1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #if V8_TARGET_ARCH_MIPS64
7 #include "src/codegen.h"
8 #include "src/debug/debug.h"
9 #include "src/deoptimizer.h"
10 #include "src/full-codegen/full-codegen.h"
11 #include "src/runtime/runtime.h"
17 #define __ ACCESS_MASM(masm)
20 void Builtins::Generate_Adaptor(MacroAssembler* masm,
22 BuiltinExtraArguments extra_args) {
23 // ----------- S t a t e -------------
24 // -- a0 : number of arguments excluding receiver
25 // -- a1 : called function (only guaranteed when
26 // -- extra_args requires it)
28 // -- sp[0] : last argument
30 // -- sp[8 * (argc - 1)] : first argument
31 // -- sp[8 * agrc] : receiver
32 // -----------------------------------
34 // Insert extra arguments.
35 int num_extra_args = 0;
36 if (extra_args == NEEDS_CALLED_FUNCTION) {
40 DCHECK(extra_args == NO_EXTRA_ARGUMENTS);
43 // JumpToExternalReference expects a0 to contain the number of arguments
44 // including the receiver and the extra arguments.
45 __ Daddu(a0, a0, num_extra_args + 1);
46 __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
50 // Load the built-in InternalArray function from the current context.
51 static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
53 // Load the native context.
56 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
58 FieldMemOperand(result, GlobalObject::kNativeContextOffset));
59 // Load the InternalArray function from the native context.
63 Context::INTERNAL_ARRAY_FUNCTION_INDEX)));
67 // Load the built-in Array function from the current context.
68 static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
69 // Load the native context.
72 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
74 FieldMemOperand(result, GlobalObject::kNativeContextOffset));
75 // Load the Array function from the native context.
78 Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
82 void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
83 // ----------- S t a t e -------------
84 // -- a0 : number of arguments
85 // -- ra : return address
86 // -- sp[...]: constructor arguments
87 // -----------------------------------
88 Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
90 // Get the InternalArray function.
91 GenerateLoadInternalArrayFunction(masm, a1);
93 if (FLAG_debug_code) {
94 // Initial map for the builtin InternalArray functions should be maps.
95 __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
97 __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction,
98 a4, Operand(zero_reg));
99 __ GetObjectType(a2, a3, a4);
100 __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction,
101 a4, Operand(MAP_TYPE));
104 // Run the native code for the InternalArray function called as a normal
107 InternalArrayConstructorStub stub(masm->isolate());
108 __ TailCallStub(&stub);
112 void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
113 // ----------- S t a t e -------------
114 // -- a0 : number of arguments
115 // -- ra : return address
116 // -- sp[...]: constructor arguments
117 // -----------------------------------
118 Label generic_array_code;
120 // Get the Array function.
121 GenerateLoadArrayFunction(masm, a1);
123 if (FLAG_debug_code) {
124 // Initial map for the builtin Array functions should be maps.
125 __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
127 __ Assert(ne, kUnexpectedInitialMapForArrayFunction1,
128 a4, Operand(zero_reg));
129 __ GetObjectType(a2, a3, a4);
130 __ Assert(eq, kUnexpectedInitialMapForArrayFunction2,
131 a4, Operand(MAP_TYPE));
134 // Run the native code for the Array function called as a normal function.
137 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
138 ArrayConstructorStub stub(masm->isolate());
139 __ TailCallStub(&stub);
143 void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
144 // ----------- S t a t e -------------
145 // -- a0 : number of arguments
146 // -- a1 : constructor function
147 // -- ra : return address
148 // -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
149 // -- sp[argc * 8] : receiver
150 // -----------------------------------
151 Counters* counters = masm->isolate()->counters();
152 __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3);
154 Register function = a1;
155 if (FLAG_debug_code) {
156 __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2);
157 __ Assert(eq, kUnexpectedStringFunction, function, Operand(a2));
160 // Load the first arguments in a0 and get rid of the rest.
162 __ Branch(&no_arguments, eq, a0, Operand(zero_reg));
163 // First args = sp[(argc - 1) * 8].
164 __ Dsubu(a0, a0, Operand(1));
165 __ dsll(a0, a0, kPointerSizeLog2);
166 __ Daddu(sp, a0, sp);
167 __ ld(a0, MemOperand(sp));
168 // sp now point to args[0], drop args[0] + receiver.
171 Register argument = a2;
172 Label not_cached, argument_is_string;
173 __ LookupNumberStringCache(a0, // Input.
179 __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, a4);
180 __ bind(&argument_is_string);
182 // ----------- S t a t e -------------
183 // -- a2 : argument converted to string
184 // -- a1 : constructor function
185 // -- ra : return address
186 // -----------------------------------
189 __ Allocate(JSValue::kSize,
196 // Initialising the String Object.
198 __ LoadGlobalFunctionInitialMap(function, map, a4);
199 if (FLAG_debug_code) {
200 __ lbu(a4, FieldMemOperand(map, Map::kInstanceSizeOffset));
201 __ Assert(eq, kUnexpectedStringWrapperInstanceSize,
202 a4, Operand(JSValue::kSize >> kPointerSizeLog2));
203 __ lbu(a4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
204 __ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper,
205 a4, Operand(zero_reg));
207 __ sd(map, FieldMemOperand(v0, HeapObject::kMapOffset));
209 __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
210 __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
211 __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
213 __ sd(argument, FieldMemOperand(v0, JSValue::kValueOffset));
215 // Ensure the object is fully initialized.
216 STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
220 // The argument was not found in the number to string cache. Check
221 // if it's a string already before calling the conversion builtin.
222 Label convert_argument;
223 __ bind(¬_cached);
224 __ JumpIfSmi(a0, &convert_argument);
227 __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
228 __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
229 STATIC_ASSERT(kNotStringTag != 0);
230 __ And(a4, a3, Operand(kIsNotStringMask));
231 __ Branch(&convert_argument, ne, a4, Operand(zero_reg));
232 __ mov(argument, a0);
233 __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, a4);
234 __ Branch(&argument_is_string);
236 // Invoke the conversion builtin and put the result into a2.
237 __ bind(&convert_argument);
238 __ push(function); // Preserve the function.
239 __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, a4);
241 FrameScope scope(masm, StackFrame::INTERNAL);
242 ToStringStub stub(masm->isolate());
246 __ mov(argument, v0);
247 __ Branch(&argument_is_string);
249 // Load the empty string into a2, remove the receiver from the
250 // stack, and jump back to the case where the argument is a string.
251 __ bind(&no_arguments);
252 __ LoadRoot(argument, Heap::kempty_stringRootIndex);
254 __ Branch(&argument_is_string);
256 // At this point the argument is already a string. Call runtime to
257 // create a string wrapper.
258 __ bind(&gc_required);
259 __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, a4);
261 FrameScope scope(masm, StackFrame::INTERNAL);
263 __ CallRuntime(Runtime::kNewStringWrapper, 1);
269 static void CallRuntimePassFunction(
270 MacroAssembler* masm, Runtime::FunctionId function_id) {
271 FrameScope scope(masm, StackFrame::INTERNAL);
272 // Push a copy of the function onto the stack.
273 // Push call kind information and function as parameter to the runtime call.
276 __ CallRuntime(function_id, 1);
277 // Restore call kind information and receiver.
282 static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
283 __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
284 __ ld(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset));
285 __ Daddu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
290 static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
291 __ Daddu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
296 void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
297 // Checking whether the queued function is ready for install is optional,
298 // since we come across interrupts and stack checks elsewhere. However,
299 // not checking may delay installing ready functions, and always checking
300 // would be quite expensive. A good compromise is to first check against
301 // stack limit as a cue for an interrupt signal.
303 __ LoadRoot(a4, Heap::kStackLimitRootIndex);
304 __ Branch(&ok, hs, sp, Operand(a4));
306 CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
307 GenerateTailCallToReturnedCode(masm);
310 GenerateTailCallToSharedCode(masm);
314 static void Generate_JSConstructStubHelper(MacroAssembler* masm,
315 bool is_api_function,
316 bool create_memento) {
317 // ----------- S t a t e -------------
318 // -- a0 : number of arguments
319 // -- a1 : constructor function
320 // -- a2 : allocation site or undefined
321 // -- a3 : original constructor
322 // -- ra : return address
323 // -- sp[...]: constructor arguments
324 // -----------------------------------
326 // Should never create mementos for api functions.
327 DCHECK(!is_api_function || !create_memento);
329 Isolate* isolate = masm->isolate();
331 // Enter a construct frame.
333 FrameScope scope(masm, StackFrame::CONSTRUCT);
335 // Preserve the incoming parameters on the stack.
336 __ AssertUndefinedOrAllocationSite(a2, t0);
338 __ Push(a2, a0, a1, a3);
340 // Try to allocate the object without transitioning into C code. If any of
341 // the preconditions is not met, the code bails out to the runtime call.
342 Label rt_call, allocated;
343 if (FLAG_inline_new) {
344 ExternalReference debug_step_in_fp =
345 ExternalReference::debug_step_in_fp_address(isolate);
346 __ li(a2, Operand(debug_step_in_fp));
347 __ ld(a2, MemOperand(a2));
348 __ Branch(&rt_call, ne, a2, Operand(zero_reg));
350 // Fall back to runtime if the original constructor and function differ.
351 __ Branch(&rt_call, ne, a1, Operand(a3));
353 // Load the initial map and verify that it is in fact a map.
354 // a1: constructor function
355 __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
356 __ JumpIfSmi(a2, &rt_call);
357 __ GetObjectType(a2, t1, t0);
358 __ Branch(&rt_call, ne, t0, Operand(MAP_TYPE));
360 // Check that the constructor is not constructing a JSFunction (see
361 // comments in Runtime_NewObject in runtime.cc). In which case the
362 // initial map's instance type would be JS_FUNCTION_TYPE.
363 // a1: constructor function
365 __ lbu(t1, FieldMemOperand(a2, Map::kInstanceTypeOffset));
366 __ Branch(&rt_call, eq, t1, Operand(JS_FUNCTION_TYPE));
368 if (!is_api_function) {
370 MemOperand bit_field3 = FieldMemOperand(a2, Map::kBitField3Offset);
371 // Check if slack tracking is enabled.
372 __ lwu(a4, bit_field3);
373 __ DecodeField<Map::Counter>(a6, a4);
374 __ Branch(&allocate, lt, a6,
375 Operand(static_cast<int64_t>(Map::kSlackTrackingCounterEnd)));
376 // Decrease generous allocation count.
377 __ Dsubu(a4, a4, Operand(1 << Map::Counter::kShift));
378 __ Branch(USE_DELAY_SLOT, &allocate, ne, a6,
379 Operand(Map::kSlackTrackingCounterEnd));
380 __ sw(a4, bit_field3); // In delay slot.
382 __ Push(a1, a2, a1); // a1 = Constructor.
383 __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
386 __ li(a6, Operand(Map::kSlackTrackingCounterEnd - 1));
391 // Now allocate the JSObject on the heap.
392 // a1: constructor function
394 Label rt_call_reload_new_target;
395 __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
396 if (create_memento) {
397 __ Daddu(a3, a3, Operand(AllocationMemento::kSize / kPointerSize));
400 __ Allocate(a3, t0, t1, t2, &rt_call_reload_new_target, SIZE_IN_WORDS);
402 // Allocated the JSObject, now initialize the fields. Map is set to
403 // initial map and properties and elements are set to empty fixed array.
404 // a1: constructor function
406 // a3: object size (including memento if create_memento)
407 // t0: JSObject (not tagged)
408 __ LoadRoot(t2, Heap::kEmptyFixedArrayRootIndex);
410 __ sd(a2, MemOperand(t1, JSObject::kMapOffset));
411 __ sd(t2, MemOperand(t1, JSObject::kPropertiesOffset));
412 __ sd(t2, MemOperand(t1, JSObject::kElementsOffset));
413 __ Daddu(t1, t1, Operand(3*kPointerSize));
414 DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset);
415 DCHECK_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
416 DCHECK_EQ(2 * kPointerSize, JSObject::kElementsOffset);
418 // Fill all the in-object properties with appropriate filler.
419 // a1: constructor function
421 // a3: object size (in words, including memento if create_memento)
422 // t0: JSObject (not tagged)
423 // t1: First in-object property of JSObject (not tagged)
424 // a6: slack tracking counter (non-API function case)
425 DCHECK_EQ(3 * kPointerSize, JSObject::kHeaderSize);
427 // Use t3 to hold undefined, which is used in several places below.
428 __ LoadRoot(t3, Heap::kUndefinedValueRootIndex);
430 if (!is_api_function) {
431 Label no_inobject_slack_tracking;
433 // Check if slack tracking is enabled.
434 __ Branch(&no_inobject_slack_tracking, lt, a6,
435 Operand(static_cast<int64_t>(Map::kSlackTrackingCounterEnd)));
437 // Allocate object with a slack.
441 a2, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset));
442 __ lbu(a2, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
443 __ dsubu(a0, a0, a2);
444 __ dsll(at, a0, kPointerSizeLog2);
445 __ daddu(a0, t1, at);
446 // a0: offset of first field after pre-allocated fields
447 if (FLAG_debug_code) {
448 __ dsll(at, a3, kPointerSizeLog2);
449 __ Daddu(t2, t0, Operand(at)); // End of object.
450 __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields,
453 __ InitializeFieldsWithFiller(t1, a0, t3);
454 // To allow for truncation.
455 __ LoadRoot(t3, Heap::kOnePointerFillerMapRootIndex);
456 // Fill the remaining fields with one pointer filler map.
458 __ bind(&no_inobject_slack_tracking);
461 if (create_memento) {
462 __ Dsubu(a0, a3, Operand(AllocationMemento::kSize / kPointerSize));
463 __ dsll(a0, a0, kPointerSizeLog2);
464 __ Daddu(a0, t0, Operand(a0)); // End of object.
465 __ InitializeFieldsWithFiller(t1, a0, t3);
467 // Fill in memento fields.
468 // t1: points to the allocated but uninitialized memento.
469 __ LoadRoot(t3, Heap::kAllocationMementoMapRootIndex);
470 DCHECK_EQ(0 * kPointerSize, AllocationMemento::kMapOffset);
471 __ sd(t3, MemOperand(t1));
472 __ Daddu(t1, t1, kPointerSize);
473 // Load the AllocationSite.
474 __ ld(t3, MemOperand(sp, 3 * kPointerSize));
475 __ AssertUndefinedOrAllocationSite(t3, a0);
476 DCHECK_EQ(1 * kPointerSize, AllocationMemento::kAllocationSiteOffset);
477 __ sd(t3, MemOperand(t1));
478 __ Daddu(t1, t1, kPointerSize);
480 __ dsll(at, a3, kPointerSizeLog2);
481 __ Daddu(a0, t0, Operand(at)); // End of object.
482 __ InitializeFieldsWithFiller(t1, a0, t3);
485 // Add the object tag to make the JSObject real, so that we can continue
486 // and jump into the continuation code at any time from now on.
487 __ Daddu(t0, t0, Operand(kHeapObjectTag));
489 // Continue with JSObject being successfully allocated.
493 // Reload the original constructor and fall-through.
494 __ bind(&rt_call_reload_new_target);
495 __ ld(a3, MemOperand(sp, 0 * kPointerSize));
498 // Allocate the new receiver object using the runtime call.
499 // a1: constructor function
500 // a3: original constructor
502 if (create_memento) {
503 // Get the cell or allocation site.
504 __ ld(a2, MemOperand(sp, 3 * kPointerSize));
505 __ push(a2); // argument 1: allocation site
508 __ Push(a1, a3); // arguments 2-3 / 1-2
509 if (create_memento) {
510 __ CallRuntime(Runtime::kNewObjectWithAllocationSite, 3);
512 __ CallRuntime(Runtime::kNewObject, 2);
516 // Runtime_NewObjectWithAllocationSite increments allocation count.
517 // Skip the increment.
518 Label count_incremented;
519 if (create_memento) {
520 __ jmp(&count_incremented);
523 // Receiver for constructor call allocated.
527 if (create_memento) {
528 __ ld(a2, MemOperand(sp, 3 * kPointerSize));
529 __ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
530 __ Branch(&count_incremented, eq, a2, Operand(t1));
531 // a2 is an AllocationSite. We are creating a memento from it, so we
532 // need to increment the memento create count.
533 __ ld(a3, FieldMemOperand(a2,
534 AllocationSite::kPretenureCreateCountOffset));
535 __ Daddu(a3, a3, Operand(Smi::FromInt(1)));
536 __ sd(a3, FieldMemOperand(a2,
537 AllocationSite::kPretenureCreateCountOffset));
538 __ bind(&count_incremented);
541 // Restore the parameters.
542 __ Pop(a3); // new.target
545 __ ld(a0, MemOperand(sp));
550 // Set up pointer to last argument.
551 __ Daddu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
553 // Copy arguments and receiver to the expression stack.
554 // a0: number of arguments
555 // a1: constructor function
556 // a2: address of last argument (caller sp)
557 // a3: number of arguments (smi-tagged)
561 // sp[3]: number of arguments (smi-tagged)
566 __ dsll(a4, a3, kPointerSizeLog2);
567 __ Daddu(a4, a2, Operand(a4));
568 __ ld(a5, MemOperand(a4));
571 __ Daddu(a3, a3, Operand(-1));
572 __ Branch(&loop, greater_equal, a3, Operand(zero_reg));
574 // Call the function.
575 // a0: number of arguments
576 // a1: constructor function
577 if (is_api_function) {
578 __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
580 masm->isolate()->builtins()->HandleApiCallConstruct();
581 __ Call(code, RelocInfo::CODE_TARGET);
583 ParameterCount actual(a0);
584 __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
587 // Store offset of return address for deoptimizer.
588 if (!is_api_function) {
589 masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
592 // Restore context from the frame.
593 __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
595 // If the result is an object (in the ECMA sense), we should get rid
596 // of the receiver and use the result; see ECMA-262 section 13.2.2-7
598 Label use_receiver, exit;
600 // If the result is a smi, it is *not* an object in the ECMA sense.
602 // sp[0]: receiver (newly allocated object)
604 // sp[2]: number of arguments (smi-tagged)
605 __ JumpIfSmi(v0, &use_receiver);
607 // If the type of the result (stored in its map) is less than
608 // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
609 __ GetObjectType(v0, a1, a3);
610 __ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
612 // Throw away the result of the constructor invocation and use the
613 // on-stack receiver as the result.
614 __ bind(&use_receiver);
615 __ ld(v0, MemOperand(sp));
617 // Remove receiver from the stack, remove caller arguments, and
621 // sp[0]: receiver (newly allocated object)
622 // sp[1]: new.target (original constructor)
623 // sp[2]: number of arguments (smi-tagged)
624 __ ld(a1, MemOperand(sp, 2 * kPointerSize));
626 // Leave construct frame.
629 __ SmiScale(a4, a1, kPointerSizeLog2);
630 __ Daddu(sp, sp, a4);
631 __ Daddu(sp, sp, kPointerSize);
632 __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
637 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
638 Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new);
642 void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
643 Generate_JSConstructStubHelper(masm, true, false);
647 void Builtins::Generate_JSConstructStubForDerived(MacroAssembler* masm) {
648 // ----------- S t a t e -------------
649 // -- a0 : number of arguments
650 // -- a1 : constructor function
651 // -- a2 : allocation site or undefined
652 // -- a3 : original constructor
653 // -- ra : return address
654 // -- sp[...]: constructor arguments
655 // -----------------------------------
658 FrameScope frame_scope(masm, StackFrame::CONSTRUCT);
660 __ AssertUndefinedOrAllocationSite(a2, t0);
665 __ push(a4); // Smi-tagged arguments count.
670 // receiver is the hole.
671 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
674 // Set up pointer to last argument.
675 __ Daddu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
677 // Copy arguments and receiver to the expression stack.
678 // a0: number of arguments
679 // a1: constructor function
680 // a2: address of last argument (caller sp)
681 // a4: number of arguments (smi-tagged)
684 // sp[2]: number of arguments (smi-tagged)
689 __ dsll(at, a4, kPointerSizeLog2);
690 __ Daddu(at, a2, Operand(at));
691 __ ld(at, MemOperand(at));
694 __ Daddu(a4, a4, Operand(-1));
695 __ Branch(&loop, ge, a4, Operand(zero_reg));
699 ExternalReference debug_step_in_fp =
700 ExternalReference::debug_step_in_fp_address(masm->isolate());
701 __ li(a2, Operand(debug_step_in_fp));
702 __ ld(a2, MemOperand(a2));
703 __ Branch(&skip_step_in, eq, a2, Operand(zero_reg));
706 __ CallRuntime(Runtime::kHandleStepInForDerivedConstructors, 1);
709 __ bind(&skip_step_in);
712 // Call the function.
713 // a0: number of arguments
714 // a1: constructor function
715 ParameterCount actual(a0);
716 __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
718 // Restore context from the frame.
721 // sp[1]: number of arguments (smi-tagged)
722 __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
723 __ ld(a1, MemOperand(sp, kPointerSize));
725 // Leave construct frame.
728 __ SmiScale(at, a1, kPointerSizeLog2);
729 __ Daddu(sp, sp, Operand(at));
730 __ Daddu(sp, sp, Operand(kPointerSize));
735 enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt };
738 // Clobbers a2; preserves all other registers.
739 static void Generate_CheckStackOverflow(MacroAssembler* masm,
740 const int calleeOffset, Register argc,
741 IsTagged argc_is_tagged) {
742 // Check the stack for overflow. We are not trying to catch
743 // interruptions (e.g. debug break and preemption) here, so the "real stack
744 // limit" is checked.
746 __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
747 // Make a2 the space we have left. The stack might already be overflowed
748 // here which will cause r2 to become negative.
749 __ dsubu(a2, sp, a2);
750 // Check if the arguments will overflow the stack.
751 if (argc_is_tagged == kArgcIsSmiTagged) {
752 __ SmiScale(a7, v0, kPointerSizeLog2);
754 DCHECK(argc_is_tagged == kArgcIsUntaggedInt);
755 __ dsll(a7, argc, kPointerSizeLog2);
757 __ Branch(&okay, gt, a2, Operand(a7)); // Signed comparison.
759 // Out of stack space.
760 __ ld(a1, MemOperand(fp, calleeOffset));
761 if (argc_is_tagged == kArgcIsUntaggedInt) {
765 __ CallRuntime(Runtime::kThrowStackOverflow, 0);
771 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
773 // Called from JSEntryStub::GenerateBody
775 // ----------- S t a t e -------------
778 // -- a2: receiver_pointer
781 // -----------------------------------
782 ProfileEntryHookStub::MaybeCallEntryHook(masm);
783 // Clear the context before we push it when entering the JS frame.
784 __ mov(cp, zero_reg);
786 // Enter an internal frame.
788 FrameScope scope(masm, StackFrame::INTERNAL);
790 // Set up the context from the function argument.
791 __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
793 // Push the function and the receiver onto the stack.
796 // Check if we have enough stack space to push all arguments.
797 // The function is the first thing that was pushed above after entering
798 // the internal frame.
799 const int kFunctionOffset =
800 InternalFrameConstants::kCodeOffset - kPointerSize;
802 Generate_CheckStackOverflow(masm, kFunctionOffset, a3, kArgcIsUntaggedInt);
804 // Copy arguments to the stack in a loop.
806 // s0: argv, i.e. points to first arg
808 __ dsll(a4, a3, kPointerSizeLog2);
809 __ daddu(a6, s0, a4);
811 __ nop(); // Branch delay slot nop.
812 // a6 points past last arg.
814 __ ld(a4, MemOperand(s0)); // Read next parameter.
815 __ daddiu(s0, s0, kPointerSize);
816 __ ld(a4, MemOperand(a4)); // Dereference handle.
817 __ push(a4); // Push parameter.
819 __ Branch(&loop, ne, s0, Operand(a6));
821 // Initialize all JavaScript callee-saved registers, since they will be seen
822 // by the garbage collector as part of handlers.
823 __ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
829 // s6 holds the root address. Do not clobber.
830 // s7 is cp. Do not init.
832 // Invoke the code and pass argc as a0.
835 // No type feedback cell is available
836 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
837 CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
840 ParameterCount actual(a0);
841 __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
844 // Leave internal frame.
850 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
851 Generate_JSEntryTrampolineHelper(masm, false);
855 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
856 Generate_JSEntryTrampolineHelper(masm, true);
860 // Generate code for entering a JS function with the interpreter.
861 // On entry to the function the receiver and arguments have been pushed on the
862 // stack left to right. The actual argument count matches the formal parameter
863 // count expected by the function.
865 // The live registers are:
866 // o a1: the JS function object being called.
868 // o fp: the caller's frame pointer
869 // o sp: stack pointer
870 // o ra: return address
872 // The function builds a JS frame. Please see JavaScriptFrameConstants in
873 // frames-mips.h for its layout.
874 // TODO(rmcilroy): We will need to include the current bytecode pointer in the
876 void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
877 // Open a frame scope to indicate that there is a frame on the stack. The
878 // MANUAL indicates that the scope shouldn't actually generate code to set up
879 // the frame (that is done below).
880 FrameScope frame_scope(masm, StackFrame::MANUAL);
882 __ Push(ra, fp, cp, a1);
883 __ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
885 // Get the bytecode array from the function object and load the pointer to the
886 // first entry into kInterpreterBytecodeRegister.
887 __ ld(a0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
888 __ ld(kInterpreterBytecodeArrayRegister,
889 FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset));
891 if (FLAG_debug_code) {
892 // Check function data field is actually a BytecodeArray object.
893 __ SmiTst(kInterpreterBytecodeArrayRegister, a4);
894 __ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4,
896 __ GetObjectType(kInterpreterBytecodeArrayRegister, a4, a4);
897 __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4,
898 Operand(BYTECODE_ARRAY_TYPE));
901 // Allocate the local and temporary register file on the stack.
903 // Load frame size (word) from the BytecodeArray object.
904 __ lw(a4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
905 BytecodeArray::kFrameSizeOffset));
907 // Do a stack check to ensure we don't go over the limit.
909 __ Dsubu(a5, sp, Operand(a4));
910 __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
911 __ Branch(&ok, hs, a5, Operand(a2));
912 __ CallRuntime(Runtime::kThrowStackOverflow, 0);
915 // If ok, push undefined as the initial value for all register file entries.
918 __ LoadRoot(a5, Heap::kUndefinedValueRootIndex);
919 __ Branch(&loop_check);
920 __ bind(&loop_header);
921 // TODO(rmcilroy): Consider doing more than one push per loop iteration.
923 // Continue loop if not done.
924 __ bind(&loop_check);
925 __ Dsubu(a4, a4, Operand(kPointerSize));
926 __ Branch(&loop_header, ge, a4, Operand(zero_reg));
929 // TODO(rmcilroy): List of things not currently dealt with here but done in
930 // fullcodegen's prologue:
931 // - Support profiler (specifically profiling_counter).
932 // - Call ProfileEntryHookStub when isolate has a function_entry_hook.
933 // - Allow simulator stop operations if FLAG_stop_at is set.
934 // - Deal with sloppy mode functions which need to replace the
935 // receiver with the global proxy when called as functions (without an
936 // explicit receiver object).
937 // - Code aging of the BytecodeArray object.
938 // - Supporting FLAG_trace.
940 // The following items are also not done here, and will probably be done using
941 // explicit bytecodes instead:
942 // - Allocating a new local context if applicable.
943 // - Setting up a local binding to the this function, which is used in
944 // derived constructors with super calls.
945 // - Setting new.target if required.
946 // - Dealing with REST parameters (only if
947 // https://codereview.chromium.org/1235153006 doesn't land by then).
948 // - Dealing with argument objects.
950 // Perform stack guard check.
953 __ LoadRoot(at, Heap::kStackLimitRootIndex);
954 __ Branch(&ok, hs, sp, Operand(at));
955 __ CallRuntime(Runtime::kStackGuard, 0);
959 // Load bytecode offset and dispatch table into registers.
960 __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
962 kInterpreterRegisterFileRegister, fp,
963 Operand(kPointerSize + StandardFrameConstants::kFixedFrameSizeFromFp));
964 __ li(kInterpreterBytecodeOffsetRegister,
965 Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
966 __ LoadRoot(kInterpreterDispatchTableRegister,
967 Heap::kInterpreterTableRootIndex);
968 __ Daddu(kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister,
969 Operand(FixedArray::kHeaderSize - kHeapObjectTag));
971 // Dispatch to the first bytecode handler for the function.
972 __ Daddu(a0, kInterpreterBytecodeArrayRegister,
973 kInterpreterBytecodeOffsetRegister);
974 __ lbu(a0, MemOperand(a0));
975 __ dsll(at, a0, kPointerSizeLog2);
976 __ Daddu(at, kInterpreterDispatchTableRegister, at);
977 __ ld(at, MemOperand(at));
978 // TODO(rmcilroy): Make dispatch table point to code entrys to avoid untagging
979 // and header removal.
980 __ Daddu(at, at, Operand(Code::kHeaderSize - kHeapObjectTag));
985 void Builtins::Generate_InterpreterExitTrampoline(MacroAssembler* masm) {
986 // TODO(rmcilroy): List of things not currently dealt with here but done in
987 // fullcodegen's EmitReturnSequence.
988 // - Supporting FLAG_trace for Runtime::TraceExit.
989 // - Support profiler (specifically decrementing profiling_counter
990 // appropriately and calling out to HandleInterrupts if necessary).
992 // The return value is in accumulator, which is already in v0.
994 // Leave the frame (also dropping the register file).
995 __ LeaveFrame(StackFrame::JAVA_SCRIPT);
997 // Drop receiver + arguments and return.
998 __ lw(at, FieldMemOperand(kInterpreterBytecodeArrayRegister,
999 BytecodeArray::kParameterSizeOffset));
1000 __ Daddu(sp, sp, at);
1005 void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
1006 CallRuntimePassFunction(masm, Runtime::kCompileLazy);
1007 GenerateTailCallToReturnedCode(masm);
1011 static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) {
1012 FrameScope scope(masm, StackFrame::INTERNAL);
1013 // Push a copy of the function onto the stack.
1014 // Push function as parameter to the runtime call.
1016 // Whether to compile in a background thread.
1018 at, concurrent ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
1021 __ CallRuntime(Runtime::kCompileOptimized, 2);
1022 // Restore receiver.
1027 void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
1028 CallCompileOptimized(masm, false);
1029 GenerateTailCallToReturnedCode(masm);
1033 void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
1034 CallCompileOptimized(masm, true);
1035 GenerateTailCallToReturnedCode(masm);
1039 static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
1040 // For now, we are relying on the fact that make_code_young doesn't do any
1041 // garbage collection which allows us to save/restore the registers without
1042 // worrying about which of them contain pointers. We also don't build an
1043 // internal frame to make the code faster, since we shouldn't have to do stack
1044 // crawls in MakeCodeYoung. This seems a bit fragile.
1046 // Set a0 to point to the head of the PlatformCodeAge sequence.
1048 Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
1050 // The following registers must be saved and restored when calling through to
1052 // a0 - contains return address (beginning of patch sequence)
1054 RegList saved_regs =
1055 (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
1056 FrameScope scope(masm, StackFrame::MANUAL);
1057 __ MultiPush(saved_regs);
1058 __ PrepareCallCFunction(2, 0, a2);
1059 __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
1061 ExternalReference::get_make_code_young_function(masm->isolate()), 2);
1062 __ MultiPop(saved_regs);
1066 #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
1067 void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
1068 MacroAssembler* masm) { \
1069 GenerateMakeCodeYoungAgainCommon(masm); \
1071 void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
1072 MacroAssembler* masm) { \
1073 GenerateMakeCodeYoungAgainCommon(masm); \
1075 CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
1076 #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
1079 void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
1080 // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
1081 // that make_code_young doesn't do any garbage collection which allows us to
1082 // save/restore the registers without worrying about which of them contain
1085 // Set a0 to point to the head of the PlatformCodeAge sequence.
1087 Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
1089 // The following registers must be saved and restored when calling through to
1091 // a0 - contains return address (beginning of patch sequence)
1093 RegList saved_regs =
1094 (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
1095 FrameScope scope(masm, StackFrame::MANUAL);
1096 __ MultiPush(saved_regs);
1097 __ PrepareCallCFunction(2, 0, a2);
1098 __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
1100 ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
1102 __ MultiPop(saved_regs);
1104 // Perform prologue operations usually performed by the young code stub.
1105 __ Push(ra, fp, cp, a1);
1106 __ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
1108 // Jump to point after the code-age stub.
1109 __ Daddu(a0, a0, Operand((kNoCodeAgeSequenceLength)));
1114 void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
1115 GenerateMakeCodeYoungAgainCommon(masm);
1119 void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
1120 Generate_MarkCodeAsExecutedOnce(masm);
1124 static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
1125 SaveFPRegsMode save_doubles) {
1127 FrameScope scope(masm, StackFrame::INTERNAL);
1129 // Preserve registers across notification, this is important for compiled
1130 // stubs that tail call the runtime on deopts passing their parameters in
1132 __ MultiPush(kJSCallerSaved | kCalleeSaved);
1133 // Pass the function and deoptimization type to the runtime system.
1134 __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
1135 __ MultiPop(kJSCallerSaved | kCalleeSaved);
1138 __ Daddu(sp, sp, Operand(kPointerSize)); // Ignore state
1139 __ Jump(ra); // Jump to miss handler
1143 void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
1144 Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
1148 void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
1149 Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
1153 static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
1154 Deoptimizer::BailoutType type) {
1156 FrameScope scope(masm, StackFrame::INTERNAL);
1157 // Pass the function and deoptimization type to the runtime system.
1158 __ li(a0, Operand(Smi::FromInt(static_cast<int>(type))));
1160 __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
1163 // Get the full codegen state from the stack and untag it -> a6.
1164 __ ld(a6, MemOperand(sp, 0 * kPointerSize));
1166 // Switch on the state.
1167 Label with_tos_register, unknown_state;
1168 __ Branch(&with_tos_register,
1169 ne, a6, Operand(FullCodeGenerator::NO_REGISTERS));
1170 __ Ret(USE_DELAY_SLOT);
1171 // Safe to fill delay slot Addu will emit one instruction.
1172 __ Daddu(sp, sp, Operand(1 * kPointerSize)); // Remove state.
1174 __ bind(&with_tos_register);
1175 __ ld(v0, MemOperand(sp, 1 * kPointerSize));
1176 __ Branch(&unknown_state, ne, a6, Operand(FullCodeGenerator::TOS_REG));
1178 __ Ret(USE_DELAY_SLOT);
1179 // Safe to fill delay slot Addu will emit one instruction.
1180 __ Daddu(sp, sp, Operand(2 * kPointerSize)); // Remove state.
1182 __ bind(&unknown_state);
1183 __ stop("no cases left");
1187 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1188 Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
1192 void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
1193 Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
1197 void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
1198 Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
1202 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1203 // Lookup the function in the JavaScript frame.
1204 __ ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1206 FrameScope scope(masm, StackFrame::INTERNAL);
1207 // Pass function as argument.
1209 __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
1212 // If the code object is null, just return to the unoptimized code.
1213 __ Ret(eq, v0, Operand(Smi::FromInt(0)));
1215 // Load deoptimization data from the code object.
1216 // <deopt_data> = <code>[#deoptimization_data_offset]
1217 __ ld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
1219 // Load the OSR entrypoint offset from the deoptimization data.
1220 // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1221 __ ld(a1, MemOperand(a1, FixedArray::OffsetOfElementAt(
1222 DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
1225 // Compute the target address = code_obj + header_size + osr_offset
1226 // <entry_addr> = <code_obj> + #header_size + <osr_offset>
1227 __ daddu(v0, v0, a1);
1228 __ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
1230 // And "return" to the OSR entry point of the function.
1235 void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
1236 // We check the stack limit as indicator that recompilation might be done.
1238 __ LoadRoot(at, Heap::kStackLimitRootIndex);
1239 __ Branch(&ok, hs, sp, Operand(at));
1241 FrameScope scope(masm, StackFrame::INTERNAL);
1242 __ CallRuntime(Runtime::kStackGuard, 0);
1244 __ Jump(masm->isolate()->builtins()->OnStackReplacement(),
1245 RelocInfo::CODE_TARGET);
1253 void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
1254 // 1. Make sure we have at least one argument.
1255 // a0: actual number of arguments
1258 __ Branch(&done, ne, a0, Operand(zero_reg));
1259 __ PushRoot(Heap::kUndefinedValueRootIndex);
1260 __ Daddu(a0, a0, Operand(1));
1264 // 2. Get the function to call (passed as receiver) from the stack.
1265 // a0: actual number of arguments
1266 __ dsll(at, a0, kPointerSizeLog2);
1267 __ daddu(at, sp, at);
1268 __ ld(a1, MemOperand(at));
1270 // 3. Shift arguments and return address one slot down on the stack
1271 // (overwriting the original receiver). Adjust argument count to make
1272 // the original first argument the new receiver.
1273 // a0: actual number of arguments
1277 // Calculate the copy start address (destination). Copy end address is sp.
1278 __ dsll(at, a0, kPointerSizeLog2);
1279 __ daddu(a2, sp, at);
1282 __ ld(at, MemOperand(a2, -kPointerSize));
1283 __ sd(at, MemOperand(a2));
1284 __ Dsubu(a2, a2, Operand(kPointerSize));
1285 __ Branch(&loop, ne, a2, Operand(sp));
1286 // Adjust the actual number of arguments and remove the top element
1287 // (which is a copy of the last argument).
1288 __ Dsubu(a0, a0, Operand(1));
1292 // 4. Call the callable.
1293 __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1297 static void Generate_PushAppliedArguments(MacroAssembler* masm,
1298 const int argumentsOffset,
1299 const int indexOffset,
1300 const int limitOffset) {
1302 Register receiver = LoadDescriptor::ReceiverRegister();
1303 Register key = LoadDescriptor::NameRegister();
1304 Register slot = LoadDescriptor::SlotRegister();
1305 Register vector = LoadWithVectorDescriptor::VectorRegister();
1307 __ ld(key, MemOperand(fp, indexOffset));
1310 // Load the current argument from the arguments array.
1312 __ ld(receiver, MemOperand(fp, argumentsOffset));
1314 // Use inline caching to speed up access to arguments.
1315 Code::Kind kinds[] = {Code::KEYED_LOAD_IC};
1316 FeedbackVectorSpec spec(0, 1, kinds);
1317 Handle<TypeFeedbackVector> feedback_vector =
1318 masm->isolate()->factory()->NewTypeFeedbackVector(&spec);
1319 int index = feedback_vector->GetIndex(FeedbackVectorICSlot(0));
1320 __ li(slot, Operand(Smi::FromInt(index)));
1321 __ li(vector, feedback_vector);
1323 KeyedLoadICStub(masm->isolate(), LoadICState(kNoExtraICState)).GetCode();
1324 __ Call(ic, RelocInfo::CODE_TARGET);
1328 // Use inline caching to access the arguments.
1329 __ ld(key, MemOperand(fp, indexOffset));
1330 __ Daddu(key, key, Operand(Smi::FromInt(1)));
1331 __ sd(key, MemOperand(fp, indexOffset));
1333 // Test if the copy loop has finished copying all the elements from the
1334 // arguments object.
1336 __ ld(a1, MemOperand(fp, limitOffset));
1337 __ Branch(&loop, ne, key, Operand(a1));
1339 // On exit, the pushed arguments count is in a0, untagged
1345 // Used by FunctionApply and ReflectApply
1346 static void Generate_ApplyHelper(MacroAssembler* masm, bool targetIsArgument) {
1347 const int kFormalParameters = targetIsArgument ? 3 : 2;
1348 const int kStackSize = kFormalParameters + 1;
1351 FrameScope frame_scope(masm, StackFrame::INTERNAL);
1352 const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize;
1353 const int kReceiverOffset = kArgumentsOffset + kPointerSize;
1354 const int kFunctionOffset = kReceiverOffset + kPointerSize;
1356 __ ld(a0, MemOperand(fp, kFunctionOffset)); // Get the function.
1357 __ ld(a1, MemOperand(fp, kArgumentsOffset)); // Get the args array.
1360 // Returns (in v0) number of arguments to copy to stack as Smi.
1361 if (targetIsArgument) {
1362 __ InvokeBuiltin(Context::REFLECT_APPLY_PREPARE_BUILTIN_INDEX,
1365 __ InvokeBuiltin(Context::APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION);
1368 // Returns the result in v0.
1369 Generate_CheckStackOverflow(masm, kFunctionOffset, v0, kArgcIsSmiTagged);
1371 // Push current limit and index.
1372 const int kIndexOffset =
1373 StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize);
1374 const int kLimitOffset =
1375 StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize);
1376 __ mov(a1, zero_reg);
1377 __ ld(a2, MemOperand(fp, kReceiverOffset));
1378 __ Push(v0, a1, a2); // limit, initial index and receiver.
1380 // Copy all arguments from the array to the stack.
1381 Generate_PushAppliedArguments(masm, kArgumentsOffset, kIndexOffset,
1384 // Call the callable.
1385 // TODO(bmeurer): This should be a tail call according to ES6.
1386 __ ld(a1, MemOperand(fp, kFunctionOffset));
1387 __ Call(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1389 // Tear down the internal frame and remove function, receiver and args.
1392 __ Ret(USE_DELAY_SLOT);
1393 __ Daddu(sp, sp, Operand(kStackSize * kPointerSize)); // In delay slot.
1397 static void Generate_ConstructHelper(MacroAssembler* masm) {
1398 const int kFormalParameters = 3;
1399 const int kStackSize = kFormalParameters + 1;
1402 FrameScope frame_scope(masm, StackFrame::INTERNAL);
1403 const int kNewTargetOffset = kFPOnStackSize + kPCOnStackSize;
1404 const int kArgumentsOffset = kNewTargetOffset + kPointerSize;
1405 const int kFunctionOffset = kArgumentsOffset + kPointerSize;
1407 // If newTarget is not supplied, set it to constructor
1408 Label validate_arguments;
1409 __ ld(a0, MemOperand(fp, kNewTargetOffset));
1410 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
1411 __ Branch(&validate_arguments, ne, a0, Operand(at));
1412 __ ld(a0, MemOperand(fp, kFunctionOffset));
1413 __ sd(a0, MemOperand(fp, kNewTargetOffset));
1415 // Validate arguments
1416 __ bind(&validate_arguments);
1417 __ ld(a0, MemOperand(fp, kFunctionOffset)); // get the function
1419 __ ld(a0, MemOperand(fp, kArgumentsOffset)); // get the args array
1421 __ ld(a0, MemOperand(fp, kNewTargetOffset)); // get the new.target
1423 // Returns argument count in v0.
1424 __ InvokeBuiltin(Context::REFLECT_CONSTRUCT_PREPARE_BUILTIN_INDEX,
1427 // Returns result in v0.
1428 Generate_CheckStackOverflow(masm, kFunctionOffset, v0, kArgcIsSmiTagged);
1430 // Push current limit and index.
1431 const int kIndexOffset =
1432 StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize);
1433 const int kLimitOffset =
1434 StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize);
1435 __ push(v0); // limit
1436 __ mov(a1, zero_reg); // initial index
1438 // Push the constructor function as callee.
1439 __ ld(a0, MemOperand(fp, kFunctionOffset));
1442 // Copy all arguments from the array to the stack.
1443 Generate_PushAppliedArguments(
1444 masm, kArgumentsOffset, kIndexOffset, kLimitOffset);
1446 // Use undefined feedback vector
1447 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
1448 __ ld(a1, MemOperand(fp, kFunctionOffset));
1449 __ ld(a4, MemOperand(fp, kNewTargetOffset));
1451 // Call the function.
1452 CallConstructStub stub(masm->isolate(), SUPER_CONSTRUCTOR_CALL);
1453 __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
1455 // Leave internal frame.
1458 __ Daddu(sp, sp, Operand(kStackSize * kPointerSize)); // In delay slot.
1462 void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1463 Generate_ApplyHelper(masm, false);
1467 void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
1468 Generate_ApplyHelper(masm, true);
1472 void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
1473 Generate_ConstructHelper(masm);
1477 static void ArgumentAdaptorStackCheck(MacroAssembler* masm,
1478 Label* stack_overflow) {
1479 // ----------- S t a t e -------------
1480 // -- a0 : actual number of arguments
1481 // -- a1 : function (passed through to callee)
1482 // -- a2 : expected number of arguments
1483 // -----------------------------------
1484 // Check the stack for overflow. We are not trying to catch
1485 // interruptions (e.g. debug break and preemption) here, so the "real stack
1486 // limit" is checked.
1487 __ LoadRoot(a5, Heap::kRealStackLimitRootIndex);
1488 // Make a5 the space we have left. The stack might already be overflowed
1489 // here which will cause a5 to become negative.
1490 __ dsubu(a5, sp, a5);
1491 // Check if the arguments will overflow the stack.
1492 __ dsll(at, a2, kPointerSizeLog2);
1493 // Signed comparison.
1494 __ Branch(stack_overflow, le, a5, Operand(at));
1498 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1499 // __ sll(a0, a0, kSmiTagSize);
1500 __ dsll32(a0, a0, 0);
1501 __ li(a4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1502 __ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit());
1504 Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
1508 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1509 // ----------- S t a t e -------------
1510 // -- v0 : result being passed through
1511 // -----------------------------------
1512 // Get the number of arguments passed (as a smi), tear down the frame and
1513 // then tear down the parameters.
1514 __ ld(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
1517 __ MultiPop(fp.bit() | ra.bit());
1518 __ SmiScale(a4, a1, kPointerSizeLog2);
1519 __ Daddu(sp, sp, a4);
1520 // Adjust for the receiver.
1521 __ Daddu(sp, sp, Operand(kPointerSize));
1526 void Builtins::Generate_CallFunction(MacroAssembler* masm) {
1527 // ----------- S t a t e -------------
1528 // -- a0 : the number of arguments (not including the receiver)
1529 // -- a1 : the function to call (checked to be a JSFunction)
1530 // -----------------------------------
1532 Label convert, convert_global_proxy, convert_to_object, done_convert;
1533 __ AssertFunction(a1);
1534 // TODO(bmeurer): Throw a TypeError if function's [[FunctionKind]] internal
1535 // slot is "classConstructor".
1536 // Enter the context of the function; ToObject has to run in the function
1537 // context, and we also need to take the global proxy from the function
1538 // context in case of conversion.
1539 // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
1540 STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset ==
1541 SharedFunctionInfo::kStrictModeByteOffset);
1542 __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
1543 __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1544 // We need to convert the receiver for non-native sloppy mode functions.
1545 __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset));
1546 __ And(at, a3, Operand((1 << SharedFunctionInfo::kNativeBitWithinByte) |
1547 (1 << SharedFunctionInfo::kStrictModeBitWithinByte)));
1548 __ Branch(&done_convert, ne, at, Operand(zero_reg));
1550 __ dsll(at, a0, kPointerSizeLog2);
1551 __ daddu(at, sp, at);
1552 __ ld(a3, MemOperand(at));
1554 // ----------- S t a t e -------------
1555 // -- a0 : the number of arguments (not including the receiver)
1556 // -- a1 : the function to call (checked to be a JSFunction)
1557 // -- a2 : the shared function info.
1558 // -- a3 : the receiver
1559 // -- cp : the function context.
1560 // -----------------------------------
1562 Label convert_receiver;
1563 __ JumpIfSmi(a3, &convert_to_object);
1564 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
1565 __ GetObjectType(a3, a4, a4);
1566 __ Branch(&done_convert, hs, a4, Operand(FIRST_JS_RECEIVER_TYPE));
1567 __ JumpIfRoot(a3, Heap::kUndefinedValueRootIndex, &convert_global_proxy);
1568 __ JumpIfNotRoot(a3, Heap::kNullValueRootIndex, &convert_to_object);
1569 __ bind(&convert_global_proxy);
1571 // Patch receiver to global proxy.
1572 __ LoadGlobalProxy(a3);
1574 __ Branch(&convert_receiver);
1575 __ bind(&convert_to_object);
1577 // Convert receiver using ToObject.
1578 // TODO(bmeurer): Inline the allocation here to avoid building the frame
1579 // in the fast case? (fall back to AllocateInNewSpace?)
1580 FrameScope scope(masm, StackFrame::INTERNAL);
1584 ToObjectStub stub(masm->isolate());
1590 __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1591 __ bind(&convert_receiver);
1592 __ dsll(at, a0, kPointerSizeLog2);
1593 __ daddu(at, sp, at);
1594 __ sd(a3, MemOperand(at));
1596 __ bind(&done_convert);
1598 // ----------- S t a t e -------------
1599 // -- a0 : the number of arguments (not including the receiver)
1600 // -- a1 : the function to call (checked to be a JSFunction)
1601 // -- a2 : the shared function info.
1602 // -- cp : the function context.
1603 // -----------------------------------
1606 FieldMemOperand(a2, SharedFunctionInfo::kFormalParameterCountOffset));
1607 __ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1608 ParameterCount actual(a0);
1609 ParameterCount expected(a2);
1610 __ InvokeCode(a3, expected, actual, JUMP_FUNCTION, NullCallWrapper());
1615 void Builtins::Generate_Call(MacroAssembler* masm) {
1616 // ----------- S t a t e -------------
1617 // -- a0 : the number of arguments (not including the receiver)
1618 // -- a1 : the target to call (can be any Object).
1619 // -----------------------------------
1621 Label non_smi, non_function;
1622 __ JumpIfSmi(a1, &non_function);
1624 __ GetObjectType(a1, a2, a2);
1625 __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET,
1626 eq, a2, Operand(JS_FUNCTION_TYPE));
1627 __ Branch(&non_function, ne, a2, Operand(JS_FUNCTION_PROXY_TYPE));
1629 // 1. Call to function proxy.
1630 // TODO(neis): This doesn't match the ES6 spec for [[Call]] on proxies.
1631 __ ld(a1, FieldMemOperand(a1, JSFunctionProxy::kCallTrapOffset));
1632 __ AssertNotSmi(a1);
1633 __ Branch(&non_smi);
1635 // 2. Call to something else, which might have a [[Call]] internal method (if
1636 // not we raise an exception).
1637 __ bind(&non_function);
1638 // TODO(bmeurer): I wonder why we prefer to have slow API calls? This could
1639 // be awesome instead; i.e. a trivial improvement would be to call into the
1640 // runtime and just deal with the API function there instead of returning a
1641 // delegate from a runtime call that just jumps back to the runtime once
1642 // called. Or, bonus points, call directly into the C API function here, as
1643 // we do in some Crankshaft fast cases.
1644 // Overwrite the original receiver with the (original) target.
1645 __ dsll(at, a0, kPointerSizeLog2);
1646 __ daddu(at, sp, at);
1647 __ sd(a1, MemOperand(at));
1649 // Determine the delegate for the target (if any).
1650 FrameScope scope(masm, StackFrame::INTERNAL);
1653 __ CallRuntime(Runtime::kGetFunctionDelegate, 1);
1658 // The delegate is always a regular function.
1659 __ AssertFunction(a1);
1660 __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET);
1664 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1665 // State setup as expected by MacroAssembler::InvokePrologue.
1666 // ----------- S t a t e -------------
1667 // -- a0: actual arguments count
1668 // -- a1: function (passed through to callee)
1669 // -- a2: expected arguments count
1670 // -----------------------------------
1672 Label stack_overflow;
1673 ArgumentAdaptorStackCheck(masm, &stack_overflow);
1674 Label invoke, dont_adapt_arguments;
1676 Label enough, too_few;
1677 __ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1678 __ Branch(&dont_adapt_arguments, eq,
1679 a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1680 // We use Uless as the number of argument should always be greater than 0.
1681 __ Branch(&too_few, Uless, a0, Operand(a2));
1683 { // Enough parameters: actual >= expected.
1684 // a0: actual number of arguments as a smi
1686 // a2: expected number of arguments
1687 // a3: code entry to call
1689 EnterArgumentsAdaptorFrame(masm);
1691 // Calculate copy start address into a0 and copy end address into a4.
1692 __ SmiScale(a0, a0, kPointerSizeLog2);
1693 __ Daddu(a0, fp, a0);
1694 // Adjust for return address and receiver.
1695 __ Daddu(a0, a0, Operand(2 * kPointerSize));
1696 // Compute copy end address.
1697 __ dsll(a4, a2, kPointerSizeLog2);
1698 __ dsubu(a4, a0, a4);
1700 // Copy the arguments (including the receiver) to the new stack frame.
1701 // a0: copy start address
1703 // a2: expected number of arguments
1704 // a3: code entry to call
1705 // a4: copy end address
1709 __ ld(a5, MemOperand(a0));
1711 __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a4));
1712 __ daddiu(a0, a0, -kPointerSize); // In delay slot.
1717 { // Too few parameters: Actual < expected.
1720 // If the function is strong we need to throw an error.
1721 Label no_strong_error;
1722 __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1723 __ lbu(a5, FieldMemOperand(a4, SharedFunctionInfo::kStrongModeByteOffset));
1724 __ And(a5, a5, Operand(1 << SharedFunctionInfo::kStrongModeBitWithinByte));
1725 __ Branch(&no_strong_error, eq, a5, Operand(zero_reg));
1727 // What we really care about is the required number of arguments.
1728 DCHECK_EQ(kPointerSize, kInt64Size);
1729 __ lw(a5, FieldMemOperand(a4, SharedFunctionInfo::kLengthOffset));
1731 __ Branch(&no_strong_error, ge, a0, Operand(a5));
1734 FrameScope frame(masm, StackFrame::MANUAL);
1735 EnterArgumentsAdaptorFrame(masm);
1736 __ CallRuntime(Runtime::kThrowStrongModeTooFewArguments, 0);
1739 __ bind(&no_strong_error);
1740 EnterArgumentsAdaptorFrame(masm);
1742 // Calculate copy start address into a0 and copy end address into a7.
1743 // a0: actual number of arguments as a smi
1745 // a2: expected number of arguments
1746 // a3: code entry to call
1747 __ SmiScale(a0, a0, kPointerSizeLog2);
1748 __ Daddu(a0, fp, a0);
1749 // Adjust for return address and receiver.
1750 __ Daddu(a0, a0, Operand(2 * kPointerSize));
1751 // Compute copy end address. Also adjust for return address.
1752 __ Daddu(a7, fp, kPointerSize);
1754 // Copy the arguments (including the receiver) to the new stack frame.
1755 // a0: copy start address
1757 // a2: expected number of arguments
1758 // a3: code entry to call
1759 // a7: copy end address
1762 __ ld(a4, MemOperand(a0)); // Adjusted above for return addr and receiver.
1763 __ Dsubu(sp, sp, kPointerSize);
1764 __ Dsubu(a0, a0, kPointerSize);
1765 __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a7));
1766 __ sd(a4, MemOperand(sp)); // In the delay slot.
1768 // Fill the remaining expected arguments with undefined.
1770 // a2: expected number of arguments
1771 // a3: code entry to call
1772 __ LoadRoot(a5, Heap::kUndefinedValueRootIndex);
1773 __ dsll(a6, a2, kPointerSizeLog2);
1774 __ Dsubu(a4, fp, Operand(a6));
1775 // Adjust for frame.
1776 __ Dsubu(a4, a4, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
1781 __ Dsubu(sp, sp, kPointerSize);
1782 __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a4));
1783 __ sd(a5, MemOperand(sp));
1786 // Call the entry point.
1789 // a0 : expected number of arguments
1790 // a1 : function (passed through to callee)
1793 // Store offset of return address for deoptimizer.
1794 masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
1796 // Exit frame and return.
1797 LeaveArgumentsAdaptorFrame(masm);
1801 // -------------------------------------------
1802 // Don't adapt arguments.
1803 // -------------------------------------------
1804 __ bind(&dont_adapt_arguments);
1807 __ bind(&stack_overflow);
1809 FrameScope frame(masm, StackFrame::MANUAL);
1810 EnterArgumentsAdaptorFrame(masm);
1811 __ CallRuntime(Runtime::kThrowStackOverflow, 0);
1819 } // namespace internal
1822 #endif // V8_TARGET_ARCH_MIPS64