Upstream version 7.35.144.0
[platform/framework/web/crosswalk.git] / src / net / quic / congestion_control / inter_arrival_bitrate_ramp_up.cc
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/quic/congestion_control/inter_arrival_bitrate_ramp_up.h"
6
7 #include "base/basictypes.h"
8 #include "base/logging.h"
9 #include "net/quic/congestion_control/cube_root.h"
10 #include "net/quic/quic_protocol.h"
11
12 namespace {
13 // The following constants are in 2^10 fractions of a second instead of ms to
14 // allow a 10 shift right to divide.
15 const int kCubeScale = 40;  // 1024*1024^3 (first 1024 is from 0.100^3)
16                             // where 0.100 is 100 ms which is the scaling
17                             // round trip time.
18 // TODO(pwestin): Tuning parameter, currently close to TCP cubic at 100ms RTT.
19 const int kPacedCubeScale = 6000;
20 const uint64 kCubeFactor = (GG_UINT64_C(1) << kCubeScale) / kPacedCubeScale;
21 }  // namespace
22
23 namespace net {
24
25 InterArrivalBitrateRampUp::InterArrivalBitrateRampUp(const QuicClock* clock)
26     : clock_(clock),
27       current_rate_(QuicBandwidth::Zero()),
28       channel_estimate_(QuicBandwidth::Zero()),
29       available_channel_estimate_(QuicBandwidth::Zero()),
30       halfway_point_(QuicBandwidth::Zero()),
31       epoch_(QuicTime::Zero()),
32       last_update_time_(QuicTime::Zero()) {
33 }
34
35 void InterArrivalBitrateRampUp::Reset(QuicBandwidth new_rate,
36                                       QuicBandwidth available_channel_estimate,
37                                       QuicBandwidth channel_estimate) {
38   epoch_ = clock_->ApproximateNow();
39   last_update_time_ = epoch_;
40   available_channel_estimate_ = std::max(new_rate, available_channel_estimate);
41   channel_estimate_ = std::max(channel_estimate, available_channel_estimate_);
42
43   halfway_point_ = available_channel_estimate_.Add(
44       (channel_estimate_.Subtract(available_channel_estimate_)).Scale(0.5f));
45
46   if (new_rate < available_channel_estimate_) {
47     time_to_origin_point_ = CalcuateTimeToOriginPoint(
48         available_channel_estimate_.Subtract(new_rate));
49   } else if (new_rate >= channel_estimate_) {
50     time_to_origin_point_ = 0;
51   } else if (new_rate >= halfway_point_) {
52     time_to_origin_point_ =
53         CalcuateTimeToOriginPoint(channel_estimate_.Subtract(new_rate));
54   } else {
55     time_to_origin_point_ = CalcuateTimeToOriginPoint(
56         new_rate.Subtract(available_channel_estimate_));
57   }
58   current_rate_ = new_rate;
59   DVLOG(1) << "Reset; time to origin point:" << time_to_origin_point_;
60 }
61
62 void InterArrivalBitrateRampUp::UpdateChannelEstimate(
63     QuicBandwidth channel_estimate) {
64   if (available_channel_estimate_ > channel_estimate ||
65       current_rate_ > channel_estimate ||
66       channel_estimate_ == channel_estimate) {
67     // Ignore, because one of the following reasons:
68     // 1) channel estimate is bellow our current available estimate which we
69     //    value higher that this estimate.
70     // 2) channel estimate is bellow our current send rate.
71     // 3) channel estimate has not changed.
72     return;
73   }
74   if (available_channel_estimate_ == halfway_point_ &&
75       channel_estimate_  == halfway_point_) {
76     // First time we get a usable channel estimate.
77     channel_estimate_ = channel_estimate;
78     halfway_point_ = available_channel_estimate_.Add(
79         (channel_estimate_.Subtract(available_channel_estimate_).Scale(0.5f)));
80     DVLOG(1) << "UpdateChannelEstimate; first usable value:"
81                << channel_estimate.ToKBitsPerSecond() << " Kbits/s";
82     return;
83   }
84   if (current_rate_ < halfway_point_) {
85     // Update channel estimate without recalculating if we are bellow the
86     // halfway point.
87     channel_estimate_ = channel_estimate;
88     return;
89   }
90   // We are between halfway point and our channel_estimate.
91   epoch_ = clock_->ApproximateNow();
92   last_update_time_ = epoch_;
93   channel_estimate_ = channel_estimate;
94
95   time_to_origin_point_ =
96       CalcuateTimeToOriginPoint(channel_estimate_.Subtract(current_rate_));
97
98   DVLOG(1) << "UpdateChannelEstimate; time to origin point:"
99              << time_to_origin_point_;
100 }
101
102 QuicBandwidth InterArrivalBitrateRampUp::GetNewBitrate(
103     QuicBandwidth sent_bitrate) {
104   DCHECK(epoch_.IsInitialized());
105   QuicTime current_time = clock_->ApproximateNow();
106   // Cubic is "independent" of RTT, the update is limited by the time elapsed.
107   if (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval()) {
108     return current_rate_;
109   }
110   QuicTime::Delta time_from_last_update =
111       current_time.Subtract(last_update_time_);
112
113   last_update_time_ = current_time;
114
115   if (!sent_bitrate.IsZero() &&
116       sent_bitrate.Add(sent_bitrate) < current_rate_) {
117     // Don't go up in bitrate when we are not sending.
118     // We need to update the epoch to reflect this state.
119     epoch_ = epoch_.Add(time_from_last_update);
120     DVLOG(1) << "Don't increase; our sent bitrate is:"
121                << sent_bitrate.ToKBitsPerSecond() << " Kbits/s"
122                << " current target rate is:"
123                << current_rate_.ToKBitsPerSecond() << " Kbits/s";
124     return current_rate_;
125   }
126   QuicTime::Delta time_from_epoch = current_time.Subtract(epoch_);
127
128   // Change the time unit from microseconds to 2^10 fractions per second. This
129   // is done to allow us to use shift as a divide operator.
130   int64 elapsed_time = (time_from_epoch.ToMicroseconds() << 10) /
131       kNumMicrosPerSecond;
132
133   int64 offset = time_to_origin_point_ - elapsed_time;
134   // Note: using int64 since QuicBandwidth can't be negative
135   int64 delta_pace_kbps = (kPacedCubeScale * offset * offset * offset) >>
136         kCubeScale;
137
138   bool start_bellow_halfway_point = false;
139   if (current_rate_ < halfway_point_) {
140     start_bellow_halfway_point = true;
141
142     // available_channel_estimate_ is the orgin of the cubic function.
143     QuicBandwidth current_rate = QuicBandwidth::FromBytesPerSecond(
144         available_channel_estimate_.ToBytesPerSecond() -
145             (delta_pace_kbps << 10));
146
147     if (start_bellow_halfway_point && current_rate >= halfway_point_) {
148       // We passed the halfway point, recalculate with new orgin.
149       epoch_ = clock_->ApproximateNow();
150       // channel_estimate_ is the new orgin of the cubic function.
151       if (current_rate >= channel_estimate_) {
152         time_to_origin_point_ = 0;
153       } else {
154         time_to_origin_point_ =
155             CalcuateTimeToOriginPoint(channel_estimate_.Subtract(current_rate));
156       }
157       DVLOG(1) << "Passed the halfway point; time to origin point:"
158                  << time_to_origin_point_;
159     }
160     current_rate_ = current_rate;
161   } else {
162     // channel_estimate_ is the orgin of the cubic function.
163     current_rate_ = QuicBandwidth::FromBytesPerSecond(
164         channel_estimate_.ToBytesPerSecond() - (delta_pace_kbps << 10));
165   }
166   return current_rate_;
167 }
168
169 uint32 InterArrivalBitrateRampUp::CalcuateTimeToOriginPoint(
170     QuicBandwidth rate_difference) const {
171   return CubeRoot::Root(kCubeFactor * rate_difference.ToKBytesPerSecond());
172 }
173
174 }  // namespace net