1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
6 // Declares a Simulator for MIPS instructions if we are not generating a native
7 // MIPS binary. This Simulator allows us to run and debug MIPS code generation
8 // on regular desktop machines.
9 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
10 // which will start execution in the Simulator or forwards to the real entry
11 // on a MIPS HW platform.
13 #ifndef V8_MIPS_SIMULATOR_MIPS_H_
14 #define V8_MIPS_SIMULATOR_MIPS_H_
16 #include "src/allocation.h"
17 #include "src/mips64/constants-mips64.h"
19 #if !defined(USE_SIMULATOR)
20 // Running without a simulator on a native mips platform.
25 // When running without a simulator we call the entry directly.
26 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
27 entry(p0, p1, p2, p3, p4)
30 // Call the generated regexp code directly. The code at the entry address
31 // should act as a function matching the type arm_regexp_matcher.
32 // The fifth (or ninth) argument is a dummy that reserves the space used for
33 // the return address added by the ExitFrame in native calls.
35 typedef int (*mips_regexp_matcher)(String* input,
37 const byte* input_start,
38 const byte* input_end,
46 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
47 (FUNCTION_CAST<mips_regexp_matcher>(entry)( \
48 p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8))
52 typedef int (*mips_regexp_matcher)(String* input,
54 const byte* input_start,
55 const byte* input_end,
63 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
64 (FUNCTION_CAST<mips_regexp_matcher>(entry)( \
65 p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8))
67 #endif // MIPS_ABI_N64
70 // The stack limit beyond which we will throw stack overflow errors in
71 // generated code. Because generated code on mips uses the C stack, we
72 // just use the C stack limit.
73 class SimulatorStack : public v8::internal::AllStatic {
75 static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
80 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
81 return try_catch_address;
84 static inline void UnregisterCTryCatch() { }
87 } } // namespace v8::internal
89 // Calculated the stack limit beyond which we will throw stack overflow errors.
90 // This macro must be called from a C++ method. It relies on being able to take
91 // the address of "this" to get a value on the current execution stack and then
92 // calculates the stack limit based on that value.
93 // NOTE: The check for overflow is not safe as there is no guarantee that the
94 // running thread has its stack in all memory up to address 0x00000000.
95 #define GENERATED_CODE_STACK_LIMIT(limit) \
96 (reinterpret_cast<uintptr_t>(this) >= limit ? \
97 reinterpret_cast<uintptr_t>(this) - limit : 0)
99 #else // !defined(USE_SIMULATOR)
100 // Running with a simulator.
102 #include "src/assembler.h"
103 #include "src/hashmap.h"
108 // -----------------------------------------------------------------------------
113 static const int LINE_VALID = 0;
114 static const int LINE_INVALID = 1;
116 static const int kPageShift = 12;
117 static const int kPageSize = 1 << kPageShift;
118 static const int kPageMask = kPageSize - 1;
119 static const int kLineShift = 2; // The cache line is only 4 bytes right now.
120 static const int kLineLength = 1 << kLineShift;
121 static const int kLineMask = kLineLength - 1;
124 memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
127 char* ValidityByte(int offset) {
128 return &validity_map_[offset >> kLineShift];
131 char* CachedData(int offset) {
132 return &data_[offset];
136 char data_[kPageSize]; // The cached data.
137 static const int kValidityMapSize = kPageSize >> kLineShift;
138 char validity_map_[kValidityMapSize]; // One byte per line.
143 friend class MipsDebugger;
145 // Registers are declared in order. See SMRL chapter 2.
151 a0, a1, a2, a3, a4, a5, a6, a7,
153 s0, s1, s2, s3, s4, s5, s6, s7,
163 pc, // pc must be the last register.
169 // Coprocessor registers.
170 // Generated code will always use doubles. So we will only use even registers.
172 f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
173 f12, f13, f14, f15, // f12 and f14 are arguments FPURegisters.
174 f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
175 f26, f27, f28, f29, f30, f31,
179 explicit Simulator(Isolate* isolate);
182 // The currently executing Simulator instance. Potentially there can be one
183 // for each native thread.
184 static Simulator* current(v8::internal::Isolate* isolate);
186 // Accessors for register state. Reading the pc value adheres to the MIPS
187 // architecture specification and is off by a 8 from the currently executing
189 void set_register(int reg, int64_t value);
190 void set_register_word(int reg, int32_t value);
191 void set_dw_register(int dreg, const int* dbl);
192 int64_t get_register(int reg) const;
193 double get_double_from_register_pair(int reg);
194 // Same for FPURegisters.
195 void set_fpu_register(int fpureg, int64_t value);
196 void set_fpu_register_word(int fpureg, int32_t value);
197 void set_fpu_register_hi_word(int fpureg, int32_t value);
198 void set_fpu_register_float(int fpureg, float value);
199 void set_fpu_register_double(int fpureg, double value);
200 int64_t get_fpu_register(int fpureg) const;
201 int32_t get_fpu_register_word(int fpureg) const;
202 int32_t get_fpu_register_signed_word(int fpureg) const;
203 int32_t get_fpu_register_hi_word(int fpureg) const;
204 float get_fpu_register_float(int fpureg) const;
205 double get_fpu_register_double(int fpureg) const;
206 void set_fcsr_bit(uint32_t cc, bool value);
207 bool test_fcsr_bit(uint32_t cc);
208 bool set_fcsr_round_error(double original, double rounded);
209 bool set_fcsr_round64_error(double original, double rounded);
211 // Special case of set_register and get_register to access the raw PC value.
212 void set_pc(int64_t value);
213 int64_t get_pc() const;
216 return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
219 // Accessor to the internal simulator stack area.
220 uintptr_t StackLimit() const;
222 // Executes MIPS instructions until the PC reaches end_sim_pc.
225 // Call on program start.
226 static void Initialize(Isolate* isolate);
228 // V8 generally calls into generated JS code with 5 parameters and into
229 // generated RegExp code with 7 parameters. This is a convenience function,
230 // which sets up the simulator state and grabs the result on return.
231 int64_t Call(byte* entry, int argument_count, ...);
232 // Alternative: call a 2-argument double function.
233 double CallFP(byte* entry, double d0, double d1);
235 // Push an address onto the JS stack.
236 uintptr_t PushAddress(uintptr_t address);
238 // Pop an address from the JS stack.
239 uintptr_t PopAddress();
242 void set_last_debugger_input(char* input);
243 char* last_debugger_input() { return last_debugger_input_; }
246 static void FlushICache(v8::internal::HashMap* i_cache, void* start,
249 // Returns true if pc register contains one of the 'special_values' defined
250 // below (bad_ra, end_sim_pc).
251 bool has_bad_pc() const;
254 enum special_values {
255 // Known bad pc value to ensure that the simulator does not execute
256 // without being properly setup.
258 // A pc value used to signal the simulator to stop execution. Generally
259 // the ra is set to this value on transition from native C code to
260 // simulated execution, so that the simulator can "return" to the native
263 // Unpredictable value.
264 Unpredictable = 0xbadbeaf
267 // Unsupported instructions use Format to print an error and stop execution.
268 void Format(Instruction* instr, const char* format);
270 // Read and write memory.
271 inline uint32_t ReadBU(int64_t addr);
272 inline int32_t ReadB(int64_t addr);
273 inline void WriteB(int64_t addr, uint8_t value);
274 inline void WriteB(int64_t addr, int8_t value);
276 inline uint16_t ReadHU(int64_t addr, Instruction* instr);
277 inline int16_t ReadH(int64_t addr, Instruction* instr);
278 // Note: Overloaded on the sign of the value.
279 inline void WriteH(int64_t addr, uint16_t value, Instruction* instr);
280 inline void WriteH(int64_t addr, int16_t value, Instruction* instr);
282 inline uint32_t ReadWU(int64_t addr, Instruction* instr);
283 inline int32_t ReadW(int64_t addr, Instruction* instr);
284 inline void WriteW(int64_t addr, int32_t value, Instruction* instr);
285 inline int64_t Read2W(int64_t addr, Instruction* instr);
286 inline void Write2W(int64_t addr, int64_t value, Instruction* instr);
288 inline double ReadD(int64_t addr, Instruction* instr);
289 inline void WriteD(int64_t addr, double value, Instruction* instr);
291 // Helper for debugging memory access.
292 inline void DieOrDebug();
294 // Helpers for data value tracing.
300 // DFLOAT - Floats may have printing issues due to paired lwc1's
303 void TraceRegWr(int64_t value);
304 void TraceMemWr(int64_t addr, int64_t value, TraceType t);
305 void TraceMemRd(int64_t addr, int64_t value);
307 // Operations depending on endianness.
308 // Get Double Higher / Lower word.
309 inline int32_t GetDoubleHIW(double* addr);
310 inline int32_t GetDoubleLOW(double* addr);
311 // Set Double Higher / Lower word.
312 inline int32_t SetDoubleHIW(double* addr);
313 inline int32_t SetDoubleLOW(double* addr);
315 // functions called from DecodeTypeRegister
316 void DecodeTypeRegisterCOP1(Instruction* instr, const int32_t& rs_reg,
317 const int64_t& rs, const uint64_t& rs_u,
318 const int32_t& rt_reg, const int64_t& rt,
319 const uint64_t& rt_u, const int32_t& rd_reg,
320 const int32_t& fr_reg, const int32_t& fs_reg,
321 const int32_t& ft_reg, const int32_t& fd_reg,
324 void DecodeTypeRegisterCOP1X(Instruction* instr, const int32_t& fr_reg,
325 const int32_t& fs_reg, const int32_t& ft_reg,
326 const int32_t& fd_reg);
328 void DecodeTypeRegisterSPECIAL(
329 Instruction* instr, const int64_t& rs_reg, const int64_t& rs,
330 const uint64_t& rs_u, const int64_t& rt_reg, const int64_t& rt,
331 const uint64_t& rt_u, const int64_t& rd_reg, const int32_t& fr_reg,
332 const int32_t& fs_reg, const int32_t& ft_reg, const int64_t& fd_reg,
333 int64_t& i64hilo, uint64_t& u64hilo, int64_t& alu_out, bool& do_interrupt,
334 int64_t& current_pc, int64_t& next_pc, int64_t& return_addr_reg,
335 int64_t& i128resultH, int64_t& i128resultL);
337 void DecodeTypeRegisterSPECIAL2(Instruction* instr, const int64_t& rd_reg,
340 void DecodeTypeRegisterSPECIAL3(Instruction* instr, const int64_t& rt_reg,
343 void DecodeTypeRegisterSRsType(Instruction* instr, const int32_t& fs_reg,
344 const int32_t& ft_reg, const int32_t& fd_reg);
346 void DecodeTypeRegisterDRsType(Instruction* instr, const int32_t& fs_reg,
347 const int32_t& ft_reg, const int32_t& fd_reg);
349 void DecodeTypeRegisterWRsType(Instruction* instr, const int32_t& fs_reg,
350 const int32_t& fd_reg, int64_t& alu_out);
352 void DecodeTypeRegisterLRsType(Instruction* instr, const int32_t& fs_reg,
353 const int32_t& fd_reg, const int32_t& ft_reg);
354 // Executing is handled based on the instruction type.
355 void DecodeTypeRegister(Instruction* instr);
357 // Helper function for DecodeTypeRegister.
358 void ConfigureTypeRegister(Instruction* instr,
363 int64_t* return_addr_reg,
366 int64_t* result128L);
368 void DecodeTypeImmediate(Instruction* instr);
369 void DecodeTypeJump(Instruction* instr);
371 // Used for breakpoints and traps.
372 void SoftwareInterrupt(Instruction* instr);
374 // Stop helper functions.
375 bool IsWatchpoint(uint64_t code);
376 void PrintWatchpoint(uint64_t code);
377 void HandleStop(uint64_t code, Instruction* instr);
378 bool IsStopInstruction(Instruction* instr);
379 bool IsEnabledStop(uint64_t code);
380 void EnableStop(uint64_t code);
381 void DisableStop(uint64_t code);
382 void IncreaseStopCounter(uint64_t code);
383 void PrintStopInfo(uint64_t code);
386 // Executes one instruction.
387 void InstructionDecode(Instruction* instr);
388 // Execute one instruction placed in a branch delay slot.
389 void BranchDelayInstructionDecode(Instruction* instr) {
390 if (instr->InstructionBits() == nopInstr) {
391 // Short-cut generic nop instructions. They are always valid and they
392 // never change the simulator state.
396 if (instr->IsForbiddenInBranchDelay()) {
397 V8_Fatal(__FILE__, __LINE__,
398 "Eror:Unexpected %i opcode in a branch delay slot.",
399 instr->OpcodeValue());
401 InstructionDecode(instr);
405 static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
406 static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
408 static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
417 int16_t exceptions[kNumExceptions];
420 void SignalExceptions();
422 // Runtime call support.
423 static void* RedirectExternalReference(void* external_function,
424 ExternalReference::Type type);
426 // Handle arguments and return value for runtime FP functions.
427 void GetFpArgs(double* x, double* y, int32_t* z);
428 void SetFpResult(const double& result);
430 void CallInternal(byte* entry);
432 // Architecture state.
434 int64_t registers_[kNumSimuRegisters];
435 // Coprocessor Registers.
436 int64_t FPUregisters_[kNumFPURegisters];
437 // FPU control register.
440 // Simulator support.
441 // Allocate 1MB for stack.
447 EmbeddedVector<char, 128> trace_buf_;
450 char* last_debugger_input_;
452 // Icache simulation.
453 v8::internal::HashMap* i_cache_;
455 v8::internal::Isolate* isolate_;
457 // Registered breakpoints.
458 Instruction* break_pc_;
461 // Stop is disabled if bit 31 is set.
462 static const uint32_t kStopDisabledBit = 1 << 31;
464 // A stop is enabled, meaning the simulator will stop when meeting the
465 // instruction, if bit 31 of watched_stops_[code].count is unset.
466 // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
467 // the breakpoint was hit or gone through.
468 struct StopCountAndDesc {
472 StopCountAndDesc watched_stops_[kMaxStopCode + 1];
476 // When running with the simulator transition into simulated execution at this
478 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
479 reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
480 FUNCTION_ADDR(entry), 5, reinterpret_cast<int64_t*>(p0), \
481 reinterpret_cast<int64_t*>(p1), reinterpret_cast<int64_t*>(p2), \
482 reinterpret_cast<int64_t*>(p3), reinterpret_cast<int64_t*>(p4)))
486 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
487 Simulator::current(Isolate::Current())->Call( \
488 entry, 10, p0, p1, p2, p3, p4, p5, p6, p7, NULL, p8)
489 #else // Must be O32 Abi.
490 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
491 Simulator::current(Isolate::Current())->Call( \
492 entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
493 #endif // MIPS_ABI_N64
496 // The simulator has its own stack. Thus it has a different stack limit from
497 // the C-based native code. Setting the c_limit to indicate a very small
498 // stack cause stack overflow errors, since the simulator ignores the input.
499 // This is unlikely to be an issue in practice, though it might cause testing
500 // trouble down the line.
501 class SimulatorStack : public v8::internal::AllStatic {
503 static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
505 return Simulator::current(isolate)->StackLimit();
508 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
509 Simulator* sim = Simulator::current(Isolate::Current());
510 return sim->PushAddress(try_catch_address);
513 static inline void UnregisterCTryCatch() {
514 Simulator::current(Isolate::Current())->PopAddress();
518 } } // namespace v8::internal
520 #endif // !defined(USE_SIMULATOR)
521 #endif // V8_MIPS_SIMULATOR_MIPS_H_