1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
40 #include "src/assembler.h"
41 #include "src/mips64/constants-mips64.h"
42 #include "src/serialize.h"
49 // 1) We would prefer to use an enum, but enum values are assignment-
50 // compatible with int, which has caused code-generation bugs.
52 // 2) We would prefer to use a class instead of a struct but we don't like
53 // the register initialization to depend on the particular initialization
54 // order (which appears to be different on OS X, Linux, and Windows for the
55 // installed versions of C++ we tried). Using a struct permits C-style
56 // "initialization". Also, the Register objects cannot be const as this
57 // forces initialization stubs in MSVC, making us dependent on initialization
60 // 3) By not using an enum, we are possibly preventing the compiler from
61 // doing certain constant folds, which may significantly reduce the
62 // code generated for some assembly instructions (because they boil down
63 // to a few constants). If this is a problem, we could change the code
64 // such that we use an enum in optimized mode, and the struct in debug
65 // mode. This way we get the compile-time error checking in debug mode
66 // and best performance in optimized code.
69 // -----------------------------------------------------------------------------
70 // Implementation of Register and FPURegister.
74 static const int kNumRegisters = v8::internal::kNumRegisters;
75 static const int kMaxNumAllocatableRegisters = 14; // v0 through t6 and cp.
76 static const int kSizeInBytes = 8;
77 static const int kCpRegister = 23; // cp (s7) is the 23rd register.
79 inline static int NumAllocatableRegisters();
81 static int ToAllocationIndex(Register reg) {
82 ASSERT((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) ||
83 reg.is(from_code(kCpRegister)));
84 return reg.is(from_code(kCpRegister)) ?
85 kMaxNumAllocatableRegisters - 1 : // Return last index for 'cp'.
86 reg.code() - 2; // zero_reg and 'at' are skipped.
89 static Register FromAllocationIndex(int index) {
90 ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
91 return index == kMaxNumAllocatableRegisters - 1 ?
92 from_code(kCpRegister) : // Last index is always the 'cp' register.
93 from_code(index + 2); // zero_reg and 'at' are skipped.
96 static const char* AllocationIndexToString(int index) {
97 ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
98 const char* const names[] = {
117 static Register from_code(int code) {
118 Register r = { code };
122 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
123 bool is(Register reg) const { return code_ == reg.code_; }
133 // Unfortunately we can't make this private in a struct.
137 #define REGISTER(N, C) \
138 const int kRegister_ ## N ## _Code = C; \
139 const Register N = { C }
141 REGISTER(no_reg, -1);
143 REGISTER(zero_reg, 0);
144 // at: Reserved for synthetic instructions.
146 // v0, v1: Used when returning multiple values from subroutines.
149 // a0 - a4: Used to pass non-FP parameters.
154 // a4 - a7 t0 - t3: Can be used without reservation, act as temporary registers
155 // and are allowed to be destroyed by subroutines.
164 // s0 - s7: Subroutine register variables. Subroutines that write to these
165 // registers must restore their values before exiting so that the caller can
166 // expect the values to be preserved.
177 // k0, k1: Reserved for system calls and interrupt handlers.
182 // sp: Stack pointer.
184 // fp: Frame pointer.
186 // ra: Return address pointer.
192 int ToNumber(Register reg);
194 Register ToRegister(int num);
196 // Coprocessor register.
198 static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;
200 // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
201 // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
202 // number of Double regs (64-bit regs, or FPU-reg-pairs).
204 // A few double registers are reserved: one as a scratch register and one to
207 // f30: scratch register.
208 static const int kNumReservedRegisters = 2;
209 static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
210 kNumReservedRegisters;
212 inline static int NumRegisters();
213 inline static int NumAllocatableRegisters();
214 inline static int ToAllocationIndex(FPURegister reg);
215 static const char* AllocationIndexToString(int index);
217 static FPURegister FromAllocationIndex(int index) {
218 ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
219 return from_code(index * 2);
222 static FPURegister from_code(int code) {
223 FPURegister r = { code };
227 bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
228 bool is(FPURegister creg) const { return code_ == creg.code_; }
229 FPURegister low() const {
230 // TODO(plind): Create ASSERT for FR=0 mode. This usage suspect for FR=1.
231 // Find low reg of a Double-reg pair, which is the reg itself.
232 ASSERT(code_ % 2 == 0); // Specified Double reg must be even.
235 ASSERT(reg.is_valid());
238 FPURegister high() const {
239 // TODO(plind): Create ASSERT for FR=0 mode. This usage illegal in FR=1.
240 // Find high reg of a Doubel-reg pair, which is reg + 1.
241 ASSERT(code_ % 2 == 0); // Specified Double reg must be even.
243 reg.code_ = code_ + 1;
244 ASSERT(reg.is_valid());
256 void setcode(int f) {
260 // Unfortunately we can't make this private in a struct.
264 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
265 // 32-bit registers, f0 through f31. When used as 'double' they are used
266 // in pairs, starting with the even numbered register. So a double operation
267 // on f0 really uses f0 and f1.
268 // (Modern mips hardware also supports 32 64-bit registers, via setting
269 // (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
270 // but it is not in common use. Someday we will want to support this in v8.)
272 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
273 typedef FPURegister DoubleRegister;
274 typedef FPURegister FloatRegister;
276 const FPURegister no_freg = { -1 };
278 const FPURegister f0 = { 0 }; // Return value in hard float mode.
279 const FPURegister f1 = { 1 };
280 const FPURegister f2 = { 2 };
281 const FPURegister f3 = { 3 };
282 const FPURegister f4 = { 4 };
283 const FPURegister f5 = { 5 };
284 const FPURegister f6 = { 6 };
285 const FPURegister f7 = { 7 };
286 const FPURegister f8 = { 8 };
287 const FPURegister f9 = { 9 };
288 const FPURegister f10 = { 10 };
289 const FPURegister f11 = { 11 };
290 const FPURegister f12 = { 12 }; // Arg 0 in hard float mode.
291 const FPURegister f13 = { 13 };
292 const FPURegister f14 = { 14 }; // Arg 1 in hard float mode.
293 const FPURegister f15 = { 15 };
294 const FPURegister f16 = { 16 };
295 const FPURegister f17 = { 17 };
296 const FPURegister f18 = { 18 };
297 const FPURegister f19 = { 19 };
298 const FPURegister f20 = { 20 };
299 const FPURegister f21 = { 21 };
300 const FPURegister f22 = { 22 };
301 const FPURegister f23 = { 23 };
302 const FPURegister f24 = { 24 };
303 const FPURegister f25 = { 25 };
304 const FPURegister f26 = { 26 };
305 const FPURegister f27 = { 27 };
306 const FPURegister f28 = { 28 };
307 const FPURegister f29 = { 29 };
308 const FPURegister f30 = { 30 };
309 const FPURegister f31 = { 31 };
312 // cp is assumed to be a callee saved register.
313 // Defined using #define instead of "static const Register&" because Clang
314 // complains otherwise when a compilation unit that includes this header
315 // doesn't use the variables.
316 #define kRootRegister s6
318 #define kLithiumScratchReg s3
319 #define kLithiumScratchReg2 s4
320 #define kLithiumScratchDouble f30
321 #define kDoubleRegZero f28
323 // FPU (coprocessor 1) control registers.
324 // Currently only FCSR (#31) is implemented.
325 struct FPUControlRegister {
326 bool is_valid() const { return code_ == kFCSRRegister; }
327 bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
336 void setcode(int f) {
340 // Unfortunately we can't make this private in a struct.
344 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
345 const FPUControlRegister FCSR = { kFCSRRegister };
348 // -----------------------------------------------------------------------------
349 // Machine instruction Operands.
350 const int kSmiShift = kSmiTagSize + kSmiShiftSize;
351 const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
352 // Class Operand represents a shifter operand in data processing instructions.
353 class Operand BASE_EMBEDDED {
356 INLINE(explicit Operand(int64_t immediate,
357 RelocInfo::Mode rmode = RelocInfo::NONE64));
358 INLINE(explicit Operand(const ExternalReference& f));
359 INLINE(explicit Operand(const char* s));
360 INLINE(explicit Operand(Object** opp));
361 INLINE(explicit Operand(Context** cpp));
362 explicit Operand(Handle<Object> handle);
363 INLINE(explicit Operand(Smi* value));
366 INLINE(explicit Operand(Register rm));
368 // Return true if this is a register operand.
369 INLINE(bool is_reg() const);
371 inline int64_t immediate() const {
376 Register rm() const { return rm_; }
380 int64_t imm64_; // Valid if rm_ == no_reg.
381 RelocInfo::Mode rmode_;
383 friend class Assembler;
384 friend class MacroAssembler;
388 // On MIPS we have only one adressing mode with base_reg + offset.
389 // Class MemOperand represents a memory operand in load and store instructions.
390 class MemOperand : public Operand {
392 // Immediate value attached to offset.
394 offset_minus_one = -1,
398 explicit MemOperand(Register rn, int64_t offset = 0);
399 explicit MemOperand(Register rn, int64_t unit, int64_t multiplier,
400 OffsetAddend offset_addend = offset_zero);
401 int32_t offset() const { return offset_; }
403 bool OffsetIsInt16Encodable() const {
404 return is_int16(offset_);
410 friend class Assembler;
414 class Assembler : public AssemblerBase {
416 // Create an assembler. Instructions and relocation information are emitted
417 // into a buffer, with the instructions starting from the beginning and the
418 // relocation information starting from the end of the buffer. See CodeDesc
419 // for a detailed comment on the layout (globals.h).
421 // If the provided buffer is NULL, the assembler allocates and grows its own
422 // buffer, and buffer_size determines the initial buffer size. The buffer is
423 // owned by the assembler and deallocated upon destruction of the assembler.
425 // If the provided buffer is not NULL, the assembler uses the provided buffer
426 // for code generation and assumes its size to be buffer_size. If the buffer
427 // is too small, a fatal error occurs. No deallocation of the buffer is done
428 // upon destruction of the assembler.
429 Assembler(Isolate* isolate, void* buffer, int buffer_size);
430 virtual ~Assembler() { }
432 // GetCode emits any pending (non-emitted) code and fills the descriptor
433 // desc. GetCode() is idempotent; it returns the same result if no other
434 // Assembler functions are invoked in between GetCode() calls.
435 void GetCode(CodeDesc* desc);
437 // Label operations & relative jumps (PPUM Appendix D).
439 // Takes a branch opcode (cc) and a label (L) and generates
440 // either a backward branch or a forward branch and links it
441 // to the label fixup chain. Usage:
443 // Label L; // unbound label
444 // j(cc, &L); // forward branch to unbound label
445 // bind(&L); // bind label to the current pc
446 // j(cc, &L); // backward branch to bound label
447 // bind(&L); // illegal: a label may be bound only once
449 // Note: The same Label can be used for forward and backward branches
450 // but it may be bound only once.
451 void bind(Label* L); // Binds an unbound label L to current code position.
452 // Determines if Label is bound and near enough so that branch instruction
453 // can be used to reach it, instead of jump instruction.
454 bool is_near(Label* L);
456 // Returns the branch offset to the given label from the current code
457 // position. Links the label to the current position if it is still unbound.
458 // Manages the jump elimination optimization if the second parameter is true.
459 int32_t branch_offset(Label* L, bool jump_elimination_allowed);
460 int32_t branch_offset_compact(Label* L, bool jump_elimination_allowed);
461 int32_t branch_offset21(Label* L, bool jump_elimination_allowed);
462 int32_t branch_offset21_compact(Label* L, bool jump_elimination_allowed);
463 int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
464 int32_t o = branch_offset(L, jump_elimination_allowed);
465 ASSERT((o & 3) == 0); // Assert the offset is aligned.
468 int32_t shifted_branch_offset_compact(Label* L,
469 bool jump_elimination_allowed) {
470 int32_t o = branch_offset_compact(L, jump_elimination_allowed);
471 ASSERT((o & 3) == 0); // Assert the offset is aligned.
474 uint64_t jump_address(Label* L);
476 // Puts a labels target address at the given position.
477 // The high 8 bits are set to zero.
478 void label_at_put(Label* L, int at_offset);
480 // Read/Modify the code target address in the branch/call instruction at pc.
481 static Address target_address_at(Address pc);
482 static void set_target_address_at(Address pc,
484 ICacheFlushMode icache_flush_mode =
485 FLUSH_ICACHE_IF_NEEDED);
486 // On MIPS there is no Constant Pool so we skip that parameter.
487 INLINE(static Address target_address_at(Address pc,
488 ConstantPoolArray* constant_pool)) {
489 return target_address_at(pc);
491 INLINE(static void set_target_address_at(Address pc,
492 ConstantPoolArray* constant_pool,
494 ICacheFlushMode icache_flush_mode =
495 FLUSH_ICACHE_IF_NEEDED)) {
496 set_target_address_at(pc, target, icache_flush_mode);
498 INLINE(static Address target_address_at(Address pc, Code* code)) {
499 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
500 return target_address_at(pc, constant_pool);
502 INLINE(static void set_target_address_at(Address pc,
505 ICacheFlushMode icache_flush_mode =
506 FLUSH_ICACHE_IF_NEEDED)) {
507 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
508 set_target_address_at(pc, constant_pool, target, icache_flush_mode);
511 // Return the code target address at a call site from the return address
512 // of that call in the instruction stream.
513 inline static Address target_address_from_return_address(Address pc);
515 static void JumpLabelToJumpRegister(Address pc);
517 static void QuietNaN(HeapObject* nan);
519 // This sets the branch destination (which gets loaded at the call address).
520 // This is for calls and branches within generated code. The serializer
521 // has already deserialized the lui/ori instructions etc.
522 inline static void deserialization_set_special_target_at(
523 Address instruction_payload, Code* code, Address target) {
524 set_target_address_at(
525 instruction_payload - kInstructionsFor64BitConstant * kInstrSize,
530 // Size of an instruction.
531 static const int kInstrSize = sizeof(Instr);
533 // Difference between address of current opcode and target address offset.
534 static const int kBranchPCOffset = 4;
536 // Here we are patching the address in the LUI/ORI instruction pair.
537 // These values are used in the serialization process and must be zero for
538 // MIPS platform, as Code, Embedded Object or External-reference pointers
539 // are split across two consecutive instructions and don't exist separately
540 // in the code, so the serializer should not step forwards in memory after
541 // a target is resolved and written.
542 static const int kSpecialTargetSize = 0;
544 // Number of consecutive instructions used to store 32bit/64bit constant.
545 // Before jump-optimizations, this constant was used in
546 // RelocInfo::target_address_address() function to tell serializer address of
547 // the instruction that follows LUI/ORI instruction pair. Now, with new jump
548 // optimization, where jump-through-register instruction that usually
549 // follows LUI/ORI pair is substituted with J/JAL, this constant equals
550 // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
551 static const int kInstructionsFor32BitConstant = 3;
552 static const int kInstructionsFor64BitConstant = 5;
554 // Distance between the instruction referring to the address of the call
555 // target and the return address.
556 static const int kCallTargetAddressOffset = 6 * kInstrSize;
558 // Distance between start of patched return sequence and the emitted address
560 static const int kPatchReturnSequenceAddressOffset = 0;
562 // Distance between start of patched debug break slot and the emitted address
564 static const int kPatchDebugBreakSlotAddressOffset = 0 * kInstrSize;
566 // Difference between address of current opcode and value read from pc
568 static const int kPcLoadDelta = 4;
570 static const int kPatchDebugBreakSlotReturnOffset = 6 * kInstrSize;
572 // Number of instructions used for the JS return sequence. The constant is
573 // used by the debugger to patch the JS return sequence.
574 static const int kJSReturnSequenceInstructions = 7;
575 static const int kDebugBreakSlotInstructions = 6;
576 static const int kDebugBreakSlotLength =
577 kDebugBreakSlotInstructions * kInstrSize;
580 // ---------------------------------------------------------------------------
583 // Insert the smallest number of nop instructions
584 // possible to align the pc offset to a multiple
585 // of m. m must be a power of 2 (>= 4).
587 // Aligns code to something that's optimal for a jump target for the platform.
588 void CodeTargetAlign();
590 // Different nop operations are used by the code generator to detect certain
591 // states of the generated code.
592 enum NopMarkerTypes {
596 PROPERTY_ACCESS_INLINED,
597 PROPERTY_ACCESS_INLINED_CONTEXT,
598 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
601 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
603 CODE_AGE_MARKER_NOP = 6,
604 CODE_AGE_SEQUENCE_NOP
607 // Type == 0 is the default non-marking nop. For mips this is a
608 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
609 // marking, to avoid conflict with ssnop and ehb instructions.
610 void nop(unsigned int type = 0) {
612 Register nop_rt_reg = (type == 0) ? zero_reg : at;
613 sll(zero_reg, nop_rt_reg, type, true);
617 // --------Branch-and-jump-instructions----------
618 // We don't use likely variant of instructions.
619 void b(int16_t offset);
620 void b(Label* L) { b(branch_offset(L, false)>>2); }
621 void bal(int16_t offset);
622 void bal(Label* L) { bal(branch_offset(L, false)>>2); }
624 void beq(Register rs, Register rt, int16_t offset);
625 void beq(Register rs, Register rt, Label* L) {
626 beq(rs, rt, branch_offset(L, false) >> 2);
628 void bgez(Register rs, int16_t offset);
629 void bgezc(Register rt, int16_t offset);
630 void bgezc(Register rt, Label* L) {
631 bgezc(rt, branch_offset_compact(L, false)>>2);
633 void bgeuc(Register rs, Register rt, int16_t offset);
634 void bgeuc(Register rs, Register rt, Label* L) {
635 bgeuc(rs, rt, branch_offset_compact(L, false)>>2);
637 void bgec(Register rs, Register rt, int16_t offset);
638 void bgec(Register rs, Register rt, Label* L) {
639 bgec(rs, rt, branch_offset_compact(L, false)>>2);
641 void bgezal(Register rs, int16_t offset);
642 void bgezalc(Register rt, int16_t offset);
643 void bgezalc(Register rt, Label* L) {
644 bgezalc(rt, branch_offset_compact(L, false)>>2);
646 void bgezall(Register rs, int16_t offset);
647 void bgezall(Register rs, Label* L) {
648 bgezall(rs, branch_offset(L, false)>>2);
650 void bgtz(Register rs, int16_t offset);
651 void bgtzc(Register rt, int16_t offset);
652 void bgtzc(Register rt, Label* L) {
653 bgtzc(rt, branch_offset_compact(L, false)>>2);
655 void blez(Register rs, int16_t offset);
656 void blezc(Register rt, int16_t offset);
657 void blezc(Register rt, Label* L) {
658 blezc(rt, branch_offset_compact(L, false)>>2);
660 void bltz(Register rs, int16_t offset);
661 void bltzc(Register rt, int16_t offset);
662 void bltzc(Register rt, Label* L) {
663 bltzc(rt, branch_offset_compact(L, false)>>2);
665 void bltuc(Register rs, Register rt, int16_t offset);
666 void bltuc(Register rs, Register rt, Label* L) {
667 bltuc(rs, rt, branch_offset_compact(L, false)>>2);
669 void bltc(Register rs, Register rt, int16_t offset);
670 void bltc(Register rs, Register rt, Label* L) {
671 bltc(rs, rt, branch_offset_compact(L, false)>>2);
674 void bltzal(Register rs, int16_t offset);
675 void blezalc(Register rt, int16_t offset);
676 void blezalc(Register rt, Label* L) {
677 blezalc(rt, branch_offset_compact(L, false)>>2);
679 void bltzalc(Register rt, int16_t offset);
680 void bltzalc(Register rt, Label* L) {
681 bltzalc(rt, branch_offset_compact(L, false)>>2);
683 void bgtzalc(Register rt, int16_t offset);
684 void bgtzalc(Register rt, Label* L) {
685 bgtzalc(rt, branch_offset_compact(L, false)>>2);
687 void beqzalc(Register rt, int16_t offset);
688 void beqzalc(Register rt, Label* L) {
689 beqzalc(rt, branch_offset_compact(L, false)>>2);
691 void beqc(Register rs, Register rt, int16_t offset);
692 void beqc(Register rs, Register rt, Label* L) {
693 beqc(rs, rt, branch_offset_compact(L, false)>>2);
695 void beqzc(Register rs, int32_t offset);
696 void beqzc(Register rs, Label* L) {
697 beqzc(rs, branch_offset21_compact(L, false)>>2);
699 void bnezalc(Register rt, int16_t offset);
700 void bnezalc(Register rt, Label* L) {
701 bnezalc(rt, branch_offset_compact(L, false)>>2);
703 void bnec(Register rs, Register rt, int16_t offset);
704 void bnec(Register rs, Register rt, Label* L) {
705 bnec(rs, rt, branch_offset_compact(L, false)>>2);
707 void bnezc(Register rt, int32_t offset);
708 void bnezc(Register rt, Label* L) {
709 bnezc(rt, branch_offset21_compact(L, false)>>2);
711 void bne(Register rs, Register rt, int16_t offset);
712 void bne(Register rs, Register rt, Label* L) {
713 bne(rs, rt, branch_offset(L, false)>>2);
715 void bovc(Register rs, Register rt, int16_t offset);
716 void bovc(Register rs, Register rt, Label* L) {
717 bovc(rs, rt, branch_offset_compact(L, false)>>2);
719 void bnvc(Register rs, Register rt, int16_t offset);
720 void bnvc(Register rs, Register rt, Label* L) {
721 bnvc(rs, rt, branch_offset_compact(L, false)>>2);
724 // Never use the int16_t b(l)cond version with a branch offset
725 // instead of using the Label* version.
727 // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
728 void j(int64_t target);
729 void jal(int64_t target);
730 void jalr(Register rs, Register rd = ra);
731 void jr(Register target);
732 void j_or_jr(int64_t target, Register rs);
733 void jal_or_jalr(int64_t target, Register rs);
736 // -------Data-processing-instructions---------
739 void addu(Register rd, Register rs, Register rt);
740 void subu(Register rd, Register rs, Register rt);
742 void div(Register rs, Register rt);
743 void divu(Register rs, Register rt);
744 void ddiv(Register rs, Register rt);
745 void ddivu(Register rs, Register rt);
746 void div(Register rd, Register rs, Register rt);
747 void divu(Register rd, Register rs, Register rt);
748 void ddiv(Register rd, Register rs, Register rt);
749 void ddivu(Register rd, Register rs, Register rt);
750 void mod(Register rd, Register rs, Register rt);
751 void modu(Register rd, Register rs, Register rt);
752 void dmod(Register rd, Register rs, Register rt);
753 void dmodu(Register rd, Register rs, Register rt);
755 void mul(Register rd, Register rs, Register rt);
756 void muh(Register rd, Register rs, Register rt);
757 void mulu(Register rd, Register rs, Register rt);
758 void muhu(Register rd, Register rs, Register rt);
759 void mult(Register rs, Register rt);
760 void multu(Register rs, Register rt);
761 void dmul(Register rd, Register rs, Register rt);
762 void dmuh(Register rd, Register rs, Register rt);
763 void dmulu(Register rd, Register rs, Register rt);
764 void dmuhu(Register rd, Register rs, Register rt);
765 void daddu(Register rd, Register rs, Register rt);
766 void dsubu(Register rd, Register rs, Register rt);
767 void dmult(Register rs, Register rt);
768 void dmultu(Register rs, Register rt);
770 void addiu(Register rd, Register rs, int32_t j);
771 void daddiu(Register rd, Register rs, int32_t j);
774 void and_(Register rd, Register rs, Register rt);
775 void or_(Register rd, Register rs, Register rt);
776 void xor_(Register rd, Register rs, Register rt);
777 void nor(Register rd, Register rs, Register rt);
779 void andi(Register rd, Register rs, int32_t j);
780 void ori(Register rd, Register rs, int32_t j);
781 void xori(Register rd, Register rs, int32_t j);
782 void lui(Register rd, int32_t j);
783 void aui(Register rs, Register rt, int32_t j);
784 void daui(Register rs, Register rt, int32_t j);
785 void dahi(Register rs, int32_t j);
786 void dati(Register rs, int32_t j);
789 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
790 // and may cause problems in normal code. coming_from_nop makes sure this
792 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
793 void sllv(Register rd, Register rt, Register rs);
794 void srl(Register rd, Register rt, uint16_t sa);
795 void srlv(Register rd, Register rt, Register rs);
796 void sra(Register rt, Register rd, uint16_t sa);
797 void srav(Register rt, Register rd, Register rs);
798 void rotr(Register rd, Register rt, uint16_t sa);
799 void rotrv(Register rd, Register rt, Register rs);
800 void dsll(Register rd, Register rt, uint16_t sa);
801 void dsllv(Register rd, Register rt, Register rs);
802 void dsrl(Register rd, Register rt, uint16_t sa);
803 void dsrlv(Register rd, Register rt, Register rs);
804 void drotr(Register rd, Register rt, uint16_t sa);
805 void drotrv(Register rd, Register rt, Register rs);
806 void dsra(Register rt, Register rd, uint16_t sa);
807 void dsrav(Register rd, Register rt, Register rs);
808 void dsll32(Register rt, Register rd, uint16_t sa);
809 void dsrl32(Register rt, Register rd, uint16_t sa);
810 void dsra32(Register rt, Register rd, uint16_t sa);
813 // ------------Memory-instructions-------------
815 void lb(Register rd, const MemOperand& rs);
816 void lbu(Register rd, const MemOperand& rs);
817 void lh(Register rd, const MemOperand& rs);
818 void lhu(Register rd, const MemOperand& rs);
819 void lw(Register rd, const MemOperand& rs);
820 void lwu(Register rd, const MemOperand& rs);
821 void lwl(Register rd, const MemOperand& rs);
822 void lwr(Register rd, const MemOperand& rs);
823 void sb(Register rd, const MemOperand& rs);
824 void sh(Register rd, const MemOperand& rs);
825 void sw(Register rd, const MemOperand& rs);
826 void swl(Register rd, const MemOperand& rs);
827 void swr(Register rd, const MemOperand& rs);
828 void ldl(Register rd, const MemOperand& rs);
829 void ldr(Register rd, const MemOperand& rs);
830 void sdl(Register rd, const MemOperand& rs);
831 void sdr(Register rd, const MemOperand& rs);
832 void ld(Register rd, const MemOperand& rs);
833 void sd(Register rd, const MemOperand& rs);
836 // ----------------Prefetch--------------------
838 void pref(int32_t hint, const MemOperand& rs);
841 // -------------Misc-instructions--------------
843 // Break / Trap instructions.
844 void break_(uint32_t code, bool break_as_stop = false);
845 void stop(const char* msg, uint32_t code = kMaxStopCode);
846 void tge(Register rs, Register rt, uint16_t code);
847 void tgeu(Register rs, Register rt, uint16_t code);
848 void tlt(Register rs, Register rt, uint16_t code);
849 void tltu(Register rs, Register rt, uint16_t code);
850 void teq(Register rs, Register rt, uint16_t code);
851 void tne(Register rs, Register rt, uint16_t code);
853 // Move from HI/LO register.
854 void mfhi(Register rd);
855 void mflo(Register rd);
858 void slt(Register rd, Register rs, Register rt);
859 void sltu(Register rd, Register rs, Register rt);
860 void slti(Register rd, Register rs, int32_t j);
861 void sltiu(Register rd, Register rs, int32_t j);
864 void movz(Register rd, Register rs, Register rt);
865 void movn(Register rd, Register rs, Register rt);
866 void movt(Register rd, Register rs, uint16_t cc = 0);
867 void movf(Register rd, Register rs, uint16_t cc = 0);
869 void sel(SecondaryField fmt, FPURegister fd, FPURegister ft,
870 FPURegister fs, uint8_t sel);
871 void seleqz(Register rs, Register rt, Register rd);
872 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister ft,
874 void selnez(Register rs, Register rt, Register rd);
875 void selnez(SecondaryField fmt, FPURegister fd, FPURegister ft,
879 void clz(Register rd, Register rs);
880 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
881 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
883 // --------Coprocessor-instructions----------------
885 // Load, store, and move.
886 void lwc1(FPURegister fd, const MemOperand& src);
887 void ldc1(FPURegister fd, const MemOperand& src);
889 void swc1(FPURegister fs, const MemOperand& dst);
890 void sdc1(FPURegister fs, const MemOperand& dst);
892 void mtc1(Register rt, FPURegister fs);
893 void mthc1(Register rt, FPURegister fs);
894 void dmtc1(Register rt, FPURegister fs);
896 void mfc1(Register rt, FPURegister fs);
897 void mfhc1(Register rt, FPURegister fs);
898 void dmfc1(Register rt, FPURegister fs);
900 void ctc1(Register rt, FPUControlRegister fs);
901 void cfc1(Register rt, FPUControlRegister fs);
904 void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
905 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
906 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
907 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
908 void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
909 void abs_d(FPURegister fd, FPURegister fs);
910 void mov_d(FPURegister fd, FPURegister fs);
911 void neg_d(FPURegister fd, FPURegister fs);
912 void sqrt_d(FPURegister fd, FPURegister fs);
915 void cvt_w_s(FPURegister fd, FPURegister fs);
916 void cvt_w_d(FPURegister fd, FPURegister fs);
917 void trunc_w_s(FPURegister fd, FPURegister fs);
918 void trunc_w_d(FPURegister fd, FPURegister fs);
919 void round_w_s(FPURegister fd, FPURegister fs);
920 void round_w_d(FPURegister fd, FPURegister fs);
921 void floor_w_s(FPURegister fd, FPURegister fs);
922 void floor_w_d(FPURegister fd, FPURegister fs);
923 void ceil_w_s(FPURegister fd, FPURegister fs);
924 void ceil_w_d(FPURegister fd, FPURegister fs);
926 void cvt_l_s(FPURegister fd, FPURegister fs);
927 void cvt_l_d(FPURegister fd, FPURegister fs);
928 void trunc_l_s(FPURegister fd, FPURegister fs);
929 void trunc_l_d(FPURegister fd, FPURegister fs);
930 void round_l_s(FPURegister fd, FPURegister fs);
931 void round_l_d(FPURegister fd, FPURegister fs);
932 void floor_l_s(FPURegister fd, FPURegister fs);
933 void floor_l_d(FPURegister fd, FPURegister fs);
934 void ceil_l_s(FPURegister fd, FPURegister fs);
935 void ceil_l_d(FPURegister fd, FPURegister fs);
937 void min(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
938 void mina(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
939 void max(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
940 void maxa(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
942 void cvt_s_w(FPURegister fd, FPURegister fs);
943 void cvt_s_l(FPURegister fd, FPURegister fs);
944 void cvt_s_d(FPURegister fd, FPURegister fs);
946 void cvt_d_w(FPURegister fd, FPURegister fs);
947 void cvt_d_l(FPURegister fd, FPURegister fs);
948 void cvt_d_s(FPURegister fd, FPURegister fs);
950 // Conditions and branches for MIPSr6.
951 void cmp(FPUCondition cond, SecondaryField fmt,
952 FPURegister fd, FPURegister ft, FPURegister fs);
954 void bc1eqz(int16_t offset, FPURegister ft);
955 void bc1eqz(Label* L, FPURegister ft) {
956 bc1eqz(branch_offset(L, false)>>2, ft);
958 void bc1nez(int16_t offset, FPURegister ft);
959 void bc1nez(Label* L, FPURegister ft) {
960 bc1nez(branch_offset(L, false)>>2, ft);
963 // Conditions and branches for non MIPSr6.
964 void c(FPUCondition cond, SecondaryField fmt,
965 FPURegister ft, FPURegister fs, uint16_t cc = 0);
967 void bc1f(int16_t offset, uint16_t cc = 0);
968 void bc1f(Label* L, uint16_t cc = 0) {
969 bc1f(branch_offset(L, false)>>2, cc);
971 void bc1t(int16_t offset, uint16_t cc = 0);
972 void bc1t(Label* L, uint16_t cc = 0) {
973 bc1t(branch_offset(L, false)>>2, cc);
975 void fcmp(FPURegister src1, const double src2, FPUCondition cond);
977 // Check the code size generated from label to here.
978 int SizeOfCodeGeneratedSince(Label* label) {
979 return pc_offset() - label->pos();
982 // Check the number of instructions generated from label to here.
983 int InstructionsGeneratedSince(Label* label) {
984 return SizeOfCodeGeneratedSince(label) / kInstrSize;
987 // Class for scoping postponing the trampoline pool generation.
988 class BlockTrampolinePoolScope {
990 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
991 assem_->StartBlockTrampolinePool();
993 ~BlockTrampolinePoolScope() {
994 assem_->EndBlockTrampolinePool();
1000 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1003 // Class for postponing the assembly buffer growth. Typically used for
1004 // sequences of instructions that must be emitted as a unit, before
1005 // buffer growth (and relocation) can occur.
1006 // This blocking scope is not nestable.
1007 class BlockGrowBufferScope {
1009 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1010 assem_->StartBlockGrowBuffer();
1012 ~BlockGrowBufferScope() {
1013 assem_->EndBlockGrowBuffer();
1019 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1024 // Mark address of the ExitJSFrame code.
1025 void RecordJSReturn();
1027 // Mark address of a debug break slot.
1028 void RecordDebugBreakSlot();
1030 // Record the AST id of the CallIC being compiled, so that it can be placed
1031 // in the relocation information.
1032 void SetRecordedAstId(TypeFeedbackId ast_id) {
1033 ASSERT(recorded_ast_id_.IsNone());
1034 recorded_ast_id_ = ast_id;
1037 TypeFeedbackId RecordedAstId() {
1038 ASSERT(!recorded_ast_id_.IsNone());
1039 return recorded_ast_id_;
1042 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1044 // Record a comment relocation entry that can be used by a disassembler.
1045 // Use --code-comments to enable.
1046 void RecordComment(const char* msg);
1048 static int RelocateInternalReference(byte* pc, intptr_t pc_delta);
1050 // Writes a single byte or word of data in the code stream. Used for
1051 // inline tables, e.g., jump-tables.
1052 void db(uint8_t data);
1053 void dd(uint32_t data);
1055 // Emits the address of the code stub's first instruction.
1056 void emit_code_stub_address(Code* stub);
1058 PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1060 // Postpone the generation of the trampoline pool for the specified number of
1062 void BlockTrampolinePoolFor(int instructions);
1064 // Check if there is less than kGap bytes available in the buffer.
1065 // If this is the case, we need to grow the buffer before emitting
1066 // an instruction or relocation information.
1067 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1069 // Get the number of bytes available in the buffer.
1070 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1072 // Read/patch instructions.
1073 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
1074 static void instr_at_put(byte* pc, Instr instr) {
1075 *reinterpret_cast<Instr*>(pc) = instr;
1077 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
1078 void instr_at_put(int pos, Instr instr) {
1079 *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1082 // Check if an instruction is a branch of some kind.
1083 static bool IsBranch(Instr instr);
1084 static bool IsBeq(Instr instr);
1085 static bool IsBne(Instr instr);
1087 static bool IsJump(Instr instr);
1088 static bool IsJ(Instr instr);
1089 static bool IsLui(Instr instr);
1090 static bool IsOri(Instr instr);
1092 static bool IsJal(Instr instr);
1093 static bool IsJr(Instr instr);
1094 static bool IsJalr(Instr instr);
1096 static bool IsNop(Instr instr, unsigned int type);
1097 static bool IsPop(Instr instr);
1098 static bool IsPush(Instr instr);
1099 static bool IsLwRegFpOffset(Instr instr);
1100 static bool IsSwRegFpOffset(Instr instr);
1101 static bool IsLwRegFpNegOffset(Instr instr);
1102 static bool IsSwRegFpNegOffset(Instr instr);
1104 static Register GetRtReg(Instr instr);
1105 static Register GetRsReg(Instr instr);
1106 static Register GetRdReg(Instr instr);
1108 static uint32_t GetRt(Instr instr);
1109 static uint32_t GetRtField(Instr instr);
1110 static uint32_t GetRs(Instr instr);
1111 static uint32_t GetRsField(Instr instr);
1112 static uint32_t GetRd(Instr instr);
1113 static uint32_t GetRdField(Instr instr);
1114 static uint32_t GetSa(Instr instr);
1115 static uint32_t GetSaField(Instr instr);
1116 static uint32_t GetOpcodeField(Instr instr);
1117 static uint32_t GetFunction(Instr instr);
1118 static uint32_t GetFunctionField(Instr instr);
1119 static uint32_t GetImmediate16(Instr instr);
1120 static uint32_t GetLabelConst(Instr instr);
1122 static int32_t GetBranchOffset(Instr instr);
1123 static bool IsLw(Instr instr);
1124 static int16_t GetLwOffset(Instr instr);
1125 static Instr SetLwOffset(Instr instr, int16_t offset);
1127 static bool IsSw(Instr instr);
1128 static Instr SetSwOffset(Instr instr, int16_t offset);
1129 static bool IsAddImmediate(Instr instr);
1130 static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1132 static bool IsAndImmediate(Instr instr);
1133 static bool IsEmittedConstant(Instr instr);
1135 void CheckTrampolinePool();
1137 // Allocate a constant pool of the correct size for the generated code.
1138 Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
1140 // Generate the constant pool for the generated code.
1141 void PopulateConstantPool(ConstantPoolArray* constant_pool);
1144 // Relocation for a type-recording IC has the AST id added to it. This
1145 // member variable is a way to pass the information from the call site to
1146 // the relocation info.
1147 TypeFeedbackId recorded_ast_id_;
1149 int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1151 // Decode branch instruction at pos and return branch target pos.
1152 int64_t target_at(int64_t pos);
1154 // Patch branch instruction at pos to branch to given branch target pos.
1155 void target_at_put(int64_t pos, int64_t target_pos);
1157 // Say if we need to relocate with this mode.
1158 bool MustUseReg(RelocInfo::Mode rmode);
1160 // Record reloc info for current pc_.
1161 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1163 // Block the emission of the trampoline pool before pc_offset.
1164 void BlockTrampolinePoolBefore(int pc_offset) {
1165 if (no_trampoline_pool_before_ < pc_offset)
1166 no_trampoline_pool_before_ = pc_offset;
1169 void StartBlockTrampolinePool() {
1170 trampoline_pool_blocked_nesting_++;
1173 void EndBlockTrampolinePool() {
1174 trampoline_pool_blocked_nesting_--;
1177 bool is_trampoline_pool_blocked() const {
1178 return trampoline_pool_blocked_nesting_ > 0;
1181 bool has_exception() const {
1182 return internal_trampoline_exception_;
1185 void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1187 bool is_trampoline_emitted() const {
1188 return trampoline_emitted_;
1191 // Temporarily block automatic assembly buffer growth.
1192 void StartBlockGrowBuffer() {
1193 ASSERT(!block_buffer_growth_);
1194 block_buffer_growth_ = true;
1197 void EndBlockGrowBuffer() {
1198 ASSERT(block_buffer_growth_);
1199 block_buffer_growth_ = false;
1202 bool is_buffer_growth_blocked() const {
1203 return block_buffer_growth_;
1207 // Buffer size and constant pool distance are checked together at regular
1208 // intervals of kBufferCheckInterval emitted bytes.
1209 static const int kBufferCheckInterval = 1*KB/2;
1212 // The relocation writer's position is at least kGap bytes below the end of
1213 // the generated instructions. This is so that multi-instruction sequences do
1214 // not have to check for overflow. The same is true for writes of large
1215 // relocation info entries.
1216 static const int kGap = 32;
1219 // Repeated checking whether the trampoline pool should be emitted is rather
1220 // expensive. By default we only check again once a number of instructions
1221 // has been generated.
1222 static const int kCheckConstIntervalInst = 32;
1223 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1225 int next_buffer_check_; // pc offset of next buffer check.
1227 // Emission of the trampoline pool may be blocked in some code sequences.
1228 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero.
1229 int no_trampoline_pool_before_; // Block emission before this pc offset.
1231 // Keep track of the last emitted pool to guarantee a maximal distance.
1232 int last_trampoline_pool_end_; // pc offset of the end of the last pool.
1234 // Automatic growth of the assembly buffer may be blocked for some sequences.
1235 bool block_buffer_growth_; // Block growth when true.
1237 // Relocation information generation.
1238 // Each relocation is encoded as a variable size value.
1239 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1240 RelocInfoWriter reloc_info_writer;
1242 // The bound position, before this we cannot do instruction elimination.
1243 int last_bound_pos_;
1246 inline void CheckBuffer();
1248 inline void emit(Instr x);
1249 inline void emit(uint64_t x);
1250 inline void CheckTrampolinePoolQuick();
1252 // Instruction generation.
1253 // We have 3 different kind of encoding layout on MIPS.
1254 // However due to many different types of objects encoded in the same fields
1255 // we have quite a few aliases for each mode.
1256 // Using the same structure to refer to Register and FPURegister would spare a
1257 // few aliases, but mixing both does not look clean to me.
1258 // Anyway we could surely implement this differently.
1260 void GenInstrRegister(Opcode opcode,
1265 SecondaryField func = NULLSF);
1267 void GenInstrRegister(Opcode opcode,
1272 SecondaryField func);
1274 void GenInstrRegister(Opcode opcode,
1279 SecondaryField func = NULLSF);
1281 void GenInstrRegister(Opcode opcode,
1286 SecondaryField func = NULLSF);
1288 void GenInstrRegister(Opcode opcode,
1293 SecondaryField func = NULLSF);
1295 void GenInstrRegister(Opcode opcode,
1298 FPUControlRegister fs,
1299 SecondaryField func = NULLSF);
1302 void GenInstrImmediate(Opcode opcode,
1306 void GenInstrImmediate(Opcode opcode,
1310 void GenInstrImmediate(Opcode opcode,
1316 void GenInstrJump(Opcode opcode,
1320 void LoadRegPlusOffsetToAt(const MemOperand& src);
1323 void print(Label* L);
1324 void bind_to(Label* L, int pos);
1325 void next(Label* L);
1327 // One trampoline consists of:
1328 // - space for trampoline slots,
1329 // - space for labels.
1331 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1332 // Space for trampoline slots preceeds space for labels. Each label is of one
1333 // instruction size, so total amount for labels is equal to
1334 // label_count * kInstrSize.
1340 free_slot_count_ = 0;
1343 Trampoline(int start, int slot_count) {
1346 free_slot_count_ = slot_count;
1347 end_ = start + slot_count * kTrampolineSlotsSize;
1356 int trampoline_slot = kInvalidSlotPos;
1357 if (free_slot_count_ <= 0) {
1358 // We have run out of space on trampolines.
1359 // Make sure we fail in debug mode, so we become aware of each case
1360 // when this happens.
1362 // Internal exception will be caught.
1364 trampoline_slot = next_slot_;
1366 next_slot_ += kTrampolineSlotsSize;
1368 return trampoline_slot;
1375 int free_slot_count_;
1378 int32_t get_trampoline_entry(int32_t pos);
1379 int unbound_labels_count_;
1380 // If trampoline is emitted, generated code is becoming large. As this is
1381 // already a slow case which can possibly break our code generation for the
1382 // extreme case, we use this information to trigger different mode of
1383 // branch instruction generation, where we use jump instructions rather
1384 // than regular branch instructions.
1385 bool trampoline_emitted_;
1386 static const int kTrampolineSlotsSize = 6 * kInstrSize;
1387 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1388 static const int kInvalidSlotPos = -1;
1390 Trampoline trampoline_;
1391 bool internal_trampoline_exception_;
1393 friend class RegExpMacroAssemblerMIPS;
1394 friend class RelocInfo;
1395 friend class CodePatcher;
1396 friend class BlockTrampolinePoolScope;
1398 PositionsRecorder positions_recorder_;
1399 friend class PositionsRecorder;
1400 friend class EnsureSpace;
1404 class EnsureSpace BASE_EMBEDDED {
1406 explicit EnsureSpace(Assembler* assembler) {
1407 assembler->CheckBuffer();
1411 } } // namespace v8::internal
1413 #endif // V8_ARM_ASSEMBLER_MIPS_H_