1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
40 #include "src/assembler.h"
41 #include "src/mips64/constants-mips64.h"
42 #include "src/serialize.h"
49 // 1) We would prefer to use an enum, but enum values are assignment-
50 // compatible with int, which has caused code-generation bugs.
52 // 2) We would prefer to use a class instead of a struct but we don't like
53 // the register initialization to depend on the particular initialization
54 // order (which appears to be different on OS X, Linux, and Windows for the
55 // installed versions of C++ we tried). Using a struct permits C-style
56 // "initialization". Also, the Register objects cannot be const as this
57 // forces initialization stubs in MSVC, making us dependent on initialization
60 // 3) By not using an enum, we are possibly preventing the compiler from
61 // doing certain constant folds, which may significantly reduce the
62 // code generated for some assembly instructions (because they boil down
63 // to a few constants). If this is a problem, we could change the code
64 // such that we use an enum in optimized mode, and the struct in debug
65 // mode. This way we get the compile-time error checking in debug mode
66 // and best performance in optimized code.
69 // -----------------------------------------------------------------------------
70 // Implementation of Register and FPURegister.
74 static const int kNumRegisters = v8::internal::kNumRegisters;
75 static const int kMaxNumAllocatableRegisters = 14; // v0 through t6 and cp.
76 static const int kSizeInBytes = 8;
77 static const int kCpRegister = 23; // cp (s7) is the 23rd register.
79 inline static int NumAllocatableRegisters();
81 static int ToAllocationIndex(Register reg) {
82 DCHECK((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) ||
83 reg.is(from_code(kCpRegister)));
84 return reg.is(from_code(kCpRegister)) ?
85 kMaxNumAllocatableRegisters - 1 : // Return last index for 'cp'.
86 reg.code() - 2; // zero_reg and 'at' are skipped.
89 static Register FromAllocationIndex(int index) {
90 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
91 return index == kMaxNumAllocatableRegisters - 1 ?
92 from_code(kCpRegister) : // Last index is always the 'cp' register.
93 from_code(index + 2); // zero_reg and 'at' are skipped.
96 static const char* AllocationIndexToString(int index) {
97 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
98 const char* const names[] = {
117 static Register from_code(int code) {
118 Register r = { code };
122 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
123 bool is(Register reg) const { return code_ == reg.code_; }
133 // Unfortunately we can't make this private in a struct.
137 #define REGISTER(N, C) \
138 const int kRegister_ ## N ## _Code = C; \
139 const Register N = { C }
141 REGISTER(no_reg, -1);
143 REGISTER(zero_reg, 0);
144 // at: Reserved for synthetic instructions.
146 // v0, v1: Used when returning multiple values from subroutines.
149 // a0 - a4: Used to pass non-FP parameters.
154 // a4 - a7 t0 - t3: Can be used without reservation, act as temporary registers
155 // and are allowed to be destroyed by subroutines.
164 // s0 - s7: Subroutine register variables. Subroutines that write to these
165 // registers must restore their values before exiting so that the caller can
166 // expect the values to be preserved.
177 // k0, k1: Reserved for system calls and interrupt handlers.
182 // sp: Stack pointer.
184 // fp: Frame pointer.
186 // ra: Return address pointer.
192 int ToNumber(Register reg);
194 Register ToRegister(int num);
196 // Coprocessor register.
198 static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;
200 // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
201 // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
202 // number of Double regs (64-bit regs, or FPU-reg-pairs).
204 // A few double registers are reserved: one as a scratch register and one to
207 // f30: scratch register.
208 static const int kNumReservedRegisters = 2;
209 static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
210 kNumReservedRegisters;
212 inline static int NumRegisters();
213 inline static int NumAllocatableRegisters();
215 // TODO(turbofan): Proper support for float32.
216 inline static int NumAllocatableAliasedRegisters();
218 inline static int ToAllocationIndex(FPURegister reg);
219 static const char* AllocationIndexToString(int index);
221 static FPURegister FromAllocationIndex(int index) {
222 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
223 return from_code(index * 2);
226 static FPURegister from_code(int code) {
227 FPURegister r = { code };
231 bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
232 bool is(FPURegister creg) const { return code_ == creg.code_; }
233 FPURegister low() const {
234 // TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1.
235 // Find low reg of a Double-reg pair, which is the reg itself.
236 DCHECK(code_ % 2 == 0); // Specified Double reg must be even.
239 DCHECK(reg.is_valid());
242 FPURegister high() const {
243 // TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1.
244 // Find high reg of a Doubel-reg pair, which is reg + 1.
245 DCHECK(code_ % 2 == 0); // Specified Double reg must be even.
247 reg.code_ = code_ + 1;
248 DCHECK(reg.is_valid());
260 void setcode(int f) {
264 // Unfortunately we can't make this private in a struct.
268 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
269 // 32-bit registers, f0 through f31. When used as 'double' they are used
270 // in pairs, starting with the even numbered register. So a double operation
271 // on f0 really uses f0 and f1.
272 // (Modern mips hardware also supports 32 64-bit registers, via setting
273 // (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
274 // but it is not in common use. Someday we will want to support this in v8.)
276 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
277 typedef FPURegister DoubleRegister;
278 typedef FPURegister FloatRegister;
280 const FPURegister no_freg = { -1 };
282 const FPURegister f0 = { 0 }; // Return value in hard float mode.
283 const FPURegister f1 = { 1 };
284 const FPURegister f2 = { 2 };
285 const FPURegister f3 = { 3 };
286 const FPURegister f4 = { 4 };
287 const FPURegister f5 = { 5 };
288 const FPURegister f6 = { 6 };
289 const FPURegister f7 = { 7 };
290 const FPURegister f8 = { 8 };
291 const FPURegister f9 = { 9 };
292 const FPURegister f10 = { 10 };
293 const FPURegister f11 = { 11 };
294 const FPURegister f12 = { 12 }; // Arg 0 in hard float mode.
295 const FPURegister f13 = { 13 };
296 const FPURegister f14 = { 14 }; // Arg 1 in hard float mode.
297 const FPURegister f15 = { 15 };
298 const FPURegister f16 = { 16 };
299 const FPURegister f17 = { 17 };
300 const FPURegister f18 = { 18 };
301 const FPURegister f19 = { 19 };
302 const FPURegister f20 = { 20 };
303 const FPURegister f21 = { 21 };
304 const FPURegister f22 = { 22 };
305 const FPURegister f23 = { 23 };
306 const FPURegister f24 = { 24 };
307 const FPURegister f25 = { 25 };
308 const FPURegister f26 = { 26 };
309 const FPURegister f27 = { 27 };
310 const FPURegister f28 = { 28 };
311 const FPURegister f29 = { 29 };
312 const FPURegister f30 = { 30 };
313 const FPURegister f31 = { 31 };
316 // cp is assumed to be a callee saved register.
317 // Defined using #define instead of "static const Register&" because Clang
318 // complains otherwise when a compilation unit that includes this header
319 // doesn't use the variables.
320 #define kRootRegister s6
322 #define kLithiumScratchReg s3
323 #define kLithiumScratchReg2 s4
324 #define kLithiumScratchDouble f30
325 #define kDoubleRegZero f28
327 // FPU (coprocessor 1) control registers.
328 // Currently only FCSR (#31) is implemented.
329 struct FPUControlRegister {
330 bool is_valid() const { return code_ == kFCSRRegister; }
331 bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
340 void setcode(int f) {
344 // Unfortunately we can't make this private in a struct.
348 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
349 const FPUControlRegister FCSR = { kFCSRRegister };
352 // -----------------------------------------------------------------------------
353 // Machine instruction Operands.
354 const int kSmiShift = kSmiTagSize + kSmiShiftSize;
355 const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
356 // Class Operand represents a shifter operand in data processing instructions.
357 class Operand BASE_EMBEDDED {
360 INLINE(explicit Operand(int64_t immediate,
361 RelocInfo::Mode rmode = RelocInfo::NONE64));
362 INLINE(explicit Operand(const ExternalReference& f));
363 INLINE(explicit Operand(const char* s));
364 INLINE(explicit Operand(Object** opp));
365 INLINE(explicit Operand(Context** cpp));
366 explicit Operand(Handle<Object> handle);
367 INLINE(explicit Operand(Smi* value));
370 INLINE(explicit Operand(Register rm));
372 // Return true if this is a register operand.
373 INLINE(bool is_reg() const);
375 inline int64_t immediate() const {
380 Register rm() const { return rm_; }
384 int64_t imm64_; // Valid if rm_ == no_reg.
385 RelocInfo::Mode rmode_;
387 friend class Assembler;
388 friend class MacroAssembler;
392 // On MIPS we have only one adressing mode with base_reg + offset.
393 // Class MemOperand represents a memory operand in load and store instructions.
394 class MemOperand : public Operand {
396 // Immediate value attached to offset.
398 offset_minus_one = -1,
402 explicit MemOperand(Register rn, int64_t offset = 0);
403 explicit MemOperand(Register rn, int64_t unit, int64_t multiplier,
404 OffsetAddend offset_addend = offset_zero);
405 int32_t offset() const { return offset_; }
407 bool OffsetIsInt16Encodable() const {
408 return is_int16(offset_);
414 friend class Assembler;
418 class Assembler : public AssemblerBase {
420 // Create an assembler. Instructions and relocation information are emitted
421 // into a buffer, with the instructions starting from the beginning and the
422 // relocation information starting from the end of the buffer. See CodeDesc
423 // for a detailed comment on the layout (globals.h).
425 // If the provided buffer is NULL, the assembler allocates and grows its own
426 // buffer, and buffer_size determines the initial buffer size. The buffer is
427 // owned by the assembler and deallocated upon destruction of the assembler.
429 // If the provided buffer is not NULL, the assembler uses the provided buffer
430 // for code generation and assumes its size to be buffer_size. If the buffer
431 // is too small, a fatal error occurs. No deallocation of the buffer is done
432 // upon destruction of the assembler.
433 Assembler(Isolate* isolate, void* buffer, int buffer_size);
434 virtual ~Assembler() { }
436 // GetCode emits any pending (non-emitted) code and fills the descriptor
437 // desc. GetCode() is idempotent; it returns the same result if no other
438 // Assembler functions are invoked in between GetCode() calls.
439 void GetCode(CodeDesc* desc);
441 // Label operations & relative jumps (PPUM Appendix D).
443 // Takes a branch opcode (cc) and a label (L) and generates
444 // either a backward branch or a forward branch and links it
445 // to the label fixup chain. Usage:
447 // Label L; // unbound label
448 // j(cc, &L); // forward branch to unbound label
449 // bind(&L); // bind label to the current pc
450 // j(cc, &L); // backward branch to bound label
451 // bind(&L); // illegal: a label may be bound only once
453 // Note: The same Label can be used for forward and backward branches
454 // but it may be bound only once.
455 void bind(Label* L); // Binds an unbound label L to current code position.
456 // Determines if Label is bound and near enough so that branch instruction
457 // can be used to reach it, instead of jump instruction.
458 bool is_near(Label* L);
460 // Returns the branch offset to the given label from the current code
461 // position. Links the label to the current position if it is still unbound.
462 // Manages the jump elimination optimization if the second parameter is true.
463 int32_t branch_offset(Label* L, bool jump_elimination_allowed);
464 int32_t branch_offset_compact(Label* L, bool jump_elimination_allowed);
465 int32_t branch_offset21(Label* L, bool jump_elimination_allowed);
466 int32_t branch_offset21_compact(Label* L, bool jump_elimination_allowed);
467 int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
468 int32_t o = branch_offset(L, jump_elimination_allowed);
469 DCHECK((o & 3) == 0); // Assert the offset is aligned.
472 int32_t shifted_branch_offset_compact(Label* L,
473 bool jump_elimination_allowed) {
474 int32_t o = branch_offset_compact(L, jump_elimination_allowed);
475 DCHECK((o & 3) == 0); // Assert the offset is aligned.
478 uint64_t jump_address(Label* L);
480 // Puts a labels target address at the given position.
481 // The high 8 bits are set to zero.
482 void label_at_put(Label* L, int at_offset);
484 // Read/Modify the code target address in the branch/call instruction at pc.
485 static Address target_address_at(Address pc);
486 static void set_target_address_at(Address pc,
488 ICacheFlushMode icache_flush_mode =
489 FLUSH_ICACHE_IF_NEEDED);
490 // On MIPS there is no Constant Pool so we skip that parameter.
491 INLINE(static Address target_address_at(Address pc,
492 ConstantPoolArray* constant_pool)) {
493 return target_address_at(pc);
495 INLINE(static void set_target_address_at(Address pc,
496 ConstantPoolArray* constant_pool,
498 ICacheFlushMode icache_flush_mode =
499 FLUSH_ICACHE_IF_NEEDED)) {
500 set_target_address_at(pc, target, icache_flush_mode);
502 INLINE(static Address target_address_at(Address pc, Code* code)) {
503 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
504 return target_address_at(pc, constant_pool);
506 INLINE(static void set_target_address_at(Address pc,
509 ICacheFlushMode icache_flush_mode =
510 FLUSH_ICACHE_IF_NEEDED)) {
511 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
512 set_target_address_at(pc, constant_pool, target, icache_flush_mode);
515 // Return the code target address at a call site from the return address
516 // of that call in the instruction stream.
517 inline static Address target_address_from_return_address(Address pc);
519 // Return the code target address of the patch debug break slot
520 inline static Address break_address_from_return_address(Address pc);
522 static void JumpLabelToJumpRegister(Address pc);
524 static void QuietNaN(HeapObject* nan);
526 // This sets the branch destination (which gets loaded at the call address).
527 // This is for calls and branches within generated code. The serializer
528 // has already deserialized the lui/ori instructions etc.
529 inline static void deserialization_set_special_target_at(
530 Address instruction_payload, Code* code, Address target) {
531 set_target_address_at(
532 instruction_payload - kInstructionsFor64BitConstant * kInstrSize,
537 // Size of an instruction.
538 static const int kInstrSize = sizeof(Instr);
540 // Difference between address of current opcode and target address offset.
541 static const int kBranchPCOffset = 4;
543 // Here we are patching the address in the LUI/ORI instruction pair.
544 // These values are used in the serialization process and must be zero for
545 // MIPS platform, as Code, Embedded Object or External-reference pointers
546 // are split across two consecutive instructions and don't exist separately
547 // in the code, so the serializer should not step forwards in memory after
548 // a target is resolved and written.
549 static const int kSpecialTargetSize = 0;
551 // Number of consecutive instructions used to store 32bit/64bit constant.
552 // Before jump-optimizations, this constant was used in
553 // RelocInfo::target_address_address() function to tell serializer address of
554 // the instruction that follows LUI/ORI instruction pair. Now, with new jump
555 // optimization, where jump-through-register instruction that usually
556 // follows LUI/ORI pair is substituted with J/JAL, this constant equals
557 // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
558 static const int kInstructionsFor32BitConstant = 3;
559 static const int kInstructionsFor64BitConstant = 5;
561 // Distance between the instruction referring to the address of the call
562 // target and the return address.
563 static const int kCallTargetAddressOffset = 6 * kInstrSize;
565 // Distance between start of patched return sequence and the emitted address
567 static const int kPatchReturnSequenceAddressOffset = 0;
569 // Distance between start of patched debug break slot and the emitted address
571 static const int kPatchDebugBreakSlotAddressOffset = 0 * kInstrSize;
573 // Difference between address of current opcode and value read from pc
575 static const int kPcLoadDelta = 4;
577 static const int kPatchDebugBreakSlotReturnOffset = 6 * kInstrSize;
579 // Number of instructions used for the JS return sequence. The constant is
580 // used by the debugger to patch the JS return sequence.
581 static const int kJSReturnSequenceInstructions = 7;
582 static const int kDebugBreakSlotInstructions = 6;
583 static const int kDebugBreakSlotLength =
584 kDebugBreakSlotInstructions * kInstrSize;
587 // ---------------------------------------------------------------------------
590 // Insert the smallest number of nop instructions
591 // possible to align the pc offset to a multiple
592 // of m. m must be a power of 2 (>= 4).
594 // Aligns code to something that's optimal for a jump target for the platform.
595 void CodeTargetAlign();
597 // Different nop operations are used by the code generator to detect certain
598 // states of the generated code.
599 enum NopMarkerTypes {
603 PROPERTY_ACCESS_INLINED,
604 PROPERTY_ACCESS_INLINED_CONTEXT,
605 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
608 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
610 CODE_AGE_MARKER_NOP = 6,
611 CODE_AGE_SEQUENCE_NOP
614 // Type == 0 is the default non-marking nop. For mips this is a
615 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
616 // marking, to avoid conflict with ssnop and ehb instructions.
617 void nop(unsigned int type = 0) {
619 Register nop_rt_reg = (type == 0) ? zero_reg : at;
620 sll(zero_reg, nop_rt_reg, type, true);
624 // --------Branch-and-jump-instructions----------
625 // We don't use likely variant of instructions.
626 void b(int16_t offset);
627 void b(Label* L) { b(branch_offset(L, false)>>2); }
628 void bal(int16_t offset);
629 void bal(Label* L) { bal(branch_offset(L, false)>>2); }
631 void beq(Register rs, Register rt, int16_t offset);
632 void beq(Register rs, Register rt, Label* L) {
633 beq(rs, rt, branch_offset(L, false) >> 2);
635 void bgez(Register rs, int16_t offset);
636 void bgezc(Register rt, int16_t offset);
637 void bgezc(Register rt, Label* L) {
638 bgezc(rt, branch_offset_compact(L, false)>>2);
640 void bgeuc(Register rs, Register rt, int16_t offset);
641 void bgeuc(Register rs, Register rt, Label* L) {
642 bgeuc(rs, rt, branch_offset_compact(L, false)>>2);
644 void bgec(Register rs, Register rt, int16_t offset);
645 void bgec(Register rs, Register rt, Label* L) {
646 bgec(rs, rt, branch_offset_compact(L, false)>>2);
648 void bgezal(Register rs, int16_t offset);
649 void bgezalc(Register rt, int16_t offset);
650 void bgezalc(Register rt, Label* L) {
651 bgezalc(rt, branch_offset_compact(L, false)>>2);
653 void bgezall(Register rs, int16_t offset);
654 void bgezall(Register rs, Label* L) {
655 bgezall(rs, branch_offset(L, false)>>2);
657 void bgtz(Register rs, int16_t offset);
658 void bgtzc(Register rt, int16_t offset);
659 void bgtzc(Register rt, Label* L) {
660 bgtzc(rt, branch_offset_compact(L, false)>>2);
662 void blez(Register rs, int16_t offset);
663 void blezc(Register rt, int16_t offset);
664 void blezc(Register rt, Label* L) {
665 blezc(rt, branch_offset_compact(L, false)>>2);
667 void bltz(Register rs, int16_t offset);
668 void bltzc(Register rt, int16_t offset);
669 void bltzc(Register rt, Label* L) {
670 bltzc(rt, branch_offset_compact(L, false)>>2);
672 void bltuc(Register rs, Register rt, int16_t offset);
673 void bltuc(Register rs, Register rt, Label* L) {
674 bltuc(rs, rt, branch_offset_compact(L, false)>>2);
676 void bltc(Register rs, Register rt, int16_t offset);
677 void bltc(Register rs, Register rt, Label* L) {
678 bltc(rs, rt, branch_offset_compact(L, false)>>2);
681 void bltzal(Register rs, int16_t offset);
682 void blezalc(Register rt, int16_t offset);
683 void blezalc(Register rt, Label* L) {
684 blezalc(rt, branch_offset_compact(L, false)>>2);
686 void bltzalc(Register rt, int16_t offset);
687 void bltzalc(Register rt, Label* L) {
688 bltzalc(rt, branch_offset_compact(L, false)>>2);
690 void bgtzalc(Register rt, int16_t offset);
691 void bgtzalc(Register rt, Label* L) {
692 bgtzalc(rt, branch_offset_compact(L, false)>>2);
694 void beqzalc(Register rt, int16_t offset);
695 void beqzalc(Register rt, Label* L) {
696 beqzalc(rt, branch_offset_compact(L, false)>>2);
698 void beqc(Register rs, Register rt, int16_t offset);
699 void beqc(Register rs, Register rt, Label* L) {
700 beqc(rs, rt, branch_offset_compact(L, false)>>2);
702 void beqzc(Register rs, int32_t offset);
703 void beqzc(Register rs, Label* L) {
704 beqzc(rs, branch_offset21_compact(L, false)>>2);
706 void bnezalc(Register rt, int16_t offset);
707 void bnezalc(Register rt, Label* L) {
708 bnezalc(rt, branch_offset_compact(L, false)>>2);
710 void bnec(Register rs, Register rt, int16_t offset);
711 void bnec(Register rs, Register rt, Label* L) {
712 bnec(rs, rt, branch_offset_compact(L, false)>>2);
714 void bnezc(Register rt, int32_t offset);
715 void bnezc(Register rt, Label* L) {
716 bnezc(rt, branch_offset21_compact(L, false)>>2);
718 void bne(Register rs, Register rt, int16_t offset);
719 void bne(Register rs, Register rt, Label* L) {
720 bne(rs, rt, branch_offset(L, false)>>2);
722 void bovc(Register rs, Register rt, int16_t offset);
723 void bovc(Register rs, Register rt, Label* L) {
724 bovc(rs, rt, branch_offset_compact(L, false)>>2);
726 void bnvc(Register rs, Register rt, int16_t offset);
727 void bnvc(Register rs, Register rt, Label* L) {
728 bnvc(rs, rt, branch_offset_compact(L, false)>>2);
731 // Never use the int16_t b(l)cond version with a branch offset
732 // instead of using the Label* version.
734 // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
735 void j(int64_t target);
736 void jal(int64_t target);
737 void jalr(Register rs, Register rd = ra);
738 void jr(Register target);
739 void j_or_jr(int64_t target, Register rs);
740 void jal_or_jalr(int64_t target, Register rs);
743 // -------Data-processing-instructions---------
746 void addu(Register rd, Register rs, Register rt);
747 void subu(Register rd, Register rs, Register rt);
749 void div(Register rs, Register rt);
750 void divu(Register rs, Register rt);
751 void ddiv(Register rs, Register rt);
752 void ddivu(Register rs, Register rt);
753 void div(Register rd, Register rs, Register rt);
754 void divu(Register rd, Register rs, Register rt);
755 void ddiv(Register rd, Register rs, Register rt);
756 void ddivu(Register rd, Register rs, Register rt);
757 void mod(Register rd, Register rs, Register rt);
758 void modu(Register rd, Register rs, Register rt);
759 void dmod(Register rd, Register rs, Register rt);
760 void dmodu(Register rd, Register rs, Register rt);
762 void mul(Register rd, Register rs, Register rt);
763 void muh(Register rd, Register rs, Register rt);
764 void mulu(Register rd, Register rs, Register rt);
765 void muhu(Register rd, Register rs, Register rt);
766 void mult(Register rs, Register rt);
767 void multu(Register rs, Register rt);
768 void dmul(Register rd, Register rs, Register rt);
769 void dmuh(Register rd, Register rs, Register rt);
770 void dmulu(Register rd, Register rs, Register rt);
771 void dmuhu(Register rd, Register rs, Register rt);
772 void daddu(Register rd, Register rs, Register rt);
773 void dsubu(Register rd, Register rs, Register rt);
774 void dmult(Register rs, Register rt);
775 void dmultu(Register rs, Register rt);
777 void addiu(Register rd, Register rs, int32_t j);
778 void daddiu(Register rd, Register rs, int32_t j);
781 void and_(Register rd, Register rs, Register rt);
782 void or_(Register rd, Register rs, Register rt);
783 void xor_(Register rd, Register rs, Register rt);
784 void nor(Register rd, Register rs, Register rt);
786 void andi(Register rd, Register rs, int32_t j);
787 void ori(Register rd, Register rs, int32_t j);
788 void xori(Register rd, Register rs, int32_t j);
789 void lui(Register rd, int32_t j);
790 void aui(Register rs, Register rt, int32_t j);
791 void daui(Register rs, Register rt, int32_t j);
792 void dahi(Register rs, int32_t j);
793 void dati(Register rs, int32_t j);
796 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
797 // and may cause problems in normal code. coming_from_nop makes sure this
799 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
800 void sllv(Register rd, Register rt, Register rs);
801 void srl(Register rd, Register rt, uint16_t sa);
802 void srlv(Register rd, Register rt, Register rs);
803 void sra(Register rt, Register rd, uint16_t sa);
804 void srav(Register rt, Register rd, Register rs);
805 void rotr(Register rd, Register rt, uint16_t sa);
806 void rotrv(Register rd, Register rt, Register rs);
807 void dsll(Register rd, Register rt, uint16_t sa);
808 void dsllv(Register rd, Register rt, Register rs);
809 void dsrl(Register rd, Register rt, uint16_t sa);
810 void dsrlv(Register rd, Register rt, Register rs);
811 void drotr(Register rd, Register rt, uint16_t sa);
812 void drotrv(Register rd, Register rt, Register rs);
813 void dsra(Register rt, Register rd, uint16_t sa);
814 void dsrav(Register rd, Register rt, Register rs);
815 void dsll32(Register rt, Register rd, uint16_t sa);
816 void dsrl32(Register rt, Register rd, uint16_t sa);
817 void dsra32(Register rt, Register rd, uint16_t sa);
820 // ------------Memory-instructions-------------
822 void lb(Register rd, const MemOperand& rs);
823 void lbu(Register rd, const MemOperand& rs);
824 void lh(Register rd, const MemOperand& rs);
825 void lhu(Register rd, const MemOperand& rs);
826 void lw(Register rd, const MemOperand& rs);
827 void lwu(Register rd, const MemOperand& rs);
828 void lwl(Register rd, const MemOperand& rs);
829 void lwr(Register rd, const MemOperand& rs);
830 void sb(Register rd, const MemOperand& rs);
831 void sh(Register rd, const MemOperand& rs);
832 void sw(Register rd, const MemOperand& rs);
833 void swl(Register rd, const MemOperand& rs);
834 void swr(Register rd, const MemOperand& rs);
835 void ldl(Register rd, const MemOperand& rs);
836 void ldr(Register rd, const MemOperand& rs);
837 void sdl(Register rd, const MemOperand& rs);
838 void sdr(Register rd, const MemOperand& rs);
839 void ld(Register rd, const MemOperand& rs);
840 void sd(Register rd, const MemOperand& rs);
843 // ----------------Prefetch--------------------
845 void pref(int32_t hint, const MemOperand& rs);
848 // -------------Misc-instructions--------------
850 // Break / Trap instructions.
851 void break_(uint32_t code, bool break_as_stop = false);
852 void stop(const char* msg, uint32_t code = kMaxStopCode);
853 void tge(Register rs, Register rt, uint16_t code);
854 void tgeu(Register rs, Register rt, uint16_t code);
855 void tlt(Register rs, Register rt, uint16_t code);
856 void tltu(Register rs, Register rt, uint16_t code);
857 void teq(Register rs, Register rt, uint16_t code);
858 void tne(Register rs, Register rt, uint16_t code);
860 // Move from HI/LO register.
861 void mfhi(Register rd);
862 void mflo(Register rd);
865 void slt(Register rd, Register rs, Register rt);
866 void sltu(Register rd, Register rs, Register rt);
867 void slti(Register rd, Register rs, int32_t j);
868 void sltiu(Register rd, Register rs, int32_t j);
871 void movz(Register rd, Register rs, Register rt);
872 void movn(Register rd, Register rs, Register rt);
873 void movt(Register rd, Register rs, uint16_t cc = 0);
874 void movf(Register rd, Register rs, uint16_t cc = 0);
876 void sel(SecondaryField fmt, FPURegister fd, FPURegister ft,
877 FPURegister fs, uint8_t sel);
878 void seleqz(Register rs, Register rt, Register rd);
879 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister ft,
881 void selnez(Register rs, Register rt, Register rd);
882 void selnez(SecondaryField fmt, FPURegister fd, FPURegister ft,
886 void clz(Register rd, Register rs);
887 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
888 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
889 void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
891 // --------Coprocessor-instructions----------------
893 // Load, store, and move.
894 void lwc1(FPURegister fd, const MemOperand& src);
895 void ldc1(FPURegister fd, const MemOperand& src);
897 void swc1(FPURegister fs, const MemOperand& dst);
898 void sdc1(FPURegister fs, const MemOperand& dst);
900 void mtc1(Register rt, FPURegister fs);
901 void mthc1(Register rt, FPURegister fs);
902 void dmtc1(Register rt, FPURegister fs);
904 void mfc1(Register rt, FPURegister fs);
905 void mfhc1(Register rt, FPURegister fs);
906 void dmfc1(Register rt, FPURegister fs);
908 void ctc1(Register rt, FPUControlRegister fs);
909 void cfc1(Register rt, FPUControlRegister fs);
912 void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
913 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
914 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
915 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
916 void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
917 void abs_d(FPURegister fd, FPURegister fs);
918 void mov_d(FPURegister fd, FPURegister fs);
919 void neg_d(FPURegister fd, FPURegister fs);
920 void sqrt_d(FPURegister fd, FPURegister fs);
923 void cvt_w_s(FPURegister fd, FPURegister fs);
924 void cvt_w_d(FPURegister fd, FPURegister fs);
925 void trunc_w_s(FPURegister fd, FPURegister fs);
926 void trunc_w_d(FPURegister fd, FPURegister fs);
927 void round_w_s(FPURegister fd, FPURegister fs);
928 void round_w_d(FPURegister fd, FPURegister fs);
929 void floor_w_s(FPURegister fd, FPURegister fs);
930 void floor_w_d(FPURegister fd, FPURegister fs);
931 void ceil_w_s(FPURegister fd, FPURegister fs);
932 void ceil_w_d(FPURegister fd, FPURegister fs);
934 void cvt_l_s(FPURegister fd, FPURegister fs);
935 void cvt_l_d(FPURegister fd, FPURegister fs);
936 void trunc_l_s(FPURegister fd, FPURegister fs);
937 void trunc_l_d(FPURegister fd, FPURegister fs);
938 void round_l_s(FPURegister fd, FPURegister fs);
939 void round_l_d(FPURegister fd, FPURegister fs);
940 void floor_l_s(FPURegister fd, FPURegister fs);
941 void floor_l_d(FPURegister fd, FPURegister fs);
942 void ceil_l_s(FPURegister fd, FPURegister fs);
943 void ceil_l_d(FPURegister fd, FPURegister fs);
945 void min(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
946 void mina(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
947 void max(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
948 void maxa(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
950 void cvt_s_w(FPURegister fd, FPURegister fs);
951 void cvt_s_l(FPURegister fd, FPURegister fs);
952 void cvt_s_d(FPURegister fd, FPURegister fs);
954 void cvt_d_w(FPURegister fd, FPURegister fs);
955 void cvt_d_l(FPURegister fd, FPURegister fs);
956 void cvt_d_s(FPURegister fd, FPURegister fs);
958 // Conditions and branches for MIPSr6.
959 void cmp(FPUCondition cond, SecondaryField fmt,
960 FPURegister fd, FPURegister ft, FPURegister fs);
962 void bc1eqz(int16_t offset, FPURegister ft);
963 void bc1eqz(Label* L, FPURegister ft) {
964 bc1eqz(branch_offset(L, false)>>2, ft);
966 void bc1nez(int16_t offset, FPURegister ft);
967 void bc1nez(Label* L, FPURegister ft) {
968 bc1nez(branch_offset(L, false)>>2, ft);
971 // Conditions and branches for non MIPSr6.
972 void c(FPUCondition cond, SecondaryField fmt,
973 FPURegister ft, FPURegister fs, uint16_t cc = 0);
975 void bc1f(int16_t offset, uint16_t cc = 0);
976 void bc1f(Label* L, uint16_t cc = 0) {
977 bc1f(branch_offset(L, false)>>2, cc);
979 void bc1t(int16_t offset, uint16_t cc = 0);
980 void bc1t(Label* L, uint16_t cc = 0) {
981 bc1t(branch_offset(L, false)>>2, cc);
983 void fcmp(FPURegister src1, const double src2, FPUCondition cond);
985 // Check the code size generated from label to here.
986 int SizeOfCodeGeneratedSince(Label* label) {
987 return pc_offset() - label->pos();
990 // Check the number of instructions generated from label to here.
991 int InstructionsGeneratedSince(Label* label) {
992 return SizeOfCodeGeneratedSince(label) / kInstrSize;
995 // Class for scoping postponing the trampoline pool generation.
996 class BlockTrampolinePoolScope {
998 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
999 assem_->StartBlockTrampolinePool();
1001 ~BlockTrampolinePoolScope() {
1002 assem_->EndBlockTrampolinePool();
1008 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1011 // Class for postponing the assembly buffer growth. Typically used for
1012 // sequences of instructions that must be emitted as a unit, before
1013 // buffer growth (and relocation) can occur.
1014 // This blocking scope is not nestable.
1015 class BlockGrowBufferScope {
1017 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1018 assem_->StartBlockGrowBuffer();
1020 ~BlockGrowBufferScope() {
1021 assem_->EndBlockGrowBuffer();
1027 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1032 // Mark address of the ExitJSFrame code.
1033 void RecordJSReturn();
1035 // Mark address of a debug break slot.
1036 void RecordDebugBreakSlot();
1038 // Record the AST id of the CallIC being compiled, so that it can be placed
1039 // in the relocation information.
1040 void SetRecordedAstId(TypeFeedbackId ast_id) {
1041 DCHECK(recorded_ast_id_.IsNone());
1042 recorded_ast_id_ = ast_id;
1045 TypeFeedbackId RecordedAstId() {
1046 DCHECK(!recorded_ast_id_.IsNone());
1047 return recorded_ast_id_;
1050 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1052 // Record a comment relocation entry that can be used by a disassembler.
1053 // Use --code-comments to enable.
1054 void RecordComment(const char* msg);
1056 static int RelocateInternalReference(byte* pc, intptr_t pc_delta);
1058 // Writes a single byte or word of data in the code stream. Used for
1059 // inline tables, e.g., jump-tables.
1060 void db(uint8_t data);
1061 void dd(uint32_t data);
1063 // Emits the address of the code stub's first instruction.
1064 void emit_code_stub_address(Code* stub);
1066 PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1068 // Postpone the generation of the trampoline pool for the specified number of
1070 void BlockTrampolinePoolFor(int instructions);
1072 // Check if there is less than kGap bytes available in the buffer.
1073 // If this is the case, we need to grow the buffer before emitting
1074 // an instruction or relocation information.
1075 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1077 // Get the number of bytes available in the buffer.
1078 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1080 // Read/patch instructions.
1081 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
1082 static void instr_at_put(byte* pc, Instr instr) {
1083 *reinterpret_cast<Instr*>(pc) = instr;
1085 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
1086 void instr_at_put(int pos, Instr instr) {
1087 *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1090 // Check if an instruction is a branch of some kind.
1091 static bool IsBranch(Instr instr);
1092 static bool IsBeq(Instr instr);
1093 static bool IsBne(Instr instr);
1095 static bool IsJump(Instr instr);
1096 static bool IsJ(Instr instr);
1097 static bool IsLui(Instr instr);
1098 static bool IsOri(Instr instr);
1100 static bool IsJal(Instr instr);
1101 static bool IsJr(Instr instr);
1102 static bool IsJalr(Instr instr);
1104 static bool IsNop(Instr instr, unsigned int type);
1105 static bool IsPop(Instr instr);
1106 static bool IsPush(Instr instr);
1107 static bool IsLwRegFpOffset(Instr instr);
1108 static bool IsSwRegFpOffset(Instr instr);
1109 static bool IsLwRegFpNegOffset(Instr instr);
1110 static bool IsSwRegFpNegOffset(Instr instr);
1112 static Register GetRtReg(Instr instr);
1113 static Register GetRsReg(Instr instr);
1114 static Register GetRdReg(Instr instr);
1116 static uint32_t GetRt(Instr instr);
1117 static uint32_t GetRtField(Instr instr);
1118 static uint32_t GetRs(Instr instr);
1119 static uint32_t GetRsField(Instr instr);
1120 static uint32_t GetRd(Instr instr);
1121 static uint32_t GetRdField(Instr instr);
1122 static uint32_t GetSa(Instr instr);
1123 static uint32_t GetSaField(Instr instr);
1124 static uint32_t GetOpcodeField(Instr instr);
1125 static uint32_t GetFunction(Instr instr);
1126 static uint32_t GetFunctionField(Instr instr);
1127 static uint32_t GetImmediate16(Instr instr);
1128 static uint32_t GetLabelConst(Instr instr);
1130 static int32_t GetBranchOffset(Instr instr);
1131 static bool IsLw(Instr instr);
1132 static int16_t GetLwOffset(Instr instr);
1133 static Instr SetLwOffset(Instr instr, int16_t offset);
1135 static bool IsSw(Instr instr);
1136 static Instr SetSwOffset(Instr instr, int16_t offset);
1137 static bool IsAddImmediate(Instr instr);
1138 static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1140 static bool IsAndImmediate(Instr instr);
1141 static bool IsEmittedConstant(Instr instr);
1143 void CheckTrampolinePool();
1145 // Allocate a constant pool of the correct size for the generated code.
1146 Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
1148 // Generate the constant pool for the generated code.
1149 void PopulateConstantPool(ConstantPoolArray* constant_pool);
1152 // Relocation for a type-recording IC has the AST id added to it. This
1153 // member variable is a way to pass the information from the call site to
1154 // the relocation info.
1155 TypeFeedbackId recorded_ast_id_;
1157 int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1159 // Decode branch instruction at pos and return branch target pos.
1160 int64_t target_at(int64_t pos);
1162 // Patch branch instruction at pos to branch to given branch target pos.
1163 void target_at_put(int64_t pos, int64_t target_pos);
1165 // Say if we need to relocate with this mode.
1166 bool MustUseReg(RelocInfo::Mode rmode);
1168 // Record reloc info for current pc_.
1169 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1171 // Block the emission of the trampoline pool before pc_offset.
1172 void BlockTrampolinePoolBefore(int pc_offset) {
1173 if (no_trampoline_pool_before_ < pc_offset)
1174 no_trampoline_pool_before_ = pc_offset;
1177 void StartBlockTrampolinePool() {
1178 trampoline_pool_blocked_nesting_++;
1181 void EndBlockTrampolinePool() {
1182 trampoline_pool_blocked_nesting_--;
1185 bool is_trampoline_pool_blocked() const {
1186 return trampoline_pool_blocked_nesting_ > 0;
1189 bool has_exception() const {
1190 return internal_trampoline_exception_;
1193 void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1195 bool is_trampoline_emitted() const {
1196 return trampoline_emitted_;
1199 // Temporarily block automatic assembly buffer growth.
1200 void StartBlockGrowBuffer() {
1201 DCHECK(!block_buffer_growth_);
1202 block_buffer_growth_ = true;
1205 void EndBlockGrowBuffer() {
1206 DCHECK(block_buffer_growth_);
1207 block_buffer_growth_ = false;
1210 bool is_buffer_growth_blocked() const {
1211 return block_buffer_growth_;
1215 // Buffer size and constant pool distance are checked together at regular
1216 // intervals of kBufferCheckInterval emitted bytes.
1217 static const int kBufferCheckInterval = 1*KB/2;
1220 // The relocation writer's position is at least kGap bytes below the end of
1221 // the generated instructions. This is so that multi-instruction sequences do
1222 // not have to check for overflow. The same is true for writes of large
1223 // relocation info entries.
1224 static const int kGap = 32;
1227 // Repeated checking whether the trampoline pool should be emitted is rather
1228 // expensive. By default we only check again once a number of instructions
1229 // has been generated.
1230 static const int kCheckConstIntervalInst = 32;
1231 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1233 int next_buffer_check_; // pc offset of next buffer check.
1235 // Emission of the trampoline pool may be blocked in some code sequences.
1236 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero.
1237 int no_trampoline_pool_before_; // Block emission before this pc offset.
1239 // Keep track of the last emitted pool to guarantee a maximal distance.
1240 int last_trampoline_pool_end_; // pc offset of the end of the last pool.
1242 // Automatic growth of the assembly buffer may be blocked for some sequences.
1243 bool block_buffer_growth_; // Block growth when true.
1245 // Relocation information generation.
1246 // Each relocation is encoded as a variable size value.
1247 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1248 RelocInfoWriter reloc_info_writer;
1250 // The bound position, before this we cannot do instruction elimination.
1251 int last_bound_pos_;
1254 inline void CheckBuffer();
1256 inline void emit(Instr x);
1257 inline void emit(uint64_t x);
1258 inline void CheckTrampolinePoolQuick();
1260 // Instruction generation.
1261 // We have 3 different kind of encoding layout on MIPS.
1262 // However due to many different types of objects encoded in the same fields
1263 // we have quite a few aliases for each mode.
1264 // Using the same structure to refer to Register and FPURegister would spare a
1265 // few aliases, but mixing both does not look clean to me.
1266 // Anyway we could surely implement this differently.
1268 void GenInstrRegister(Opcode opcode,
1273 SecondaryField func = NULLSF);
1275 void GenInstrRegister(Opcode opcode,
1280 SecondaryField func);
1282 void GenInstrRegister(Opcode opcode,
1287 SecondaryField func = NULLSF);
1289 void GenInstrRegister(Opcode opcode,
1294 SecondaryField func = NULLSF);
1296 void GenInstrRegister(Opcode opcode,
1301 SecondaryField func = NULLSF);
1303 void GenInstrRegister(Opcode opcode,
1306 FPUControlRegister fs,
1307 SecondaryField func = NULLSF);
1310 void GenInstrImmediate(Opcode opcode,
1314 void GenInstrImmediate(Opcode opcode,
1318 void GenInstrImmediate(Opcode opcode,
1324 void GenInstrJump(Opcode opcode,
1328 void LoadRegPlusOffsetToAt(const MemOperand& src);
1331 void print(Label* L);
1332 void bind_to(Label* L, int pos);
1333 void next(Label* L);
1335 // One trampoline consists of:
1336 // - space for trampoline slots,
1337 // - space for labels.
1339 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1340 // Space for trampoline slots preceeds space for labels. Each label is of one
1341 // instruction size, so total amount for labels is equal to
1342 // label_count * kInstrSize.
1348 free_slot_count_ = 0;
1351 Trampoline(int start, int slot_count) {
1354 free_slot_count_ = slot_count;
1355 end_ = start + slot_count * kTrampolineSlotsSize;
1364 int trampoline_slot = kInvalidSlotPos;
1365 if (free_slot_count_ <= 0) {
1366 // We have run out of space on trampolines.
1367 // Make sure we fail in debug mode, so we become aware of each case
1368 // when this happens.
1370 // Internal exception will be caught.
1372 trampoline_slot = next_slot_;
1374 next_slot_ += kTrampolineSlotsSize;
1376 return trampoline_slot;
1383 int free_slot_count_;
1386 int32_t get_trampoline_entry(int32_t pos);
1387 int unbound_labels_count_;
1388 // If trampoline is emitted, generated code is becoming large. As this is
1389 // already a slow case which can possibly break our code generation for the
1390 // extreme case, we use this information to trigger different mode of
1391 // branch instruction generation, where we use jump instructions rather
1392 // than regular branch instructions.
1393 bool trampoline_emitted_;
1394 static const int kTrampolineSlotsSize = 6 * kInstrSize;
1395 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1396 static const int kInvalidSlotPos = -1;
1398 Trampoline trampoline_;
1399 bool internal_trampoline_exception_;
1401 friend class RegExpMacroAssemblerMIPS;
1402 friend class RelocInfo;
1403 friend class CodePatcher;
1404 friend class BlockTrampolinePoolScope;
1406 PositionsRecorder positions_recorder_;
1407 friend class PositionsRecorder;
1408 friend class EnsureSpace;
1412 class EnsureSpace BASE_EMBEDDED {
1414 explicit EnsureSpace(Assembler* assembler) {
1415 assembler->CheckBuffer();
1419 } } // namespace v8::internal
1421 #endif // V8_ARM_ASSEMBLER_MIPS_H_