1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
43 #include "src/assembler.h"
44 #include "src/compiler.h"
45 #include "src/mips64/constants-mips64.h"
46 #include "src/serialize.h"
53 // 1) We would prefer to use an enum, but enum values are assignment-
54 // compatible with int, which has caused code-generation bugs.
56 // 2) We would prefer to use a class instead of a struct but we don't like
57 // the register initialization to depend on the particular initialization
58 // order (which appears to be different on OS X, Linux, and Windows for the
59 // installed versions of C++ we tried). Using a struct permits C-style
60 // "initialization". Also, the Register objects cannot be const as this
61 // forces initialization stubs in MSVC, making us dependent on initialization
64 // 3) By not using an enum, we are possibly preventing the compiler from
65 // doing certain constant folds, which may significantly reduce the
66 // code generated for some assembly instructions (because they boil down
67 // to a few constants). If this is a problem, we could change the code
68 // such that we use an enum in optimized mode, and the struct in debug
69 // mode. This way we get the compile-time error checking in debug mode
70 // and best performance in optimized code.
73 // -----------------------------------------------------------------------------
74 // Implementation of Register and FPURegister.
78 static const int kNumRegisters = v8::internal::kNumRegisters;
79 static const int kMaxNumAllocatableRegisters = 14; // v0 through t6 and cp.
80 static const int kSizeInBytes = 8;
81 static const int kCpRegister = 23; // cp (s7) is the 23rd register.
83 inline static int NumAllocatableRegisters();
85 static int ToAllocationIndex(Register reg) {
86 DCHECK((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) ||
87 reg.is(from_code(kCpRegister)));
88 return reg.is(from_code(kCpRegister)) ?
89 kMaxNumAllocatableRegisters - 1 : // Return last index for 'cp'.
90 reg.code() - 2; // zero_reg and 'at' are skipped.
93 static Register FromAllocationIndex(int index) {
94 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
95 return index == kMaxNumAllocatableRegisters - 1 ?
96 from_code(kCpRegister) : // Last index is always the 'cp' register.
97 from_code(index + 2); // zero_reg and 'at' are skipped.
100 static const char* AllocationIndexToString(int index) {
101 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
102 const char* const names[] = {
121 static Register from_code(int code) {
122 Register r = { code };
126 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
127 bool is(Register reg) const { return code_ == reg.code_; }
137 // Unfortunately we can't make this private in a struct.
141 #define REGISTER(N, C) \
142 const int kRegister_ ## N ## _Code = C; \
143 const Register N = { C }
145 REGISTER(no_reg, -1);
147 REGISTER(zero_reg, 0);
148 // at: Reserved for synthetic instructions.
150 // v0, v1: Used when returning multiple values from subroutines.
153 // a0 - a4: Used to pass non-FP parameters.
158 // a4 - a7 t0 - t3: Can be used without reservation, act as temporary registers
159 // and are allowed to be destroyed by subroutines.
168 // s0 - s7: Subroutine register variables. Subroutines that write to these
169 // registers must restore their values before exiting so that the caller can
170 // expect the values to be preserved.
181 // k0, k1: Reserved for system calls and interrupt handlers.
186 // sp: Stack pointer.
188 // fp: Frame pointer.
190 // ra: Return address pointer.
196 int ToNumber(Register reg);
198 Register ToRegister(int num);
200 // Coprocessor register.
202 static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;
204 // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
205 // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
206 // number of Double regs (64-bit regs, or FPU-reg-pairs).
208 // A few double registers are reserved: one as a scratch register and one to
211 // f30: scratch register.
212 static const int kNumReservedRegisters = 2;
213 static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
214 kNumReservedRegisters;
216 inline static int NumRegisters();
217 inline static int NumAllocatableRegisters();
219 // TODO(turbofan): Proper support for float32.
220 inline static int NumAllocatableAliasedRegisters();
222 inline static int ToAllocationIndex(FPURegister reg);
223 static const char* AllocationIndexToString(int index);
225 static FPURegister FromAllocationIndex(int index) {
226 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
227 return from_code(index * 2);
230 static FPURegister from_code(int code) {
231 FPURegister r = { code };
235 bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
236 bool is(FPURegister creg) const { return code_ == creg.code_; }
237 FPURegister low() const {
238 // TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1.
239 // Find low reg of a Double-reg pair, which is the reg itself.
240 DCHECK(code_ % 2 == 0); // Specified Double reg must be even.
243 DCHECK(reg.is_valid());
246 FPURegister high() const {
247 // TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1.
248 // Find high reg of a Doubel-reg pair, which is reg + 1.
249 DCHECK(code_ % 2 == 0); // Specified Double reg must be even.
251 reg.code_ = code_ + 1;
252 DCHECK(reg.is_valid());
264 void setcode(int f) {
268 // Unfortunately we can't make this private in a struct.
272 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
273 // 32-bit registers, f0 through f31. When used as 'double' they are used
274 // in pairs, starting with the even numbered register. So a double operation
275 // on f0 really uses f0 and f1.
276 // (Modern mips hardware also supports 32 64-bit registers, via setting
277 // (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
278 // but it is not in common use. Someday we will want to support this in v8.)
280 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
281 typedef FPURegister DoubleRegister;
282 typedef FPURegister FloatRegister;
284 const FPURegister no_freg = { -1 };
286 const FPURegister f0 = { 0 }; // Return value in hard float mode.
287 const FPURegister f1 = { 1 };
288 const FPURegister f2 = { 2 };
289 const FPURegister f3 = { 3 };
290 const FPURegister f4 = { 4 };
291 const FPURegister f5 = { 5 };
292 const FPURegister f6 = { 6 };
293 const FPURegister f7 = { 7 };
294 const FPURegister f8 = { 8 };
295 const FPURegister f9 = { 9 };
296 const FPURegister f10 = { 10 };
297 const FPURegister f11 = { 11 };
298 const FPURegister f12 = { 12 }; // Arg 0 in hard float mode.
299 const FPURegister f13 = { 13 };
300 const FPURegister f14 = { 14 }; // Arg 1 in hard float mode.
301 const FPURegister f15 = { 15 };
302 const FPURegister f16 = { 16 };
303 const FPURegister f17 = { 17 };
304 const FPURegister f18 = { 18 };
305 const FPURegister f19 = { 19 };
306 const FPURegister f20 = { 20 };
307 const FPURegister f21 = { 21 };
308 const FPURegister f22 = { 22 };
309 const FPURegister f23 = { 23 };
310 const FPURegister f24 = { 24 };
311 const FPURegister f25 = { 25 };
312 const FPURegister f26 = { 26 };
313 const FPURegister f27 = { 27 };
314 const FPURegister f28 = { 28 };
315 const FPURegister f29 = { 29 };
316 const FPURegister f30 = { 30 };
317 const FPURegister f31 = { 31 };
320 // cp is assumed to be a callee saved register.
321 // Defined using #define instead of "static const Register&" because Clang
322 // complains otherwise when a compilation unit that includes this header
323 // doesn't use the variables.
324 #define kRootRegister s6
326 #define kLithiumScratchReg s3
327 #define kLithiumScratchReg2 s4
328 #define kLithiumScratchDouble f30
329 #define kDoubleRegZero f28
330 // Used on mips64r6 for compare operations.
331 #define kDoubleCompareReg f31
333 // FPU (coprocessor 1) control registers.
334 // Currently only FCSR (#31) is implemented.
335 struct FPUControlRegister {
336 bool is_valid() const { return code_ == kFCSRRegister; }
337 bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
346 void setcode(int f) {
350 // Unfortunately we can't make this private in a struct.
354 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
355 const FPUControlRegister FCSR = { kFCSRRegister };
358 // -----------------------------------------------------------------------------
359 // Machine instruction Operands.
360 const int kSmiShift = kSmiTagSize + kSmiShiftSize;
361 const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
362 // Class Operand represents a shifter operand in data processing instructions.
363 class Operand BASE_EMBEDDED {
366 INLINE(explicit Operand(int64_t immediate,
367 RelocInfo::Mode rmode = RelocInfo::NONE64));
368 INLINE(explicit Operand(const ExternalReference& f));
369 INLINE(explicit Operand(const char* s));
370 INLINE(explicit Operand(Object** opp));
371 INLINE(explicit Operand(Context** cpp));
372 explicit Operand(Handle<Object> handle);
373 INLINE(explicit Operand(Smi* value));
376 INLINE(explicit Operand(Register rm));
378 // Return true if this is a register operand.
379 INLINE(bool is_reg() const);
381 inline int64_t immediate() const {
386 Register rm() const { return rm_; }
390 int64_t imm64_; // Valid if rm_ == no_reg.
391 RelocInfo::Mode rmode_;
393 friend class Assembler;
394 friend class MacroAssembler;
398 // On MIPS we have only one adressing mode with base_reg + offset.
399 // Class MemOperand represents a memory operand in load and store instructions.
400 class MemOperand : public Operand {
402 // Immediate value attached to offset.
404 offset_minus_one = -1,
408 explicit MemOperand(Register rn, int64_t offset = 0);
409 explicit MemOperand(Register rn, int64_t unit, int64_t multiplier,
410 OffsetAddend offset_addend = offset_zero);
411 int32_t offset() const { return offset_; }
413 bool OffsetIsInt16Encodable() const {
414 return is_int16(offset_);
420 friend class Assembler;
424 class Assembler : public AssemblerBase {
426 // Create an assembler. Instructions and relocation information are emitted
427 // into a buffer, with the instructions starting from the beginning and the
428 // relocation information starting from the end of the buffer. See CodeDesc
429 // for a detailed comment on the layout (globals.h).
431 // If the provided buffer is NULL, the assembler allocates and grows its own
432 // buffer, and buffer_size determines the initial buffer size. The buffer is
433 // owned by the assembler and deallocated upon destruction of the assembler.
435 // If the provided buffer is not NULL, the assembler uses the provided buffer
436 // for code generation and assumes its size to be buffer_size. If the buffer
437 // is too small, a fatal error occurs. No deallocation of the buffer is done
438 // upon destruction of the assembler.
439 Assembler(Isolate* isolate, void* buffer, int buffer_size);
440 virtual ~Assembler() { }
442 // GetCode emits any pending (non-emitted) code and fills the descriptor
443 // desc. GetCode() is idempotent; it returns the same result if no other
444 // Assembler functions are invoked in between GetCode() calls.
445 void GetCode(CodeDesc* desc);
447 // Label operations & relative jumps (PPUM Appendix D).
449 // Takes a branch opcode (cc) and a label (L) and generates
450 // either a backward branch or a forward branch and links it
451 // to the label fixup chain. Usage:
453 // Label L; // unbound label
454 // j(cc, &L); // forward branch to unbound label
455 // bind(&L); // bind label to the current pc
456 // j(cc, &L); // backward branch to bound label
457 // bind(&L); // illegal: a label may be bound only once
459 // Note: The same Label can be used for forward and backward branches
460 // but it may be bound only once.
461 void bind(Label* L); // Binds an unbound label L to current code position.
462 // Determines if Label is bound and near enough so that branch instruction
463 // can be used to reach it, instead of jump instruction.
464 bool is_near(Label* L);
466 // Returns the branch offset to the given label from the current code
467 // position. Links the label to the current position if it is still unbound.
468 // Manages the jump elimination optimization if the second parameter is true.
469 int32_t branch_offset(Label* L, bool jump_elimination_allowed);
470 int32_t branch_offset_compact(Label* L, bool jump_elimination_allowed);
471 int32_t branch_offset21(Label* L, bool jump_elimination_allowed);
472 int32_t branch_offset21_compact(Label* L, bool jump_elimination_allowed);
473 int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
474 int32_t o = branch_offset(L, jump_elimination_allowed);
475 DCHECK((o & 3) == 0); // Assert the offset is aligned.
478 int32_t shifted_branch_offset_compact(Label* L,
479 bool jump_elimination_allowed) {
480 int32_t o = branch_offset_compact(L, jump_elimination_allowed);
481 DCHECK((o & 3) == 0); // Assert the offset is aligned.
484 uint64_t jump_address(Label* L);
486 // Puts a labels target address at the given position.
487 // The high 8 bits are set to zero.
488 void label_at_put(Label* L, int at_offset);
490 // Read/Modify the code target address in the branch/call instruction at pc.
491 static Address target_address_at(Address pc);
492 static void set_target_address_at(Address pc,
494 ICacheFlushMode icache_flush_mode =
495 FLUSH_ICACHE_IF_NEEDED);
496 // On MIPS there is no Constant Pool so we skip that parameter.
497 INLINE(static Address target_address_at(Address pc,
498 ConstantPoolArray* constant_pool)) {
499 return target_address_at(pc);
501 INLINE(static void set_target_address_at(Address pc,
502 ConstantPoolArray* constant_pool,
504 ICacheFlushMode icache_flush_mode =
505 FLUSH_ICACHE_IF_NEEDED)) {
506 set_target_address_at(pc, target, icache_flush_mode);
508 INLINE(static Address target_address_at(Address pc, Code* code)) {
509 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
510 return target_address_at(pc, constant_pool);
512 INLINE(static void set_target_address_at(Address pc,
515 ICacheFlushMode icache_flush_mode =
516 FLUSH_ICACHE_IF_NEEDED)) {
517 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
518 set_target_address_at(pc, constant_pool, target, icache_flush_mode);
521 // Return the code target address at a call site from the return address
522 // of that call in the instruction stream.
523 inline static Address target_address_from_return_address(Address pc);
525 // Return the code target address of the patch debug break slot
526 inline static Address break_address_from_return_address(Address pc);
528 static void JumpLabelToJumpRegister(Address pc);
530 static void QuietNaN(HeapObject* nan);
532 // This sets the branch destination (which gets loaded at the call address).
533 // This is for calls and branches within generated code. The serializer
534 // has already deserialized the lui/ori instructions etc.
535 inline static void deserialization_set_special_target_at(
536 Address instruction_payload, Code* code, Address target) {
537 set_target_address_at(
538 instruction_payload - kInstructionsFor64BitConstant * kInstrSize,
543 // This sets the internal reference at the pc.
544 inline static void deserialization_set_target_internal_reference_at(
545 Address pc, Address target);
547 // Size of an instruction.
548 static const int kInstrSize = sizeof(Instr);
550 // Difference between address of current opcode and target address offset.
551 static const int kBranchPCOffset = 4;
553 // Here we are patching the address in the LUI/ORI instruction pair.
554 // These values are used in the serialization process and must be zero for
555 // MIPS platform, as Code, Embedded Object or External-reference pointers
556 // are split across two consecutive instructions and don't exist separately
557 // in the code, so the serializer should not step forwards in memory after
558 // a target is resolved and written.
559 static const int kSpecialTargetSize = 0;
561 // Number of consecutive instructions used to store 32bit/64bit constant.
562 // Before jump-optimizations, this constant was used in
563 // RelocInfo::target_address_address() function to tell serializer address of
564 // the instruction that follows LUI/ORI instruction pair. Now, with new jump
565 // optimization, where jump-through-register instruction that usually
566 // follows LUI/ORI pair is substituted with J/JAL, this constant equals
567 // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
568 static const int kInstructionsFor32BitConstant = 3;
569 static const int kInstructionsFor64BitConstant = 5;
571 // Distance between the instruction referring to the address of the call
572 // target and the return address.
573 static const int kCallTargetAddressOffset = 6 * kInstrSize;
575 // Distance between start of patched return sequence and the emitted address
577 static const int kPatchReturnSequenceAddressOffset = 0;
579 // Distance between start of patched debug break slot and the emitted address
581 static const int kPatchDebugBreakSlotAddressOffset = 0 * kInstrSize;
583 // Difference between address of current opcode and value read from pc
585 static const int kPcLoadDelta = 4;
587 static const int kPatchDebugBreakSlotReturnOffset = 6 * kInstrSize;
589 // Number of instructions used for the JS return sequence. The constant is
590 // used by the debugger to patch the JS return sequence.
591 static const int kJSReturnSequenceInstructions = 7;
592 static const int kJSReturnSequenceLength =
593 kJSReturnSequenceInstructions * kInstrSize;
594 static const int kDebugBreakSlotInstructions = 6;
595 static const int kDebugBreakSlotLength =
596 kDebugBreakSlotInstructions * kInstrSize;
599 // ---------------------------------------------------------------------------
602 // Insert the smallest number of nop instructions
603 // possible to align the pc offset to a multiple
604 // of m. m must be a power of 2 (>= 4).
606 // Aligns code to something that's optimal for a jump target for the platform.
607 void CodeTargetAlign();
609 // Different nop operations are used by the code generator to detect certain
610 // states of the generated code.
611 enum NopMarkerTypes {
615 PROPERTY_ACCESS_INLINED,
616 PROPERTY_ACCESS_INLINED_CONTEXT,
617 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
620 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
622 CODE_AGE_MARKER_NOP = 6,
623 CODE_AGE_SEQUENCE_NOP
626 // Type == 0 is the default non-marking nop. For mips this is a
627 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
628 // marking, to avoid conflict with ssnop and ehb instructions.
629 void nop(unsigned int type = 0) {
631 Register nop_rt_reg = (type == 0) ? zero_reg : at;
632 sll(zero_reg, nop_rt_reg, type, true);
636 // --------Branch-and-jump-instructions----------
637 // We don't use likely variant of instructions.
638 void b(int16_t offset);
639 void b(Label* L) { b(branch_offset(L, false)>>2); }
640 void bal(int16_t offset);
641 void bal(Label* L) { bal(branch_offset(L, false)>>2); }
643 void beq(Register rs, Register rt, int16_t offset);
644 void beq(Register rs, Register rt, Label* L) {
645 beq(rs, rt, branch_offset(L, false) >> 2);
647 void bgez(Register rs, int16_t offset);
648 void bgezc(Register rt, int16_t offset);
649 void bgezc(Register rt, Label* L) {
650 bgezc(rt, branch_offset_compact(L, false)>>2);
652 void bgeuc(Register rs, Register rt, int16_t offset);
653 void bgeuc(Register rs, Register rt, Label* L) {
654 bgeuc(rs, rt, branch_offset_compact(L, false)>>2);
656 void bgec(Register rs, Register rt, int16_t offset);
657 void bgec(Register rs, Register rt, Label* L) {
658 bgec(rs, rt, branch_offset_compact(L, false)>>2);
660 void bgezal(Register rs, int16_t offset);
661 void bgezalc(Register rt, int16_t offset);
662 void bgezalc(Register rt, Label* L) {
663 bgezalc(rt, branch_offset_compact(L, false)>>2);
665 void bgezall(Register rs, int16_t offset);
666 void bgezall(Register rs, Label* L) {
667 bgezall(rs, branch_offset(L, false)>>2);
669 void bgtz(Register rs, int16_t offset);
670 void bgtzc(Register rt, int16_t offset);
671 void bgtzc(Register rt, Label* L) {
672 bgtzc(rt, branch_offset_compact(L, false)>>2);
674 void blez(Register rs, int16_t offset);
675 void blezc(Register rt, int16_t offset);
676 void blezc(Register rt, Label* L) {
677 blezc(rt, branch_offset_compact(L, false)>>2);
679 void bltz(Register rs, int16_t offset);
680 void bltzc(Register rt, int16_t offset);
681 void bltzc(Register rt, Label* L) {
682 bltzc(rt, branch_offset_compact(L, false)>>2);
684 void bltuc(Register rs, Register rt, int16_t offset);
685 void bltuc(Register rs, Register rt, Label* L) {
686 bltuc(rs, rt, branch_offset_compact(L, false)>>2);
688 void bltc(Register rs, Register rt, int16_t offset);
689 void bltc(Register rs, Register rt, Label* L) {
690 bltc(rs, rt, branch_offset_compact(L, false)>>2);
693 void bltzal(Register rs, int16_t offset);
694 void blezalc(Register rt, int16_t offset);
695 void blezalc(Register rt, Label* L) {
696 blezalc(rt, branch_offset_compact(L, false)>>2);
698 void bltzalc(Register rt, int16_t offset);
699 void bltzalc(Register rt, Label* L) {
700 bltzalc(rt, branch_offset_compact(L, false)>>2);
702 void bgtzalc(Register rt, int16_t offset);
703 void bgtzalc(Register rt, Label* L) {
704 bgtzalc(rt, branch_offset_compact(L, false)>>2);
706 void beqzalc(Register rt, int16_t offset);
707 void beqzalc(Register rt, Label* L) {
708 beqzalc(rt, branch_offset_compact(L, false)>>2);
710 void beqc(Register rs, Register rt, int16_t offset);
711 void beqc(Register rs, Register rt, Label* L) {
712 beqc(rs, rt, branch_offset_compact(L, false)>>2);
714 void beqzc(Register rs, int32_t offset);
715 void beqzc(Register rs, Label* L) {
716 beqzc(rs, branch_offset21_compact(L, false)>>2);
718 void bnezalc(Register rt, int16_t offset);
719 void bnezalc(Register rt, Label* L) {
720 bnezalc(rt, branch_offset_compact(L, false)>>2);
722 void bnec(Register rs, Register rt, int16_t offset);
723 void bnec(Register rs, Register rt, Label* L) {
724 bnec(rs, rt, branch_offset_compact(L, false)>>2);
726 void bnezc(Register rt, int32_t offset);
727 void bnezc(Register rt, Label* L) {
728 bnezc(rt, branch_offset21_compact(L, false)>>2);
730 void bne(Register rs, Register rt, int16_t offset);
731 void bne(Register rs, Register rt, Label* L) {
732 bne(rs, rt, branch_offset(L, false)>>2);
734 void bovc(Register rs, Register rt, int16_t offset);
735 void bovc(Register rs, Register rt, Label* L) {
736 bovc(rs, rt, branch_offset_compact(L, false)>>2);
738 void bnvc(Register rs, Register rt, int16_t offset);
739 void bnvc(Register rs, Register rt, Label* L) {
740 bnvc(rs, rt, branch_offset_compact(L, false)>>2);
743 // Never use the int16_t b(l)cond version with a branch offset
744 // instead of using the Label* version.
746 // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
747 void j(int64_t target);
748 void jal(int64_t target);
749 void jalr(Register rs, Register rd = ra);
750 void jr(Register target);
751 void j_or_jr(int64_t target, Register rs);
752 void jal_or_jalr(int64_t target, Register rs);
755 // -------Data-processing-instructions---------
758 void addu(Register rd, Register rs, Register rt);
759 void subu(Register rd, Register rs, Register rt);
761 void div(Register rs, Register rt);
762 void divu(Register rs, Register rt);
763 void ddiv(Register rs, Register rt);
764 void ddivu(Register rs, Register rt);
765 void div(Register rd, Register rs, Register rt);
766 void divu(Register rd, Register rs, Register rt);
767 void ddiv(Register rd, Register rs, Register rt);
768 void ddivu(Register rd, Register rs, Register rt);
769 void mod(Register rd, Register rs, Register rt);
770 void modu(Register rd, Register rs, Register rt);
771 void dmod(Register rd, Register rs, Register rt);
772 void dmodu(Register rd, Register rs, Register rt);
774 void mul(Register rd, Register rs, Register rt);
775 void muh(Register rd, Register rs, Register rt);
776 void mulu(Register rd, Register rs, Register rt);
777 void muhu(Register rd, Register rs, Register rt);
778 void mult(Register rs, Register rt);
779 void multu(Register rs, Register rt);
780 void dmul(Register rd, Register rs, Register rt);
781 void dmuh(Register rd, Register rs, Register rt);
782 void dmulu(Register rd, Register rs, Register rt);
783 void dmuhu(Register rd, Register rs, Register rt);
784 void daddu(Register rd, Register rs, Register rt);
785 void dsubu(Register rd, Register rs, Register rt);
786 void dmult(Register rs, Register rt);
787 void dmultu(Register rs, Register rt);
789 void addiu(Register rd, Register rs, int32_t j);
790 void daddiu(Register rd, Register rs, int32_t j);
793 void and_(Register rd, Register rs, Register rt);
794 void or_(Register rd, Register rs, Register rt);
795 void xor_(Register rd, Register rs, Register rt);
796 void nor(Register rd, Register rs, Register rt);
798 void andi(Register rd, Register rs, int32_t j);
799 void ori(Register rd, Register rs, int32_t j);
800 void xori(Register rd, Register rs, int32_t j);
801 void lui(Register rd, int32_t j);
802 void aui(Register rs, Register rt, int32_t j);
803 void daui(Register rs, Register rt, int32_t j);
804 void dahi(Register rs, int32_t j);
805 void dati(Register rs, int32_t j);
808 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
809 // and may cause problems in normal code. coming_from_nop makes sure this
811 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
812 void sllv(Register rd, Register rt, Register rs);
813 void srl(Register rd, Register rt, uint16_t sa);
814 void srlv(Register rd, Register rt, Register rs);
815 void sra(Register rt, Register rd, uint16_t sa);
816 void srav(Register rt, Register rd, Register rs);
817 void rotr(Register rd, Register rt, uint16_t sa);
818 void rotrv(Register rd, Register rt, Register rs);
819 void dsll(Register rd, Register rt, uint16_t sa);
820 void dsllv(Register rd, Register rt, Register rs);
821 void dsrl(Register rd, Register rt, uint16_t sa);
822 void dsrlv(Register rd, Register rt, Register rs);
823 void drotr(Register rd, Register rt, uint16_t sa);
824 void drotrv(Register rd, Register rt, Register rs);
825 void dsra(Register rt, Register rd, uint16_t sa);
826 void dsrav(Register rd, Register rt, Register rs);
827 void dsll32(Register rt, Register rd, uint16_t sa);
828 void dsrl32(Register rt, Register rd, uint16_t sa);
829 void dsra32(Register rt, Register rd, uint16_t sa);
832 // ------------Memory-instructions-------------
834 void lb(Register rd, const MemOperand& rs);
835 void lbu(Register rd, const MemOperand& rs);
836 void lh(Register rd, const MemOperand& rs);
837 void lhu(Register rd, const MemOperand& rs);
838 void lw(Register rd, const MemOperand& rs);
839 void lwu(Register rd, const MemOperand& rs);
840 void lwl(Register rd, const MemOperand& rs);
841 void lwr(Register rd, const MemOperand& rs);
842 void sb(Register rd, const MemOperand& rs);
843 void sh(Register rd, const MemOperand& rs);
844 void sw(Register rd, const MemOperand& rs);
845 void swl(Register rd, const MemOperand& rs);
846 void swr(Register rd, const MemOperand& rs);
847 void ldl(Register rd, const MemOperand& rs);
848 void ldr(Register rd, const MemOperand& rs);
849 void sdl(Register rd, const MemOperand& rs);
850 void sdr(Register rd, const MemOperand& rs);
851 void ld(Register rd, const MemOperand& rs);
852 void sd(Register rd, const MemOperand& rs);
855 // ----------------Prefetch--------------------
857 void pref(int32_t hint, const MemOperand& rs);
860 // -------------Misc-instructions--------------
862 // Break / Trap instructions.
863 void break_(uint32_t code, bool break_as_stop = false);
864 void stop(const char* msg, uint32_t code = kMaxStopCode);
865 void tge(Register rs, Register rt, uint16_t code);
866 void tgeu(Register rs, Register rt, uint16_t code);
867 void tlt(Register rs, Register rt, uint16_t code);
868 void tltu(Register rs, Register rt, uint16_t code);
869 void teq(Register rs, Register rt, uint16_t code);
870 void tne(Register rs, Register rt, uint16_t code);
872 // Move from HI/LO register.
873 void mfhi(Register rd);
874 void mflo(Register rd);
877 void slt(Register rd, Register rs, Register rt);
878 void sltu(Register rd, Register rs, Register rt);
879 void slti(Register rd, Register rs, int32_t j);
880 void sltiu(Register rd, Register rs, int32_t j);
883 void movz(Register rd, Register rs, Register rt);
884 void movn(Register rd, Register rs, Register rt);
885 void movt(Register rd, Register rs, uint16_t cc = 0);
886 void movf(Register rd, Register rs, uint16_t cc = 0);
888 void sel(SecondaryField fmt, FPURegister fd, FPURegister ft,
889 FPURegister fs, uint8_t sel);
890 void seleqz(Register rs, Register rt, Register rd);
891 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister ft,
893 void selnez(Register rs, Register rt, Register rd);
894 void selnez(SecondaryField fmt, FPURegister fd, FPURegister ft,
898 void clz(Register rd, Register rs);
899 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
900 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
901 void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
903 // --------Coprocessor-instructions----------------
905 // Load, store, and move.
906 void lwc1(FPURegister fd, const MemOperand& src);
907 void ldc1(FPURegister fd, const MemOperand& src);
909 void swc1(FPURegister fs, const MemOperand& dst);
910 void sdc1(FPURegister fs, const MemOperand& dst);
912 void mtc1(Register rt, FPURegister fs);
913 void mthc1(Register rt, FPURegister fs);
914 void dmtc1(Register rt, FPURegister fs);
916 void mfc1(Register rt, FPURegister fs);
917 void mfhc1(Register rt, FPURegister fs);
918 void dmfc1(Register rt, FPURegister fs);
920 void ctc1(Register rt, FPUControlRegister fs);
921 void cfc1(Register rt, FPUControlRegister fs);
924 void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
925 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
926 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
927 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
928 void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
929 void abs_d(FPURegister fd, FPURegister fs);
930 void mov_d(FPURegister fd, FPURegister fs);
931 void neg_d(FPURegister fd, FPURegister fs);
932 void sqrt_d(FPURegister fd, FPURegister fs);
935 void cvt_w_s(FPURegister fd, FPURegister fs);
936 void cvt_w_d(FPURegister fd, FPURegister fs);
937 void trunc_w_s(FPURegister fd, FPURegister fs);
938 void trunc_w_d(FPURegister fd, FPURegister fs);
939 void round_w_s(FPURegister fd, FPURegister fs);
940 void round_w_d(FPURegister fd, FPURegister fs);
941 void floor_w_s(FPURegister fd, FPURegister fs);
942 void floor_w_d(FPURegister fd, FPURegister fs);
943 void ceil_w_s(FPURegister fd, FPURegister fs);
944 void ceil_w_d(FPURegister fd, FPURegister fs);
946 void cvt_l_s(FPURegister fd, FPURegister fs);
947 void cvt_l_d(FPURegister fd, FPURegister fs);
948 void trunc_l_s(FPURegister fd, FPURegister fs);
949 void trunc_l_d(FPURegister fd, FPURegister fs);
950 void round_l_s(FPURegister fd, FPURegister fs);
951 void round_l_d(FPURegister fd, FPURegister fs);
952 void floor_l_s(FPURegister fd, FPURegister fs);
953 void floor_l_d(FPURegister fd, FPURegister fs);
954 void ceil_l_s(FPURegister fd, FPURegister fs);
955 void ceil_l_d(FPURegister fd, FPURegister fs);
957 void min(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
958 void mina(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
959 void max(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
960 void maxa(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
962 void cvt_s_w(FPURegister fd, FPURegister fs);
963 void cvt_s_l(FPURegister fd, FPURegister fs);
964 void cvt_s_d(FPURegister fd, FPURegister fs);
966 void cvt_d_w(FPURegister fd, FPURegister fs);
967 void cvt_d_l(FPURegister fd, FPURegister fs);
968 void cvt_d_s(FPURegister fd, FPURegister fs);
970 // Conditions and branches for MIPSr6.
971 void cmp(FPUCondition cond, SecondaryField fmt,
972 FPURegister fd, FPURegister ft, FPURegister fs);
974 void bc1eqz(int16_t offset, FPURegister ft);
975 void bc1eqz(Label* L, FPURegister ft) {
976 bc1eqz(branch_offset(L, false)>>2, ft);
978 void bc1nez(int16_t offset, FPURegister ft);
979 void bc1nez(Label* L, FPURegister ft) {
980 bc1nez(branch_offset(L, false)>>2, ft);
983 // Conditions and branches for non MIPSr6.
984 void c(FPUCondition cond, SecondaryField fmt,
985 FPURegister ft, FPURegister fs, uint16_t cc = 0);
987 void bc1f(int16_t offset, uint16_t cc = 0);
988 void bc1f(Label* L, uint16_t cc = 0) {
989 bc1f(branch_offset(L, false)>>2, cc);
991 void bc1t(int16_t offset, uint16_t cc = 0);
992 void bc1t(Label* L, uint16_t cc = 0) {
993 bc1t(branch_offset(L, false)>>2, cc);
995 void fcmp(FPURegister src1, const double src2, FPUCondition cond);
997 // Check the code size generated from label to here.
998 int SizeOfCodeGeneratedSince(Label* label) {
999 return pc_offset() - label->pos();
1002 // Check the number of instructions generated from label to here.
1003 int InstructionsGeneratedSince(Label* label) {
1004 return SizeOfCodeGeneratedSince(label) / kInstrSize;
1007 // Class for scoping postponing the trampoline pool generation.
1008 class BlockTrampolinePoolScope {
1010 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
1011 assem_->StartBlockTrampolinePool();
1013 ~BlockTrampolinePoolScope() {
1014 assem_->EndBlockTrampolinePool();
1020 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1023 // Class for postponing the assembly buffer growth. Typically used for
1024 // sequences of instructions that must be emitted as a unit, before
1025 // buffer growth (and relocation) can occur.
1026 // This blocking scope is not nestable.
1027 class BlockGrowBufferScope {
1029 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1030 assem_->StartBlockGrowBuffer();
1032 ~BlockGrowBufferScope() {
1033 assem_->EndBlockGrowBuffer();
1039 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1044 // Mark address of the ExitJSFrame code.
1045 void RecordJSReturn();
1047 // Mark address of a debug break slot.
1048 void RecordDebugBreakSlot();
1050 // Record the AST id of the CallIC being compiled, so that it can be placed
1051 // in the relocation information.
1052 void SetRecordedAstId(TypeFeedbackId ast_id) {
1053 DCHECK(recorded_ast_id_.IsNone());
1054 recorded_ast_id_ = ast_id;
1057 TypeFeedbackId RecordedAstId() {
1058 DCHECK(!recorded_ast_id_.IsNone());
1059 return recorded_ast_id_;
1062 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1064 // Record a comment relocation entry that can be used by a disassembler.
1065 // Use --code-comments to enable.
1066 void RecordComment(const char* msg);
1068 // Record a deoptimization reason that can be used by a log or cpu profiler.
1069 // Use --trace-deopt to enable.
1070 void RecordDeoptReason(const int reason, const SourcePosition position);
1072 static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
1075 // Writes a single byte or word of data in the code stream. Used for
1076 // inline tables, e.g., jump-tables.
1077 void db(uint8_t data);
1078 void dd(uint32_t data);
1079 void dd(Label* label);
1081 // Emits the address of the code stub's first instruction.
1082 void emit_code_stub_address(Code* stub);
1084 PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1086 // Postpone the generation of the trampoline pool for the specified number of
1088 void BlockTrampolinePoolFor(int instructions);
1090 // Check if there is less than kGap bytes available in the buffer.
1091 // If this is the case, we need to grow the buffer before emitting
1092 // an instruction or relocation information.
1093 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1095 // Get the number of bytes available in the buffer.
1096 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1098 // Read/patch instructions.
1099 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
1100 static void instr_at_put(byte* pc, Instr instr) {
1101 *reinterpret_cast<Instr*>(pc) = instr;
1103 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
1104 void instr_at_put(int pos, Instr instr) {
1105 *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1108 // Check if an instruction is a branch of some kind.
1109 static bool IsBranch(Instr instr);
1110 static bool IsBeq(Instr instr);
1111 static bool IsBne(Instr instr);
1113 static bool IsJump(Instr instr);
1114 static bool IsJ(Instr instr);
1115 static bool IsLui(Instr instr);
1116 static bool IsOri(Instr instr);
1118 static bool IsJal(Instr instr);
1119 static bool IsJr(Instr instr);
1120 static bool IsJalr(Instr instr);
1122 static bool IsNop(Instr instr, unsigned int type);
1123 static bool IsPop(Instr instr);
1124 static bool IsPush(Instr instr);
1125 static bool IsLwRegFpOffset(Instr instr);
1126 static bool IsSwRegFpOffset(Instr instr);
1127 static bool IsLwRegFpNegOffset(Instr instr);
1128 static bool IsSwRegFpNegOffset(Instr instr);
1130 static Register GetRtReg(Instr instr);
1131 static Register GetRsReg(Instr instr);
1132 static Register GetRdReg(Instr instr);
1134 static uint32_t GetRt(Instr instr);
1135 static uint32_t GetRtField(Instr instr);
1136 static uint32_t GetRs(Instr instr);
1137 static uint32_t GetRsField(Instr instr);
1138 static uint32_t GetRd(Instr instr);
1139 static uint32_t GetRdField(Instr instr);
1140 static uint32_t GetSa(Instr instr);
1141 static uint32_t GetSaField(Instr instr);
1142 static uint32_t GetOpcodeField(Instr instr);
1143 static uint32_t GetFunction(Instr instr);
1144 static uint32_t GetFunctionField(Instr instr);
1145 static uint32_t GetImmediate16(Instr instr);
1146 static uint32_t GetLabelConst(Instr instr);
1148 static int32_t GetBranchOffset(Instr instr);
1149 static bool IsLw(Instr instr);
1150 static int16_t GetLwOffset(Instr instr);
1151 static Instr SetLwOffset(Instr instr, int16_t offset);
1153 static bool IsSw(Instr instr);
1154 static Instr SetSwOffset(Instr instr, int16_t offset);
1155 static bool IsAddImmediate(Instr instr);
1156 static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1158 static bool IsAndImmediate(Instr instr);
1159 static bool IsEmittedConstant(Instr instr);
1161 void CheckTrampolinePool();
1163 // Allocate a constant pool of the correct size for the generated code.
1164 Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
1166 // Generate the constant pool for the generated code.
1167 void PopulateConstantPool(ConstantPoolArray* constant_pool);
1170 // Relocation for a type-recording IC has the AST id added to it. This
1171 // member variable is a way to pass the information from the call site to
1172 // the relocation info.
1173 TypeFeedbackId recorded_ast_id_;
1175 int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1177 // Decode branch instruction at pos and return branch target pos.
1178 int target_at(int pos, bool is_internal);
1180 // Patch branch instruction at pos to branch to given branch target pos.
1181 void target_at_put(int pos, int target_pos, bool is_internal);
1183 // Say if we need to relocate with this mode.
1184 bool MustUseReg(RelocInfo::Mode rmode);
1186 // Record reloc info for current pc_.
1187 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1189 // Block the emission of the trampoline pool before pc_offset.
1190 void BlockTrampolinePoolBefore(int pc_offset) {
1191 if (no_trampoline_pool_before_ < pc_offset)
1192 no_trampoline_pool_before_ = pc_offset;
1195 void StartBlockTrampolinePool() {
1196 trampoline_pool_blocked_nesting_++;
1199 void EndBlockTrampolinePool() {
1200 trampoline_pool_blocked_nesting_--;
1203 bool is_trampoline_pool_blocked() const {
1204 return trampoline_pool_blocked_nesting_ > 0;
1207 bool has_exception() const {
1208 return internal_trampoline_exception_;
1211 void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1213 bool is_trampoline_emitted() const {
1214 return trampoline_emitted_;
1217 // Temporarily block automatic assembly buffer growth.
1218 void StartBlockGrowBuffer() {
1219 DCHECK(!block_buffer_growth_);
1220 block_buffer_growth_ = true;
1223 void EndBlockGrowBuffer() {
1224 DCHECK(block_buffer_growth_);
1225 block_buffer_growth_ = false;
1228 bool is_buffer_growth_blocked() const {
1229 return block_buffer_growth_;
1233 // Buffer size and constant pool distance are checked together at regular
1234 // intervals of kBufferCheckInterval emitted bytes.
1235 static const int kBufferCheckInterval = 1*KB/2;
1238 // The relocation writer's position is at least kGap bytes below the end of
1239 // the generated instructions. This is so that multi-instruction sequences do
1240 // not have to check for overflow. The same is true for writes of large
1241 // relocation info entries.
1242 static const int kGap = 32;
1245 // Repeated checking whether the trampoline pool should be emitted is rather
1246 // expensive. By default we only check again once a number of instructions
1247 // has been generated.
1248 static const int kCheckConstIntervalInst = 32;
1249 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1251 int next_buffer_check_; // pc offset of next buffer check.
1253 // Emission of the trampoline pool may be blocked in some code sequences.
1254 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero.
1255 int no_trampoline_pool_before_; // Block emission before this pc offset.
1257 // Keep track of the last emitted pool to guarantee a maximal distance.
1258 int last_trampoline_pool_end_; // pc offset of the end of the last pool.
1260 // Automatic growth of the assembly buffer may be blocked for some sequences.
1261 bool block_buffer_growth_; // Block growth when true.
1263 // Relocation information generation.
1264 // Each relocation is encoded as a variable size value.
1265 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1266 RelocInfoWriter reloc_info_writer;
1268 // The bound position, before this we cannot do instruction elimination.
1269 int last_bound_pos_;
1272 inline void CheckBuffer();
1274 inline void emit(Instr x);
1275 inline void emit(uint64_t x);
1276 inline void CheckTrampolinePoolQuick();
1278 // Instruction generation.
1279 // We have 3 different kind of encoding layout on MIPS.
1280 // However due to many different types of objects encoded in the same fields
1281 // we have quite a few aliases for each mode.
1282 // Using the same structure to refer to Register and FPURegister would spare a
1283 // few aliases, but mixing both does not look clean to me.
1284 // Anyway we could surely implement this differently.
1286 void GenInstrRegister(Opcode opcode,
1291 SecondaryField func = NULLSF);
1293 void GenInstrRegister(Opcode opcode,
1298 SecondaryField func);
1300 void GenInstrRegister(Opcode opcode,
1305 SecondaryField func = NULLSF);
1307 void GenInstrRegister(Opcode opcode,
1312 SecondaryField func = NULLSF);
1314 void GenInstrRegister(Opcode opcode,
1319 SecondaryField func = NULLSF);
1321 void GenInstrRegister(Opcode opcode,
1324 FPUControlRegister fs,
1325 SecondaryField func = NULLSF);
1328 void GenInstrImmediate(Opcode opcode,
1332 void GenInstrImmediate(Opcode opcode,
1336 void GenInstrImmediate(Opcode opcode,
1342 void GenInstrJump(Opcode opcode,
1346 void LoadRegPlusOffsetToAt(const MemOperand& src);
1349 void print(Label* L);
1350 void bind_to(Label* L, int pos);
1351 void next(Label* L, bool is_internal);
1353 // One trampoline consists of:
1354 // - space for trampoline slots,
1355 // - space for labels.
1357 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1358 // Space for trampoline slots preceeds space for labels. Each label is of one
1359 // instruction size, so total amount for labels is equal to
1360 // label_count * kInstrSize.
1366 free_slot_count_ = 0;
1369 Trampoline(int start, int slot_count) {
1372 free_slot_count_ = slot_count;
1373 end_ = start + slot_count * kTrampolineSlotsSize;
1382 int trampoline_slot = kInvalidSlotPos;
1383 if (free_slot_count_ <= 0) {
1384 // We have run out of space on trampolines.
1385 // Make sure we fail in debug mode, so we become aware of each case
1386 // when this happens.
1388 // Internal exception will be caught.
1390 trampoline_slot = next_slot_;
1392 next_slot_ += kTrampolineSlotsSize;
1394 return trampoline_slot;
1401 int free_slot_count_;
1404 int32_t get_trampoline_entry(int32_t pos);
1405 int unbound_labels_count_;
1406 // If trampoline is emitted, generated code is becoming large. As this is
1407 // already a slow case which can possibly break our code generation for the
1408 // extreme case, we use this information to trigger different mode of
1409 // branch instruction generation, where we use jump instructions rather
1410 // than regular branch instructions.
1411 bool trampoline_emitted_;
1412 static const int kTrampolineSlotsSize = 6 * kInstrSize;
1413 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1414 static const int kInvalidSlotPos = -1;
1416 // Internal reference positions, required for unbounded internal reference
1418 std::set<int64_t> internal_reference_positions_;
1420 Trampoline trampoline_;
1421 bool internal_trampoline_exception_;
1423 friend class RegExpMacroAssemblerMIPS;
1424 friend class RelocInfo;
1425 friend class CodePatcher;
1426 friend class BlockTrampolinePoolScope;
1428 PositionsRecorder positions_recorder_;
1429 friend class PositionsRecorder;
1430 friend class EnsureSpace;
1434 class EnsureSpace BASE_EMBEDDED {
1436 explicit EnsureSpace(Assembler* assembler) {
1437 assembler->CheckBuffer();
1441 } } // namespace v8::internal
1443 #endif // V8_ARM_ASSEMBLER_MIPS_H_