7379 // Layout description.
7380 static const int kValueOffset = JSObject::kHeaderSize;
7381 static const int kYearOffset = kValueOffset + kPointerSize;
7382 static const int kMonthOffset = kYearOffset + kPointerSize;
7383 static const int kDayOffset = kMonthOffset + kPointerSize;
7384 static const int kWeekdayOffset = kDayOffset + kPointerSize;
7385 static const int kHourOffset = kWeekdayOffset + kPointerSize;
7386 static const int kMinOffset = kHourOffset + kPointerSize;
7387 static const int kSecOffset = kMinOffset + kPointerSize;
7388 static const int kCacheStampOffset = kSecOffset + kPointerSize;
7389 static const int kSize = kCacheStampOffset + kPointerSize;
7392 inline Object* DoGetField(FieldIndex index);
7394 Object* GetUTCField(FieldIndex index, double value, DateCache* date_cache);
7396 // Computes and caches the cacheable fields of the date.
7397 inline void SetCachedFields(int64_t local_time_ms, DateCache* date_cache);
7400 DISALLOW_IMPLICIT_CONSTRUCTORS(JSDate);
7404 // Representation of message objects used for error reporting through
7405 // the API. The messages are formatted in JavaScript so this object is
7406 // a real JavaScript object. The information used for formatting the
7407 // error messages are not directly accessible from JavaScript to
7408 // prevent leaking information to user code called during error
7410 class JSMessageObject: public JSObject {
7412 // [type]: the type of error message.
7413 inline int type() const;
7414 inline void set_type(int value);
7416 // [arguments]: the arguments for formatting the error message.
7417 DECL_ACCESSORS(argument, Object)
7419 // [script]: the script from which the error message originated.
7420 DECL_ACCESSORS(script, Object)
7422 // [stack_frames]: an array of stack frames for this error object.
7423 DECL_ACCESSORS(stack_frames, Object)
7425 // [start_position]: the start position in the script for the error message.
7426 inline int start_position() const;
7427 inline void set_start_position(int value);
7429 // [end_position]: the end position in the script for the error message.
7430 inline int end_position() const;
7431 inline void set_end_position(int value);
7433 DECLARE_CAST(JSMessageObject)
7435 // Dispatched behavior.
7436 DECLARE_PRINTER(JSMessageObject)
7437 DECLARE_VERIFIER(JSMessageObject)
7439 // Layout description.
7440 static const int kTypeOffset = JSObject::kHeaderSize;
7441 static const int kArgumentsOffset = kTypeOffset + kPointerSize;
7442 static const int kScriptOffset = kArgumentsOffset + kPointerSize;
7443 static const int kStackFramesOffset = kScriptOffset + kPointerSize;
7444 static const int kStartPositionOffset = kStackFramesOffset + kPointerSize;
7445 static const int kEndPositionOffset = kStartPositionOffset + kPointerSize;
7446 static const int kSize = kEndPositionOffset + kPointerSize;
7448 typedef FixedBodyDescriptor<HeapObject::kMapOffset,
7449 kStackFramesOffset + kPointerSize,
7450 kSize> BodyDescriptor;
7454 // Regular expressions
7455 // The regular expression holds a single reference to a FixedArray in
7456 // the kDataOffset field.
7457 // The FixedArray contains the following data:
7458 // - tag : type of regexp implementation (not compiled yet, atom or irregexp)
7459 // - reference to the original source string
7460 // - reference to the original flag string
7461 // If it is an atom regexp
7462 // - a reference to a literal string to search for
7463 // If it is an irregexp regexp:
7464 // - a reference to code for Latin1 inputs (bytecode or compiled), or a smi
7465 // used for tracking the last usage (used for code flushing).
7466 // - a reference to code for UC16 inputs (bytecode or compiled), or a smi
7467 // used for tracking the last usage (used for code flushing)..
7468 // - max number of registers used by irregexp implementations.
7469 // - number of capture registers (output values) of the regexp.
7470 class JSRegExp: public JSObject {
7473 // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
7474 // ATOM: A simple string to match against using an indexOf operation.
7475 // IRREGEXP: Compiled with Irregexp.
7476 // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
7477 enum Type { NOT_COMPILED, ATOM, IRREGEXP };
7484 UNICODE_ESCAPES = 16
7489 explicit Flags(uint32_t value) : value_(value) { }
7490 bool is_global() { return (value_ & GLOBAL) != 0; }
7491 bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
7492 bool is_multiline() { return (value_ & MULTILINE) != 0; }
7493 bool is_sticky() { return (value_ & STICKY) != 0; }
7494 bool is_unicode() { return (value_ & UNICODE_ESCAPES) != 0; }
7495 uint32_t value() { return value_; }
7500 DECL_ACCESSORS(data, Object)
7502 inline Type TypeTag();
7503 inline int CaptureCount();
7504 inline Flags GetFlags();
7505 inline String* Pattern();
7506 inline Object* DataAt(int index);
7507 // Set implementation data after the object has been prepared.
7508 inline void SetDataAt(int index, Object* value);
7510 static int code_index(bool is_latin1) {
7512 return kIrregexpLatin1CodeIndex;
7514 return kIrregexpUC16CodeIndex;
7518 static int saved_code_index(bool is_latin1) {
7520 return kIrregexpLatin1CodeSavedIndex;
7522 return kIrregexpUC16CodeSavedIndex;
7526 DECLARE_CAST(JSRegExp)
7528 // Dispatched behavior.
7529 DECLARE_VERIFIER(JSRegExp)
7531 static const int kDataOffset = JSObject::kHeaderSize;
7532 static const int kSize = kDataOffset + kPointerSize;
7534 // Indices in the data array.
7535 static const int kTagIndex = 0;
7536 static const int kSourceIndex = kTagIndex + 1;
7537 static const int kFlagsIndex = kSourceIndex + 1;
7538 static const int kDataIndex = kFlagsIndex + 1;
7539 // The data fields are used in different ways depending on the
7540 // value of the tag.
7541 // Atom regexps (literal strings).
7542 static const int kAtomPatternIndex = kDataIndex;
7544 static const int kAtomDataSize = kAtomPatternIndex + 1;
7546 // Irregexp compiled code or bytecode for Latin1. If compilation
7547 // fails, this fields hold an exception object that should be
7548 // thrown if the regexp is used again.
7549 static const int kIrregexpLatin1CodeIndex = kDataIndex;
7550 // Irregexp compiled code or bytecode for UC16. If compilation
7551 // fails, this fields hold an exception object that should be
7552 // thrown if the regexp is used again.
7553 static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
7555 // Saved instance of Irregexp compiled code or bytecode for Latin1 that
7556 // is a potential candidate for flushing.
7557 static const int kIrregexpLatin1CodeSavedIndex = kDataIndex + 2;
7558 // Saved instance of Irregexp compiled code or bytecode for UC16 that is
7559 // a potential candidate for flushing.
7560 static const int kIrregexpUC16CodeSavedIndex = kDataIndex + 3;
7562 // Maximal number of registers used by either Latin1 or UC16.
7563 // Only used to check that there is enough stack space
7564 static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 4;
7565 // Number of captures in the compiled regexp.
7566 static const int kIrregexpCaptureCountIndex = kDataIndex + 5;
7568 static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
7570 // Offsets directly into the data fixed array.
7571 static const int kDataTagOffset =
7572 FixedArray::kHeaderSize + kTagIndex * kPointerSize;
7573 static const int kDataOneByteCodeOffset =
7574 FixedArray::kHeaderSize + kIrregexpLatin1CodeIndex * kPointerSize;
7575 static const int kDataUC16CodeOffset =
7576 FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
7577 static const int kIrregexpCaptureCountOffset =
7578 FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
7580 // In-object fields.
7581 static const int kSourceFieldIndex = 0;
7582 static const int kGlobalFieldIndex = 1;
7583 static const int kIgnoreCaseFieldIndex = 2;
7584 static const int kMultilineFieldIndex = 3;
7585 static const int kLastIndexFieldIndex = 4;
7586 static const int kInObjectFieldCount = 5;
7588 // The uninitialized value for a regexp code object.
7589 static const int kUninitializedValue = -1;
7591 // The compilation error value for the regexp code object. The real error
7592 // object is in the saved code field.
7593 static const int kCompilationErrorValue = -2;
7595 // When we store the sweep generation at which we moved the code from the
7596 // code index to the saved code index we mask it of to be in the [0:255]
7598 static const int kCodeAgeMask = 0xff;
7602 class CompilationCacheShape : public BaseShape<HashTableKey*> {
7604 static inline bool IsMatch(HashTableKey* key, Object* value) {
7605 return key->IsMatch(value);
7608 static inline uint32_t Hash(HashTableKey* key) {
7612 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
7613 return key->HashForObject(object);
7616 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
7618 static const int kPrefixSize = 0;
7619 static const int kEntrySize = 2;
7623 // This cache is used in two different variants. For regexp caching, it simply
7624 // maps identifying info of the regexp to the cached regexp object. Scripts and
7625 // eval code only gets cached after a second probe for the code object. To do
7626 // so, on first "put" only a hash identifying the source is entered into the
7627 // cache, mapping it to a lifetime count of the hash. On each call to Age all
7628 // such lifetimes get reduced, and removed once they reach zero. If a second put
7629 // is called while such a hash is live in the cache, the hash gets replaced by
7630 // an actual cache entry. Age also removes stale live entries from the cache.
7631 // Such entries are identified by SharedFunctionInfos pointing to either the
7632 // recompilation stub, or to "old" code. This avoids memory leaks due to
7633 // premature caching of scripts and eval strings that are never needed later.
7634 class CompilationCacheTable: public HashTable<CompilationCacheTable,
7635 CompilationCacheShape,
7638 // Find cached value for a string key, otherwise return null.
7639 Handle<Object> Lookup(
7640 Handle<String> src, Handle<Context> context, LanguageMode language_mode);
7641 Handle<Object> LookupEval(
7642 Handle<String> src, Handle<SharedFunctionInfo> shared,
7643 LanguageMode language_mode, int scope_position);
7644 Handle<Object> LookupRegExp(Handle<String> source, JSRegExp::Flags flags);
7645 static Handle<CompilationCacheTable> Put(
7646 Handle<CompilationCacheTable> cache, Handle<String> src,
7647 Handle<Context> context, LanguageMode language_mode,
7648 Handle<Object> value);
7649 static Handle<CompilationCacheTable> PutEval(
7650 Handle<CompilationCacheTable> cache, Handle<String> src,
7651 Handle<SharedFunctionInfo> context, Handle<SharedFunctionInfo> value,
7652 int scope_position);
7653 static Handle<CompilationCacheTable> PutRegExp(
7654 Handle<CompilationCacheTable> cache, Handle<String> src,
7655 JSRegExp::Flags flags, Handle<FixedArray> value);
7656 void Remove(Object* value);
7658 static const int kHashGenerations = 10;
7660 DECLARE_CAST(CompilationCacheTable)
7663 DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
7667 class CodeCache: public Struct {
7669 DECL_ACCESSORS(default_cache, FixedArray)
7670 DECL_ACCESSORS(normal_type_cache, Object)
7672 // Add the code object to the cache.
7674 Handle<CodeCache> cache, Handle<Name> name, Handle<Code> code);
7676 // Lookup code object in the cache. Returns code object if found and undefined
7678 Object* Lookup(Name* name, Code::Flags flags);
7680 // Get the internal index of a code object in the cache. Returns -1 if the
7681 // code object is not in that cache. This index can be used to later call
7682 // RemoveByIndex. The cache cannot be modified between a call to GetIndex and
7684 int GetIndex(Object* name, Code* code);
7686 // Remove an object from the cache with the provided internal index.
7687 void RemoveByIndex(Object* name, Code* code, int index);
7689 DECLARE_CAST(CodeCache)
7691 // Dispatched behavior.
7692 DECLARE_PRINTER(CodeCache)
7693 DECLARE_VERIFIER(CodeCache)
7695 static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
7696 static const int kNormalTypeCacheOffset =
7697 kDefaultCacheOffset + kPointerSize;
7698 static const int kSize = kNormalTypeCacheOffset + kPointerSize;
7701 static void UpdateDefaultCache(
7702 Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
7703 static void UpdateNormalTypeCache(
7704 Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
7705 Object* LookupDefaultCache(Name* name, Code::Flags flags);
7706 Object* LookupNormalTypeCache(Name* name, Code::Flags flags);
7708 // Code cache layout of the default cache. Elements are alternating name and
7709 // code objects for non normal load/store/call IC's.
7710 static const int kCodeCacheEntrySize = 2;
7711 static const int kCodeCacheEntryNameOffset = 0;
7712 static const int kCodeCacheEntryCodeOffset = 1;
7714 DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
7718 class CodeCacheHashTableShape : public BaseShape<HashTableKey*> {
7720 static inline bool IsMatch(HashTableKey* key, Object* value) {
7721 return key->IsMatch(value);
7724 static inline uint32_t Hash(HashTableKey* key) {
7728 static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
7729 return key->HashForObject(object);
7732 static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);
7734 static const int kPrefixSize = 0;
7735 static const int kEntrySize = 2;
7739 class CodeCacheHashTable: public HashTable<CodeCacheHashTable,
7740 CodeCacheHashTableShape,
7743 Object* Lookup(Name* name, Code::Flags flags);
7744 static Handle<CodeCacheHashTable> Put(
7745 Handle<CodeCacheHashTable> table,
7749 int GetIndex(Name* name, Code::Flags flags);
7750 void RemoveByIndex(int index);
7752 DECLARE_CAST(CodeCacheHashTable)
7754 // Initial size of the fixed array backing the hash table.
7755 static const int kInitialSize = 64;
7758 DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
7762 class PolymorphicCodeCache: public Struct {
7764 DECL_ACCESSORS(cache, Object)
7766 static void Update(Handle<PolymorphicCodeCache> cache,
7767 MapHandleList* maps,
7772 // Returns an undefined value if the entry is not found.
7773 Handle<Object> Lookup(MapHandleList* maps, Code::Flags flags);
7775 DECLARE_CAST(PolymorphicCodeCache)
7777 // Dispatched behavior.
7778 DECLARE_PRINTER(PolymorphicCodeCache)
7779 DECLARE_VERIFIER(PolymorphicCodeCache)
7781 static const int kCacheOffset = HeapObject::kHeaderSize;
7782 static const int kSize = kCacheOffset + kPointerSize;
7785 DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCache);
7789 class PolymorphicCodeCacheHashTable
7790 : public HashTable<PolymorphicCodeCacheHashTable,
7791 CodeCacheHashTableShape,
7794 Object* Lookup(MapHandleList* maps, int code_kind);
7796 static Handle<PolymorphicCodeCacheHashTable> Put(
7797 Handle<PolymorphicCodeCacheHashTable> hash_table,
7798 MapHandleList* maps,
7802 DECLARE_CAST(PolymorphicCodeCacheHashTable)
7804 static const int kInitialSize = 64;
7806 DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCacheHashTable);
7810 class TypeFeedbackInfo: public Struct {
7812 inline int ic_total_count();
7813 inline void set_ic_total_count(int count);
7815 inline int ic_with_type_info_count();
7816 inline void change_ic_with_type_info_count(int delta);
7818 inline int ic_generic_count();
7819 inline void change_ic_generic_count(int delta);
7821 inline void initialize_storage();
7823 inline void change_own_type_change_checksum();
7824 inline int own_type_change_checksum();
7826 inline void set_inlined_type_change_checksum(int checksum);
7827 inline bool matches_inlined_type_change_checksum(int checksum);
7829 DECLARE_CAST(TypeFeedbackInfo)
7831 // Dispatched behavior.
7832 DECLARE_PRINTER(TypeFeedbackInfo)
7833 DECLARE_VERIFIER(TypeFeedbackInfo)
7835 static const int kStorage1Offset = HeapObject::kHeaderSize;
7836 static const int kStorage2Offset = kStorage1Offset + kPointerSize;
7837 static const int kStorage3Offset = kStorage2Offset + kPointerSize;
7838 static const int kSize = kStorage3Offset + kPointerSize;
7841 static const int kTypeChangeChecksumBits = 7;
7843 class ICTotalCountField: public BitField<int, 0,
7844 kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
7845 class OwnTypeChangeChecksum: public BitField<int,
7846 kSmiValueSize - kTypeChangeChecksumBits,
7847 kTypeChangeChecksumBits> {}; // NOLINT
7848 class ICsWithTypeInfoCountField: public BitField<int, 0,
7849 kSmiValueSize - kTypeChangeChecksumBits> {}; // NOLINT
7850 class InlinedTypeChangeChecksum: public BitField<int,
7851 kSmiValueSize - kTypeChangeChecksumBits,
7852 kTypeChangeChecksumBits> {}; // NOLINT
7854 DISALLOW_IMPLICIT_CONSTRUCTORS(TypeFeedbackInfo);
7858 enum AllocationSiteMode {
7859 DONT_TRACK_ALLOCATION_SITE,
7860 TRACK_ALLOCATION_SITE,
7861 LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
7865 class AllocationSite: public Struct {
7867 static const uint32_t kMaximumArrayBytesToPretransition = 8 * 1024;
7868 static const double kPretenureRatio;
7869 static const int kPretenureMinimumCreated = 100;
7871 // Values for pretenure decision field.
7872 enum PretenureDecision {
7878 kLastPretenureDecisionValue = kZombie
7881 const char* PretenureDecisionName(PretenureDecision decision);
7883 DECL_ACCESSORS(transition_info, Object)
7884 // nested_site threads a list of sites that represent nested literals
7885 // walked in a particular order. So [[1, 2], 1, 2] will have one
7886 // nested_site, but [[1, 2], 3, [4]] will have a list of two.
7887 DECL_ACCESSORS(nested_site, Object)
7888 DECL_ACCESSORS(pretenure_data, Smi)
7889 DECL_ACCESSORS(pretenure_create_count, Smi)
7890 DECL_ACCESSORS(dependent_code, DependentCode)
7891 DECL_ACCESSORS(weak_next, Object)
7893 inline void Initialize();
7895 // This method is expensive, it should only be called for reporting.
7896 bool IsNestedSite();
7898 // transition_info bitfields, for constructed array transition info.
7899 class ElementsKindBits: public BitField<ElementsKind, 0, 15> {};
7900 class UnusedBits: public BitField<int, 15, 14> {};
7901 class DoNotInlineBit: public BitField<bool, 29, 1> {};
7903 // Bitfields for pretenure_data
7904 class MementoFoundCountBits: public BitField<int, 0, 26> {};
7905 class PretenureDecisionBits: public BitField<PretenureDecision, 26, 3> {};
7906 class DeoptDependentCodeBit: public BitField<bool, 29, 1> {};
7907 STATIC_ASSERT(PretenureDecisionBits::kMax >= kLastPretenureDecisionValue);
7909 // Increments the mementos found counter and returns true when the first
7910 // memento was found for a given allocation site.
7911 inline bool IncrementMementoFoundCount();
7913 inline void IncrementMementoCreateCount();
7915 PretenureFlag GetPretenureMode();
7917 void ResetPretenureDecision();
7919 inline PretenureDecision pretenure_decision();
7920 inline void set_pretenure_decision(PretenureDecision decision);
7922 inline bool deopt_dependent_code();
7923 inline void set_deopt_dependent_code(bool deopt);
7925 inline int memento_found_count();
7926 inline void set_memento_found_count(int count);
7928 inline int memento_create_count();
7929 inline void set_memento_create_count(int count);
7931 // The pretenuring decision is made during gc, and the zombie state allows
7932 // us to recognize when an allocation site is just being kept alive because
7933 // a later traversal of new space may discover AllocationMementos that point
7934 // to this AllocationSite.
7935 inline bool IsZombie();
7937 inline bool IsMaybeTenure();
7939 inline void MarkZombie();
7941 inline bool MakePretenureDecision(PretenureDecision current_decision,
7943 bool maximum_size_scavenge);
7945 inline bool DigestPretenuringFeedback(bool maximum_size_scavenge);
7947 inline ElementsKind GetElementsKind();
7948 inline void SetElementsKind(ElementsKind kind);
7950 inline bool CanInlineCall();
7951 inline void SetDoNotInlineCall();
7953 inline bool SitePointsToLiteral();
7955 static void DigestTransitionFeedback(Handle<AllocationSite> site,
7956 ElementsKind to_kind);
7958 DECLARE_PRINTER(AllocationSite)
7959 DECLARE_VERIFIER(AllocationSite)
7961 DECLARE_CAST(AllocationSite)
7962 static inline AllocationSiteMode GetMode(
7963 ElementsKind boilerplate_elements_kind);
7964 static inline AllocationSiteMode GetMode(ElementsKind from, ElementsKind to);
7965 static inline bool CanTrack(InstanceType type);
7967 static const int kTransitionInfoOffset = HeapObject::kHeaderSize;
7968 static const int kNestedSiteOffset = kTransitionInfoOffset + kPointerSize;
7969 static const int kPretenureDataOffset = kNestedSiteOffset + kPointerSize;
7970 static const int kPretenureCreateCountOffset =
7971 kPretenureDataOffset + kPointerSize;
7972 static const int kDependentCodeOffset =
7973 kPretenureCreateCountOffset + kPointerSize;
7974 static const int kWeakNextOffset = kDependentCodeOffset + kPointerSize;
7975 static const int kSize = kWeakNextOffset + kPointerSize;
7977 // During mark compact we need to take special care for the dependent code
7979 static const int kPointerFieldsBeginOffset = kTransitionInfoOffset;
7980 static const int kPointerFieldsEndOffset = kWeakNextOffset;
7982 // For other visitors, use the fixed body descriptor below.
7983 typedef FixedBodyDescriptor<HeapObject::kHeaderSize,
7984 kDependentCodeOffset + kPointerSize,
7985 kSize> BodyDescriptor;
7988 inline bool PretenuringDecisionMade();
7990 DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationSite);
7994 class AllocationMemento: public Struct {
7996 static const int kAllocationSiteOffset = HeapObject::kHeaderSize;
7997 static const int kSize = kAllocationSiteOffset + kPointerSize;
7999 DECL_ACCESSORS(allocation_site, Object)
8001 inline bool IsValid();
8002 inline AllocationSite* GetAllocationSite();
8004 DECLARE_PRINTER(AllocationMemento)
8005 DECLARE_VERIFIER(AllocationMemento)
8007 DECLARE_CAST(AllocationMemento)
8010 DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationMemento);
8014 // Representation of a slow alias as part of a sloppy arguments objects.
8015 // For fast aliases (if HasSloppyArgumentsElements()):
8016 // - the parameter map contains an index into the context
8017 // - all attributes of the element have default values
8018 // For slow aliases (if HasDictionaryArgumentsElements()):
8019 // - the parameter map contains no fast alias mapping (i.e. the hole)
8020 // - this struct (in the slow backing store) contains an index into the context
8021 // - all attributes are available as part if the property details
8022 class AliasedArgumentsEntry: public Struct {
8024 inline int aliased_context_slot() const;
8025 inline void set_aliased_context_slot(int count);
8027 DECLARE_CAST(AliasedArgumentsEntry)
8029 // Dispatched behavior.
8030 DECLARE_PRINTER(AliasedArgumentsEntry)
8031 DECLARE_VERIFIER(AliasedArgumentsEntry)
8033 static const int kAliasedContextSlot = HeapObject::kHeaderSize;
8034 static const int kSize = kAliasedContextSlot + kPointerSize;
8037 DISALLOW_IMPLICIT_CONSTRUCTORS(AliasedArgumentsEntry);
8041 enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
8042 enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
8045 class StringHasher {
8047 explicit inline StringHasher(int length, uint32_t seed);
8049 template <typename schar>
8050 static inline uint32_t HashSequentialString(const schar* chars,
8054 // Reads all the data, even for long strings and computes the utf16 length.
8055 static uint32_t ComputeUtf8Hash(Vector<const char> chars,
8057 int* utf16_length_out);
8059 // Calculated hash value for a string consisting of 1 to
8060 // String::kMaxArrayIndexSize digits with no leading zeros (except "0").
8061 // value is represented decimal value.
8062 static uint32_t MakeArrayIndexHash(uint32_t value, int length);
8064 // No string is allowed to have a hash of zero. That value is reserved
8065 // for internal properties. If the hash calculation yields zero then we
8067 static const int kZeroHash = 27;
8069 // Reusable parts of the hashing algorithm.
8070 INLINE(static uint32_t AddCharacterCore(uint32_t running_hash, uint16_t c));
8071 INLINE(static uint32_t GetHashCore(uint32_t running_hash));
8072 INLINE(static uint32_t ComputeRunningHash(uint32_t running_hash,
8073 const uc16* chars, int length));
8074 INLINE(static uint32_t ComputeRunningHashOneByte(uint32_t running_hash,
8079 // Returns the value to store in the hash field of a string with
8080 // the given length and contents.
8081 uint32_t GetHashField();
8082 // Returns true if the hash of this string can be computed without
8083 // looking at the contents.
8084 inline bool has_trivial_hash();
8085 // Adds a block of characters to the hash.
8086 template<typename Char>
8087 inline void AddCharacters(const Char* chars, int len);
8090 // Add a character to the hash.
8091 inline void AddCharacter(uint16_t c);
8092 // Update index. Returns true if string is still an index.
8093 inline bool UpdateIndex(uint16_t c);
8096 uint32_t raw_running_hash_;
8097 uint32_t array_index_;
8098 bool is_array_index_;
8099 bool is_first_char_;
8100 DISALLOW_COPY_AND_ASSIGN(StringHasher);
8104 class IteratingStringHasher : public StringHasher {
8106 static inline uint32_t Hash(String* string, uint32_t seed);
8107 inline void VisitOneByteString(const uint8_t* chars, int length);
8108 inline void VisitTwoByteString(const uint16_t* chars, int length);
8111 inline IteratingStringHasher(int len, uint32_t seed);
8112 void VisitConsString(ConsString* cons_string);
8113 DISALLOW_COPY_AND_ASSIGN(IteratingStringHasher);
8117 // The characteristics of a string are stored in its map. Retrieving these
8118 // few bits of information is moderately expensive, involving two memory
8119 // loads where the second is dependent on the first. To improve efficiency
8120 // the shape of the string is given its own class so that it can be retrieved
8121 // once and used for several string operations. A StringShape is small enough
8122 // to be passed by value and is immutable, but be aware that flattening a
8123 // string can potentially alter its shape. Also be aware that a GC caused by
8124 // something else can alter the shape of a string due to ConsString
8125 // shortcutting. Keeping these restrictions in mind has proven to be error-
8126 // prone and so we no longer put StringShapes in variables unless there is a
8127 // concrete performance benefit at that particular point in the code.
8128 class StringShape BASE_EMBEDDED {
8130 inline explicit StringShape(const String* s);
8131 inline explicit StringShape(Map* s);
8132 inline explicit StringShape(InstanceType t);
8133 inline bool IsSequential();
8134 inline bool IsExternal();
8135 inline bool IsCons();
8136 inline bool IsSliced();
8137 inline bool IsIndirect();
8138 inline bool IsExternalOneByte();
8139 inline bool IsExternalTwoByte();
8140 inline bool IsSequentialOneByte();
8141 inline bool IsSequentialTwoByte();
8142 inline bool IsInternalized();
8143 inline StringRepresentationTag representation_tag();
8144 inline uint32_t encoding_tag();
8145 inline uint32_t full_representation_tag();
8146 inline uint32_t size_tag();
8148 inline uint32_t type() { return type_; }
8149 inline void invalidate() { valid_ = false; }
8150 inline bool valid() { return valid_; }
8152 inline void invalidate() { }
8158 inline void set_valid() { valid_ = true; }
8161 inline void set_valid() { }
8166 // The Name abstract class captures anything that can be used as a property
8167 // name, i.e., strings and symbols. All names store a hash value.
8168 class Name: public HeapObject {
8170 // Get and set the hash field of the name.
8171 inline uint32_t hash_field();
8172 inline void set_hash_field(uint32_t value);
8174 // Tells whether the hash code has been computed.
8175 inline bool HasHashCode();
8177 // Returns a hash value used for the property table
8178 inline uint32_t Hash();
8180 // Equality operations.
8181 inline bool Equals(Name* other);
8182 inline static bool Equals(Handle<Name> one, Handle<Name> two);
8185 inline bool AsArrayIndex(uint32_t* index);
8187 // If the name is private, it can only name own properties.
8188 inline bool IsPrivate();
8190 // If the name is a non-flat string, this method returns a flat version of the
8191 // string. Otherwise it'll just return the input.
8192 static inline Handle<Name> Flatten(Handle<Name> name,
8193 PretenureFlag pretenure = NOT_TENURED);
8195 // Return a string version of this name that is converted according to the
8196 // rules described in ES6 section 9.2.11.
8197 MUST_USE_RESULT static MaybeHandle<String> ToFunctionName(Handle<Name> name);
8201 DECLARE_PRINTER(Name)
8203 void NameShortPrint();
8204 int NameShortPrint(Vector<char> str);
8207 // Layout description.
8208 static const int kHashFieldSlot = HeapObject::kHeaderSize;
8209 #if V8_TARGET_LITTLE_ENDIAN || !V8_HOST_ARCH_64_BIT
8210 static const int kHashFieldOffset = kHashFieldSlot;
8212 static const int kHashFieldOffset = kHashFieldSlot + kIntSize;
8214 static const int kSize = kHashFieldSlot + kPointerSize;
8216 // Mask constant for checking if a name has a computed hash code
8217 // and if it is a string that is an array index. The least significant bit
8218 // indicates whether a hash code has been computed. If the hash code has
8219 // been computed the 2nd bit tells whether the string can be used as an
8221 static const int kHashNotComputedMask = 1;
8222 static const int kIsNotArrayIndexMask = 1 << 1;
8223 static const int kNofHashBitFields = 2;
8225 // Shift constant retrieving hash code from hash field.
8226 static const int kHashShift = kNofHashBitFields;
8228 // Only these bits are relevant in the hash, since the top two are shifted
8230 static const uint32_t kHashBitMask = 0xffffffffu >> kHashShift;
8232 // Array index strings this short can keep their index in the hash field.
8233 static const int kMaxCachedArrayIndexLength = 7;
8235 // For strings which are array indexes the hash value has the string length
8236 // mixed into the hash, mainly to avoid a hash value of zero which would be
8237 // the case for the string '0'. 24 bits are used for the array index value.
8238 static const int kArrayIndexValueBits = 24;
8239 static const int kArrayIndexLengthBits =
8240 kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
8242 STATIC_ASSERT((kArrayIndexLengthBits > 0));
8244 class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
8245 kArrayIndexValueBits> {}; // NOLINT
8246 class ArrayIndexLengthBits : public BitField<unsigned int,
8247 kNofHashBitFields + kArrayIndexValueBits,
8248 kArrayIndexLengthBits> {}; // NOLINT
8250 // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
8251 // could use a mask to test if the length of string is less than or equal to
8252 // kMaxCachedArrayIndexLength.
8253 STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
8255 static const unsigned int kContainsCachedArrayIndexMask =
8256 (~static_cast<unsigned>(kMaxCachedArrayIndexLength)
8257 << ArrayIndexLengthBits::kShift) |
8258 kIsNotArrayIndexMask;
8260 // Value of empty hash field indicating that the hash is not computed.
8261 static const int kEmptyHashField =
8262 kIsNotArrayIndexMask | kHashNotComputedMask;
8265 static inline bool IsHashFieldComputed(uint32_t field);
8268 DISALLOW_IMPLICIT_CONSTRUCTORS(Name);
8273 class Symbol: public Name {
8275 // [name]: The print name of a symbol, or undefined if none.
8276 DECL_ACCESSORS(name, Object)
8278 DECL_ACCESSORS(flags, Smi)
8280 // [is_private]: Whether this is a private symbol. Private symbols can only
8281 // be used to designate own properties of objects.
8282 DECL_BOOLEAN_ACCESSORS(is_private)
8284 DECLARE_CAST(Symbol)
8286 // Dispatched behavior.
8287 DECLARE_PRINTER(Symbol)
8288 DECLARE_VERIFIER(Symbol)
8290 // Layout description.
8291 static const int kNameOffset = Name::kSize;
8292 static const int kFlagsOffset = kNameOffset + kPointerSize;
8293 static const int kSize = kFlagsOffset + kPointerSize;
8295 typedef FixedBodyDescriptor<kNameOffset, kFlagsOffset, kSize> BodyDescriptor;
8297 void SymbolShortPrint(std::ostream& os);
8300 static const int kPrivateBit = 0;
8302 const char* PrivateSymbolToName() const;
8305 friend class Name; // For PrivateSymbolToName.
8308 DISALLOW_IMPLICIT_CONSTRUCTORS(Symbol);
8314 // The String abstract class captures JavaScript string values:
8317 // 4.3.16 String Value
8318 // A string value is a member of the type String and is a finite
8319 // ordered sequence of zero or more 16-bit unsigned integer values.
8321 // All string values have a length field.
8322 class String: public Name {
8324 enum Encoding { ONE_BYTE_ENCODING, TWO_BYTE_ENCODING };
8326 // Array index strings this short can keep their index in the hash field.
8327 static const int kMaxCachedArrayIndexLength = 7;
8329 // For strings which are array indexes the hash value has the string length
8330 // mixed into the hash, mainly to avoid a hash value of zero which would be
8331 // the case for the string '0'. 24 bits are used for the array index value.
8332 static const int kArrayIndexValueBits = 24;
8333 static const int kArrayIndexLengthBits =
8334 kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
8336 STATIC_ASSERT((kArrayIndexLengthBits > 0));
8338 class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
8339 kArrayIndexValueBits> {}; // NOLINT
8340 class ArrayIndexLengthBits : public BitField<unsigned int,
8341 kNofHashBitFields + kArrayIndexValueBits,
8342 kArrayIndexLengthBits> {}; // NOLINT
8344 // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
8345 // could use a mask to test if the length of string is less than or equal to
8346 // kMaxCachedArrayIndexLength.
8347 STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
8349 static const unsigned int kContainsCachedArrayIndexMask =
8350 (~static_cast<unsigned>(kMaxCachedArrayIndexLength)
8351 << ArrayIndexLengthBits::kShift) |
8352 kIsNotArrayIndexMask;
8354 class SubStringRange {
8356 explicit inline SubStringRange(String* string, int first = 0,
8359 inline iterator begin();
8360 inline iterator end();
8368 // Representation of the flat content of a String.
8369 // A non-flat string doesn't have flat content.
8370 // A flat string has content that's encoded as a sequence of either
8371 // one-byte chars or two-byte UC16.
8372 // Returned by String::GetFlatContent().
8375 // Returns true if the string is flat and this structure contains content.
8376 bool IsFlat() { return state_ != NON_FLAT; }
8377 // Returns true if the structure contains one-byte content.
8378 bool IsOneByte() { return state_ == ONE_BYTE; }
8379 // Returns true if the structure contains two-byte content.
8380 bool IsTwoByte() { return state_ == TWO_BYTE; }
8382 // Return the one byte content of the string. Only use if IsOneByte()
8384 Vector<const uint8_t> ToOneByteVector() {
8385 DCHECK_EQ(ONE_BYTE, state_);
8386 return Vector<const uint8_t>(onebyte_start, length_);
8388 // Return the two-byte content of the string. Only use if IsTwoByte()
8390 Vector<const uc16> ToUC16Vector() {
8391 DCHECK_EQ(TWO_BYTE, state_);
8392 return Vector<const uc16>(twobyte_start, length_);
8396 DCHECK(i < length_);
8397 DCHECK(state_ != NON_FLAT);
8398 if (state_ == ONE_BYTE) return onebyte_start[i];
8399 return twobyte_start[i];
8402 bool UsesSameString(const FlatContent& other) const {
8403 return onebyte_start == other.onebyte_start;
8407 enum State { NON_FLAT, ONE_BYTE, TWO_BYTE };
8409 // Constructors only used by String::GetFlatContent().
8410 explicit FlatContent(const uint8_t* start, int length)
8411 : onebyte_start(start), length_(length), state_(ONE_BYTE) {}
8412 explicit FlatContent(const uc16* start, int length)
8413 : twobyte_start(start), length_(length), state_(TWO_BYTE) { }
8414 FlatContent() : onebyte_start(NULL), length_(0), state_(NON_FLAT) { }
8417 const uint8_t* onebyte_start;
8418 const uc16* twobyte_start;
8423 friend class String;
8424 friend class IterableSubString;
8427 template <typename Char>
8428 INLINE(Vector<const Char> GetCharVector());
8430 // Get and set the length of the string.
8431 inline int length() const;
8432 inline void set_length(int value);
8434 // Get and set the length of the string using acquire loads and release
8436 inline int synchronized_length() const;
8437 inline void synchronized_set_length(int value);
8439 // Returns whether this string has only one-byte chars, i.e. all of them can
8440 // be one-byte encoded. This might be the case even if the string is
8441 // two-byte. Such strings may appear when the embedder prefers
8442 // two-byte external representations even for one-byte data.
8443 inline bool IsOneByteRepresentation() const;
8444 inline bool IsTwoByteRepresentation() const;
8446 // Cons and slices have an encoding flag that may not represent the actual
8447 // encoding of the underlying string. This is taken into account here.
8448 // Requires: this->IsFlat()
8449 inline bool IsOneByteRepresentationUnderneath();
8450 inline bool IsTwoByteRepresentationUnderneath();
8452 // NOTE: this should be considered only a hint. False negatives are
8454 inline bool HasOnlyOneByteChars();
8456 // Get and set individual two byte chars in the string.
8457 inline void Set(int index, uint16_t value);
8458 // Get individual two byte char in the string. Repeated calls
8459 // to this method are not efficient unless the string is flat.
8460 INLINE(uint16_t Get(int index));
8462 // ES6 section 7.1.3.1 ToNumber Applied to the String Type
8463 static Handle<Object> ToNumber(Handle<String> subject);
8465 // Flattens the string. Checks first inline to see if it is
8466 // necessary. Does nothing if the string is not a cons string.
8467 // Flattening allocates a sequential string with the same data as
8468 // the given string and mutates the cons string to a degenerate
8469 // form, where the first component is the new sequential string and
8470 // the second component is the empty string. If allocation fails,
8471 // this function returns a failure. If flattening succeeds, this
8472 // function returns the sequential string that is now the first
8473 // component of the cons string.
8475 // Degenerate cons strings are handled specially by the garbage
8476 // collector (see IsShortcutCandidate).
8478 static inline Handle<String> Flatten(Handle<String> string,
8479 PretenureFlag pretenure = NOT_TENURED);
8481 // Tries to return the content of a flat string as a structure holding either
8482 // a flat vector of char or of uc16.
8483 // If the string isn't flat, and therefore doesn't have flat content, the
8484 // returned structure will report so, and can't provide a vector of either
8486 FlatContent GetFlatContent();
8488 // Returns the parent of a sliced string or first part of a flat cons string.
8489 // Requires: StringShape(this).IsIndirect() && this->IsFlat()
8490 inline String* GetUnderlying();
8492 // String equality operations.
8493 inline bool Equals(String* other);
8494 inline static bool Equals(Handle<String> one, Handle<String> two);
8495 bool IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match = false);
8496 bool IsOneByteEqualTo(Vector<const uint8_t> str);
8497 bool IsTwoByteEqualTo(Vector<const uc16> str);
8499 // Return a UTF8 representation of the string. The string is null
8500 // terminated but may optionally contain nulls. Length is returned
8501 // in length_output if length_output is not a null pointer The string
8502 // should be nearly flat, otherwise the performance of this method may
8503 // be very slow (quadratic in the length). Setting robustness_flag to
8504 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
8505 // handles unexpected data without causing assert failures and it does not
8506 // do any heap allocations. This is useful when printing stack traces.
8507 base::SmartArrayPointer<char> ToCString(AllowNullsFlag allow_nulls,
8508 RobustnessFlag robustness_flag,
8509 int offset, int length,
8510 int* length_output = 0);
8511 base::SmartArrayPointer<char> ToCString(
8512 AllowNullsFlag allow_nulls = DISALLOW_NULLS,
8513 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
8514 int* length_output = 0);
8516 // Return a 16 bit Unicode representation of the string.
8517 // The string should be nearly flat, otherwise the performance of
8518 // of this method may be very bad. Setting robustness_flag to
8519 // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust This means it
8520 // handles unexpected data without causing assert failures and it does not
8521 // do any heap allocations. This is useful when printing stack traces.
8522 base::SmartArrayPointer<uc16> ToWideCString(
8523 RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
8525 bool ComputeArrayIndex(uint32_t* index);
8528 bool MakeExternal(v8::String::ExternalStringResource* resource);
8529 bool MakeExternal(v8::String::ExternalOneByteStringResource* resource);
8532 inline bool AsArrayIndex(uint32_t* index);
8534 DECLARE_CAST(String)
8536 void PrintOn(FILE* out);
8538 // For use during stack traces. Performs rudimentary sanity check.
8541 // Dispatched behavior.
8542 void StringShortPrint(StringStream* accumulator);
8543 void PrintUC16(std::ostream& os, int start = 0, int end = -1); // NOLINT
8544 #if defined(DEBUG) || defined(OBJECT_PRINT)
8545 char* ToAsciiArray();
8547 DECLARE_PRINTER(String)
8548 DECLARE_VERIFIER(String)
8550 inline bool IsFlat();
8552 // Layout description.
8553 static const int kLengthOffset = Name::kSize;
8554 static const int kSize = kLengthOffset + kPointerSize;
8556 // Maximum number of characters to consider when trying to convert a string
8557 // value into an array index.
8558 static const int kMaxArrayIndexSize = 10;
8559 STATIC_ASSERT(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits));
8562 static const int32_t kMaxOneByteCharCode = unibrow::Latin1::kMaxChar;
8563 static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar;
8564 static const int kMaxUtf16CodeUnit = 0xffff;
8565 static const uint32_t kMaxUtf16CodeUnitU = kMaxUtf16CodeUnit;
8567 // Value of hash field containing computed hash equal to zero.
8568 static const int kEmptyStringHash = kIsNotArrayIndexMask;
8570 // Maximal string length.
8571 static const int kMaxLength = (1 << 28) - 16;
8573 // Max length for computing hash. For strings longer than this limit the
8574 // string length is used as the hash value.
8575 static const int kMaxHashCalcLength = 16383;
8577 // Limit for truncation in short printing.
8578 static const int kMaxShortPrintLength = 1024;
8580 // Support for regular expressions.
8581 const uc16* GetTwoByteData(unsigned start);
8583 // Helper function for flattening strings.
8584 template <typename sinkchar>
8585 static void WriteToFlat(String* source,
8590 // The return value may point to the first aligned word containing the first
8591 // non-one-byte character, rather than directly to the non-one-byte character.
8592 // If the return value is >= the passed length, the entire string was
8594 static inline int NonAsciiStart(const char* chars, int length) {
8595 const char* start = chars;
8596 const char* limit = chars + length;
8598 if (length >= kIntptrSize) {
8599 // Check unaligned bytes.
8600 while (!IsAligned(reinterpret_cast<intptr_t>(chars), sizeof(uintptr_t))) {
8601 if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
8602 return static_cast<int>(chars - start);
8606 // Check aligned words.
8607 DCHECK(unibrow::Utf8::kMaxOneByteChar == 0x7F);
8608 const uintptr_t non_one_byte_mask = kUintptrAllBitsSet / 0xFF * 0x80;
8609 while (chars + sizeof(uintptr_t) <= limit) {
8610 if (*reinterpret_cast<const uintptr_t*>(chars) & non_one_byte_mask) {
8611 return static_cast<int>(chars - start);
8613 chars += sizeof(uintptr_t);
8616 // Check remaining unaligned bytes.
8617 while (chars < limit) {
8618 if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
8619 return static_cast<int>(chars - start);
8624 return static_cast<int>(chars - start);
8627 static inline bool IsAscii(const char* chars, int length) {
8628 return NonAsciiStart(chars, length) >= length;
8631 static inline bool IsAscii(const uint8_t* chars, int length) {
8633 NonAsciiStart(reinterpret_cast<const char*>(chars), length) >= length;
8636 static inline int NonOneByteStart(const uc16* chars, int length) {
8637 const uc16* limit = chars + length;
8638 const uc16* start = chars;
8639 while (chars < limit) {
8640 if (*chars > kMaxOneByteCharCodeU) return static_cast<int>(chars - start);
8643 return static_cast<int>(chars - start);
8646 static inline bool IsOneByte(const uc16* chars, int length) {
8647 return NonOneByteStart(chars, length) >= length;
8650 template<class Visitor>
8651 static inline ConsString* VisitFlat(Visitor* visitor,
8655 static Handle<FixedArray> CalculateLineEnds(Handle<String> string,
8656 bool include_ending_line);
8658 // Use the hash field to forward to the canonical internalized string
8659 // when deserializing an internalized string.
8660 inline void SetForwardedInternalizedString(String* string);
8661 inline String* GetForwardedInternalizedString();
8665 friend class StringTableInsertionKey;
8667 static Handle<String> SlowFlatten(Handle<ConsString> cons,
8668 PretenureFlag tenure);
8670 // Slow case of String::Equals. This implementation works on any strings
8671 // but it is most efficient on strings that are almost flat.
8672 bool SlowEquals(String* other);
8674 static bool SlowEquals(Handle<String> one, Handle<String> two);
8676 // Slow case of AsArrayIndex.
8677 bool SlowAsArrayIndex(uint32_t* index);
8679 // Compute and set the hash code.
8680 uint32_t ComputeAndSetHash();
8682 DISALLOW_IMPLICIT_CONSTRUCTORS(String);
8686 // The SeqString abstract class captures sequential string values.
8687 class SeqString: public String {
8689 DECLARE_CAST(SeqString)
8691 // Layout description.
8692 static const int kHeaderSize = String::kSize;
8694 // Truncate the string in-place if possible and return the result.
8695 // In case of new_length == 0, the empty string is returned without
8696 // truncating the original string.
8697 MUST_USE_RESULT static Handle<String> Truncate(Handle<SeqString> string,
8700 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
8704 // The OneByteString class captures sequential one-byte string objects.
8705 // Each character in the OneByteString is an one-byte character.
8706 class SeqOneByteString: public SeqString {
8708 static const bool kHasOneByteEncoding = true;
8710 // Dispatched behavior.
8711 inline uint16_t SeqOneByteStringGet(int index);
8712 inline void SeqOneByteStringSet(int index, uint16_t value);
8714 // Get the address of the characters in this string.
8715 inline Address GetCharsAddress();
8717 inline uint8_t* GetChars();
8719 DECLARE_CAST(SeqOneByteString)
8721 // Garbage collection support. This method is called by the
8722 // garbage collector to compute the actual size of an OneByteString
8724 inline int SeqOneByteStringSize(InstanceType instance_type);
8726 // Computes the size for an OneByteString instance of a given length.
8727 static int SizeFor(int length) {
8728 return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
8731 // Maximal memory usage for a single sequential one-byte string.
8732 static const int kMaxSize = 512 * MB - 1;
8733 STATIC_ASSERT((kMaxSize - kHeaderSize) >= String::kMaxLength);
8736 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqOneByteString);
8740 // The TwoByteString class captures sequential unicode string objects.
8741 // Each character in the TwoByteString is a two-byte uint16_t.
8742 class SeqTwoByteString: public SeqString {
8744 static const bool kHasOneByteEncoding = false;
8746 // Dispatched behavior.
8747 inline uint16_t SeqTwoByteStringGet(int index);
8748 inline void SeqTwoByteStringSet(int index, uint16_t value);
8750 // Get the address of the characters in this string.
8751 inline Address GetCharsAddress();
8753 inline uc16* GetChars();
8756 const uint16_t* SeqTwoByteStringGetData(unsigned start);
8758 DECLARE_CAST(SeqTwoByteString)
8760 // Garbage collection support. This method is called by the
8761 // garbage collector to compute the actual size of a TwoByteString
8763 inline int SeqTwoByteStringSize(InstanceType instance_type);
8765 // Computes the size for a TwoByteString instance of a given length.
8766 static int SizeFor(int length) {
8767 return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
8770 // Maximal memory usage for a single sequential two-byte string.
8771 static const int kMaxSize = 512 * MB - 1;
8772 STATIC_ASSERT(static_cast<int>((kMaxSize - kHeaderSize)/sizeof(uint16_t)) >=
8773 String::kMaxLength);
8776 DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
8780 // The ConsString class describes string values built by using the
8781 // addition operator on strings. A ConsString is a pair where the
8782 // first and second components are pointers to other string values.
8783 // One or both components of a ConsString can be pointers to other
8784 // ConsStrings, creating a binary tree of ConsStrings where the leaves
8785 // are non-ConsString string values. The string value represented by
8786 // a ConsString can be obtained by concatenating the leaf string
8787 // values in a left-to-right depth-first traversal of the tree.
8788 class ConsString: public String {
8790 // First string of the cons cell.
8791 inline String* first();
8792 // Doesn't check that the result is a string, even in debug mode. This is
8793 // useful during GC where the mark bits confuse the checks.
8794 inline Object* unchecked_first();
8795 inline void set_first(String* first,
8796 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8798 // Second string of the cons cell.
8799 inline String* second();
8800 // Doesn't check that the result is a string, even in debug mode. This is
8801 // useful during GC where the mark bits confuse the checks.
8802 inline Object* unchecked_second();
8803 inline void set_second(String* second,
8804 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8806 // Dispatched behavior.
8807 uint16_t ConsStringGet(int index);
8809 DECLARE_CAST(ConsString)
8811 // Layout description.
8812 static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
8813 static const int kSecondOffset = kFirstOffset + kPointerSize;
8814 static const int kSize = kSecondOffset + kPointerSize;
8816 // Minimum length for a cons string.
8817 static const int kMinLength = 13;
8819 typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize>
8822 DECLARE_VERIFIER(ConsString)
8825 DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
8829 // The Sliced String class describes strings that are substrings of another
8830 // sequential string. The motivation is to save time and memory when creating
8831 // a substring. A Sliced String is described as a pointer to the parent,
8832 // the offset from the start of the parent string and the length. Using
8833 // a Sliced String therefore requires unpacking of the parent string and
8834 // adding the offset to the start address. A substring of a Sliced String
8835 // are not nested since the double indirection is simplified when creating
8836 // such a substring.
8837 // Currently missing features are:
8838 // - handling externalized parent strings
8839 // - external strings as parent
8840 // - truncating sliced string to enable otherwise unneeded parent to be GC'ed.
8841 class SlicedString: public String {
8843 inline String* parent();
8844 inline void set_parent(String* parent,
8845 WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
8846 inline int offset() const;
8847 inline void set_offset(int offset);
8849 // Dispatched behavior.
8850 uint16_t SlicedStringGet(int index);
8852 DECLARE_CAST(SlicedString)
8854 // Layout description.
8855 static const int kParentOffset = POINTER_SIZE_ALIGN(String::kSize);
8856 static const int kOffsetOffset = kParentOffset + kPointerSize;
8857 static const int kSize = kOffsetOffset + kPointerSize;
8859 // Minimum length for a sliced string.
8860 static const int kMinLength = 13;
8862 typedef FixedBodyDescriptor<kParentOffset,
8863 kOffsetOffset + kPointerSize, kSize>
8866 DECLARE_VERIFIER(SlicedString)
8869 DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString);
8873 // The ExternalString class describes string values that are backed by
8874 // a string resource that lies outside the V8 heap. ExternalStrings
8875 // consist of the length field common to all strings, a pointer to the
8876 // external resource. It is important to ensure (externally) that the
8877 // resource is not deallocated while the ExternalString is live in the
8880 // The API expects that all ExternalStrings are created through the
8881 // API. Therefore, ExternalStrings should not be used internally.
8882 class ExternalString: public String {
8884 DECLARE_CAST(ExternalString)
8886 // Layout description.
8887 static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
8888 static const int kShortSize = kResourceOffset + kPointerSize;
8889 static const int kResourceDataOffset = kResourceOffset + kPointerSize;
8890 static const int kSize = kResourceDataOffset + kPointerSize;
8892 static const int kMaxShortLength =
8893 (kShortSize - SeqString::kHeaderSize) / kCharSize;
8895 // Return whether external string is short (data pointer is not cached).
8896 inline bool is_short();
8898 STATIC_ASSERT(kResourceOffset == Internals::kStringResourceOffset);
8901 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
8905 // The ExternalOneByteString class is an external string backed by an
8907 class ExternalOneByteString : public ExternalString {
8909 static const bool kHasOneByteEncoding = true;
8911 typedef v8::String::ExternalOneByteStringResource Resource;
8913 // The underlying resource.
8914 inline const Resource* resource();
8915 inline void set_resource(const Resource* buffer);
8917 // Update the pointer cache to the external character array.
8918 // The cached pointer is always valid, as the external character array does =
8919 // not move during lifetime. Deserialization is the only exception, after
8920 // which the pointer cache has to be refreshed.
8921 inline void update_data_cache();
8923 inline const uint8_t* GetChars();
8925 // Dispatched behavior.
8926 inline uint16_t ExternalOneByteStringGet(int index);
8928 DECLARE_CAST(ExternalOneByteString)
8930 // Garbage collection support.
8931 inline void ExternalOneByteStringIterateBody(ObjectVisitor* v);
8933 template <typename StaticVisitor>
8934 inline void ExternalOneByteStringIterateBody();
8937 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalOneByteString);
8941 // The ExternalTwoByteString class is an external string backed by a UTF-16
8943 class ExternalTwoByteString: public ExternalString {
8945 static const bool kHasOneByteEncoding = false;
8947 typedef v8::String::ExternalStringResource Resource;
8949 // The underlying string resource.
8950 inline const Resource* resource();
8951 inline void set_resource(const Resource* buffer);
8953 // Update the pointer cache to the external character array.
8954 // The cached pointer is always valid, as the external character array does =
8955 // not move during lifetime. Deserialization is the only exception, after
8956 // which the pointer cache has to be refreshed.
8957 inline void update_data_cache();
8959 inline const uint16_t* GetChars();
8961 // Dispatched behavior.
8962 inline uint16_t ExternalTwoByteStringGet(int index);
8965 inline const uint16_t* ExternalTwoByteStringGetData(unsigned start);
8967 DECLARE_CAST(ExternalTwoByteString)
8969 // Garbage collection support.
8970 inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
8972 template<typename StaticVisitor>
8973 inline void ExternalTwoByteStringIterateBody();
8976 DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
8980 // Utility superclass for stack-allocated objects that must be updated
8981 // on gc. It provides two ways for the gc to update instances, either
8982 // iterating or updating after gc.
8983 class Relocatable BASE_EMBEDDED {
8985 explicit inline Relocatable(Isolate* isolate);
8986 inline virtual ~Relocatable();
8987 virtual void IterateInstance(ObjectVisitor* v) { }
8988 virtual void PostGarbageCollection() { }
8990 static void PostGarbageCollectionProcessing(Isolate* isolate);
8991 static int ArchiveSpacePerThread();
8992 static char* ArchiveState(Isolate* isolate, char* to);
8993 static char* RestoreState(Isolate* isolate, char* from);
8994 static void Iterate(Isolate* isolate, ObjectVisitor* v);
8995 static void Iterate(ObjectVisitor* v, Relocatable* top);
8996 static char* Iterate(ObjectVisitor* v, char* t);
9004 // A flat string reader provides random access to the contents of a
9005 // string independent of the character width of the string. The handle
9006 // must be valid as long as the reader is being used.
9007 class FlatStringReader : public Relocatable {
9009 FlatStringReader(Isolate* isolate, Handle<String> str);
9010 FlatStringReader(Isolate* isolate, Vector<const char> input);
9011 void PostGarbageCollection();
9012 inline uc32 Get(int index);
9013 template <typename Char>
9014 inline Char Get(int index);
9015 int length() { return length_; }
9024 // This maintains an off-stack representation of the stack frames required
9025 // to traverse a ConsString, allowing an entirely iterative and restartable
9026 // traversal of the entire string
9027 class ConsStringIterator {
9029 inline ConsStringIterator() {}
9030 inline explicit ConsStringIterator(ConsString* cons_string, int offset = 0) {
9031 Reset(cons_string, offset);
9033 inline void Reset(ConsString* cons_string, int offset = 0) {
9035 // Next will always return NULL.
9036 if (cons_string == NULL) return;
9037 Initialize(cons_string, offset);
9039 // Returns NULL when complete.
9040 inline String* Next(int* offset_out) {
9042 if (depth_ == 0) return NULL;
9043 return Continue(offset_out);
9047 static const int kStackSize = 32;
9048 // Use a mask instead of doing modulo operations for stack wrapping.
9049 static const int kDepthMask = kStackSize-1;
9050 STATIC_ASSERT(IS_POWER_OF_TWO(kStackSize));
9051 static inline int OffsetForDepth(int depth);
9053 inline void PushLeft(ConsString* string);
9054 inline void PushRight(ConsString* string);
9055 inline void AdjustMaximumDepth();
9057 inline bool StackBlown() { return maximum_depth_ - depth_ == kStackSize; }
9058 void Initialize(ConsString* cons_string, int offset);
9059 String* Continue(int* offset_out);
9060 String* NextLeaf(bool* blew_stack);
9061 String* Search(int* offset_out);
9063 // Stack must always contain only frames for which right traversal
9064 // has not yet been performed.
9065 ConsString* frames_[kStackSize];
9070 DISALLOW_COPY_AND_ASSIGN(ConsStringIterator);
9074 class StringCharacterStream {
9076 inline StringCharacterStream(String* string,
9078 inline uint16_t GetNext();
9079 inline bool HasMore();
9080 inline void Reset(String* string, int offset = 0);
9081 inline void VisitOneByteString(const uint8_t* chars, int length);
9082 inline void VisitTwoByteString(const uint16_t* chars, int length);
9085 ConsStringIterator iter_;
9088 const uint8_t* buffer8_;
9089 const uint16_t* buffer16_;
9091 const uint8_t* end_;
9092 DISALLOW_COPY_AND_ASSIGN(StringCharacterStream);
9096 template <typename T>
9097 class VectorIterator {
9099 VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
9100 explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
9101 T GetNext() { return data_[index_++]; }
9102 bool has_more() { return index_ < data_.length(); }
9104 Vector<const T> data_;
9109 // The Oddball describes objects null, undefined, true, and false.
9110 class Oddball: public HeapObject {
9112 // [to_string]: Cached to_string computed at startup.
9113 DECL_ACCESSORS(to_string, String)
9115 // [to_number]: Cached to_number computed at startup.
9116 DECL_ACCESSORS(to_number, Object)
9118 // [typeof]: Cached type_of computed at startup.
9119 DECL_ACCESSORS(type_of, String)
9121 inline byte kind() const;
9122 inline void set_kind(byte kind);
9124 // ES6 section 7.1.3 ToNumber for Boolean, Null, Undefined.
9125 MUST_USE_RESULT static inline Handle<Object> ToNumber(Handle<Oddball> input);
9127 DECLARE_CAST(Oddball)
9129 // Dispatched behavior.
9130 DECLARE_VERIFIER(Oddball)
9132 // Initialize the fields.
9133 static void Initialize(Isolate* isolate, Handle<Oddball> oddball,
9134 const char* to_string, Handle<Object> to_number,
9135 const char* type_of, byte kind);
9137 // Layout description.
9138 static const int kToStringOffset = HeapObject::kHeaderSize;
9139 static const int kToNumberOffset = kToStringOffset + kPointerSize;
9140 static const int kTypeOfOffset = kToNumberOffset + kPointerSize;
9141 static const int kKindOffset = kTypeOfOffset + kPointerSize;
9142 static const int kSize = kKindOffset + kPointerSize;
9144 static const byte kFalse = 0;
9145 static const byte kTrue = 1;
9146 static const byte kNotBooleanMask = ~1;
9147 static const byte kTheHole = 2;
9148 static const byte kNull = 3;
9149 static const byte kArgumentMarker = 4;
9150 static const byte kUndefined = 5;
9151 static const byte kUninitialized = 6;
9152 static const byte kOther = 7;
9153 static const byte kException = 8;
9155 typedef FixedBodyDescriptor<kToStringOffset, kTypeOfOffset + kPointerSize,
9156 kSize> BodyDescriptor;
9158 STATIC_ASSERT(kKindOffset == Internals::kOddballKindOffset);
9159 STATIC_ASSERT(kNull == Internals::kNullOddballKind);
9160 STATIC_ASSERT(kUndefined == Internals::kUndefinedOddballKind);
9163 DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
9167 class Cell: public HeapObject {
9169 // [value]: value of the cell.
9170 DECL_ACCESSORS(value, Object)
9174 static inline Cell* FromValueAddress(Address value) {
9175 Object* result = FromAddress(value - kValueOffset);
9176 return static_cast<Cell*>(result);
9179 inline Address ValueAddress() {
9180 return address() + kValueOffset;
9183 // Dispatched behavior.
9184 DECLARE_PRINTER(Cell)
9185 DECLARE_VERIFIER(Cell)
9187 // Layout description.
9188 static const int kValueOffset = HeapObject::kHeaderSize;
9189 static const int kSize = kValueOffset + kPointerSize;
9191 typedef FixedBodyDescriptor<kValueOffset,
9192 kValueOffset + kPointerSize,
9193 kSize> BodyDescriptor;
9196 DISALLOW_IMPLICIT_CONSTRUCTORS(Cell);
9200 class PropertyCell : public HeapObject {
9202 // [property_details]: details of the global property.
9203 DECL_ACCESSORS(property_details_raw, Object)
9204 // [value]: value of the global property.
9205 DECL_ACCESSORS(value, Object)
9206 // [dependent_code]: dependent code that depends on the type of the global
9208 DECL_ACCESSORS(dependent_code, DependentCode)
9210 inline PropertyDetails property_details();
9211 inline void set_property_details(PropertyDetails details);
9213 PropertyCellConstantType GetConstantType();
9215 // Computes the new type of the cell's contents for the given value, but
9216 // without actually modifying the details.
9217 static PropertyCellType UpdatedType(Handle<PropertyCell> cell,
9218 Handle<Object> value,
9219 PropertyDetails details);
9220 static void UpdateCell(Handle<GlobalDictionary> dictionary, int entry,
9221 Handle<Object> value, PropertyDetails details);
9223 static Handle<PropertyCell> InvalidateEntry(
9224 Handle<GlobalDictionary> dictionary, int entry);
9226 static void SetValueWithInvalidation(Handle<PropertyCell> cell,
9227 Handle<Object> new_value);
9229 DECLARE_CAST(PropertyCell)
9231 // Dispatched behavior.
9232 DECLARE_PRINTER(PropertyCell)
9233 DECLARE_VERIFIER(PropertyCell)
9235 // Layout description.
9236 static const int kDetailsOffset = HeapObject::kHeaderSize;
9237 static const int kValueOffset = kDetailsOffset + kPointerSize;
9238 static const int kDependentCodeOffset = kValueOffset + kPointerSize;
9239 static const int kSize = kDependentCodeOffset + kPointerSize;
9241 static const int kPointerFieldsBeginOffset = kValueOffset;
9242 static const int kPointerFieldsEndOffset = kSize;
9244 typedef FixedBodyDescriptor<kValueOffset,
9246 kSize> BodyDescriptor;
9249 DISALLOW_IMPLICIT_CONSTRUCTORS(PropertyCell);
9253 class WeakCell : public HeapObject {
9255 inline Object* value() const;
9257 // This should not be called by anyone except GC.
9258 inline void clear();
9260 // This should not be called by anyone except allocator.
9261 inline void initialize(HeapObject* value);
9263 inline bool cleared() const;
9265 DECL_ACCESSORS(next, Object)
9267 inline void clear_next(Heap* heap);
9269 inline bool next_cleared();
9271 DECLARE_CAST(WeakCell)
9273 DECLARE_PRINTER(WeakCell)
9274 DECLARE_VERIFIER(WeakCell)
9276 // Layout description.
9277 static const int kValueOffset = HeapObject::kHeaderSize;
9278 static const int kNextOffset = kValueOffset + kPointerSize;
9279 static const int kSize = kNextOffset + kPointerSize;
9281 typedef FixedBodyDescriptor<kValueOffset, kSize, kSize> BodyDescriptor;
9284 DISALLOW_IMPLICIT_CONSTRUCTORS(WeakCell);
9288 // The JSProxy describes EcmaScript Harmony proxies
9289 class JSProxy: public JSReceiver {
9291 // [handler]: The handler property.
9292 DECL_ACCESSORS(handler, Object)
9294 // [hash]: The hash code property (undefined if not initialized yet).
9295 DECL_ACCESSORS(hash, Object)
9297 DECLARE_CAST(JSProxy)
9299 MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithHandler(
9300 Handle<JSProxy> proxy,
9301 Handle<Object> receiver,
9304 // If the handler defines an accessor property with a setter, invoke it.
9305 // If it defines an accessor property without a setter, or a data property
9306 // that is read-only, throw. In all these cases set '*done' to true,
9307 // otherwise set it to false.
9309 static MaybeHandle<Object> SetPropertyViaPrototypesWithHandler(
9310 Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
9311 Handle<Object> value, LanguageMode language_mode, bool* done);
9313 MUST_USE_RESULT static Maybe<PropertyAttributes>
9314 GetPropertyAttributesWithHandler(Handle<JSProxy> proxy,
9315 Handle<Object> receiver,
9317 MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithHandler(
9318 Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
9319 Handle<Object> value, LanguageMode language_mode);
9321 // Turn the proxy into an (empty) JSObject.
9322 static void Fix(Handle<JSProxy> proxy);
9324 // Initializes the body after the handler slot.
9325 inline void InitializeBody(int object_size, Object* value);
9327 // Invoke a trap by name. If the trap does not exist on this's handler,
9328 // but derived_trap is non-NULL, invoke that instead. May cause GC.
9329 MUST_USE_RESULT static MaybeHandle<Object> CallTrap(
9330 Handle<JSProxy> proxy,
9332 Handle<Object> derived_trap,
9334 Handle<Object> args[]);
9336 // Dispatched behavior.
9337 DECLARE_PRINTER(JSProxy)
9338 DECLARE_VERIFIER(JSProxy)
9340 // Layout description. We add padding so that a proxy has the same
9341 // size as a virgin JSObject. This is essential for becoming a JSObject
9343 static const int kHandlerOffset = HeapObject::kHeaderSize;
9344 static const int kHashOffset = kHandlerOffset + kPointerSize;
9345 static const int kPaddingOffset = kHashOffset + kPointerSize;
9346 static const int kSize = JSObject::kHeaderSize;
9347 static const int kHeaderSize = kPaddingOffset;
9348 static const int kPaddingSize = kSize - kPaddingOffset;
9350 STATIC_ASSERT(kPaddingSize >= 0);
9352 typedef FixedBodyDescriptor<kHandlerOffset,
9354 kSize> BodyDescriptor;
9357 friend class JSReceiver;
9359 MUST_USE_RESULT static Maybe<bool> HasPropertyWithHandler(
9360 Handle<JSProxy> proxy, Handle<Name> name);
9362 MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithHandler(
9363 Handle<JSProxy> proxy, Handle<Name> name, LanguageMode language_mode);
9365 MUST_USE_RESULT Object* GetIdentityHash();
9367 static Handle<Smi> GetOrCreateIdentityHash(Handle<JSProxy> proxy);
9369 DISALLOW_IMPLICIT_CONSTRUCTORS(JSProxy);
9373 class JSFunctionProxy: public JSProxy {
9375 // [call_trap]: The call trap.
9376 DECL_ACCESSORS(call_trap, JSReceiver)
9378 // [construct_trap]: The construct trap.
9379 DECL_ACCESSORS(construct_trap, Object)
9381 DECLARE_CAST(JSFunctionProxy)
9383 // Dispatched behavior.
9384 DECLARE_PRINTER(JSFunctionProxy)
9385 DECLARE_VERIFIER(JSFunctionProxy)
9387 // Layout description.
9388 static const int kCallTrapOffset = JSProxy::kPaddingOffset;
9389 static const int kConstructTrapOffset = kCallTrapOffset + kPointerSize;
9390 static const int kPaddingOffset = kConstructTrapOffset + kPointerSize;
9391 static const int kSize = JSFunction::kSize;
9392 static const int kPaddingSize = kSize - kPaddingOffset;
9394 STATIC_ASSERT(kPaddingSize >= 0);
9396 typedef FixedBodyDescriptor<kHandlerOffset,
9397 kConstructTrapOffset + kPointerSize,
9398 kSize> BodyDescriptor;
9401 DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunctionProxy);
9405 class JSCollection : public JSObject {
9407 // [table]: the backing hash table
9408 DECL_ACCESSORS(table, Object)
9410 static const int kTableOffset = JSObject::kHeaderSize;
9411 static const int kSize = kTableOffset + kPointerSize;
9414 DISALLOW_IMPLICIT_CONSTRUCTORS(JSCollection);
9418 // The JSSet describes EcmaScript Harmony sets
9419 class JSSet : public JSCollection {
9423 static void Initialize(Handle<JSSet> set, Isolate* isolate);
9424 static void Clear(Handle<JSSet> set);
9426 // Dispatched behavior.
9427 DECLARE_PRINTER(JSSet)
9428 DECLARE_VERIFIER(JSSet)
9431 DISALLOW_IMPLICIT_CONSTRUCTORS(JSSet);
9435 // The JSMap describes EcmaScript Harmony maps
9436 class JSMap : public JSCollection {
9440 static void Initialize(Handle<JSMap> map, Isolate* isolate);
9441 static void Clear(Handle<JSMap> map);
9443 // Dispatched behavior.
9444 DECLARE_PRINTER(JSMap)
9445 DECLARE_VERIFIER(JSMap)
9448 DISALLOW_IMPLICIT_CONSTRUCTORS(JSMap);
9452 // OrderedHashTableIterator is an iterator that iterates over the keys and
9453 // values of an OrderedHashTable.
9455 // The iterator has a reference to the underlying OrderedHashTable data,
9456 // [table], as well as the current [index] the iterator is at.
9458 // When the OrderedHashTable is rehashed it adds a reference from the old table
9459 // to the new table as well as storing enough data about the changes so that the
9460 // iterator [index] can be adjusted accordingly.
9462 // When the [Next] result from the iterator is requested, the iterator checks if
9463 // there is a newer table that it needs to transition to.
9464 template<class Derived, class TableType>
9465 class OrderedHashTableIterator: public JSObject {
9467 // [table]: the backing hash table mapping keys to values.
9468 DECL_ACCESSORS(table, Object)
9470 // [index]: The index into the data table.
9471 DECL_ACCESSORS(index, Object)
9473 // [kind]: The kind of iteration this is. One of the [Kind] enum values.
9474 DECL_ACCESSORS(kind, Object)
9477 void OrderedHashTableIteratorPrint(std::ostream& os); // NOLINT
9480 static const int kTableOffset = JSObject::kHeaderSize;
9481 static const int kIndexOffset = kTableOffset + kPointerSize;
9482 static const int kKindOffset = kIndexOffset + kPointerSize;
9483 static const int kSize = kKindOffset + kPointerSize;
9491 // Whether the iterator has more elements. This needs to be called before
9492 // calling |CurrentKey| and/or |CurrentValue|.
9495 // Move the index forward one.
9497 set_index(Smi::FromInt(Smi::cast(index())->value() + 1));
9500 // Populates the array with the next key and value and then moves the iterator
9502 // This returns the |kind| or 0 if the iterator is already at the end.
9503 Smi* Next(JSArray* value_array);
9505 // Returns the current key of the iterator. This should only be called when
9506 // |HasMore| returns true.
9507 inline Object* CurrentKey();
9510 // Transitions the iterator to the non obsolete backing store. This is a NOP
9511 // if the [table] is not obsolete.
9514 DISALLOW_IMPLICIT_CONSTRUCTORS(OrderedHashTableIterator);
9518 class JSSetIterator: public OrderedHashTableIterator<JSSetIterator,
9521 // Dispatched behavior.
9522 DECLARE_PRINTER(JSSetIterator)
9523 DECLARE_VERIFIER(JSSetIterator)
9525 DECLARE_CAST(JSSetIterator)
9527 // Called by |Next| to populate the array. This allows the subclasses to
9528 // populate the array differently.
9529 inline void PopulateValueArray(FixedArray* array);
9532 DISALLOW_IMPLICIT_CONSTRUCTORS(JSSetIterator);
9536 class JSMapIterator: public OrderedHashTableIterator<JSMapIterator,
9539 // Dispatched behavior.
9540 DECLARE_PRINTER(JSMapIterator)
9541 DECLARE_VERIFIER(JSMapIterator)
9543 DECLARE_CAST(JSMapIterator)
9545 // Called by |Next| to populate the array. This allows the subclasses to
9546 // populate the array differently.
9547 inline void PopulateValueArray(FixedArray* array);
9550 // Returns the current value of the iterator. This should only be called when
9551 // |HasMore| returns true.
9552 inline Object* CurrentValue();
9554 DISALLOW_IMPLICIT_CONSTRUCTORS(JSMapIterator);
9558 // ES6 section 25.1.1.3 The IteratorResult Interface
9559 class JSIteratorResult final : public JSObject {
9561 // [done]: This is the result status of an iterator next method call. If the
9562 // end of the iterator was reached done is true. If the end was not reached
9563 // done is false and a [value] is available.
9564 DECL_ACCESSORS(done, Object)
9566 // [value]: If [done] is false, this is the current iteration element value.
9567 // If [done] is true, this is the return value of the iterator, if it supplied
9568 // one. If the iterator does not have a return value, value is undefined.
9569 // In that case, the value property may be absent from the conforming object
9570 // if it does not inherit an explicit value property.
9571 DECL_ACCESSORS(value, Object)
9573 // Dispatched behavior.
9574 DECLARE_PRINTER(JSIteratorResult)
9575 DECLARE_VERIFIER(JSIteratorResult)
9577 DECLARE_CAST(JSIteratorResult)
9579 static const int kValueOffset = JSObject::kHeaderSize;
9580 static const int kDoneOffset = kValueOffset + kPointerSize;
9581 static const int kSize = kDoneOffset + kPointerSize;
9583 // Indices of in-object properties.
9584 static const int kValueIndex = 0;
9585 static const int kDoneIndex = 1;
9588 DISALLOW_IMPLICIT_CONSTRUCTORS(JSIteratorResult);
9592 // Base class for both JSWeakMap and JSWeakSet
9593 class JSWeakCollection: public JSObject {
9595 // [table]: the backing hash table mapping keys to values.
9596 DECL_ACCESSORS(table, Object)
9598 // [next]: linked list of encountered weak maps during GC.
9599 DECL_ACCESSORS(next, Object)
9601 static void Initialize(Handle<JSWeakCollection> collection, Isolate* isolate);
9602 static void Set(Handle<JSWeakCollection> collection, Handle<Object> key,
9603 Handle<Object> value, int32_t hash);
9604 static bool Delete(Handle<JSWeakCollection> collection, Handle<Object> key,
9607 static const int kTableOffset = JSObject::kHeaderSize;
9608 static const int kNextOffset = kTableOffset + kPointerSize;
9609 static const int kSize = kNextOffset + kPointerSize;
9612 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakCollection);
9616 // The JSWeakMap describes EcmaScript Harmony weak maps
9617 class JSWeakMap: public JSWeakCollection {
9619 DECLARE_CAST(JSWeakMap)
9621 // Dispatched behavior.
9622 DECLARE_PRINTER(JSWeakMap)
9623 DECLARE_VERIFIER(JSWeakMap)
9626 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakMap);
9630 // The JSWeakSet describes EcmaScript Harmony weak sets
9631 class JSWeakSet: public JSWeakCollection {
9633 DECLARE_CAST(JSWeakSet)
9635 // Dispatched behavior.
9636 DECLARE_PRINTER(JSWeakSet)
9637 DECLARE_VERIFIER(JSWeakSet)
9640 DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakSet);
9644 // Whether a JSArrayBuffer is a SharedArrayBuffer or not.
9645 enum class SharedFlag { kNotShared, kShared };
9648 class JSArrayBuffer: public JSObject {
9650 // [backing_store]: backing memory for this array
9651 DECL_ACCESSORS(backing_store, void)
9653 // [byte_length]: length in bytes
9654 DECL_ACCESSORS(byte_length, Object)
9656 inline uint32_t bit_field() const;
9657 inline void set_bit_field(uint32_t bits);
9659 inline bool is_external();
9660 inline void set_is_external(bool value);
9662 inline bool is_neuterable();
9663 inline void set_is_neuterable(bool value);
9665 inline bool was_neutered();
9666 inline void set_was_neutered(bool value);
9668 inline bool is_shared();
9669 inline void set_is_shared(bool value);
9671 DECLARE_CAST(JSArrayBuffer)
9675 static void Setup(Handle<JSArrayBuffer> array_buffer, Isolate* isolate,
9676 bool is_external, void* data, size_t allocated_length,
9677 SharedFlag shared = SharedFlag::kNotShared);
9679 static bool SetupAllocatingData(Handle<JSArrayBuffer> array_buffer,
9680 Isolate* isolate, size_t allocated_length,
9681 bool initialize = true,
9682 SharedFlag shared = SharedFlag::kNotShared);
9684 // Dispatched behavior.
9685 DECLARE_PRINTER(JSArrayBuffer)
9686 DECLARE_VERIFIER(JSArrayBuffer)
9688 static const int kByteLengthOffset = JSObject::kHeaderSize;
9690 // NOTE: GC will visit objects fields:
9691 // 1. From JSObject::BodyDescriptor::kStartOffset to kByteLengthOffset +
9693 // 2. From start of the internal fields and up to the end of them
9694 static const int kBackingStoreOffset = kByteLengthOffset + kPointerSize;
9695 static const int kBitFieldSlot = kBackingStoreOffset + kPointerSize;
9696 #if V8_TARGET_LITTLE_ENDIAN || !V8_HOST_ARCH_64_BIT
9697 static const int kBitFieldOffset = kBitFieldSlot;
9699 static const int kBitFieldOffset = kBitFieldSlot + kIntSize;
9701 static const int kSize = kBitFieldSlot + kPointerSize;
9703 static const int kSizeWithInternalFields =
9704 kSize + v8::ArrayBuffer::kInternalFieldCount * kPointerSize;
9706 template <typename StaticVisitor>
9707 static inline void JSArrayBufferIterateBody(Heap* heap, HeapObject* obj);
9709 static inline void JSArrayBufferIterateBody(HeapObject* obj,
9712 class IsExternal : public BitField<bool, 1, 1> {};
9713 class IsNeuterable : public BitField<bool, 2, 1> {};
9714 class WasNeutered : public BitField<bool, 3, 1> {};
9715 class IsShared : public BitField<bool, 4, 1> {};
9718 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBuffer);
9722 class JSArrayBufferView: public JSObject {
9724 // [buffer]: ArrayBuffer that this typed array views.
9725 DECL_ACCESSORS(buffer, Object)
9727 // [byte_offset]: offset of typed array in bytes.
9728 DECL_ACCESSORS(byte_offset, Object)
9730 // [byte_length]: length of typed array in bytes.
9731 DECL_ACCESSORS(byte_length, Object)
9733 DECLARE_CAST(JSArrayBufferView)
9735 DECLARE_VERIFIER(JSArrayBufferView)
9737 inline bool WasNeutered() const;
9739 static const int kBufferOffset = JSObject::kHeaderSize;
9740 static const int kByteOffsetOffset = kBufferOffset + kPointerSize;
9741 static const int kByteLengthOffset = kByteOffsetOffset + kPointerSize;
9742 static const int kViewSize = kByteLengthOffset + kPointerSize;
9746 DECL_ACCESSORS(raw_byte_offset, Object)
9747 DECL_ACCESSORS(raw_byte_length, Object)
9750 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBufferView);
9754 class JSTypedArray: public JSArrayBufferView {
9756 // [length]: length of typed array in elements.
9757 DECL_ACCESSORS(length, Object)
9758 inline uint32_t length_value() const;
9760 DECLARE_CAST(JSTypedArray)
9762 ExternalArrayType type();
9763 size_t element_size();
9765 Handle<JSArrayBuffer> GetBuffer();
9767 // Dispatched behavior.
9768 DECLARE_PRINTER(JSTypedArray)
9769 DECLARE_VERIFIER(JSTypedArray)
9771 static const int kLengthOffset = kViewSize + kPointerSize;
9772 static const int kSize = kLengthOffset + kPointerSize;
9774 static const int kSizeWithInternalFields =
9775 kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
9778 static Handle<JSArrayBuffer> MaterializeArrayBuffer(
9779 Handle<JSTypedArray> typed_array);
9781 DECL_ACCESSORS(raw_length, Object)
9784 DISALLOW_IMPLICIT_CONSTRUCTORS(JSTypedArray);
9788 class JSDataView: public JSArrayBufferView {
9790 DECLARE_CAST(JSDataView)
9792 // Dispatched behavior.
9793 DECLARE_PRINTER(JSDataView)
9794 DECLARE_VERIFIER(JSDataView)
9796 static const int kSize = kViewSize;
9798 static const int kSizeWithInternalFields =
9799 kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;
9802 DISALLOW_IMPLICIT_CONSTRUCTORS(JSDataView);
9806 // Foreign describes objects pointing from JavaScript to C structures.
9807 class Foreign: public HeapObject {
9809 // [address]: field containing the address.
9810 inline Address foreign_address();
9811 inline void set_foreign_address(Address value);
9813 DECLARE_CAST(Foreign)
9815 // Dispatched behavior.
9816 inline void ForeignIterateBody(ObjectVisitor* v);
9818 template<typename StaticVisitor>
9819 inline void ForeignIterateBody();
9821 // Dispatched behavior.
9822 DECLARE_PRINTER(Foreign)
9823 DECLARE_VERIFIER(Foreign)
9825 // Layout description.
9827 static const int kForeignAddressOffset = HeapObject::kHeaderSize;
9828 static const int kSize = kForeignAddressOffset + kPointerSize;
9830 STATIC_ASSERT(kForeignAddressOffset == Internals::kForeignAddressOffset);
9833 DISALLOW_IMPLICIT_CONSTRUCTORS(Foreign);
9837 // The JSArray describes JavaScript Arrays
9838 // Such an array can be in one of two modes:
9839 // - fast, backing storage is a FixedArray and length <= elements.length();
9840 // Please note: push and pop can be used to grow and shrink the array.
9841 // - slow, backing storage is a HashTable with numbers as keys.
9842 class JSArray: public JSObject {
9844 // [length]: The length property.
9845 DECL_ACCESSORS(length, Object)
9847 // Overload the length setter to skip write barrier when the length
9848 // is set to a smi. This matches the set function on FixedArray.
9849 inline void set_length(Smi* length);
9851 static bool HasReadOnlyLength(Handle<JSArray> array);
9852 static bool WouldChangeReadOnlyLength(Handle<JSArray> array, uint32_t index);
9853 static MaybeHandle<Object> ReadOnlyLengthError(Handle<JSArray> array);
9855 // Initialize the array with the given capacity. The function may
9856 // fail due to out-of-memory situations, but only if the requested
9857 // capacity is non-zero.
9858 static void Initialize(Handle<JSArray> array, int capacity, int length = 0);
9860 // If the JSArray has fast elements, and new_length would result in
9861 // normalization, returns true.
9862 bool SetLengthWouldNormalize(uint32_t new_length);
9863 static inline bool SetLengthWouldNormalize(Heap* heap, uint32_t new_length);
9865 // Initializes the array to a certain length.
9866 inline bool AllowsSetLength();
9868 static void SetLength(Handle<JSArray> array, uint32_t length);
9869 // Same as above but will also queue splice records if |array| is observed.
9870 static MaybeHandle<Object> ObservableSetLength(Handle<JSArray> array,
9873 // Set the content of the array to the content of storage.
9874 static inline void SetContent(Handle<JSArray> array,
9875 Handle<FixedArrayBase> storage);
9877 DECLARE_CAST(JSArray)
9879 // Dispatched behavior.
9880 DECLARE_PRINTER(JSArray)
9881 DECLARE_VERIFIER(JSArray)
9883 // Number of element slots to pre-allocate for an empty array.
9884 static const int kPreallocatedArrayElements = 4;
9886 // Layout description.
9887 static const int kLengthOffset = JSObject::kHeaderSize;
9888 static const int kSize = kLengthOffset + kPointerSize;
9891 DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
9895 Handle<Object> CacheInitialJSArrayMaps(Handle<Context> native_context,
9896 Handle<Map> initial_map);
9899 // JSRegExpResult is just a JSArray with a specific initial map.
9900 // This initial map adds in-object properties for "index" and "input"
9901 // properties, as assigned by RegExp.prototype.exec, which allows
9902 // faster creation of RegExp exec results.
9903 // This class just holds constants used when creating the result.
9904 // After creation the result must be treated as a JSArray in all regards.
9905 class JSRegExpResult: public JSArray {
9907 // Offsets of object fields.
9908 static const int kIndexOffset = JSArray::kSize;
9909 static const int kInputOffset = kIndexOffset + kPointerSize;
9910 static const int kSize = kInputOffset + kPointerSize;
9911 // Indices of in-object properties.
9912 static const int kIndexIndex = 0;
9913 static const int kInputIndex = 1;
9915 DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
9919 class AccessorInfo: public Struct {
9921 DECL_ACCESSORS(name, Object)
9922 DECL_ACCESSORS(flag, Smi)
9923 DECL_ACCESSORS(expected_receiver_type, Object)
9925 inline bool all_can_read();
9926 inline void set_all_can_read(bool value);
9928 inline bool all_can_write();
9929 inline void set_all_can_write(bool value);
9931 inline bool is_special_data_property();
9932 inline void set_is_special_data_property(bool value);
9934 inline PropertyAttributes property_attributes();
9935 inline void set_property_attributes(PropertyAttributes attributes);
9937 // Checks whether the given receiver is compatible with this accessor.
9938 static bool IsCompatibleReceiverMap(Isolate* isolate,
9939 Handle<AccessorInfo> info,
9941 inline bool IsCompatibleReceiver(Object* receiver);
9943 DECLARE_CAST(AccessorInfo)
9945 // Dispatched behavior.
9946 DECLARE_VERIFIER(AccessorInfo)
9948 // Append all descriptors to the array that are not already there.
9949 // Return number added.
9950 static int AppendUnique(Handle<Object> descriptors,
9951 Handle<FixedArray> array,
9952 int valid_descriptors);
9954 static const int kNameOffset = HeapObject::kHeaderSize;
9955 static const int kFlagOffset = kNameOffset + kPointerSize;
9956 static const int kExpectedReceiverTypeOffset = kFlagOffset + kPointerSize;
9957 static const int kSize = kExpectedReceiverTypeOffset + kPointerSize;
9960 inline bool HasExpectedReceiverType();
9962 // Bit positions in flag.
9963 static const int kAllCanReadBit = 0;
9964 static const int kAllCanWriteBit = 1;
9965 static const int kSpecialDataProperty = 2;
9966 class AttributesField : public BitField<PropertyAttributes, 3, 3> {};
9968 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
9972 // An accessor must have a getter, but can have no setter.
9974 // When setting a property, V8 searches accessors in prototypes.
9975 // If an accessor was found and it does not have a setter,
9976 // the request is ignored.
9978 // If the accessor in the prototype has the READ_ONLY property attribute, then
9979 // a new value is added to the derived object when the property is set.
9980 // This shadows the accessor in the prototype.
9981 class ExecutableAccessorInfo: public AccessorInfo {
9983 DECL_ACCESSORS(getter, Object)
9984 DECL_ACCESSORS(setter, Object)
9985 DECL_ACCESSORS(data, Object)
9987 DECLARE_CAST(ExecutableAccessorInfo)
9989 // Dispatched behavior.
9990 DECLARE_PRINTER(ExecutableAccessorInfo)
9991 DECLARE_VERIFIER(ExecutableAccessorInfo)
9993 static const int kGetterOffset = AccessorInfo::kSize;
9994 static const int kSetterOffset = kGetterOffset + kPointerSize;
9995 static const int kDataOffset = kSetterOffset + kPointerSize;
9996 static const int kSize = kDataOffset + kPointerSize;
9998 static void ClearSetter(Handle<ExecutableAccessorInfo> info);
10001 DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutableAccessorInfo);
10005 // Support for JavaScript accessors: A pair of a getter and a setter. Each
10006 // accessor can either be
10007 // * a pointer to a JavaScript function or proxy: a real accessor
10008 // * undefined: considered an accessor by the spec, too, strangely enough
10009 // * the hole: an accessor which has not been set
10010 // * a pointer to a map: a transition used to ensure map sharing
10011 class AccessorPair: public Struct {
10013 DECL_ACCESSORS(getter, Object)
10014 DECL_ACCESSORS(setter, Object)
10016 DECLARE_CAST(AccessorPair)
10018 static Handle<AccessorPair> Copy(Handle<AccessorPair> pair);
10020 inline Object* get(AccessorComponent component);
10021 inline void set(AccessorComponent component, Object* value);
10023 // Note: Returns undefined instead in case of a hole.
10024 Object* GetComponent(AccessorComponent component);
10026 // Set both components, skipping arguments which are a JavaScript null.
10027 inline void SetComponents(Object* getter, Object* setter);
10029 inline bool Equals(AccessorPair* pair);
10030 inline bool Equals(Object* getter_value, Object* setter_value);
10032 inline bool ContainsAccessor();
10034 // Dispatched behavior.
10035 DECLARE_PRINTER(AccessorPair)
10036 DECLARE_VERIFIER(AccessorPair)
10038 static const int kGetterOffset = HeapObject::kHeaderSize;
10039 static const int kSetterOffset = kGetterOffset + kPointerSize;
10040 static const int kSize = kSetterOffset + kPointerSize;
10043 // Strangely enough, in addition to functions and harmony proxies, the spec
10044 // requires us to consider undefined as a kind of accessor, too:
10046 // Object.defineProperty(obj, "foo", {get: undefined});
10047 // assertTrue("foo" in obj);
10048 inline bool IsJSAccessor(Object* obj);
10050 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorPair);
10054 class AccessCheckInfo: public Struct {
10056 DECL_ACCESSORS(named_callback, Object)
10057 DECL_ACCESSORS(indexed_callback, Object)
10058 DECL_ACCESSORS(data, Object)
10060 DECLARE_CAST(AccessCheckInfo)
10062 // Dispatched behavior.
10063 DECLARE_PRINTER(AccessCheckInfo)
10064 DECLARE_VERIFIER(AccessCheckInfo)
10066 static const int kNamedCallbackOffset = HeapObject::kHeaderSize;
10067 static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
10068 static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
10069 static const int kSize = kDataOffset + kPointerSize;
10072 DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
10076 class InterceptorInfo: public Struct {
10078 DECL_ACCESSORS(getter, Object)
10079 DECL_ACCESSORS(setter, Object)
10080 DECL_ACCESSORS(query, Object)
10081 DECL_ACCESSORS(deleter, Object)
10082 DECL_ACCESSORS(enumerator, Object)
10083 DECL_ACCESSORS(data, Object)
10084 DECL_BOOLEAN_ACCESSORS(can_intercept_symbols)
10085 DECL_BOOLEAN_ACCESSORS(all_can_read)
10086 DECL_BOOLEAN_ACCESSORS(non_masking)
10088 inline int flags() const;
10089 inline void set_flags(int flags);
10091 DECLARE_CAST(InterceptorInfo)
10093 // Dispatched behavior.
10094 DECLARE_PRINTER(InterceptorInfo)
10095 DECLARE_VERIFIER(InterceptorInfo)
10097 static const int kGetterOffset = HeapObject::kHeaderSize;
10098 static const int kSetterOffset = kGetterOffset + kPointerSize;
10099 static const int kQueryOffset = kSetterOffset + kPointerSize;
10100 static const int kDeleterOffset = kQueryOffset + kPointerSize;
10101 static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
10102 static const int kDataOffset = kEnumeratorOffset + kPointerSize;
10103 static const int kFlagsOffset = kDataOffset + kPointerSize;
10104 static const int kSize = kFlagsOffset + kPointerSize;
10106 static const int kCanInterceptSymbolsBit = 0;
10107 static const int kAllCanReadBit = 1;
10108 static const int kNonMasking = 2;
10111 DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
10115 class CallHandlerInfo: public Struct {
10117 DECL_ACCESSORS(callback, Object)
10118 DECL_ACCESSORS(data, Object)
10120 DECLARE_CAST(CallHandlerInfo)
10122 // Dispatched behavior.
10123 DECLARE_PRINTER(CallHandlerInfo)
10124 DECLARE_VERIFIER(CallHandlerInfo)
10126 static const int kCallbackOffset = HeapObject::kHeaderSize;
10127 static const int kDataOffset = kCallbackOffset + kPointerSize;
10128 static const int kSize = kDataOffset + kPointerSize;
10131 DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
10135 class TemplateInfo: public Struct {
10137 DECL_ACCESSORS(tag, Object)
10138 inline int number_of_properties() const;
10139 inline void set_number_of_properties(int value);
10140 DECL_ACCESSORS(property_list, Object)
10141 DECL_ACCESSORS(property_accessors, Object)
10143 DECLARE_VERIFIER(TemplateInfo)
10145 static const int kTagOffset = HeapObject::kHeaderSize;
10146 static const int kNumberOfProperties = kTagOffset + kPointerSize;
10147 static const int kPropertyListOffset = kNumberOfProperties + kPointerSize;
10148 static const int kPropertyAccessorsOffset =
10149 kPropertyListOffset + kPointerSize;
10150 static const int kHeaderSize = kPropertyAccessorsOffset + kPointerSize;
10153 DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
10157 class FunctionTemplateInfo: public TemplateInfo {
10159 DECL_ACCESSORS(serial_number, Object)
10160 DECL_ACCESSORS(call_code, Object)
10161 DECL_ACCESSORS(prototype_template, Object)
10162 DECL_ACCESSORS(parent_template, Object)
10163 DECL_ACCESSORS(named_property_handler, Object)
10164 DECL_ACCESSORS(indexed_property_handler, Object)
10165 DECL_ACCESSORS(instance_template, Object)
10166 DECL_ACCESSORS(class_name, Object)
10167 DECL_ACCESSORS(signature, Object)
10168 DECL_ACCESSORS(instance_call_handler, Object)
10169 DECL_ACCESSORS(access_check_info, Object)
10170 DECL_ACCESSORS(flag, Smi)
10172 inline int length() const;
10173 inline void set_length(int value);
10175 // Following properties use flag bits.
10176 DECL_BOOLEAN_ACCESSORS(hidden_prototype)
10177 DECL_BOOLEAN_ACCESSORS(undetectable)
10178 // If the bit is set, object instances created by this function
10179 // requires access check.
10180 DECL_BOOLEAN_ACCESSORS(needs_access_check)
10181 DECL_BOOLEAN_ACCESSORS(read_only_prototype)
10182 DECL_BOOLEAN_ACCESSORS(remove_prototype)
10183 DECL_BOOLEAN_ACCESSORS(do_not_cache)
10184 DECL_BOOLEAN_ACCESSORS(instantiated)
10185 DECL_BOOLEAN_ACCESSORS(accept_any_receiver)
10187 DECLARE_CAST(FunctionTemplateInfo)
10189 // Dispatched behavior.
10190 DECLARE_PRINTER(FunctionTemplateInfo)
10191 DECLARE_VERIFIER(FunctionTemplateInfo)
10193 static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
10194 static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
10195 static const int kPrototypeTemplateOffset =
10196 kCallCodeOffset + kPointerSize;
10197 static const int kParentTemplateOffset =
10198 kPrototypeTemplateOffset + kPointerSize;
10199 static const int kNamedPropertyHandlerOffset =
10200 kParentTemplateOffset + kPointerSize;
10201 static const int kIndexedPropertyHandlerOffset =
10202 kNamedPropertyHandlerOffset + kPointerSize;
10203 static const int kInstanceTemplateOffset =
10204 kIndexedPropertyHandlerOffset + kPointerSize;
10205 static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
10206 static const int kSignatureOffset = kClassNameOffset + kPointerSize;
10207 static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
10208 static const int kAccessCheckInfoOffset =
10209 kInstanceCallHandlerOffset + kPointerSize;
10210 static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
10211 static const int kLengthOffset = kFlagOffset + kPointerSize;
10212 static const int kSize = kLengthOffset + kPointerSize;
10214 // Returns true if |object| is an instance of this function template.
10215 bool IsTemplateFor(Object* object);
10216 bool IsTemplateFor(Map* map);
10218 // Returns the holder JSObject if the function can legally be called with this
10219 // receiver. Returns Heap::null_value() if the call is illegal.
10220 Object* GetCompatibleReceiver(Isolate* isolate, Object* receiver);
10223 // Bit position in the flag, from least significant bit position.
10224 static const int kHiddenPrototypeBit = 0;
10225 static const int kUndetectableBit = 1;
10226 static const int kNeedsAccessCheckBit = 2;
10227 static const int kReadOnlyPrototypeBit = 3;
10228 static const int kRemovePrototypeBit = 4;
10229 static const int kDoNotCacheBit = 5;
10230 static const int kInstantiatedBit = 6;
10231 static const int kAcceptAnyReceiver = 7;
10233 DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
10237 class ObjectTemplateInfo: public TemplateInfo {
10239 DECL_ACCESSORS(constructor, Object)
10240 DECL_ACCESSORS(internal_field_count, Object)
10242 DECLARE_CAST(ObjectTemplateInfo)
10244 // Dispatched behavior.
10245 DECLARE_PRINTER(ObjectTemplateInfo)
10246 DECLARE_VERIFIER(ObjectTemplateInfo)
10248 static const int kConstructorOffset = TemplateInfo::kHeaderSize;
10249 static const int kInternalFieldCountOffset =
10250 kConstructorOffset + kPointerSize;
10251 static const int kSize = kInternalFieldCountOffset + kPointerSize;
10255 class TypeSwitchInfo: public Struct {
10257 DECL_ACCESSORS(types, Object)
10259 DECLARE_CAST(TypeSwitchInfo)
10261 // Dispatched behavior.
10262 DECLARE_PRINTER(TypeSwitchInfo)
10263 DECLARE_VERIFIER(TypeSwitchInfo)
10265 static const int kTypesOffset = Struct::kHeaderSize;
10266 static const int kSize = kTypesOffset + kPointerSize;
10270 // The DebugInfo class holds additional information for a function being
10272 class DebugInfo: public Struct {
10274 // The shared function info for the source being debugged.
10275 DECL_ACCESSORS(shared, SharedFunctionInfo)
10276 // Code object for the patched code. This code object is the code object
10277 // currently active for the function.
10278 DECL_ACCESSORS(code, Code)
10279 // Fixed array holding status information for each active break point.
10280 DECL_ACCESSORS(break_points, FixedArray)
10282 // Check if there is a break point at a code position.
10283 bool HasBreakPoint(int code_position);
10284 // Get the break point info object for a code position.
10285 Object* GetBreakPointInfo(int code_position);
10286 // Clear a break point.
10287 static void ClearBreakPoint(Handle<DebugInfo> debug_info,
10289 Handle<Object> break_point_object);
10290 // Set a break point.
10291 static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
10292 int source_position, int statement_position,
10293 Handle<Object> break_point_object);
10294 // Get the break point objects for a code position.
10295 Handle<Object> GetBreakPointObjects(int code_position);
10296 // Find the break point info holding this break point object.
10297 static Handle<Object> FindBreakPointInfo(Handle<DebugInfo> debug_info,
10298 Handle<Object> break_point_object);
10299 // Get the number of break points for this function.
10300 int GetBreakPointCount();
10302 DECLARE_CAST(DebugInfo)
10304 // Dispatched behavior.
10305 DECLARE_PRINTER(DebugInfo)
10306 DECLARE_VERIFIER(DebugInfo)
10308 static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
10309 static const int kCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
10310 static const int kBreakPointsStateIndex = kCodeIndex + kPointerSize;
10311 static const int kSize = kBreakPointsStateIndex + kPointerSize;
10313 static const int kEstimatedNofBreakPointsInFunction = 16;
10316 static const int kNoBreakPointInfo = -1;
10318 // Lookup the index in the break_points array for a code position.
10319 int GetBreakPointInfoIndex(int code_position);
10321 DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
10325 // The BreakPointInfo class holds information for break points set in a
10326 // function. The DebugInfo object holds a BreakPointInfo object for each code
10327 // position with one or more break points.
10328 class BreakPointInfo: public Struct {
10330 // The position in the code for the break point.
10331 DECL_ACCESSORS(code_position, Smi)
10332 // The position in the source for the break position.
10333 DECL_ACCESSORS(source_position, Smi)
10334 // The position in the source for the last statement before this break
10336 DECL_ACCESSORS(statement_position, Smi)
10337 // List of related JavaScript break points.
10338 DECL_ACCESSORS(break_point_objects, Object)
10340 // Removes a break point.
10341 static void ClearBreakPoint(Handle<BreakPointInfo> info,
10342 Handle<Object> break_point_object);
10343 // Set a break point.
10344 static void SetBreakPoint(Handle<BreakPointInfo> info,
10345 Handle<Object> break_point_object);
10346 // Check if break point info has this break point object.
10347 static bool HasBreakPointObject(Handle<BreakPointInfo> info,
10348 Handle<Object> break_point_object);
10349 // Get the number of break points for this code position.
10350 int GetBreakPointCount();
10352 DECLARE_CAST(BreakPointInfo)
10354 // Dispatched behavior.
10355 DECLARE_PRINTER(BreakPointInfo)
10356 DECLARE_VERIFIER(BreakPointInfo)
10358 static const int kCodePositionIndex = Struct::kHeaderSize;
10359 static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
10360 static const int kStatementPositionIndex =
10361 kSourcePositionIndex + kPointerSize;
10362 static const int kBreakPointObjectsIndex =
10363 kStatementPositionIndex + kPointerSize;
10364 static const int kSize = kBreakPointObjectsIndex + kPointerSize;
10367 DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
10371 #undef DECL_BOOLEAN_ACCESSORS
10372 #undef DECL_ACCESSORS
10373 #undef DECLARE_CAST
10374 #undef DECLARE_VERIFIER
10376 #define VISITOR_SYNCHRONIZATION_TAGS_LIST(V) \
10377 V(kStringTable, "string_table", "(Internalized strings)") \
10378 V(kExternalStringsTable, "external_strings_table", "(External strings)") \
10379 V(kStrongRootList, "strong_root_list", "(Strong roots)") \
10380 V(kSmiRootList, "smi_root_list", "(Smi roots)") \
10381 V(kBootstrapper, "bootstrapper", "(Bootstrapper)") \
10382 V(kTop, "top", "(Isolate)") \
10383 V(kRelocatable, "relocatable", "(Relocatable)") \
10384 V(kDebug, "debug", "(Debugger)") \
10385 V(kCompilationCache, "compilationcache", "(Compilation cache)") \
10386 V(kHandleScope, "handlescope", "(Handle scope)") \
10387 V(kBuiltins, "builtins", "(Builtins)") \
10388 V(kGlobalHandles, "globalhandles", "(Global handles)") \
10389 V(kEternalHandles, "eternalhandles", "(Eternal handles)") \
10390 V(kThreadManager, "threadmanager", "(Thread manager)") \
10391 V(kStrongRoots, "strong roots", "(Strong roots)") \
10392 V(kExtensions, "Extensions", "(Extensions)")
10394 class VisitorSynchronization : public AllStatic {
10396 #define DECLARE_ENUM(enum_item, ignore1, ignore2) enum_item,
10398 VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_ENUM)
10401 #undef DECLARE_ENUM
10403 static const char* const kTags[kNumberOfSyncTags];
10404 static const char* const kTagNames[kNumberOfSyncTags];
10407 // Abstract base class for visiting, and optionally modifying, the
10408 // pointers contained in Objects. Used in GC and serialization/deserialization.
10409 class ObjectVisitor BASE_EMBEDDED {
10411 virtual ~ObjectVisitor() {}
10413 // Visits a contiguous arrays of pointers in the half-open range
10414 // [start, end). Any or all of the values may be modified on return.
10415 virtual void VisitPointers(Object** start, Object** end) = 0;
10417 // Handy shorthand for visiting a single pointer.
10418 virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
10420 // Visit weak next_code_link in Code object.
10421 virtual void VisitNextCodeLink(Object** p) { VisitPointers(p, p + 1); }
10423 // To allow lazy clearing of inline caches the visitor has
10424 // a rich interface for iterating over Code objects..
10426 // Visits a code target in the instruction stream.
10427 virtual void VisitCodeTarget(RelocInfo* rinfo);
10429 // Visits a code entry in a JS function.
10430 virtual void VisitCodeEntry(Address entry_address);
10432 // Visits a global property cell reference in the instruction stream.
10433 virtual void VisitCell(RelocInfo* rinfo);
10435 // Visits a runtime entry in the instruction stream.
10436 virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
10438 // Visits the resource of an one-byte or two-byte string.
10439 virtual void VisitExternalOneByteString(
10440 v8::String::ExternalOneByteStringResource** resource) {}
10441 virtual void VisitExternalTwoByteString(
10442 v8::String::ExternalStringResource** resource) {}
10444 // Visits a debug call target in the instruction stream.
10445 virtual void VisitDebugTarget(RelocInfo* rinfo);
10447 // Visits the byte sequence in a function's prologue that contains information
10448 // about the code's age.
10449 virtual void VisitCodeAgeSequence(RelocInfo* rinfo);
10451 // Visit pointer embedded into a code object.
10452 virtual void VisitEmbeddedPointer(RelocInfo* rinfo);
10454 // Visits an external reference embedded into a code object.
10455 virtual void VisitExternalReference(RelocInfo* rinfo);
10457 // Visits an external reference.
10458 virtual void VisitExternalReference(Address* p) {}
10460 // Visits an (encoded) internal reference.
10461 virtual void VisitInternalReference(RelocInfo* rinfo) {}
10463 // Visits a handle that has an embedder-assigned class ID.
10464 virtual void VisitEmbedderReference(Object** p, uint16_t class_id) {}
10466 // Intended for serialization/deserialization checking: insert, or
10467 // check for the presence of, a tag at this position in the stream.
10468 // Also used for marking up GC roots in heap snapshots.
10469 virtual void Synchronize(VisitorSynchronization::SyncTag tag) {}
10473 class StructBodyDescriptor : public
10474 FlexibleBodyDescriptor<HeapObject::kHeaderSize> {
10476 static inline int SizeOf(Map* map, HeapObject* object);
10480 // BooleanBit is a helper class for setting and getting a bit in an
10482 class BooleanBit : public AllStatic {
10484 static inline bool get(Smi* smi, int bit_position) {
10485 return get(smi->value(), bit_position);
10488 static inline bool get(int value, int bit_position) {
10489 return (value & (1 << bit_position)) != 0;
10492 static inline Smi* set(Smi* smi, int bit_position, bool v) {
10493 return Smi::FromInt(set(smi->value(), bit_position, v));
10496 static inline int set(int value, int bit_position, bool v) {
10498 value |= (1 << bit_position);
10500 value &= ~(1 << bit_position);
10507 class KeyAccumulator final BASE_EMBEDDED {
10509 explicit KeyAccumulator(Isolate* isolate) : isolate_(isolate), length_(0) {}
10511 void AddKey(Handle<Object> key, int check_limit);
10512 void AddKeys(Handle<FixedArray> array, FixedArray::KeyFilter filter);
10513 void AddKeys(Handle<JSObject> array, FixedArray::KeyFilter filter);
10514 void PrepareForComparisons(int count);
10515 Handle<FixedArray> GetKeys();
10517 int GetLength() { return length_; }
10520 void EnsureCapacity(int capacity);
10524 Handle<FixedArray> keys_;
10525 Handle<OrderedHashSet> set_;
10527 DISALLOW_COPY_AND_ASSIGN(KeyAccumulator);
10529 } } // namespace v8::internal
10531 #endif // V8_OBJECTS_H_