1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
9 #if V8_TARGET_ARCH_MIPS64
11 #include "src/codegen.h"
12 #include "src/debug/debug.h"
13 #include "src/deoptimizer.h"
14 #include "src/full-codegen/full-codegen.h"
15 #include "src/runtime/runtime.h"
21 #define __ ACCESS_MASM(masm)
24 void Builtins::Generate_Adaptor(MacroAssembler* masm,
26 BuiltinExtraArguments extra_args) {
27 // ----------- S t a t e -------------
28 // -- a0 : number of arguments excluding receiver
29 // -- a1 : called function (only guaranteed when
30 // -- extra_args requires it)
32 // -- sp[0] : last argument
34 // -- sp[8 * (argc - 1)] : first argument
35 // -- sp[8 * agrc] : receiver
36 // -----------------------------------
38 // Insert extra arguments.
39 int num_extra_args = 0;
40 if (extra_args == NEEDS_CALLED_FUNCTION) {
44 DCHECK(extra_args == NO_EXTRA_ARGUMENTS);
47 // JumpToExternalReference expects a0 to contain the number of arguments
48 // including the receiver and the extra arguments.
49 __ Daddu(a0, a0, num_extra_args + 1);
50 __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
54 // Load the built-in InternalArray function from the current context.
55 static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
57 // Load the native context.
60 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
62 FieldMemOperand(result, GlobalObject::kNativeContextOffset));
63 // Load the InternalArray function from the native context.
67 Context::INTERNAL_ARRAY_FUNCTION_INDEX)));
71 // Load the built-in Array function from the current context.
72 static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
73 // Load the native context.
76 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
78 FieldMemOperand(result, GlobalObject::kNativeContextOffset));
79 // Load the Array function from the native context.
82 Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
86 void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
87 // ----------- S t a t e -------------
88 // -- a0 : number of arguments
89 // -- ra : return address
90 // -- sp[...]: constructor arguments
91 // -----------------------------------
92 Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
94 // Get the InternalArray function.
95 GenerateLoadInternalArrayFunction(masm, a1);
97 if (FLAG_debug_code) {
98 // Initial map for the builtin InternalArray functions should be maps.
99 __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
101 __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction,
102 a4, Operand(zero_reg));
103 __ GetObjectType(a2, a3, a4);
104 __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction,
105 a4, Operand(MAP_TYPE));
108 // Run the native code for the InternalArray function called as a normal
111 InternalArrayConstructorStub stub(masm->isolate());
112 __ TailCallStub(&stub);
116 void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
117 // ----------- S t a t e -------------
118 // -- a0 : number of arguments
119 // -- ra : return address
120 // -- sp[...]: constructor arguments
121 // -----------------------------------
122 Label generic_array_code;
124 // Get the Array function.
125 GenerateLoadArrayFunction(masm, a1);
127 if (FLAG_debug_code) {
128 // Initial map for the builtin Array functions should be maps.
129 __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
131 __ Assert(ne, kUnexpectedInitialMapForArrayFunction1,
132 a4, Operand(zero_reg));
133 __ GetObjectType(a2, a3, a4);
134 __ Assert(eq, kUnexpectedInitialMapForArrayFunction2,
135 a4, Operand(MAP_TYPE));
138 // Run the native code for the Array function called as a normal function.
141 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
142 ArrayConstructorStub stub(masm->isolate());
143 __ TailCallStub(&stub);
147 void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
148 // ----------- S t a t e -------------
149 // -- a0 : number of arguments
150 // -- a1 : constructor function
151 // -- ra : return address
152 // -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
153 // -- sp[argc * 8] : receiver
154 // -----------------------------------
155 Counters* counters = masm->isolate()->counters();
156 __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3);
158 Register function = a1;
159 if (FLAG_debug_code) {
160 __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2);
161 __ Assert(eq, kUnexpectedStringFunction, function, Operand(a2));
164 // Load the first arguments in a0 and get rid of the rest.
166 __ Branch(&no_arguments, eq, a0, Operand(zero_reg));
167 // First args = sp[(argc - 1) * 8].
168 __ Dsubu(a0, a0, Operand(1));
169 __ dsll(a0, a0, kPointerSizeLog2);
170 __ Daddu(sp, a0, sp);
171 __ ld(a0, MemOperand(sp));
172 // sp now point to args[0], drop args[0] + receiver.
175 Register argument = a2;
176 Label not_cached, argument_is_string;
177 __ LookupNumberStringCache(a0, // Input.
183 __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, a4);
184 __ bind(&argument_is_string);
186 // ----------- S t a t e -------------
187 // -- a2 : argument converted to string
188 // -- a1 : constructor function
189 // -- ra : return address
190 // -----------------------------------
193 __ Allocate(JSValue::kSize,
200 // Initialising the String Object.
202 __ LoadGlobalFunctionInitialMap(function, map, a4);
203 if (FLAG_debug_code) {
204 __ lbu(a4, FieldMemOperand(map, Map::kInstanceSizeOffset));
205 __ Assert(eq, kUnexpectedStringWrapperInstanceSize,
206 a4, Operand(JSValue::kSize >> kPointerSizeLog2));
207 __ lbu(a4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
208 __ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper,
209 a4, Operand(zero_reg));
211 __ sd(map, FieldMemOperand(v0, HeapObject::kMapOffset));
213 __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
214 __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
215 __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
217 __ sd(argument, FieldMemOperand(v0, JSValue::kValueOffset));
219 // Ensure the object is fully initialized.
220 STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
224 // The argument was not found in the number to string cache. Check
225 // if it's a string already before calling the conversion builtin.
226 Label convert_argument;
227 __ bind(¬_cached);
228 __ JumpIfSmi(a0, &convert_argument);
231 __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
232 __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
233 STATIC_ASSERT(kNotStringTag != 0);
234 __ And(a4, a3, Operand(kIsNotStringMask));
235 __ Branch(&convert_argument, ne, a4, Operand(zero_reg));
236 __ mov(argument, a0);
237 __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, a4);
238 __ Branch(&argument_is_string);
240 // Invoke the conversion builtin and put the result into a2.
241 __ bind(&convert_argument);
242 __ push(function); // Preserve the function.
243 __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, a4);
245 FrameScope scope(masm, StackFrame::INTERNAL);
247 __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
250 __ mov(argument, v0);
251 __ Branch(&argument_is_string);
253 // Load the empty string into a2, remove the receiver from the
254 // stack, and jump back to the case where the argument is a string.
255 __ bind(&no_arguments);
256 __ LoadRoot(argument, Heap::kempty_stringRootIndex);
258 __ Branch(&argument_is_string);
260 // At this point the argument is already a string. Call runtime to
261 // create a string wrapper.
262 __ bind(&gc_required);
263 __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, a4);
265 FrameScope scope(masm, StackFrame::INTERNAL);
267 __ CallRuntime(Runtime::kNewStringWrapper, 1);
273 static void CallRuntimePassFunction(
274 MacroAssembler* masm, Runtime::FunctionId function_id) {
275 FrameScope scope(masm, StackFrame::INTERNAL);
276 // Push a copy of the function onto the stack.
277 // Push call kind information and function as parameter to the runtime call.
280 __ CallRuntime(function_id, 1);
281 // Restore call kind information and receiver.
286 static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
287 __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
288 __ ld(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset));
289 __ Daddu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
294 static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
295 __ Daddu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
300 void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
301 // Checking whether the queued function is ready for install is optional,
302 // since we come across interrupts and stack checks elsewhere. However,
303 // not checking may delay installing ready functions, and always checking
304 // would be quite expensive. A good compromise is to first check against
305 // stack limit as a cue for an interrupt signal.
307 __ LoadRoot(a4, Heap::kStackLimitRootIndex);
308 __ Branch(&ok, hs, sp, Operand(a4));
310 CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
311 GenerateTailCallToReturnedCode(masm);
314 GenerateTailCallToSharedCode(masm);
318 static void Generate_JSConstructStubHelper(MacroAssembler* masm,
319 bool is_api_function,
320 bool create_memento) {
321 // ----------- S t a t e -------------
322 // -- a0 : number of arguments
323 // -- a1 : constructor function
324 // -- a2 : allocation site or undefined
325 // -- a3 : original constructor
326 // -- ra : return address
327 // -- sp[...]: constructor arguments
328 // -----------------------------------
330 // Should never create mementos for api functions.
331 DCHECK(!is_api_function || !create_memento);
333 Isolate* isolate = masm->isolate();
335 // Enter a construct frame.
337 FrameScope scope(masm, StackFrame::CONSTRUCT);
339 // Preserve the incoming parameters on the stack.
340 __ AssertUndefinedOrAllocationSite(a2, t0);
342 __ Push(a2, a0, a1, a3);
344 // Try to allocate the object without transitioning into C code. If any of
345 // the preconditions is not met, the code bails out to the runtime call.
346 Label rt_call, allocated;
347 if (FLAG_inline_new) {
348 ExternalReference debug_step_in_fp =
349 ExternalReference::debug_step_in_fp_address(isolate);
350 __ li(a2, Operand(debug_step_in_fp));
351 __ ld(a2, MemOperand(a2));
352 __ Branch(&rt_call, ne, a2, Operand(zero_reg));
354 // Fall back to runtime if the original constructor and function differ.
355 __ Branch(&rt_call, ne, a1, Operand(a3));
357 // Load the initial map and verify that it is in fact a map.
358 // a1: constructor function
359 __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
360 __ JumpIfSmi(a2, &rt_call);
361 __ GetObjectType(a2, t1, t0);
362 __ Branch(&rt_call, ne, t0, Operand(MAP_TYPE));
364 // Check that the constructor is not constructing a JSFunction (see
365 // comments in Runtime_NewObject in runtime.cc). In which case the
366 // initial map's instance type would be JS_FUNCTION_TYPE.
367 // a1: constructor function
369 __ lbu(t1, FieldMemOperand(a2, Map::kInstanceTypeOffset));
370 __ Branch(&rt_call, eq, t1, Operand(JS_FUNCTION_TYPE));
372 if (!is_api_function) {
374 MemOperand bit_field3 = FieldMemOperand(a2, Map::kBitField3Offset);
375 // Check if slack tracking is enabled.
376 __ lwu(a4, bit_field3);
377 __ DecodeField<Map::Counter>(a6, a4);
378 __ Branch(&allocate, lt, a6,
379 Operand(static_cast<int64_t>(Map::kSlackTrackingCounterEnd)));
380 // Decrease generous allocation count.
381 __ Dsubu(a4, a4, Operand(1 << Map::Counter::kShift));
382 __ Branch(USE_DELAY_SLOT, &allocate, ne, a6,
383 Operand(Map::kSlackTrackingCounterEnd));
384 __ sw(a4, bit_field3); // In delay slot.
386 __ Push(a1, a2, a1); // a1 = Constructor.
387 __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
390 __ li(a6, Operand(Map::kSlackTrackingCounterEnd - 1));
395 // Now allocate the JSObject on the heap.
396 // a1: constructor function
398 Label rt_call_reload_new_target;
399 __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
400 if (create_memento) {
401 __ Daddu(a3, a3, Operand(AllocationMemento::kSize / kPointerSize));
404 __ Allocate(a3, t0, t1, t2, &rt_call_reload_new_target, SIZE_IN_WORDS);
406 // Allocated the JSObject, now initialize the fields. Map is set to
407 // initial map and properties and elements are set to empty fixed array.
408 // a1: constructor function
410 // a3: object size (including memento if create_memento)
411 // t0: JSObject (not tagged)
412 __ LoadRoot(t2, Heap::kEmptyFixedArrayRootIndex);
414 __ sd(a2, MemOperand(t1, JSObject::kMapOffset));
415 __ sd(t2, MemOperand(t1, JSObject::kPropertiesOffset));
416 __ sd(t2, MemOperand(t1, JSObject::kElementsOffset));
417 __ Daddu(t1, t1, Operand(3*kPointerSize));
418 DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset);
419 DCHECK_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
420 DCHECK_EQ(2 * kPointerSize, JSObject::kElementsOffset);
422 // Fill all the in-object properties with appropriate filler.
423 // a1: constructor function
425 // a3: object size (in words, including memento if create_memento)
426 // t0: JSObject (not tagged)
427 // t1: First in-object property of JSObject (not tagged)
428 // a6: slack tracking counter (non-API function case)
429 DCHECK_EQ(3 * kPointerSize, JSObject::kHeaderSize);
431 // Use t3 to hold undefined, which is used in several places below.
432 __ LoadRoot(t3, Heap::kUndefinedValueRootIndex);
434 if (!is_api_function) {
435 Label no_inobject_slack_tracking;
437 // Check if slack tracking is enabled.
438 __ Branch(&no_inobject_slack_tracking, lt, a6,
439 Operand(static_cast<int64_t>(Map::kSlackTrackingCounterEnd)));
441 // Allocate object with a slack.
445 a2, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset));
446 __ lbu(a2, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
447 __ dsubu(a0, a0, a2);
448 __ dsll(at, a0, kPointerSizeLog2);
449 __ daddu(a0, t1, at);
450 // a0: offset of first field after pre-allocated fields
451 if (FLAG_debug_code) {
452 __ dsll(at, a3, kPointerSizeLog2);
453 __ Daddu(t2, t0, Operand(at)); // End of object.
454 __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields,
457 __ InitializeFieldsWithFiller(t1, a0, t3);
458 // To allow for truncation.
459 __ LoadRoot(t3, Heap::kOnePointerFillerMapRootIndex);
460 // Fill the remaining fields with one pointer filler map.
462 __ bind(&no_inobject_slack_tracking);
465 if (create_memento) {
466 __ Dsubu(a0, a3, Operand(AllocationMemento::kSize / kPointerSize));
467 __ dsll(a0, a0, kPointerSizeLog2);
468 __ Daddu(a0, t0, Operand(a0)); // End of object.
469 __ InitializeFieldsWithFiller(t1, a0, t3);
471 // Fill in memento fields.
472 // t1: points to the allocated but uninitialized memento.
473 __ LoadRoot(t3, Heap::kAllocationMementoMapRootIndex);
474 DCHECK_EQ(0 * kPointerSize, AllocationMemento::kMapOffset);
475 __ sd(t3, MemOperand(t1));
476 __ Daddu(t1, t1, kPointerSize);
477 // Load the AllocationSite.
478 __ ld(t3, MemOperand(sp, 3 * kPointerSize));
479 __ AssertUndefinedOrAllocationSite(t3, a0);
480 DCHECK_EQ(1 * kPointerSize, AllocationMemento::kAllocationSiteOffset);
481 __ sd(t3, MemOperand(t1));
482 __ Daddu(t1, t1, kPointerSize);
484 __ dsll(at, a3, kPointerSizeLog2);
485 __ Daddu(a0, t0, Operand(at)); // End of object.
486 __ InitializeFieldsWithFiller(t1, a0, t3);
489 // Add the object tag to make the JSObject real, so that we can continue
490 // and jump into the continuation code at any time from now on.
491 __ Daddu(t0, t0, Operand(kHeapObjectTag));
493 // Continue with JSObject being successfully allocated.
497 // Reload the original constructor and fall-through.
498 __ bind(&rt_call_reload_new_target);
499 __ ld(a3, MemOperand(sp, 0 * kPointerSize));
502 // Allocate the new receiver object using the runtime call.
503 // a1: constructor function
504 // a3: original constructor
506 if (create_memento) {
507 // Get the cell or allocation site.
508 __ ld(a2, MemOperand(sp, 3 * kPointerSize));
509 __ push(a2); // argument 1: allocation site
512 __ Push(a1, a3); // arguments 2-3 / 1-2
513 if (create_memento) {
514 __ CallRuntime(Runtime::kNewObjectWithAllocationSite, 3);
516 __ CallRuntime(Runtime::kNewObject, 2);
520 // Runtime_NewObjectWithAllocationSite increments allocation count.
521 // Skip the increment.
522 Label count_incremented;
523 if (create_memento) {
524 __ jmp(&count_incremented);
527 // Receiver for constructor call allocated.
531 if (create_memento) {
532 __ ld(a2, MemOperand(sp, 3 * kPointerSize));
533 __ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
534 __ Branch(&count_incremented, eq, a2, Operand(t1));
535 // a2 is an AllocationSite. We are creating a memento from it, so we
536 // need to increment the memento create count.
537 __ ld(a3, FieldMemOperand(a2,
538 AllocationSite::kPretenureCreateCountOffset));
539 __ Daddu(a3, a3, Operand(Smi::FromInt(1)));
540 __ sd(a3, FieldMemOperand(a2,
541 AllocationSite::kPretenureCreateCountOffset));
542 __ bind(&count_incremented);
545 // Restore the parameters.
546 __ Pop(a3); // new.target
549 __ ld(a0, MemOperand(sp));
554 // Set up pointer to last argument.
555 __ Daddu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
557 // Copy arguments and receiver to the expression stack.
558 // a0: number of arguments
559 // a1: constructor function
560 // a2: address of last argument (caller sp)
561 // a3: number of arguments (smi-tagged)
565 // sp[3]: number of arguments (smi-tagged)
570 __ dsll(a4, a3, kPointerSizeLog2);
571 __ Daddu(a4, a2, Operand(a4));
572 __ ld(a5, MemOperand(a4));
575 __ Daddu(a3, a3, Operand(-1));
576 __ Branch(&loop, greater_equal, a3, Operand(zero_reg));
578 // Call the function.
579 // a0: number of arguments
580 // a1: constructor function
581 if (is_api_function) {
582 __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
584 masm->isolate()->builtins()->HandleApiCallConstruct();
585 __ Call(code, RelocInfo::CODE_TARGET);
587 ParameterCount actual(a0);
588 __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
591 // Store offset of return address for deoptimizer.
592 if (!is_api_function) {
593 masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
596 // Restore context from the frame.
597 __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
599 // If the result is an object (in the ECMA sense), we should get rid
600 // of the receiver and use the result; see ECMA-262 section 13.2.2-7
602 Label use_receiver, exit;
604 // If the result is a smi, it is *not* an object in the ECMA sense.
606 // sp[0]: receiver (newly allocated object)
608 // sp[2]: number of arguments (smi-tagged)
609 __ JumpIfSmi(v0, &use_receiver);
611 // If the type of the result (stored in its map) is less than
612 // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
613 __ GetObjectType(v0, a1, a3);
614 __ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
616 // Throw away the result of the constructor invocation and use the
617 // on-stack receiver as the result.
618 __ bind(&use_receiver);
619 __ ld(v0, MemOperand(sp));
621 // Remove receiver from the stack, remove caller arguments, and
625 // sp[0]: receiver (newly allocated object)
626 // sp[1]: new.target (original constructor)
627 // sp[2]: number of arguments (smi-tagged)
628 __ ld(a1, MemOperand(sp, 2 * kPointerSize));
630 // Leave construct frame.
633 __ SmiScale(a4, a1, kPointerSizeLog2);
634 __ Daddu(sp, sp, a4);
635 __ Daddu(sp, sp, kPointerSize);
636 __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
641 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
642 Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new);
646 void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
647 Generate_JSConstructStubHelper(masm, true, false);
651 void Builtins::Generate_JSConstructStubForDerived(MacroAssembler* masm) {
652 // ----------- S t a t e -------------
653 // -- a0 : number of arguments
654 // -- a1 : constructor function
655 // -- a2 : allocation site or undefined
656 // -- a3 : original constructor
657 // -- ra : return address
658 // -- sp[...]: constructor arguments
659 // -----------------------------------
662 FrameScope frame_scope(masm, StackFrame::CONSTRUCT);
664 __ AssertUndefinedOrAllocationSite(a2, t0);
669 __ push(a4); // Smi-tagged arguments count.
674 // receiver is the hole.
675 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
678 // Set up pointer to last argument.
679 __ Daddu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
681 // Copy arguments and receiver to the expression stack.
682 // a0: number of arguments
683 // a1: constructor function
684 // a2: address of last argument (caller sp)
685 // a4: number of arguments (smi-tagged)
688 // sp[2]: number of arguments (smi-tagged)
693 __ dsll(at, a4, kPointerSizeLog2);
694 __ Daddu(at, a2, Operand(at));
695 __ ld(at, MemOperand(at));
698 __ Daddu(a4, a4, Operand(-1));
699 __ Branch(&loop, ge, a4, Operand(zero_reg));
703 ExternalReference debug_step_in_fp =
704 ExternalReference::debug_step_in_fp_address(masm->isolate());
705 __ li(a2, Operand(debug_step_in_fp));
706 __ ld(a2, MemOperand(a2));
707 __ Branch(&skip_step_in, eq, a2, Operand(zero_reg));
710 __ CallRuntime(Runtime::kHandleStepInForDerivedConstructors, 1);
713 __ bind(&skip_step_in);
716 // Call the function.
717 // a0: number of arguments
718 // a1: constructor function
719 ParameterCount actual(a0);
720 __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
722 // Restore context from the frame.
725 // sp[1]: number of arguments (smi-tagged)
726 __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
727 __ ld(a1, MemOperand(sp, kPointerSize));
729 // Leave construct frame.
732 __ SmiScale(at, a1, kPointerSizeLog2);
733 __ Daddu(sp, sp, Operand(at));
734 __ Daddu(sp, sp, Operand(kPointerSize));
739 enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt };
742 // Clobbers a2; preserves all other registers.
743 static void Generate_CheckStackOverflow(MacroAssembler* masm,
744 const int calleeOffset, Register argc,
745 IsTagged argc_is_tagged) {
746 // Check the stack for overflow. We are not trying to catch
747 // interruptions (e.g. debug break and preemption) here, so the "real stack
748 // limit" is checked.
750 __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
751 // Make a2 the space we have left. The stack might already be overflowed
752 // here which will cause r2 to become negative.
753 __ dsubu(a2, sp, a2);
754 // Check if the arguments will overflow the stack.
755 if (argc_is_tagged == kArgcIsSmiTagged) {
756 __ SmiScale(a7, v0, kPointerSizeLog2);
758 DCHECK(argc_is_tagged == kArgcIsUntaggedInt);
759 __ dsll(a7, argc, kPointerSizeLog2);
761 __ Branch(&okay, gt, a2, Operand(a7)); // Signed comparison.
763 // Out of stack space.
764 __ ld(a1, MemOperand(fp, calleeOffset));
765 if (argc_is_tagged == kArgcIsUntaggedInt) {
769 __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
775 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
777 // Called from JSEntryStub::GenerateBody
779 // ----------- S t a t e -------------
782 // -- a2: receiver_pointer
785 // -----------------------------------
786 ProfileEntryHookStub::MaybeCallEntryHook(masm);
787 // Clear the context before we push it when entering the JS frame.
788 __ mov(cp, zero_reg);
790 // Enter an internal frame.
792 FrameScope scope(masm, StackFrame::INTERNAL);
794 // Set up the context from the function argument.
795 __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
797 // Push the function and the receiver onto the stack.
800 // Check if we have enough stack space to push all arguments.
801 // The function is the first thing that was pushed above after entering
802 // the internal frame.
803 const int kFunctionOffset =
804 InternalFrameConstants::kCodeOffset - kPointerSize;
806 Generate_CheckStackOverflow(masm, kFunctionOffset, a3, kArgcIsUntaggedInt);
808 // Copy arguments to the stack in a loop.
810 // s0: argv, i.e. points to first arg
812 __ dsll(a4, a3, kPointerSizeLog2);
813 __ daddu(a6, s0, a4);
815 __ nop(); // Branch delay slot nop.
816 // a6 points past last arg.
818 __ ld(a4, MemOperand(s0)); // Read next parameter.
819 __ daddiu(s0, s0, kPointerSize);
820 __ ld(a4, MemOperand(a4)); // Dereference handle.
821 __ push(a4); // Push parameter.
823 __ Branch(&loop, ne, s0, Operand(a6));
825 // Initialize all JavaScript callee-saved registers, since they will be seen
826 // by the garbage collector as part of handlers.
827 __ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
833 // s6 holds the root address. Do not clobber.
834 // s7 is cp. Do not init.
836 // Invoke the code and pass argc as a0.
839 // No type feedback cell is available
840 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
841 CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
844 ParameterCount actual(a0);
845 __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
848 // Leave internal frame.
854 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
855 Generate_JSEntryTrampolineHelper(masm, false);
859 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
860 Generate_JSEntryTrampolineHelper(masm, true);
864 // Generate code for entering a JS function with the interpreter.
865 // On entry to the function the receiver and arguments have been pushed on the
866 // stack left to right. The actual argument count matches the formal parameter
867 // count expected by the function.
869 // The live registers are:
870 // o a1: the JS function object being called.
872 // o fp: the caller's frame pointer
873 // o sp: stack pointer
874 // o ra: return address
876 // The function builds a JS frame. Please see JavaScriptFrameConstants in
877 // frames-mips.h for its layout.
878 // TODO(rmcilroy): We will need to include the current bytecode pointer in the
880 void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
881 // Open a frame scope to indicate that there is a frame on the stack. The
882 // MANUAL indicates that the scope shouldn't actually generate code to set up
883 // the frame (that is done below).
884 FrameScope frame_scope(masm, StackFrame::MANUAL);
886 __ Push(ra, fp, cp, a1);
887 __ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
889 // Get the bytecode array from the function object and load the pointer to the
890 // first entry into kInterpreterBytecodeRegister.
891 __ ld(a0, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
892 __ ld(kInterpreterBytecodeArrayRegister,
893 FieldMemOperand(a0, SharedFunctionInfo::kFunctionDataOffset));
895 if (FLAG_debug_code) {
896 // Check function data field is actually a BytecodeArray object.
897 __ SmiTst(kInterpreterBytecodeArrayRegister, a4);
898 __ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4,
900 __ GetObjectType(kInterpreterBytecodeArrayRegister, a4, a4);
901 __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry, a4,
902 Operand(BYTECODE_ARRAY_TYPE));
905 // Allocate the local and temporary register file on the stack.
907 // Load frame size from the BytecodeArray object.
908 __ ld(a4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
909 BytecodeArray::kFrameSizeOffset));
911 // Do a stack check to ensure we don't go over the limit.
913 __ Dsubu(a5, sp, Operand(a4));
914 __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
915 __ Branch(&ok, hs, a5, Operand(a2));
916 __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
919 // If ok, push undefined as the initial value for all register file entries.
920 // Note: there should always be at least one stack slot for the return
921 // register in the register file.
923 __ LoadRoot(a5, Heap::kUndefinedValueRootIndex);
924 __ bind(&loop_header);
925 // TODO(rmcilroy): Consider doing more than one push per loop iteration.
927 // Continue loop if not done.
928 __ Dsubu(a4, a4, Operand(kPointerSize));
929 __ Branch(&loop_header, ge, a4, Operand(zero_reg));
932 // TODO(rmcilroy): List of things not currently dealt with here but done in
933 // fullcodegen's prologue:
934 // - Support profiler (specifically profiling_counter).
935 // - Call ProfileEntryHookStub when isolate has a function_entry_hook.
936 // - Allow simulator stop operations if FLAG_stop_at is set.
937 // - Deal with sloppy mode functions which need to replace the
938 // receiver with the global proxy when called as functions (without an
939 // explicit receiver object).
940 // - Code aging of the BytecodeArray object.
941 // - Supporting FLAG_trace.
943 // The following items are also not done here, and will probably be done using
944 // explicit bytecodes instead:
945 // - Allocating a new local context if applicable.
946 // - Setting up a local binding to the this function, which is used in
947 // derived constructors with super calls.
948 // - Setting new.target if required.
949 // - Dealing with REST parameters (only if
950 // https://codereview.chromium.org/1235153006 doesn't land by then).
951 // - Dealing with argument objects.
953 // Perform stack guard check.
956 __ LoadRoot(at, Heap::kStackLimitRootIndex);
957 __ Branch(&ok, hs, sp, Operand(at));
958 __ CallRuntime(Runtime::kStackGuard, 0);
962 // Load bytecode offset and dispatch table into registers.
963 __ li(kInterpreterBytecodeOffsetRegister,
964 Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
965 __ LoadRoot(kInterpreterDispatchTableRegister,
966 Heap::kInterpreterTableRootIndex);
967 __ Daddu(kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister,
968 Operand(FixedArray::kHeaderSize - kHeapObjectTag));
970 // Dispatch to the first bytecode handler for the function.
971 __ Daddu(a0, kInterpreterBytecodeArrayRegister,
972 kInterpreterBytecodeOffsetRegister);
973 __ lbu(a0, MemOperand(a0));
974 __ dsll(at, a0, kPointerSizeLog2);
975 __ Daddu(at, kInterpreterDispatchTableRegister, at);
976 __ ld(at, MemOperand(at));
977 // TODO(rmcilroy): Make dispatch table point to code entrys to avoid untagging
978 // and header removal.
979 __ Daddu(at, at, Operand(Code::kHeaderSize - kHeapObjectTag));
984 void Builtins::Generate_InterpreterExitTrampoline(MacroAssembler* masm) {
985 // TODO(rmcilroy): List of things not currently dealt with here but done in
986 // fullcodegen's EmitReturnSequence.
987 // - Supporting FLAG_trace for Runtime::TraceExit.
988 // - Support profiler (specifically decrementing profiling_counter
989 // appropriately and calling out to HandleInterrupts if necessary).
991 // Load return value into v0.
992 __ ld(v0, MemOperand(fp, -kPointerSize -
993 StandardFrameConstants::kFixedFrameSizeFromFp));
994 // Leave the frame (also dropping the register file).
995 __ LeaveFrame(StackFrame::JAVA_SCRIPT);
996 // Drop receiver + arguments.
997 __ Drop(1); // TODO(rmcilroy): Get number of arguments from BytecodeArray.
1002 void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
1003 CallRuntimePassFunction(masm, Runtime::kCompileLazy);
1004 GenerateTailCallToReturnedCode(masm);
1008 static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) {
1009 FrameScope scope(masm, StackFrame::INTERNAL);
1010 // Push a copy of the function onto the stack.
1011 // Push function as parameter to the runtime call.
1013 // Whether to compile in a background thread.
1015 at, concurrent ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
1018 __ CallRuntime(Runtime::kCompileOptimized, 2);
1019 // Restore receiver.
1024 void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
1025 CallCompileOptimized(masm, false);
1026 GenerateTailCallToReturnedCode(masm);
1030 void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
1031 CallCompileOptimized(masm, true);
1032 GenerateTailCallToReturnedCode(masm);
1036 static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
1037 // For now, we are relying on the fact that make_code_young doesn't do any
1038 // garbage collection which allows us to save/restore the registers without
1039 // worrying about which of them contain pointers. We also don't build an
1040 // internal frame to make the code faster, since we shouldn't have to do stack
1041 // crawls in MakeCodeYoung. This seems a bit fragile.
1043 // Set a0 to point to the head of the PlatformCodeAge sequence.
1045 Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
1047 // The following registers must be saved and restored when calling through to
1049 // a0 - contains return address (beginning of patch sequence)
1051 RegList saved_regs =
1052 (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
1053 FrameScope scope(masm, StackFrame::MANUAL);
1054 __ MultiPush(saved_regs);
1055 __ PrepareCallCFunction(2, 0, a2);
1056 __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
1058 ExternalReference::get_make_code_young_function(masm->isolate()), 2);
1059 __ MultiPop(saved_regs);
1063 #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
1064 void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
1065 MacroAssembler* masm) { \
1066 GenerateMakeCodeYoungAgainCommon(masm); \
1068 void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
1069 MacroAssembler* masm) { \
1070 GenerateMakeCodeYoungAgainCommon(masm); \
1072 CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
1073 #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
1076 void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
1077 // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
1078 // that make_code_young doesn't do any garbage collection which allows us to
1079 // save/restore the registers without worrying about which of them contain
1082 // Set a0 to point to the head of the PlatformCodeAge sequence.
1084 Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
1086 // The following registers must be saved and restored when calling through to
1088 // a0 - contains return address (beginning of patch sequence)
1090 RegList saved_regs =
1091 (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
1092 FrameScope scope(masm, StackFrame::MANUAL);
1093 __ MultiPush(saved_regs);
1094 __ PrepareCallCFunction(2, 0, a2);
1095 __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
1097 ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
1099 __ MultiPop(saved_regs);
1101 // Perform prologue operations usually performed by the young code stub.
1102 __ Push(ra, fp, cp, a1);
1103 __ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
1105 // Jump to point after the code-age stub.
1106 __ Daddu(a0, a0, Operand((kNoCodeAgeSequenceLength)));
1111 void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
1112 GenerateMakeCodeYoungAgainCommon(masm);
1116 void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
1117 Generate_MarkCodeAsExecutedOnce(masm);
1121 static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
1122 SaveFPRegsMode save_doubles) {
1124 FrameScope scope(masm, StackFrame::INTERNAL);
1126 // Preserve registers across notification, this is important for compiled
1127 // stubs that tail call the runtime on deopts passing their parameters in
1129 __ MultiPush(kJSCallerSaved | kCalleeSaved);
1130 // Pass the function and deoptimization type to the runtime system.
1131 __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
1132 __ MultiPop(kJSCallerSaved | kCalleeSaved);
1135 __ Daddu(sp, sp, Operand(kPointerSize)); // Ignore state
1136 __ Jump(ra); // Jump to miss handler
1140 void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
1141 Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
1145 void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
1146 Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
1150 static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
1151 Deoptimizer::BailoutType type) {
1153 FrameScope scope(masm, StackFrame::INTERNAL);
1154 // Pass the function and deoptimization type to the runtime system.
1155 __ li(a0, Operand(Smi::FromInt(static_cast<int>(type))));
1157 __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
1160 // Get the full codegen state from the stack and untag it -> a6.
1161 __ ld(a6, MemOperand(sp, 0 * kPointerSize));
1163 // Switch on the state.
1164 Label with_tos_register, unknown_state;
1165 __ Branch(&with_tos_register,
1166 ne, a6, Operand(FullCodeGenerator::NO_REGISTERS));
1167 __ Ret(USE_DELAY_SLOT);
1168 // Safe to fill delay slot Addu will emit one instruction.
1169 __ Daddu(sp, sp, Operand(1 * kPointerSize)); // Remove state.
1171 __ bind(&with_tos_register);
1172 __ ld(v0, MemOperand(sp, 1 * kPointerSize));
1173 __ Branch(&unknown_state, ne, a6, Operand(FullCodeGenerator::TOS_REG));
1175 __ Ret(USE_DELAY_SLOT);
1176 // Safe to fill delay slot Addu will emit one instruction.
1177 __ Daddu(sp, sp, Operand(2 * kPointerSize)); // Remove state.
1179 __ bind(&unknown_state);
1180 __ stop("no cases left");
1184 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1185 Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
1189 void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
1190 Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
1194 void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
1195 Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
1199 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1200 // Lookup the function in the JavaScript frame.
1201 __ ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1203 FrameScope scope(masm, StackFrame::INTERNAL);
1204 // Pass function as argument.
1206 __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
1209 // If the code object is null, just return to the unoptimized code.
1210 __ Ret(eq, v0, Operand(Smi::FromInt(0)));
1212 // Load deoptimization data from the code object.
1213 // <deopt_data> = <code>[#deoptimization_data_offset]
1214 __ ld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
1216 // Load the OSR entrypoint offset from the deoptimization data.
1217 // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1218 __ ld(a1, MemOperand(a1, FixedArray::OffsetOfElementAt(
1219 DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
1222 // Compute the target address = code_obj + header_size + osr_offset
1223 // <entry_addr> = <code_obj> + #header_size + <osr_offset>
1224 __ daddu(v0, v0, a1);
1225 __ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
1227 // And "return" to the OSR entry point of the function.
1232 void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
1233 // We check the stack limit as indicator that recompilation might be done.
1235 __ LoadRoot(at, Heap::kStackLimitRootIndex);
1236 __ Branch(&ok, hs, sp, Operand(at));
1238 FrameScope scope(masm, StackFrame::INTERNAL);
1239 __ CallRuntime(Runtime::kStackGuard, 0);
1241 __ Jump(masm->isolate()->builtins()->OnStackReplacement(),
1242 RelocInfo::CODE_TARGET);
1249 void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
1250 // 1. Make sure we have at least one argument.
1251 // a0: actual number of arguments
1253 __ Branch(&done, ne, a0, Operand(zero_reg));
1254 __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
1256 __ Daddu(a0, a0, Operand(1));
1260 // 2. Get the function to call (passed as receiver) from the stack, check
1261 // if it is a function.
1262 // a0: actual number of arguments
1263 Label slow, non_function;
1264 __ dsll(at, a0, kPointerSizeLog2);
1265 __ daddu(at, sp, at);
1266 __ ld(a1, MemOperand(at));
1267 __ JumpIfSmi(a1, &non_function);
1268 __ GetObjectType(a1, a2, a2);
1269 __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE));
1271 // 3a. Patch the first argument if necessary when calling a function.
1272 // a0: actual number of arguments
1274 Label shift_arguments;
1275 __ li(a4, Operand(0, RelocInfo::NONE32)); // Indicate regular JS_FUNCTION.
1276 { Label convert_to_object, use_global_proxy, patch_receiver;
1277 // Change context eagerly in case we need the global receiver.
1278 __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
1280 // Do not transform the receiver for strict mode functions.
1281 __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1282 __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kStrictModeByteOffset));
1283 __ And(a7, a3, Operand(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
1284 __ Branch(&shift_arguments, ne, a7, Operand(zero_reg));
1286 // Do not transform the receiver for native (Compilerhints already in a3).
1287 __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset));
1288 __ And(a7, a3, Operand(1 << SharedFunctionInfo::kNativeBitWithinByte));
1289 __ Branch(&shift_arguments, ne, a7, Operand(zero_reg));
1291 // Compute the receiver in sloppy mode.
1292 // Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2).
1293 __ dsll(at, a0, kPointerSizeLog2);
1294 __ daddu(a2, sp, at);
1295 __ ld(a2, MemOperand(a2, -kPointerSize));
1296 // a0: actual number of arguments
1298 // a2: first argument
1299 __ JumpIfSmi(a2, &convert_to_object, a6);
1301 __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
1302 __ Branch(&use_global_proxy, eq, a2, Operand(a3));
1303 __ LoadRoot(a3, Heap::kNullValueRootIndex);
1304 __ Branch(&use_global_proxy, eq, a2, Operand(a3));
1306 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1307 __ GetObjectType(a2, a3, a3);
1308 __ Branch(&shift_arguments, ge, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
1310 __ bind(&convert_to_object);
1311 // Enter an internal frame in order to preserve argument count.
1313 FrameScope scope(masm, StackFrame::INTERNAL);
1317 ToObjectStub stub(masm->isolate());
1323 // Leave internal frame.
1325 // Restore the function to a1, and the flag to a4.
1326 __ dsll(at, a0, kPointerSizeLog2);
1327 __ daddu(at, sp, at);
1328 __ ld(a1, MemOperand(at));
1329 __ Branch(USE_DELAY_SLOT, &patch_receiver);
1330 __ li(a4, Operand(0, RelocInfo::NONE32));
1332 __ bind(&use_global_proxy);
1333 __ ld(a2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
1334 __ ld(a2, FieldMemOperand(a2, GlobalObject::kGlobalProxyOffset));
1336 __ bind(&patch_receiver);
1337 __ dsll(at, a0, kPointerSizeLog2);
1338 __ daddu(a3, sp, at);
1339 __ sd(a2, MemOperand(a3, -kPointerSize));
1341 __ Branch(&shift_arguments);
1344 // 3b. Check for function proxy.
1346 __ li(a4, Operand(1, RelocInfo::NONE32)); // Indicate function proxy.
1347 __ Branch(&shift_arguments, eq, a2, Operand(JS_FUNCTION_PROXY_TYPE));
1349 __ bind(&non_function);
1350 __ li(a4, Operand(2, RelocInfo::NONE32)); // Indicate non-function.
1352 // 3c. Patch the first argument when calling a non-function. The
1353 // CALL_NON_FUNCTION builtin expects the non-function callee as
1354 // receiver, so overwrite the first argument which will ultimately
1355 // become the receiver.
1356 // a0: actual number of arguments
1358 // a4: call type (0: JS function, 1: function proxy, 2: non-function)
1359 __ dsll(at, a0, kPointerSizeLog2);
1360 __ daddu(a2, sp, at);
1361 __ sd(a1, MemOperand(a2, -kPointerSize));
1363 // 4. Shift arguments and return address one slot down on the stack
1364 // (overwriting the original receiver). Adjust argument count to make
1365 // the original first argument the new receiver.
1366 // a0: actual number of arguments
1368 // a4: call type (0: JS function, 1: function proxy, 2: non-function)
1369 __ bind(&shift_arguments);
1371 // Calculate the copy start address (destination). Copy end address is sp.
1372 __ dsll(at, a0, kPointerSizeLog2);
1373 __ daddu(a2, sp, at);
1376 __ ld(at, MemOperand(a2, -kPointerSize));
1377 __ sd(at, MemOperand(a2));
1378 __ Dsubu(a2, a2, Operand(kPointerSize));
1379 __ Branch(&loop, ne, a2, Operand(sp));
1380 // Adjust the actual number of arguments and remove the top element
1381 // (which is a copy of the last argument).
1382 __ Dsubu(a0, a0, Operand(1));
1386 // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
1387 // or a function proxy via CALL_FUNCTION_PROXY.
1388 // a0: actual number of arguments
1390 // a4: call type (0: JS function, 1: function proxy, 2: non-function)
1391 { Label function, non_proxy;
1392 __ Branch(&function, eq, a4, Operand(zero_reg));
1393 // Expected number of arguments is 0 for CALL_NON_FUNCTION.
1394 __ mov(a2, zero_reg);
1395 __ Branch(&non_proxy, ne, a4, Operand(1));
1397 __ push(a1); // Re-add proxy object as additional argument.
1398 __ Daddu(a0, a0, Operand(1));
1399 __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
1400 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1401 RelocInfo::CODE_TARGET);
1403 __ bind(&non_proxy);
1404 __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION);
1405 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1406 RelocInfo::CODE_TARGET);
1410 // 5b. Get the code to call from the function and check that the number of
1411 // expected arguments matches what we're providing. If so, jump
1412 // (tail-call) to the code in register edx without checking arguments.
1413 // a0: actual number of arguments
1415 __ ld(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1416 // The argument count is stored as int32_t on 64-bit platforms.
1417 // TODO(plind): Smi on 32-bit platforms.
1419 FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
1420 // Check formal and actual parameter counts.
1421 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1422 RelocInfo::CODE_TARGET, ne, a2, Operand(a0));
1424 __ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1425 ParameterCount expected(0);
1426 __ InvokeCode(a3, expected, expected, JUMP_FUNCTION, NullCallWrapper());
1430 static void Generate_PushAppliedArguments(MacroAssembler* masm,
1431 const int argumentsOffset,
1432 const int indexOffset,
1433 const int limitOffset) {
1435 Register receiver = LoadDescriptor::ReceiverRegister();
1436 Register key = LoadDescriptor::NameRegister();
1437 Register slot = LoadDescriptor::SlotRegister();
1438 Register vector = LoadWithVectorDescriptor::VectorRegister();
1440 __ ld(key, MemOperand(fp, indexOffset));
1443 // Load the current argument from the arguments array.
1445 __ ld(receiver, MemOperand(fp, argumentsOffset));
1447 // Use inline caching to speed up access to arguments.
1448 Code::Kind kinds[] = {Code::KEYED_LOAD_IC};
1449 FeedbackVectorSpec spec(0, 1, kinds);
1450 Handle<TypeFeedbackVector> feedback_vector =
1451 masm->isolate()->factory()->NewTypeFeedbackVector(&spec);
1452 int index = feedback_vector->GetIndex(FeedbackVectorICSlot(0));
1453 __ li(slot, Operand(Smi::FromInt(index)));
1454 __ li(vector, feedback_vector);
1456 KeyedLoadICStub(masm->isolate(), LoadICState(kNoExtraICState)).GetCode();
1457 __ Call(ic, RelocInfo::CODE_TARGET);
1461 // Use inline caching to access the arguments.
1462 __ ld(key, MemOperand(fp, indexOffset));
1463 __ Daddu(key, key, Operand(Smi::FromInt(1)));
1464 __ sd(key, MemOperand(fp, indexOffset));
1466 // Test if the copy loop has finished copying all the elements from the
1467 // arguments object.
1469 __ ld(a1, MemOperand(fp, limitOffset));
1470 __ Branch(&loop, ne, key, Operand(a1));
1472 // On exit, the pushed arguments count is in a0, untagged
1478 // Used by FunctionApply and ReflectApply
1479 static void Generate_ApplyHelper(MacroAssembler* masm, bool targetIsArgument) {
1480 const int kFormalParameters = targetIsArgument ? 3 : 2;
1481 const int kStackSize = kFormalParameters + 1;
1484 FrameScope frame_scope(masm, StackFrame::INTERNAL);
1485 const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize;
1486 const int kReceiverOffset = kArgumentsOffset + kPointerSize;
1487 const int kFunctionOffset = kReceiverOffset + kPointerSize;
1489 __ ld(a0, MemOperand(fp, kFunctionOffset)); // Get the function.
1491 __ ld(a0, MemOperand(fp, kArgumentsOffset)); // Get the args array.
1494 // Returns (in v0) number of arguments to copy to stack as Smi.
1495 if (targetIsArgument) {
1496 __ InvokeBuiltin(Builtins::REFLECT_APPLY_PREPARE, CALL_FUNCTION);
1498 __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
1501 // Returns the result in v0.
1502 Generate_CheckStackOverflow(masm, kFunctionOffset, v0, kArgcIsSmiTagged);
1504 // Push current limit and index.
1505 const int kIndexOffset =
1506 StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize);
1507 const int kLimitOffset =
1508 StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize);
1509 __ mov(a1, zero_reg);
1510 __ Push(v0, a1); // Limit and initial index.
1512 // Get the receiver.
1513 __ ld(a0, MemOperand(fp, kReceiverOffset));
1515 // Check that the function is a JS function (otherwise it must be a proxy).
1516 Label push_receiver;
1517 __ ld(a1, MemOperand(fp, kFunctionOffset));
1518 __ GetObjectType(a1, a2, a2);
1519 __ Branch(&push_receiver, ne, a2, Operand(JS_FUNCTION_TYPE));
1521 // Change context eagerly to get the right global object if necessary.
1522 __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
1523 // Load the shared function info while the function is still in a1.
1524 __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1526 // Compute the receiver.
1527 // Do not transform the receiver for strict mode functions.
1528 Label call_to_object, use_global_proxy;
1529 __ lbu(a7, FieldMemOperand(a2, SharedFunctionInfo::kStrictModeByteOffset));
1530 __ And(a7, a7, Operand(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
1531 __ Branch(&push_receiver, ne, a7, Operand(zero_reg));
1533 // Do not transform the receiver for native (Compilerhints already in a2).
1534 __ lbu(a7, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset));
1535 __ And(a7, a7, Operand(1 << SharedFunctionInfo::kNativeBitWithinByte));
1536 __ Branch(&push_receiver, ne, a7, Operand(zero_reg));
1538 // Compute the receiver in sloppy mode.
1539 __ JumpIfSmi(a0, &call_to_object);
1540 __ LoadRoot(a1, Heap::kNullValueRootIndex);
1541 __ Branch(&use_global_proxy, eq, a0, Operand(a1));
1542 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
1543 __ Branch(&use_global_proxy, eq, a0, Operand(a2));
1545 // Check if the receiver is already a JavaScript object.
1547 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1548 __ GetObjectType(a0, a1, a1);
1549 __ Branch(&push_receiver, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
1551 // Convert the receiver to a regular object.
1553 __ bind(&call_to_object);
1554 ToObjectStub stub(masm->isolate());
1556 __ mov(a0, v0); // Put object in a0 to match other paths to push_receiver.
1557 __ Branch(&push_receiver);
1559 __ bind(&use_global_proxy);
1560 __ ld(a0, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
1561 __ ld(a0, FieldMemOperand(a0, GlobalObject::kGlobalProxyOffset));
1563 // Push the receiver.
1565 __ bind(&push_receiver);
1568 // Copy all arguments from the array to the stack.
1569 Generate_PushAppliedArguments(
1570 masm, kArgumentsOffset, kIndexOffset, kLimitOffset);
1572 // Call the function.
1574 ParameterCount actual(a0);
1575 __ ld(a1, MemOperand(fp, kFunctionOffset));
1576 __ GetObjectType(a1, a2, a2);
1577 __ Branch(&call_proxy, ne, a2, Operand(JS_FUNCTION_TYPE));
1579 __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
1581 frame_scope.GenerateLeaveFrame();
1582 __ Ret(USE_DELAY_SLOT);
1583 __ Daddu(sp, sp, Operand(kStackSize * kPointerSize)); // In delay slot.
1585 // Call the function proxy.
1586 __ bind(&call_proxy);
1587 __ push(a1); // Add function proxy as last argument.
1588 __ Daddu(a0, a0, Operand(1));
1589 __ li(a2, Operand(0, RelocInfo::NONE32));
1590 __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
1591 __ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1592 RelocInfo::CODE_TARGET);
1593 // Tear down the internal frame and remove function, receiver and args.
1596 __ Ret(USE_DELAY_SLOT);
1597 __ Daddu(sp, sp, Operand(kStackSize * kPointerSize)); // In delay slot.
1601 static void Generate_ConstructHelper(MacroAssembler* masm) {
1602 const int kFormalParameters = 3;
1603 const int kStackSize = kFormalParameters + 1;
1606 FrameScope frame_scope(masm, StackFrame::INTERNAL);
1607 const int kNewTargetOffset = kFPOnStackSize + kPCOnStackSize;
1608 const int kArgumentsOffset = kNewTargetOffset + kPointerSize;
1609 const int kFunctionOffset = kArgumentsOffset + kPointerSize;
1611 // If newTarget is not supplied, set it to constructor
1612 Label validate_arguments;
1613 __ ld(a0, MemOperand(fp, kNewTargetOffset));
1614 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
1615 __ Branch(&validate_arguments, ne, a0, Operand(at));
1616 __ ld(a0, MemOperand(fp, kFunctionOffset));
1617 __ sd(a0, MemOperand(fp, kNewTargetOffset));
1619 // Validate arguments
1620 __ bind(&validate_arguments);
1621 __ ld(a0, MemOperand(fp, kFunctionOffset)); // get the function
1623 __ ld(a0, MemOperand(fp, kArgumentsOffset)); // get the args array
1625 __ ld(a0, MemOperand(fp, kNewTargetOffset)); // get the new.target
1627 // Returns argument count in v0.
1628 __ InvokeBuiltin(Builtins::REFLECT_CONSTRUCT_PREPARE, CALL_FUNCTION);
1630 // Returns result in v0.
1631 Generate_CheckStackOverflow(masm, kFunctionOffset, v0, kArgcIsSmiTagged);
1633 // Push current limit and index.
1634 const int kIndexOffset =
1635 StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize);
1636 const int kLimitOffset =
1637 StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize);
1638 __ push(v0); // limit
1639 __ mov(a1, zero_reg); // initial index
1641 // Push the constructor function as callee.
1642 __ ld(a0, MemOperand(fp, kFunctionOffset));
1645 // Copy all arguments from the array to the stack.
1646 Generate_PushAppliedArguments(
1647 masm, kArgumentsOffset, kIndexOffset, kLimitOffset);
1649 // Use undefined feedback vector
1650 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
1651 __ ld(a1, MemOperand(fp, kFunctionOffset));
1652 __ ld(a4, MemOperand(fp, kNewTargetOffset));
1654 // Call the function.
1655 CallConstructStub stub(masm->isolate(), SUPER_CONSTRUCTOR_CALL);
1656 __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
1658 // Leave internal frame.
1661 __ Daddu(sp, sp, Operand(kStackSize * kPointerSize)); // In delay slot.
1665 void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1666 Generate_ApplyHelper(masm, false);
1670 void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
1671 Generate_ApplyHelper(masm, true);
1675 void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
1676 Generate_ConstructHelper(masm);
1680 static void ArgumentAdaptorStackCheck(MacroAssembler* masm,
1681 Label* stack_overflow) {
1682 // ----------- S t a t e -------------
1683 // -- a0 : actual number of arguments
1684 // -- a1 : function (passed through to callee)
1685 // -- a2 : expected number of arguments
1686 // -----------------------------------
1687 // Check the stack for overflow. We are not trying to catch
1688 // interruptions (e.g. debug break and preemption) here, so the "real stack
1689 // limit" is checked.
1690 __ LoadRoot(a5, Heap::kRealStackLimitRootIndex);
1691 // Make a5 the space we have left. The stack might already be overflowed
1692 // here which will cause a5 to become negative.
1693 __ dsubu(a5, sp, a5);
1694 // Check if the arguments will overflow the stack.
1695 __ dsll(at, a2, kPointerSizeLog2);
1696 // Signed comparison.
1697 __ Branch(stack_overflow, le, a5, Operand(at));
1701 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1702 // __ sll(a0, a0, kSmiTagSize);
1703 __ dsll32(a0, a0, 0);
1704 __ li(a4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1705 __ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit());
1707 Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
1711 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1712 // ----------- S t a t e -------------
1713 // -- v0 : result being passed through
1714 // -----------------------------------
1715 // Get the number of arguments passed (as a smi), tear down the frame and
1716 // then tear down the parameters.
1717 __ ld(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
1720 __ MultiPop(fp.bit() | ra.bit());
1721 __ SmiScale(a4, a1, kPointerSizeLog2);
1722 __ Daddu(sp, sp, a4);
1723 // Adjust for the receiver.
1724 __ Daddu(sp, sp, Operand(kPointerSize));
1728 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1729 // State setup as expected by MacroAssembler::InvokePrologue.
1730 // ----------- S t a t e -------------
1731 // -- a0: actual arguments count
1732 // -- a1: function (passed through to callee)
1733 // -- a2: expected arguments count
1734 // -----------------------------------
1736 Label stack_overflow;
1737 ArgumentAdaptorStackCheck(masm, &stack_overflow);
1738 Label invoke, dont_adapt_arguments;
1740 Label enough, too_few;
1741 __ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1742 __ Branch(&dont_adapt_arguments, eq,
1743 a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1744 // We use Uless as the number of argument should always be greater than 0.
1745 __ Branch(&too_few, Uless, a0, Operand(a2));
1747 { // Enough parameters: actual >= expected.
1748 // a0: actual number of arguments as a smi
1750 // a2: expected number of arguments
1751 // a3: code entry to call
1753 EnterArgumentsAdaptorFrame(masm);
1755 // Calculate copy start address into a0 and copy end address into a2.
1756 __ SmiScale(a0, a0, kPointerSizeLog2);
1757 __ Daddu(a0, fp, a0);
1758 // Adjust for return address and receiver.
1759 __ Daddu(a0, a0, Operand(2 * kPointerSize));
1760 // Compute copy end address.
1761 __ dsll(a2, a2, kPointerSizeLog2);
1762 __ dsubu(a2, a0, a2);
1764 // Copy the arguments (including the receiver) to the new stack frame.
1765 // a0: copy start address
1767 // a2: copy end address
1768 // a3: code entry to call
1772 __ ld(a4, MemOperand(a0));
1774 __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a2));
1775 __ daddiu(a0, a0, -kPointerSize); // In delay slot.
1780 { // Too few parameters: Actual < expected.
1783 // If the function is strong we need to throw an error.
1784 Label no_strong_error;
1785 __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1786 __ lbu(a5, FieldMemOperand(a4, SharedFunctionInfo::kStrongModeByteOffset));
1787 __ And(a5, a5, Operand(1 << SharedFunctionInfo::kStrongModeBitWithinByte));
1788 __ Branch(&no_strong_error, eq, a5, Operand(zero_reg));
1790 // What we really care about is the required number of arguments.
1791 DCHECK_EQ(kPointerSize, kInt64Size);
1792 __ lw(a5, FieldMemOperand(a4, SharedFunctionInfo::kLengthOffset));
1794 __ Branch(&no_strong_error, ge, a0, Operand(a5));
1797 FrameScope frame(masm, StackFrame::MANUAL);
1798 EnterArgumentsAdaptorFrame(masm);
1799 __ CallRuntime(Runtime::kThrowStrongModeTooFewArguments, 0);
1802 __ bind(&no_strong_error);
1803 EnterArgumentsAdaptorFrame(masm);
1805 // Calculate copy start address into a0 and copy end address is fp.
1806 // a0: actual number of arguments as a smi
1808 // a2: expected number of arguments
1809 // a3: code entry to call
1810 __ SmiScale(a0, a0, kPointerSizeLog2);
1811 __ Daddu(a0, fp, a0);
1812 // Adjust for return address and receiver.
1813 __ Daddu(a0, a0, Operand(2 * kPointerSize));
1814 // Compute copy end address. Also adjust for return address.
1815 __ Daddu(a7, fp, kPointerSize);
1817 // Copy the arguments (including the receiver) to the new stack frame.
1818 // a0: copy start address
1820 // a2: expected number of arguments
1821 // a3: code entry to call
1822 // a7: copy end address
1825 __ ld(a4, MemOperand(a0)); // Adjusted above for return addr and receiver.
1826 __ Dsubu(sp, sp, kPointerSize);
1827 __ Dsubu(a0, a0, kPointerSize);
1828 __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a7));
1829 __ sd(a4, MemOperand(sp)); // In the delay slot.
1831 // Fill the remaining expected arguments with undefined.
1833 // a2: expected number of arguments
1834 // a3: code entry to call
1835 __ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
1836 __ dsll(a6, a2, kPointerSizeLog2);
1837 __ Dsubu(a2, fp, Operand(a6));
1838 // Adjust for frame.
1839 __ Dsubu(a2, a2, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
1844 __ Dsubu(sp, sp, kPointerSize);
1845 __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a2));
1846 __ sd(a4, MemOperand(sp));
1849 // Call the entry point.
1854 // Store offset of return address for deoptimizer.
1855 masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
1857 // Exit frame and return.
1858 LeaveArgumentsAdaptorFrame(masm);
1862 // -------------------------------------------
1863 // Don't adapt arguments.
1864 // -------------------------------------------
1865 __ bind(&dont_adapt_arguments);
1868 __ bind(&stack_overflow);
1870 FrameScope frame(masm, StackFrame::MANUAL);
1871 EnterArgumentsAdaptorFrame(masm);
1872 __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
1880 } // namespace internal
1883 #endif // V8_TARGET_ARCH_MIPS64