Update To 11.40.268.0
[platform/framework/web/crosswalk.git] / src / net / quic / quic_data_writer.cc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/quic/quic_data_writer.h"
6
7 #include <algorithm>
8 #include <limits>
9 #include <string>
10
11 #include "base/basictypes.h"
12 #include "base/logging.h"
13
14 using base::StringPiece;
15 using std::numeric_limits;
16
17 namespace net {
18
19 QuicDataWriter::QuicDataWriter(size_t size)
20     : buffer_(new char[size]),
21       capacity_(size),
22       length_(0) {
23 }
24
25 QuicDataWriter::~QuicDataWriter() {
26   delete[] buffer_;
27 }
28
29 char* QuicDataWriter::take() {
30   char* rv = buffer_;
31   buffer_ = nullptr;
32   capacity_ = 0;
33   length_ = 0;
34   return rv;
35 }
36
37 bool QuicDataWriter::WriteUInt8(uint8 value) {
38   return WriteBytes(&value, sizeof(value));
39 }
40
41 bool QuicDataWriter::WriteUInt16(uint16 value) {
42   return WriteBytes(&value, sizeof(value));
43 }
44
45 bool QuicDataWriter::WriteUInt32(uint32 value) {
46   return WriteBytes(&value, sizeof(value));
47 }
48
49 bool QuicDataWriter::WriteUInt48(uint64 value) {
50   uint32 hi = value >> 32;
51   uint32 lo = value & GG_UINT64_C(0x00000000FFFFFFFF);
52   return WriteUInt32(lo) && WriteUInt16(hi);
53 }
54
55 bool QuicDataWriter::WriteUInt64(uint64 value) {
56   return WriteBytes(&value, sizeof(value));
57 }
58
59 bool QuicDataWriter::WriteUFloat16(uint64 value) {
60   uint16 result;
61   if (value < (GG_UINT64_C(1) << kUFloat16MantissaEffectiveBits)) {
62     // Fast path: either the value is denormalized, or has exponent zero.
63     // Both cases are represented by the value itself.
64     result = value;
65   } else if (value >= kUFloat16MaxValue) {
66     // Value is out of range; clamp it to the maximum representable.
67     result = numeric_limits<uint16>::max();
68   } else {
69     // The highest bit is between position 13 and 42 (zero-based), which
70     // corresponds to exponent 1-30. In the output, mantissa is from 0 to 10,
71     // hidden bit is 11 and exponent is 11 to 15. Shift the highest bit to 11
72     // and count the shifts.
73     uint16 exponent = 0;
74     for (uint16 offset = 16; offset > 0; offset /= 2) {
75       // Right-shift the value until the highest bit is in position 11.
76       // For offset of 16, 8, 4, 2 and 1 (binary search over 1-30),
77       // shift if the bit is at or above 11 + offset.
78       if (value >= (GG_UINT64_C(1) << (kUFloat16MantissaBits + offset))) {
79         exponent += offset;
80         value >>= offset;
81       }
82     }
83
84     DCHECK_GE(exponent, 1);
85     DCHECK_LE(exponent, kUFloat16MaxExponent);
86     DCHECK_GE(value, GG_UINT64_C(1) << kUFloat16MantissaBits);
87     DCHECK_LT(value, GG_UINT64_C(1) << kUFloat16MantissaEffectiveBits);
88
89     // Hidden bit (position 11) is set. We should remove it and increment the
90     // exponent. Equivalently, we just add it to the exponent.
91     // This hides the bit.
92     result = value + (exponent << kUFloat16MantissaBits);
93   }
94
95   return WriteBytes(&result, sizeof(result));
96 }
97
98 bool QuicDataWriter::WriteStringPiece16(StringPiece val) {
99   if (val.length() > numeric_limits<uint16>::max()) {
100     return false;
101   }
102   if (!WriteUInt16(val.size())) {
103     return false;
104   }
105   return WriteBytes(val.data(), val.size());
106 }
107
108 bool QuicDataWriter::WriteIOVector(const IOVector& data) {
109   char *dest = BeginWrite(data.TotalBufferSize());
110   if (!dest) {
111     return false;
112   }
113   for (size_t i = 0; i < data.Size(); ++i) {
114     WriteBytes(data.iovec()[i].iov_base,  data.iovec()[i].iov_len);
115   }
116
117   return true;
118 }
119
120 char* QuicDataWriter::BeginWrite(size_t length) {
121   if (length_ > capacity_) {
122     return nullptr;
123   }
124
125   if (capacity_ - length_ < length) {
126     return nullptr;
127   }
128
129 #ifdef ARCH_CPU_64_BITS
130   DCHECK_LE(length, numeric_limits<uint32>::max());
131 #endif
132
133   return buffer_ + length_;
134 }
135
136 bool QuicDataWriter::WriteBytes(const void* data, size_t data_len) {
137   char* dest = BeginWrite(data_len);
138   if (!dest) {
139     return false;
140   }
141
142   memcpy(dest, data, data_len);
143
144   length_ += data_len;
145   return true;
146 }
147
148 bool QuicDataWriter::WriteRepeatedByte(uint8 byte, size_t count) {
149   char* dest = BeginWrite(count);
150   if (!dest) {
151     return false;
152   }
153
154   memset(dest, byte, count);
155
156   length_ += count;
157   return true;
158 }
159
160 void QuicDataWriter::WritePadding() {
161   DCHECK_LE(length_, capacity_);
162   if (length_ > capacity_) {
163     return;
164   }
165   memset(buffer_ + length_, 0x00, capacity_ - length_);
166   length_ = capacity_;
167 }
168
169 bool QuicDataWriter::WriteUInt8ToOffset(uint8 value, size_t offset) {
170   if (offset >= capacity_) {
171     LOG(DFATAL) << "offset: " << offset << " >= capacity: " << capacity_;
172     return false;
173   }
174   size_t latched_length = length_;
175   length_ = offset;
176   bool success = WriteUInt8(value);
177   DCHECK_LE(length_, latched_length);
178   length_ = latched_length;
179   return success;
180 }
181
182 bool QuicDataWriter::WriteUInt32ToOffset(uint32 value, size_t offset) {
183   DCHECK_LT(offset, capacity_);
184   size_t latched_length = length_;
185   length_ = offset;
186   bool success = WriteUInt32(value);
187   DCHECK_LE(length_, latched_length);
188   length_ = latched_length;
189   return success;
190 }
191
192 bool QuicDataWriter::WriteUInt48ToOffset(uint64 value, size_t offset) {
193   DCHECK_LT(offset, capacity_);
194   size_t latched_length = length_;
195   length_ = offset;
196   bool success = WriteUInt48(value);
197   DCHECK_LE(length_, latched_length);
198   length_ = latched_length;
199   return success;
200 }
201
202 }  // namespace net