1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
6 // Declares a Simulator for MIPS instructions if we are not generating a native
7 // MIPS binary. This Simulator allows us to run and debug MIPS code generation
8 // on regular desktop machines.
9 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
10 // which will start execution in the Simulator or forwards to the real entry
11 // on a MIPS HW platform.
13 #ifndef V8_MIPS_SIMULATOR_MIPS_H_
14 #define V8_MIPS_SIMULATOR_MIPS_H_
16 #include "src/allocation.h"
17 #include "src/mips64/constants-mips64.h"
19 #if !defined(USE_SIMULATOR)
20 // Running without a simulator on a native mips platform.
25 // When running without a simulator we call the entry directly.
26 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
27 entry(p0, p1, p2, p3, p4)
30 // Call the generated regexp code directly. The code at the entry address
31 // should act as a function matching the type arm_regexp_matcher.
32 // The fifth (or ninth) argument is a dummy that reserves the space used for
33 // the return address added by the ExitFrame in native calls.
35 typedef int (*mips_regexp_matcher)(String* input,
37 const byte* input_start,
38 const byte* input_end,
46 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
47 (FUNCTION_CAST<mips_regexp_matcher>(entry)( \
48 p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8))
52 typedef int (*mips_regexp_matcher)(String* input,
54 const byte* input_start,
55 const byte* input_end,
63 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
64 (FUNCTION_CAST<mips_regexp_matcher>(entry)( \
65 p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8))
67 #endif // MIPS_ABI_N64
70 // The stack limit beyond which we will throw stack overflow errors in
71 // generated code. Because generated code on mips uses the C stack, we
72 // just use the C stack limit.
73 class SimulatorStack : public v8::internal::AllStatic {
75 static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
80 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
81 return try_catch_address;
84 static inline void UnregisterCTryCatch() { }
87 } } // namespace v8::internal
89 // Calculated the stack limit beyond which we will throw stack overflow errors.
90 // This macro must be called from a C++ method. It relies on being able to take
91 // the address of "this" to get a value on the current execution stack and then
92 // calculates the stack limit based on that value.
93 // NOTE: The check for overflow is not safe as there is no guarantee that the
94 // running thread has its stack in all memory up to address 0x00000000.
95 #define GENERATED_CODE_STACK_LIMIT(limit) \
96 (reinterpret_cast<uintptr_t>(this) >= limit ? \
97 reinterpret_cast<uintptr_t>(this) - limit : 0)
99 #else // !defined(USE_SIMULATOR)
100 // Running with a simulator.
102 #include "src/assembler.h"
103 #include "src/hashmap.h"
108 // -----------------------------------------------------------------------------
113 static const int LINE_VALID = 0;
114 static const int LINE_INVALID = 1;
116 static const int kPageShift = 12;
117 static const int kPageSize = 1 << kPageShift;
118 static const int kPageMask = kPageSize - 1;
119 static const int kLineShift = 2; // The cache line is only 4 bytes right now.
120 static const int kLineLength = 1 << kLineShift;
121 static const int kLineMask = kLineLength - 1;
124 memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
127 char* ValidityByte(int offset) {
128 return &validity_map_[offset >> kLineShift];
131 char* CachedData(int offset) {
132 return &data_[offset];
136 char data_[kPageSize]; // The cached data.
137 static const int kValidityMapSize = kPageSize >> kLineShift;
138 char validity_map_[kValidityMapSize]; // One byte per line.
143 friend class MipsDebugger;
145 // Registers are declared in order. See SMRL chapter 2.
151 a0, a1, a2, a3, a4, a5, a6, a7,
153 s0, s1, s2, s3, s4, s5, s6, s7,
163 pc, // pc must be the last register.
169 // Coprocessor registers.
170 // Generated code will always use doubles. So we will only use even registers.
172 f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
173 f12, f13, f14, f15, // f12 and f14 are arguments FPURegisters.
174 f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
175 f26, f27, f28, f29, f30, f31,
179 explicit Simulator(Isolate* isolate);
182 // The currently executing Simulator instance. Potentially there can be one
183 // for each native thread.
184 static Simulator* current(v8::internal::Isolate* isolate);
186 // Accessors for register state. Reading the pc value adheres to the MIPS
187 // architecture specification and is off by a 8 from the currently executing
189 void set_register(int reg, int64_t value);
190 void set_register_word(int reg, int32_t value);
191 void set_dw_register(int dreg, const int* dbl);
192 int64_t get_register(int reg) const;
193 double get_double_from_register_pair(int reg);
194 // Same for FPURegisters.
195 void set_fpu_register(int fpureg, int64_t value);
196 void set_fpu_register_word(int fpureg, int32_t value);
197 void set_fpu_register_hi_word(int fpureg, int32_t value);
198 void set_fpu_register_float(int fpureg, float value);
199 void set_fpu_register_double(int fpureg, double value);
200 int64_t get_fpu_register(int fpureg) const;
201 int32_t get_fpu_register_word(int fpureg) const;
202 int32_t get_fpu_register_signed_word(int fpureg) const;
203 int32_t get_fpu_register_hi_word(int fpureg) const;
204 float get_fpu_register_float(int fpureg) const;
205 double get_fpu_register_double(int fpureg) const;
206 void set_fcsr_bit(uint32_t cc, bool value);
207 bool test_fcsr_bit(uint32_t cc);
208 bool set_fcsr_round_error(double original, double rounded);
209 bool set_fcsr_round64_error(double original, double rounded);
210 bool set_fcsr_round_error(float original, float rounded);
211 bool set_fcsr_round64_error(float original, float rounded);
212 void round_according_to_fcsr(double toRound, double& rounded,
213 int32_t& rounded_int, double fs);
214 void round64_according_to_fcsr(double toRound, double& rounded,
215 int64_t& rounded_int, double fs);
216 void round_according_to_fcsr(float toRound, float& rounded,
217 int32_t& rounded_int, float fs);
218 void round64_according_to_fcsr(float toRound, float& rounded,
219 int64_t& rounded_int, float fs);
220 void set_fcsr_rounding_mode(FPURoundingMode mode);
221 unsigned int get_fcsr_rounding_mode();
222 // Special case of set_register and get_register to access the raw PC value.
223 void set_pc(int64_t value);
224 int64_t get_pc() const;
226 Address get_sp() const {
227 return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
230 // Accessor to the internal simulator stack area.
231 uintptr_t StackLimit(uintptr_t c_limit) const;
233 // Executes MIPS instructions until the PC reaches end_sim_pc.
236 // Call on program start.
237 static void Initialize(Isolate* isolate);
239 static void TearDown(HashMap* i_cache, Redirection* first);
241 // V8 generally calls into generated JS code with 5 parameters and into
242 // generated RegExp code with 7 parameters. This is a convenience function,
243 // which sets up the simulator state and grabs the result on return.
244 int64_t Call(byte* entry, int argument_count, ...);
245 // Alternative: call a 2-argument double function.
246 double CallFP(byte* entry, double d0, double d1);
248 // Push an address onto the JS stack.
249 uintptr_t PushAddress(uintptr_t address);
251 // Pop an address from the JS stack.
252 uintptr_t PopAddress();
255 void set_last_debugger_input(char* input);
256 char* last_debugger_input() { return last_debugger_input_; }
259 static void FlushICache(v8::internal::HashMap* i_cache, void* start,
262 // Returns true if pc register contains one of the 'special_values' defined
263 // below (bad_ra, end_sim_pc).
264 bool has_bad_pc() const;
267 enum special_values {
268 // Known bad pc value to ensure that the simulator does not execute
269 // without being properly setup.
271 // A pc value used to signal the simulator to stop execution. Generally
272 // the ra is set to this value on transition from native C code to
273 // simulated execution, so that the simulator can "return" to the native
276 // Unpredictable value.
277 Unpredictable = 0xbadbeaf
280 // Unsupported instructions use Format to print an error and stop execution.
281 void Format(Instruction* instr, const char* format);
283 // Read and write memory.
284 inline uint32_t ReadBU(int64_t addr);
285 inline int32_t ReadB(int64_t addr);
286 inline void WriteB(int64_t addr, uint8_t value);
287 inline void WriteB(int64_t addr, int8_t value);
289 inline uint16_t ReadHU(int64_t addr, Instruction* instr);
290 inline int16_t ReadH(int64_t addr, Instruction* instr);
291 // Note: Overloaded on the sign of the value.
292 inline void WriteH(int64_t addr, uint16_t value, Instruction* instr);
293 inline void WriteH(int64_t addr, int16_t value, Instruction* instr);
295 inline uint32_t ReadWU(int64_t addr, Instruction* instr);
296 inline int32_t ReadW(int64_t addr, Instruction* instr);
297 inline void WriteW(int64_t addr, int32_t value, Instruction* instr);
298 inline int64_t Read2W(int64_t addr, Instruction* instr);
299 inline void Write2W(int64_t addr, int64_t value, Instruction* instr);
301 inline double ReadD(int64_t addr, Instruction* instr);
302 inline void WriteD(int64_t addr, double value, Instruction* instr);
304 // Helper for debugging memory access.
305 inline void DieOrDebug();
307 // Helpers for data value tracing.
313 // DFLOAT - Floats may have printing issues due to paired lwc1's
316 void TraceRegWr(int64_t value);
317 void TraceMemWr(int64_t addr, int64_t value, TraceType t);
318 void TraceMemRd(int64_t addr, int64_t value);
320 // Operations depending on endianness.
321 // Get Double Higher / Lower word.
322 inline int32_t GetDoubleHIW(double* addr);
323 inline int32_t GetDoubleLOW(double* addr);
324 // Set Double Higher / Lower word.
325 inline int32_t SetDoubleHIW(double* addr);
326 inline int32_t SetDoubleLOW(double* addr);
328 // functions called from DecodeTypeRegister.
329 void DecodeTypeRegisterCOP1();
331 void DecodeTypeRegisterCOP1X();
333 void DecodeTypeRegisterSPECIAL();
336 void DecodeTypeRegisterSPECIAL2();
338 void DecodeTypeRegisterSPECIAL3();
340 void DecodeTypeRegisterSRsType();
342 void DecodeTypeRegisterDRsType();
344 void DecodeTypeRegisterWRsType();
346 void DecodeTypeRegisterLRsType();
348 // Executing is handled based on the instruction type.
349 void DecodeTypeRegister(Instruction* instr);
351 Instruction* currentInstr_;
352 inline Instruction* get_instr() const { return currentInstr_; }
353 inline void set_instr(Instruction* instr) { currentInstr_ = instr; }
355 inline int32_t rs_reg() const { return currentInstr_->RsValue(); }
356 inline int64_t rs() const { return get_register(rs_reg()); }
357 inline uint64_t rs_u() const {
358 return static_cast<uint64_t>(get_register(rs_reg()));
360 inline int32_t rt_reg() const { return currentInstr_->RtValue(); }
361 inline int64_t rt() const { return get_register(rt_reg()); }
362 inline uint64_t rt_u() const {
363 return static_cast<uint64_t>(get_register(rt_reg()));
365 inline int32_t rd_reg() const { return currentInstr_->RdValue(); }
366 inline int32_t fr_reg() const { return currentInstr_->FrValue(); }
367 inline int32_t fs_reg() const { return currentInstr_->FsValue(); }
368 inline int32_t ft_reg() const { return currentInstr_->FtValue(); }
369 inline int32_t fd_reg() const { return currentInstr_->FdValue(); }
370 inline int32_t sa() const { return currentInstr_->SaValue(); }
372 inline void SetResult(const int32_t rd_reg, const int64_t alu_out) {
373 set_register(rd_reg, alu_out);
377 void DecodeTypeImmediate(Instruction* instr);
378 void DecodeTypeJump(Instruction* instr);
380 // Used for breakpoints and traps.
381 void SoftwareInterrupt(Instruction* instr);
383 // Stop helper functions.
384 bool IsWatchpoint(uint64_t code);
385 void PrintWatchpoint(uint64_t code);
386 void HandleStop(uint64_t code, Instruction* instr);
387 bool IsStopInstruction(Instruction* instr);
388 bool IsEnabledStop(uint64_t code);
389 void EnableStop(uint64_t code);
390 void DisableStop(uint64_t code);
391 void IncreaseStopCounter(uint64_t code);
392 void PrintStopInfo(uint64_t code);
395 // Executes one instruction.
396 void InstructionDecode(Instruction* instr);
397 // Execute one instruction placed in a branch delay slot.
398 void BranchDelayInstructionDecode(Instruction* instr) {
399 if (instr->InstructionBits() == nopInstr) {
400 // Short-cut generic nop instructions. They are always valid and they
401 // never change the simulator state.
405 if (instr->IsForbiddenInBranchDelay()) {
406 V8_Fatal(__FILE__, __LINE__,
407 "Eror:Unexpected %i opcode in a branch delay slot.",
408 instr->OpcodeValue());
410 InstructionDecode(instr);
411 SNPrintF(trace_buf_, " ");
415 static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
416 static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
418 static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
429 void SignalException(Exception e);
431 // Runtime call support.
432 static void* RedirectExternalReference(void* external_function,
433 ExternalReference::Type type);
435 // Handle arguments and return value for runtime FP functions.
436 void GetFpArgs(double* x, double* y, int32_t* z);
437 void SetFpResult(const double& result);
439 void CallInternal(byte* entry);
441 // Architecture state.
443 int64_t registers_[kNumSimuRegisters];
444 // Coprocessor Registers.
445 int64_t FPUregisters_[kNumFPURegisters];
446 // FPU control register.
449 // Simulator support.
450 // Allocate 1MB for stack.
456 EmbeddedVector<char, 128> trace_buf_;
459 char* last_debugger_input_;
461 // Icache simulation.
462 v8::internal::HashMap* i_cache_;
464 v8::internal::Isolate* isolate_;
466 // Registered breakpoints.
467 Instruction* break_pc_;
470 // Stop is disabled if bit 31 is set.
471 static const uint32_t kStopDisabledBit = 1 << 31;
473 // A stop is enabled, meaning the simulator will stop when meeting the
474 // instruction, if bit 31 of watched_stops_[code].count is unset.
475 // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
476 // the breakpoint was hit or gone through.
477 struct StopCountAndDesc {
481 StopCountAndDesc watched_stops_[kMaxStopCode + 1];
485 // When running with the simulator transition into simulated execution at this
487 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
488 reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
489 FUNCTION_ADDR(entry), 5, reinterpret_cast<int64_t*>(p0), \
490 reinterpret_cast<int64_t*>(p1), reinterpret_cast<int64_t*>(p2), \
491 reinterpret_cast<int64_t*>(p3), reinterpret_cast<int64_t*>(p4)))
495 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
496 static_cast<int>(Simulator::current(Isolate::Current()) \
497 ->Call(entry, 10, p0, p1, p2, p3, p4, \
498 reinterpret_cast<int64_t*>(p5), p6, p7, NULL, \
500 #else // Must be O32 Abi.
501 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
503 Simulator::current(Isolate::Current()) \
504 ->Call(entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8))
505 #endif // MIPS_ABI_N64
508 // The simulator has its own stack. Thus it has a different stack limit from
509 // the C-based native code. The JS-based limit normally points near the end of
510 // the simulator stack. When the C-based limit is exhausted we reflect that by
511 // lowering the JS-based limit as well, to make stack checks trigger.
512 class SimulatorStack : public v8::internal::AllStatic {
514 static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
516 return Simulator::current(isolate)->StackLimit(c_limit);
519 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
520 Simulator* sim = Simulator::current(Isolate::Current());
521 return sim->PushAddress(try_catch_address);
524 static inline void UnregisterCTryCatch() {
525 Simulator::current(Isolate::Current())->PopAddress();
529 } } // namespace v8::internal
531 #endif // !defined(USE_SIMULATOR)
532 #endif // V8_MIPS_SIMULATOR_MIPS_H_