1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
43 #include "src/assembler.h"
44 #include "src/compiler.h"
45 #include "src/mips64/constants-mips64.h"
52 // 1) We would prefer to use an enum, but enum values are assignment-
53 // compatible with int, which has caused code-generation bugs.
55 // 2) We would prefer to use a class instead of a struct but we don't like
56 // the register initialization to depend on the particular initialization
57 // order (which appears to be different on OS X, Linux, and Windows for the
58 // installed versions of C++ we tried). Using a struct permits C-style
59 // "initialization". Also, the Register objects cannot be const as this
60 // forces initialization stubs in MSVC, making us dependent on initialization
63 // 3) By not using an enum, we are possibly preventing the compiler from
64 // doing certain constant folds, which may significantly reduce the
65 // code generated for some assembly instructions (because they boil down
66 // to a few constants). If this is a problem, we could change the code
67 // such that we use an enum in optimized mode, and the struct in debug
68 // mode. This way we get the compile-time error checking in debug mode
69 // and best performance in optimized code.
72 // -----------------------------------------------------------------------------
73 // Implementation of Register and FPURegister.
77 static const int kNumRegisters = v8::internal::kNumRegisters;
78 static const int kMaxNumAllocatableRegisters = 14; // v0 through t6 and cp.
79 static const int kSizeInBytes = 8;
80 static const int kCpRegister = 23; // cp (s7) is the 23rd register.
82 inline static int NumAllocatableRegisters();
84 static int ToAllocationIndex(Register reg) {
85 DCHECK((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) ||
86 reg.is(from_code(kCpRegister)));
87 return reg.is(from_code(kCpRegister)) ?
88 kMaxNumAllocatableRegisters - 1 : // Return last index for 'cp'.
89 reg.code() - 2; // zero_reg and 'at' are skipped.
92 static Register FromAllocationIndex(int index) {
93 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
94 return index == kMaxNumAllocatableRegisters - 1 ?
95 from_code(kCpRegister) : // Last index is always the 'cp' register.
96 from_code(index + 2); // zero_reg and 'at' are skipped.
99 static const char* AllocationIndexToString(int index) {
100 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
101 const char* const names[] = {
120 static Register from_code(int code) {
121 Register r = { code };
125 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
126 bool is(Register reg) const { return code_ == reg.code_; }
136 // Unfortunately we can't make this private in a struct.
140 #define REGISTER(N, C) \
141 const int kRegister_ ## N ## _Code = C; \
142 const Register N = { C }
144 REGISTER(no_reg, -1);
146 REGISTER(zero_reg, 0);
147 // at: Reserved for synthetic instructions.
149 // v0, v1: Used when returning multiple values from subroutines.
152 // a0 - a4: Used to pass non-FP parameters.
157 // a4 - a7 t0 - t3: Can be used without reservation, act as temporary registers
158 // and are allowed to be destroyed by subroutines.
167 // s0 - s7: Subroutine register variables. Subroutines that write to these
168 // registers must restore their values before exiting so that the caller can
169 // expect the values to be preserved.
180 // k0, k1: Reserved for system calls and interrupt handlers.
185 // sp: Stack pointer.
187 // fp: Frame pointer.
189 // ra: Return address pointer.
195 int ToNumber(Register reg);
197 Register ToRegister(int num);
199 // Coprocessor register.
201 static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;
203 // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
204 // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
205 // number of Double regs (64-bit regs, or FPU-reg-pairs).
207 // A few double registers are reserved: one as a scratch register and one to
210 // f30: scratch register.
211 static const int kNumReservedRegisters = 2;
212 static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
213 kNumReservedRegisters;
215 inline static int NumRegisters();
216 inline static int NumAllocatableRegisters();
218 // TODO(turbofan): Proper support for float32.
219 inline static int NumAllocatableAliasedRegisters();
221 inline static int ToAllocationIndex(FPURegister reg);
222 static const char* AllocationIndexToString(int index);
224 static FPURegister FromAllocationIndex(int index) {
225 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
226 return from_code(index * 2);
229 static FPURegister from_code(int code) {
230 FPURegister r = { code };
234 bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
235 bool is(FPURegister creg) const { return code_ == creg.code_; }
236 FPURegister low() const {
237 // TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1.
238 // Find low reg of a Double-reg pair, which is the reg itself.
239 DCHECK(code_ % 2 == 0); // Specified Double reg must be even.
242 DCHECK(reg.is_valid());
245 FPURegister high() const {
246 // TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1.
247 // Find high reg of a Doubel-reg pair, which is reg + 1.
248 DCHECK(code_ % 2 == 0); // Specified Double reg must be even.
250 reg.code_ = code_ + 1;
251 DCHECK(reg.is_valid());
263 void setcode(int f) {
267 // Unfortunately we can't make this private in a struct.
271 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
272 // 32-bit registers, f0 through f31. When used as 'double' they are used
273 // in pairs, starting with the even numbered register. So a double operation
274 // on f0 really uses f0 and f1.
275 // (Modern mips hardware also supports 32 64-bit registers, via setting
276 // (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
277 // but it is not in common use. Someday we will want to support this in v8.)
279 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
280 typedef FPURegister DoubleRegister;
281 typedef FPURegister FloatRegister;
283 const FPURegister no_freg = { -1 };
285 const FPURegister f0 = { 0 }; // Return value in hard float mode.
286 const FPURegister f1 = { 1 };
287 const FPURegister f2 = { 2 };
288 const FPURegister f3 = { 3 };
289 const FPURegister f4 = { 4 };
290 const FPURegister f5 = { 5 };
291 const FPURegister f6 = { 6 };
292 const FPURegister f7 = { 7 };
293 const FPURegister f8 = { 8 };
294 const FPURegister f9 = { 9 };
295 const FPURegister f10 = { 10 };
296 const FPURegister f11 = { 11 };
297 const FPURegister f12 = { 12 }; // Arg 0 in hard float mode.
298 const FPURegister f13 = { 13 };
299 const FPURegister f14 = { 14 }; // Arg 1 in hard float mode.
300 const FPURegister f15 = { 15 };
301 const FPURegister f16 = { 16 };
302 const FPURegister f17 = { 17 };
303 const FPURegister f18 = { 18 };
304 const FPURegister f19 = { 19 };
305 const FPURegister f20 = { 20 };
306 const FPURegister f21 = { 21 };
307 const FPURegister f22 = { 22 };
308 const FPURegister f23 = { 23 };
309 const FPURegister f24 = { 24 };
310 const FPURegister f25 = { 25 };
311 const FPURegister f26 = { 26 };
312 const FPURegister f27 = { 27 };
313 const FPURegister f28 = { 28 };
314 const FPURegister f29 = { 29 };
315 const FPURegister f30 = { 30 };
316 const FPURegister f31 = { 31 };
319 // cp is assumed to be a callee saved register.
320 // Defined using #define instead of "static const Register&" because Clang
321 // complains otherwise when a compilation unit that includes this header
322 // doesn't use the variables.
323 #define kRootRegister s6
325 #define kLithiumScratchReg s3
326 #define kLithiumScratchReg2 s4
327 #define kLithiumScratchDouble f30
328 #define kDoubleRegZero f28
329 // Used on mips64r6 for compare operations.
330 #define kDoubleCompareReg f31
332 // FPU (coprocessor 1) control registers.
333 // Currently only FCSR (#31) is implemented.
334 struct FPUControlRegister {
335 bool is_valid() const { return code_ == kFCSRRegister; }
336 bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
345 void setcode(int f) {
349 // Unfortunately we can't make this private in a struct.
353 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
354 const FPUControlRegister FCSR = { kFCSRRegister };
357 // -----------------------------------------------------------------------------
358 // Machine instruction Operands.
359 const int kSmiShift = kSmiTagSize + kSmiShiftSize;
360 const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
361 // Class Operand represents a shifter operand in data processing instructions.
362 class Operand BASE_EMBEDDED {
365 INLINE(explicit Operand(int64_t immediate,
366 RelocInfo::Mode rmode = RelocInfo::NONE64));
367 INLINE(explicit Operand(const ExternalReference& f));
368 INLINE(explicit Operand(const char* s));
369 INLINE(explicit Operand(Object** opp));
370 INLINE(explicit Operand(Context** cpp));
371 explicit Operand(Handle<Object> handle);
372 INLINE(explicit Operand(Smi* value));
375 INLINE(explicit Operand(Register rm));
377 // Return true if this is a register operand.
378 INLINE(bool is_reg() const);
380 inline int64_t immediate() const {
385 Register rm() const { return rm_; }
389 int64_t imm64_; // Valid if rm_ == no_reg.
390 RelocInfo::Mode rmode_;
392 friend class Assembler;
393 friend class MacroAssembler;
397 // On MIPS we have only one adressing mode with base_reg + offset.
398 // Class MemOperand represents a memory operand in load and store instructions.
399 class MemOperand : public Operand {
401 // Immediate value attached to offset.
403 offset_minus_one = -1,
407 explicit MemOperand(Register rn, int64_t offset = 0);
408 explicit MemOperand(Register rn, int64_t unit, int64_t multiplier,
409 OffsetAddend offset_addend = offset_zero);
410 int32_t offset() const { return offset_; }
412 bool OffsetIsInt16Encodable() const {
413 return is_int16(offset_);
419 friend class Assembler;
423 class Assembler : public AssemblerBase {
425 // Create an assembler. Instructions and relocation information are emitted
426 // into a buffer, with the instructions starting from the beginning and the
427 // relocation information starting from the end of the buffer. See CodeDesc
428 // for a detailed comment on the layout (globals.h).
430 // If the provided buffer is NULL, the assembler allocates and grows its own
431 // buffer, and buffer_size determines the initial buffer size. The buffer is
432 // owned by the assembler and deallocated upon destruction of the assembler.
434 // If the provided buffer is not NULL, the assembler uses the provided buffer
435 // for code generation and assumes its size to be buffer_size. If the buffer
436 // is too small, a fatal error occurs. No deallocation of the buffer is done
437 // upon destruction of the assembler.
438 Assembler(Isolate* isolate, void* buffer, int buffer_size);
439 virtual ~Assembler() { }
441 // GetCode emits any pending (non-emitted) code and fills the descriptor
442 // desc. GetCode() is idempotent; it returns the same result if no other
443 // Assembler functions are invoked in between GetCode() calls.
444 void GetCode(CodeDesc* desc);
446 // Label operations & relative jumps (PPUM Appendix D).
448 // Takes a branch opcode (cc) and a label (L) and generates
449 // either a backward branch or a forward branch and links it
450 // to the label fixup chain. Usage:
452 // Label L; // unbound label
453 // j(cc, &L); // forward branch to unbound label
454 // bind(&L); // bind label to the current pc
455 // j(cc, &L); // backward branch to bound label
456 // bind(&L); // illegal: a label may be bound only once
458 // Note: The same Label can be used for forward and backward branches
459 // but it may be bound only once.
460 void bind(Label* L); // Binds an unbound label L to current code position.
461 // Determines if Label is bound and near enough so that branch instruction
462 // can be used to reach it, instead of jump instruction.
463 bool is_near(Label* L);
465 // Returns the branch offset to the given label from the current code
466 // position. Links the label to the current position if it is still unbound.
467 // Manages the jump elimination optimization if the second parameter is true.
468 int32_t branch_offset(Label* L, bool jump_elimination_allowed);
469 int32_t branch_offset_compact(Label* L, bool jump_elimination_allowed);
470 int32_t branch_offset21(Label* L, bool jump_elimination_allowed);
471 int32_t branch_offset21_compact(Label* L, bool jump_elimination_allowed);
472 int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
473 int32_t o = branch_offset(L, jump_elimination_allowed);
474 DCHECK((o & 3) == 0); // Assert the offset is aligned.
477 int32_t shifted_branch_offset_compact(Label* L,
478 bool jump_elimination_allowed) {
479 int32_t o = branch_offset_compact(L, jump_elimination_allowed);
480 DCHECK((o & 3) == 0); // Assert the offset is aligned.
483 uint64_t jump_address(Label* L);
485 // Puts a labels target address at the given position.
486 // The high 8 bits are set to zero.
487 void label_at_put(Label* L, int at_offset);
489 // Read/Modify the code target address in the branch/call instruction at pc.
490 static Address target_address_at(Address pc);
491 static void set_target_address_at(Address pc,
493 ICacheFlushMode icache_flush_mode =
494 FLUSH_ICACHE_IF_NEEDED);
495 // On MIPS there is no Constant Pool so we skip that parameter.
496 INLINE(static Address target_address_at(Address pc,
497 ConstantPoolArray* constant_pool)) {
498 return target_address_at(pc);
500 INLINE(static void set_target_address_at(Address pc,
501 ConstantPoolArray* constant_pool,
503 ICacheFlushMode icache_flush_mode =
504 FLUSH_ICACHE_IF_NEEDED)) {
505 set_target_address_at(pc, target, icache_flush_mode);
507 INLINE(static Address target_address_at(Address pc, Code* code)) {
508 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
509 return target_address_at(pc, constant_pool);
511 INLINE(static void set_target_address_at(Address pc,
514 ICacheFlushMode icache_flush_mode =
515 FLUSH_ICACHE_IF_NEEDED)) {
516 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
517 set_target_address_at(pc, constant_pool, target, icache_flush_mode);
520 // Return the code target address at a call site from the return address
521 // of that call in the instruction stream.
522 inline static Address target_address_from_return_address(Address pc);
524 // Return the code target address of the patch debug break slot
525 inline static Address break_address_from_return_address(Address pc);
527 static void QuietNaN(HeapObject* nan);
529 // This sets the branch destination (which gets loaded at the call address).
530 // This is for calls and branches within generated code. The serializer
531 // has already deserialized the lui/ori instructions etc.
532 inline static void deserialization_set_special_target_at(
533 Address instruction_payload, Code* code, Address target) {
534 set_target_address_at(
535 instruction_payload - kInstructionsFor64BitConstant * kInstrSize,
540 // This sets the internal reference at the pc.
541 inline static void deserialization_set_target_internal_reference_at(
542 Address pc, Address target,
543 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
545 // Size of an instruction.
546 static const int kInstrSize = sizeof(Instr);
548 // Difference between address of current opcode and target address offset.
549 static const int kBranchPCOffset = 4;
551 // Here we are patching the address in the LUI/ORI instruction pair.
552 // These values are used in the serialization process and must be zero for
553 // MIPS platform, as Code, Embedded Object or External-reference pointers
554 // are split across two consecutive instructions and don't exist separately
555 // in the code, so the serializer should not step forwards in memory after
556 // a target is resolved and written.
557 static const int kSpecialTargetSize = 0;
559 // Number of consecutive instructions used to store 32bit/64bit constant.
560 // This constant was used in RelocInfo::target_address_address() function
561 // to tell serializer address of the instruction that follows
562 // LUI/ORI instruction pair.
563 static const int kInstructionsFor32BitConstant = 2;
564 static const int kInstructionsFor64BitConstant = 4;
566 // Distance between the instruction referring to the address of the call
567 // target and the return address.
568 static const int kCallTargetAddressOffset = 6 * kInstrSize;
570 // Distance between start of patched return sequence and the emitted address
572 static const int kPatchReturnSequenceAddressOffset = 0;
574 // Distance between start of patched debug break slot and the emitted address
576 static const int kPatchDebugBreakSlotAddressOffset = 0 * kInstrSize;
578 // Difference between address of current opcode and value read from pc
580 static const int kPcLoadDelta = 4;
582 static const int kPatchDebugBreakSlotReturnOffset = 6 * kInstrSize;
584 // Number of instructions used for the JS return sequence. The constant is
585 // used by the debugger to patch the JS return sequence.
586 static const int kJSReturnSequenceInstructions = 7;
587 static const int kJSReturnSequenceLength =
588 kJSReturnSequenceInstructions * kInstrSize;
589 static const int kDebugBreakSlotInstructions = 6;
590 static const int kDebugBreakSlotLength =
591 kDebugBreakSlotInstructions * kInstrSize;
594 // ---------------------------------------------------------------------------
597 // Insert the smallest number of nop instructions
598 // possible to align the pc offset to a multiple
599 // of m. m must be a power of 2 (>= 4).
601 // Aligns code to something that's optimal for a jump target for the platform.
602 void CodeTargetAlign();
604 // Different nop operations are used by the code generator to detect certain
605 // states of the generated code.
606 enum NopMarkerTypes {
610 PROPERTY_ACCESS_INLINED,
611 PROPERTY_ACCESS_INLINED_CONTEXT,
612 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
615 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
617 CODE_AGE_MARKER_NOP = 6,
618 CODE_AGE_SEQUENCE_NOP
621 // Type == 0 is the default non-marking nop. For mips this is a
622 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
623 // marking, to avoid conflict with ssnop and ehb instructions.
624 void nop(unsigned int type = 0) {
626 Register nop_rt_reg = (type == 0) ? zero_reg : at;
627 sll(zero_reg, nop_rt_reg, type, true);
631 // --------Branch-and-jump-instructions----------
632 // We don't use likely variant of instructions.
633 void b(int16_t offset);
634 void b(Label* L) { b(branch_offset(L, false)>>2); }
635 void bal(int16_t offset);
636 void bal(Label* L) { bal(branch_offset(L, false)>>2); }
638 void beq(Register rs, Register rt, int16_t offset);
639 void beq(Register rs, Register rt, Label* L) {
640 beq(rs, rt, branch_offset(L, false) >> 2);
642 void bgez(Register rs, int16_t offset);
643 void bgezc(Register rt, int16_t offset);
644 void bgezc(Register rt, Label* L) {
645 bgezc(rt, branch_offset_compact(L, false)>>2);
647 void bgeuc(Register rs, Register rt, int16_t offset);
648 void bgeuc(Register rs, Register rt, Label* L) {
649 bgeuc(rs, rt, branch_offset_compact(L, false)>>2);
651 void bgec(Register rs, Register rt, int16_t offset);
652 void bgec(Register rs, Register rt, Label* L) {
653 bgec(rs, rt, branch_offset_compact(L, false)>>2);
655 void bgezal(Register rs, int16_t offset);
656 void bgezalc(Register rt, int16_t offset);
657 void bgezalc(Register rt, Label* L) {
658 bgezalc(rt, branch_offset_compact(L, false)>>2);
660 void bgezall(Register rs, int16_t offset);
661 void bgezall(Register rs, Label* L) {
662 bgezall(rs, branch_offset(L, false)>>2);
664 void bgtz(Register rs, int16_t offset);
665 void bgtzc(Register rt, int16_t offset);
666 void bgtzc(Register rt, Label* L) {
667 bgtzc(rt, branch_offset_compact(L, false)>>2);
669 void blez(Register rs, int16_t offset);
670 void blezc(Register rt, int16_t offset);
671 void blezc(Register rt, Label* L) {
672 blezc(rt, branch_offset_compact(L, false)>>2);
674 void bltz(Register rs, int16_t offset);
675 void bltzc(Register rt, int16_t offset);
676 void bltzc(Register rt, Label* L) {
677 bltzc(rt, branch_offset_compact(L, false)>>2);
679 void bltuc(Register rs, Register rt, int16_t offset);
680 void bltuc(Register rs, Register rt, Label* L) {
681 bltuc(rs, rt, branch_offset_compact(L, false)>>2);
683 void bltc(Register rs, Register rt, int16_t offset);
684 void bltc(Register rs, Register rt, Label* L) {
685 bltc(rs, rt, branch_offset_compact(L, false)>>2);
688 void bltzal(Register rs, int16_t offset);
689 void blezalc(Register rt, int16_t offset);
690 void blezalc(Register rt, Label* L) {
691 blezalc(rt, branch_offset_compact(L, false)>>2);
693 void bltzalc(Register rt, int16_t offset);
694 void bltzalc(Register rt, Label* L) {
695 bltzalc(rt, branch_offset_compact(L, false)>>2);
697 void bgtzalc(Register rt, int16_t offset);
698 void bgtzalc(Register rt, Label* L) {
699 bgtzalc(rt, branch_offset_compact(L, false)>>2);
701 void beqzalc(Register rt, int16_t offset);
702 void beqzalc(Register rt, Label* L) {
703 beqzalc(rt, branch_offset_compact(L, false)>>2);
705 void beqc(Register rs, Register rt, int16_t offset);
706 void beqc(Register rs, Register rt, Label* L) {
707 beqc(rs, rt, branch_offset_compact(L, false)>>2);
709 void beqzc(Register rs, int32_t offset);
710 void beqzc(Register rs, Label* L) {
711 beqzc(rs, branch_offset21_compact(L, false)>>2);
713 void bnezalc(Register rt, int16_t offset);
714 void bnezalc(Register rt, Label* L) {
715 bnezalc(rt, branch_offset_compact(L, false)>>2);
717 void bnec(Register rs, Register rt, int16_t offset);
718 void bnec(Register rs, Register rt, Label* L) {
719 bnec(rs, rt, branch_offset_compact(L, false)>>2);
721 void bnezc(Register rt, int32_t offset);
722 void bnezc(Register rt, Label* L) {
723 bnezc(rt, branch_offset21_compact(L, false)>>2);
725 void bne(Register rs, Register rt, int16_t offset);
726 void bne(Register rs, Register rt, Label* L) {
727 bne(rs, rt, branch_offset(L, false)>>2);
729 void bovc(Register rs, Register rt, int16_t offset);
730 void bovc(Register rs, Register rt, Label* L) {
731 bovc(rs, rt, branch_offset_compact(L, false)>>2);
733 void bnvc(Register rs, Register rt, int16_t offset);
734 void bnvc(Register rs, Register rt, Label* L) {
735 bnvc(rs, rt, branch_offset_compact(L, false)>>2);
738 // Never use the int16_t b(l)cond version with a branch offset
739 // instead of using the Label* version.
741 // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
742 void j(int64_t target);
743 void jal(int64_t target);
744 void jalr(Register rs, Register rd = ra);
745 void jr(Register target);
746 void j_or_jr(int64_t target, Register rs);
747 void jal_or_jalr(int64_t target, Register rs);
750 // -------Data-processing-instructions---------
753 void addu(Register rd, Register rs, Register rt);
754 void subu(Register rd, Register rs, Register rt);
756 void div(Register rs, Register rt);
757 void divu(Register rs, Register rt);
758 void ddiv(Register rs, Register rt);
759 void ddivu(Register rs, Register rt);
760 void div(Register rd, Register rs, Register rt);
761 void divu(Register rd, Register rs, Register rt);
762 void ddiv(Register rd, Register rs, Register rt);
763 void ddivu(Register rd, Register rs, Register rt);
764 void mod(Register rd, Register rs, Register rt);
765 void modu(Register rd, Register rs, Register rt);
766 void dmod(Register rd, Register rs, Register rt);
767 void dmodu(Register rd, Register rs, Register rt);
769 void mul(Register rd, Register rs, Register rt);
770 void muh(Register rd, Register rs, Register rt);
771 void mulu(Register rd, Register rs, Register rt);
772 void muhu(Register rd, Register rs, Register rt);
773 void mult(Register rs, Register rt);
774 void multu(Register rs, Register rt);
775 void dmul(Register rd, Register rs, Register rt);
776 void dmuh(Register rd, Register rs, Register rt);
777 void dmulu(Register rd, Register rs, Register rt);
778 void dmuhu(Register rd, Register rs, Register rt);
779 void daddu(Register rd, Register rs, Register rt);
780 void dsubu(Register rd, Register rs, Register rt);
781 void dmult(Register rs, Register rt);
782 void dmultu(Register rs, Register rt);
784 void addiu(Register rd, Register rs, int32_t j);
785 void daddiu(Register rd, Register rs, int32_t j);
788 void and_(Register rd, Register rs, Register rt);
789 void or_(Register rd, Register rs, Register rt);
790 void xor_(Register rd, Register rs, Register rt);
791 void nor(Register rd, Register rs, Register rt);
793 void andi(Register rd, Register rs, int32_t j);
794 void ori(Register rd, Register rs, int32_t j);
795 void xori(Register rd, Register rs, int32_t j);
796 void lui(Register rd, int32_t j);
797 void aui(Register rs, Register rt, int32_t j);
798 void daui(Register rs, Register rt, int32_t j);
799 void dahi(Register rs, int32_t j);
800 void dati(Register rs, int32_t j);
803 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
804 // and may cause problems in normal code. coming_from_nop makes sure this
806 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
807 void sllv(Register rd, Register rt, Register rs);
808 void srl(Register rd, Register rt, uint16_t sa);
809 void srlv(Register rd, Register rt, Register rs);
810 void sra(Register rt, Register rd, uint16_t sa);
811 void srav(Register rt, Register rd, Register rs);
812 void rotr(Register rd, Register rt, uint16_t sa);
813 void rotrv(Register rd, Register rt, Register rs);
814 void dsll(Register rd, Register rt, uint16_t sa);
815 void dsllv(Register rd, Register rt, Register rs);
816 void dsrl(Register rd, Register rt, uint16_t sa);
817 void dsrlv(Register rd, Register rt, Register rs);
818 void drotr(Register rd, Register rt, uint16_t sa);
819 void drotrv(Register rd, Register rt, Register rs);
820 void dsra(Register rt, Register rd, uint16_t sa);
821 void dsrav(Register rd, Register rt, Register rs);
822 void dsll32(Register rt, Register rd, uint16_t sa);
823 void dsrl32(Register rt, Register rd, uint16_t sa);
824 void dsra32(Register rt, Register rd, uint16_t sa);
827 // ------------Memory-instructions-------------
829 void lb(Register rd, const MemOperand& rs);
830 void lbu(Register rd, const MemOperand& rs);
831 void lh(Register rd, const MemOperand& rs);
832 void lhu(Register rd, const MemOperand& rs);
833 void lw(Register rd, const MemOperand& rs);
834 void lwu(Register rd, const MemOperand& rs);
835 void lwl(Register rd, const MemOperand& rs);
836 void lwr(Register rd, const MemOperand& rs);
837 void sb(Register rd, const MemOperand& rs);
838 void sh(Register rd, const MemOperand& rs);
839 void sw(Register rd, const MemOperand& rs);
840 void swl(Register rd, const MemOperand& rs);
841 void swr(Register rd, const MemOperand& rs);
842 void ldl(Register rd, const MemOperand& rs);
843 void ldr(Register rd, const MemOperand& rs);
844 void sdl(Register rd, const MemOperand& rs);
845 void sdr(Register rd, const MemOperand& rs);
846 void ld(Register rd, const MemOperand& rs);
847 void sd(Register rd, const MemOperand& rs);
850 // ----------------Prefetch--------------------
852 void pref(int32_t hint, const MemOperand& rs);
855 // -------------Misc-instructions--------------
857 // Break / Trap instructions.
858 void break_(uint32_t code, bool break_as_stop = false);
859 void stop(const char* msg, uint32_t code = kMaxStopCode);
860 void tge(Register rs, Register rt, uint16_t code);
861 void tgeu(Register rs, Register rt, uint16_t code);
862 void tlt(Register rs, Register rt, uint16_t code);
863 void tltu(Register rs, Register rt, uint16_t code);
864 void teq(Register rs, Register rt, uint16_t code);
865 void tne(Register rs, Register rt, uint16_t code);
867 // Move from HI/LO register.
868 void mfhi(Register rd);
869 void mflo(Register rd);
872 void slt(Register rd, Register rs, Register rt);
873 void sltu(Register rd, Register rs, Register rt);
874 void slti(Register rd, Register rs, int32_t j);
875 void sltiu(Register rd, Register rs, int32_t j);
878 void movz(Register rd, Register rs, Register rt);
879 void movn(Register rd, Register rs, Register rt);
880 void movt(Register rd, Register rs, uint16_t cc = 0);
881 void movf(Register rd, Register rs, uint16_t cc = 0);
883 void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
884 void seleqz(Register rd, Register rs, Register rt);
885 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
887 void selnez(Register rs, Register rt, Register rd);
888 void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
891 void clz(Register rd, Register rs);
892 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
893 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
894 void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
896 // --------Coprocessor-instructions----------------
898 // Load, store, and move.
899 void lwc1(FPURegister fd, const MemOperand& src);
900 void ldc1(FPURegister fd, const MemOperand& src);
902 void swc1(FPURegister fs, const MemOperand& dst);
903 void sdc1(FPURegister fs, const MemOperand& dst);
905 void mtc1(Register rt, FPURegister fs);
906 void mthc1(Register rt, FPURegister fs);
907 void dmtc1(Register rt, FPURegister fs);
909 void mfc1(Register rt, FPURegister fs);
910 void mfhc1(Register rt, FPURegister fs);
911 void dmfc1(Register rt, FPURegister fs);
913 void ctc1(Register rt, FPUControlRegister fs);
914 void cfc1(Register rt, FPUControlRegister fs);
917 void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
918 void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
919 void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
920 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
921 void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
922 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
923 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
924 void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
925 void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
926 void abs_s(FPURegister fd, FPURegister fs);
927 void abs_d(FPURegister fd, FPURegister fs);
928 void mov_d(FPURegister fd, FPURegister fs);
929 void neg_s(FPURegister fd, FPURegister fs);
930 void neg_d(FPURegister fd, FPURegister fs);
931 void sqrt_s(FPURegister fd, FPURegister fs);
932 void sqrt_d(FPURegister fd, FPURegister fs);
935 void cvt_w_s(FPURegister fd, FPURegister fs);
936 void cvt_w_d(FPURegister fd, FPURegister fs);
937 void trunc_w_s(FPURegister fd, FPURegister fs);
938 void trunc_w_d(FPURegister fd, FPURegister fs);
939 void round_w_s(FPURegister fd, FPURegister fs);
940 void round_w_d(FPURegister fd, FPURegister fs);
941 void floor_w_s(FPURegister fd, FPURegister fs);
942 void floor_w_d(FPURegister fd, FPURegister fs);
943 void ceil_w_s(FPURegister fd, FPURegister fs);
944 void ceil_w_d(FPURegister fd, FPURegister fs);
945 void rint_s(FPURegister fd, FPURegister fs);
946 void rint_d(FPURegister fd, FPURegister fs);
947 void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
950 void cvt_l_s(FPURegister fd, FPURegister fs);
951 void cvt_l_d(FPURegister fd, FPURegister fs);
952 void trunc_l_s(FPURegister fd, FPURegister fs);
953 void trunc_l_d(FPURegister fd, FPURegister fs);
954 void round_l_s(FPURegister fd, FPURegister fs);
955 void round_l_d(FPURegister fd, FPURegister fs);
956 void floor_l_s(FPURegister fd, FPURegister fs);
957 void floor_l_d(FPURegister fd, FPURegister fs);
958 void ceil_l_s(FPURegister fd, FPURegister fs);
959 void ceil_l_d(FPURegister fd, FPURegister fs);
961 void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
962 void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
963 void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
964 void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
965 void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
966 void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
967 void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
968 void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
969 void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
970 void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
971 void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
972 void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
974 void cvt_s_w(FPURegister fd, FPURegister fs);
975 void cvt_s_l(FPURegister fd, FPURegister fs);
976 void cvt_s_d(FPURegister fd, FPURegister fs);
978 void cvt_d_w(FPURegister fd, FPURegister fs);
979 void cvt_d_l(FPURegister fd, FPURegister fs);
980 void cvt_d_s(FPURegister fd, FPURegister fs);
982 // Conditions and branches for MIPSr6.
983 void cmp(FPUCondition cond, SecondaryField fmt,
984 FPURegister fd, FPURegister ft, FPURegister fs);
986 void bc1eqz(int16_t offset, FPURegister ft);
987 void bc1eqz(Label* L, FPURegister ft) {
988 bc1eqz(branch_offset(L, false)>>2, ft);
990 void bc1nez(int16_t offset, FPURegister ft);
991 void bc1nez(Label* L, FPURegister ft) {
992 bc1nez(branch_offset(L, false)>>2, ft);
995 // Conditions and branches for non MIPSr6.
996 void c(FPUCondition cond, SecondaryField fmt,
997 FPURegister ft, FPURegister fs, uint16_t cc = 0);
999 void bc1f(int16_t offset, uint16_t cc = 0);
1000 void bc1f(Label* L, uint16_t cc = 0) {
1001 bc1f(branch_offset(L, false)>>2, cc);
1003 void bc1t(int16_t offset, uint16_t cc = 0);
1004 void bc1t(Label* L, uint16_t cc = 0) {
1005 bc1t(branch_offset(L, false)>>2, cc);
1007 void fcmp(FPURegister src1, const double src2, FPUCondition cond);
1009 // Check the code size generated from label to here.
1010 int SizeOfCodeGeneratedSince(Label* label) {
1011 return pc_offset() - label->pos();
1014 // Check the number of instructions generated from label to here.
1015 int InstructionsGeneratedSince(Label* label) {
1016 return SizeOfCodeGeneratedSince(label) / kInstrSize;
1019 // Class for scoping postponing the trampoline pool generation.
1020 class BlockTrampolinePoolScope {
1022 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
1023 assem_->StartBlockTrampolinePool();
1025 ~BlockTrampolinePoolScope() {
1026 assem_->EndBlockTrampolinePool();
1032 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1035 // Class for postponing the assembly buffer growth. Typically used for
1036 // sequences of instructions that must be emitted as a unit, before
1037 // buffer growth (and relocation) can occur.
1038 // This blocking scope is not nestable.
1039 class BlockGrowBufferScope {
1041 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1042 assem_->StartBlockGrowBuffer();
1044 ~BlockGrowBufferScope() {
1045 assem_->EndBlockGrowBuffer();
1051 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1056 // Mark address of the ExitJSFrame code.
1057 void RecordJSReturn();
1059 // Mark address of a debug break slot.
1060 void RecordDebugBreakSlot();
1062 // Record the AST id of the CallIC being compiled, so that it can be placed
1063 // in the relocation information.
1064 void SetRecordedAstId(TypeFeedbackId ast_id) {
1065 DCHECK(recorded_ast_id_.IsNone());
1066 recorded_ast_id_ = ast_id;
1069 TypeFeedbackId RecordedAstId() {
1070 DCHECK(!recorded_ast_id_.IsNone());
1071 return recorded_ast_id_;
1074 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1076 // Record a comment relocation entry that can be used by a disassembler.
1077 // Use --code-comments to enable.
1078 void RecordComment(const char* msg);
1080 // Record a deoptimization reason that can be used by a log or cpu profiler.
1081 // Use --trace-deopt to enable.
1082 void RecordDeoptReason(const int reason, const SourcePosition position);
1084 static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
1087 // Writes a single byte or word of data in the code stream. Used for
1088 // inline tables, e.g., jump-tables.
1089 void db(uint8_t data);
1090 void dd(uint32_t data);
1091 void dd(Label* label);
1093 // Emits the address of the code stub's first instruction.
1094 void emit_code_stub_address(Code* stub);
1096 PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1098 // Postpone the generation of the trampoline pool for the specified number of
1100 void BlockTrampolinePoolFor(int instructions);
1102 // Check if there is less than kGap bytes available in the buffer.
1103 // If this is the case, we need to grow the buffer before emitting
1104 // an instruction or relocation information.
1105 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1107 // Get the number of bytes available in the buffer.
1108 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1110 // Read/patch instructions.
1111 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
1112 static void instr_at_put(byte* pc, Instr instr) {
1113 *reinterpret_cast<Instr*>(pc) = instr;
1115 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
1116 void instr_at_put(int pos, Instr instr) {
1117 *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1120 // Check if an instruction is a branch of some kind.
1121 static bool IsBranch(Instr instr);
1122 static bool IsBeq(Instr instr);
1123 static bool IsBne(Instr instr);
1125 static bool IsJump(Instr instr);
1126 static bool IsJ(Instr instr);
1127 static bool IsLui(Instr instr);
1128 static bool IsOri(Instr instr);
1130 static bool IsJal(Instr instr);
1131 static bool IsJr(Instr instr);
1132 static bool IsJalr(Instr instr);
1134 static bool IsNop(Instr instr, unsigned int type);
1135 static bool IsPop(Instr instr);
1136 static bool IsPush(Instr instr);
1137 static bool IsLwRegFpOffset(Instr instr);
1138 static bool IsSwRegFpOffset(Instr instr);
1139 static bool IsLwRegFpNegOffset(Instr instr);
1140 static bool IsSwRegFpNegOffset(Instr instr);
1142 static Register GetRtReg(Instr instr);
1143 static Register GetRsReg(Instr instr);
1144 static Register GetRdReg(Instr instr);
1146 static uint32_t GetRt(Instr instr);
1147 static uint32_t GetRtField(Instr instr);
1148 static uint32_t GetRs(Instr instr);
1149 static uint32_t GetRsField(Instr instr);
1150 static uint32_t GetRd(Instr instr);
1151 static uint32_t GetRdField(Instr instr);
1152 static uint32_t GetSa(Instr instr);
1153 static uint32_t GetSaField(Instr instr);
1154 static uint32_t GetOpcodeField(Instr instr);
1155 static uint32_t GetFunction(Instr instr);
1156 static uint32_t GetFunctionField(Instr instr);
1157 static uint32_t GetImmediate16(Instr instr);
1158 static uint32_t GetLabelConst(Instr instr);
1160 static int32_t GetBranchOffset(Instr instr);
1161 static bool IsLw(Instr instr);
1162 static int16_t GetLwOffset(Instr instr);
1163 static Instr SetLwOffset(Instr instr, int16_t offset);
1165 static bool IsSw(Instr instr);
1166 static Instr SetSwOffset(Instr instr, int16_t offset);
1167 static bool IsAddImmediate(Instr instr);
1168 static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1170 static bool IsAndImmediate(Instr instr);
1171 static bool IsEmittedConstant(Instr instr);
1173 void CheckTrampolinePool();
1175 // Allocate a constant pool of the correct size for the generated code.
1176 Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
1178 // Generate the constant pool for the generated code.
1179 void PopulateConstantPool(ConstantPoolArray* constant_pool);
1182 // Relocation for a type-recording IC has the AST id added to it. This
1183 // member variable is a way to pass the information from the call site to
1184 // the relocation info.
1185 TypeFeedbackId recorded_ast_id_;
1187 inline static void set_target_internal_reference_encoded_at(Address pc,
1190 int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1192 // Decode branch instruction at pos and return branch target pos.
1193 int target_at(int pos, bool is_internal);
1195 // Patch branch instruction at pos to branch to given branch target pos.
1196 void target_at_put(int pos, int target_pos, bool is_internal);
1198 // Say if we need to relocate with this mode.
1199 bool MustUseReg(RelocInfo::Mode rmode);
1201 // Record reloc info for current pc_.
1202 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1204 // Block the emission of the trampoline pool before pc_offset.
1205 void BlockTrampolinePoolBefore(int pc_offset) {
1206 if (no_trampoline_pool_before_ < pc_offset)
1207 no_trampoline_pool_before_ = pc_offset;
1210 void StartBlockTrampolinePool() {
1211 trampoline_pool_blocked_nesting_++;
1214 void EndBlockTrampolinePool() {
1215 trampoline_pool_blocked_nesting_--;
1218 bool is_trampoline_pool_blocked() const {
1219 return trampoline_pool_blocked_nesting_ > 0;
1222 bool has_exception() const {
1223 return internal_trampoline_exception_;
1226 void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1228 bool is_trampoline_emitted() const {
1229 return trampoline_emitted_;
1232 // Temporarily block automatic assembly buffer growth.
1233 void StartBlockGrowBuffer() {
1234 DCHECK(!block_buffer_growth_);
1235 block_buffer_growth_ = true;
1238 void EndBlockGrowBuffer() {
1239 DCHECK(block_buffer_growth_);
1240 block_buffer_growth_ = false;
1243 bool is_buffer_growth_blocked() const {
1244 return block_buffer_growth_;
1248 // Buffer size and constant pool distance are checked together at regular
1249 // intervals of kBufferCheckInterval emitted bytes.
1250 static const int kBufferCheckInterval = 1*KB/2;
1253 // The relocation writer's position is at least kGap bytes below the end of
1254 // the generated instructions. This is so that multi-instruction sequences do
1255 // not have to check for overflow. The same is true for writes of large
1256 // relocation info entries.
1257 static const int kGap = 32;
1260 // Repeated checking whether the trampoline pool should be emitted is rather
1261 // expensive. By default we only check again once a number of instructions
1262 // has been generated.
1263 static const int kCheckConstIntervalInst = 32;
1264 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1266 int next_buffer_check_; // pc offset of next buffer check.
1268 // Emission of the trampoline pool may be blocked in some code sequences.
1269 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero.
1270 int no_trampoline_pool_before_; // Block emission before this pc offset.
1272 // Keep track of the last emitted pool to guarantee a maximal distance.
1273 int last_trampoline_pool_end_; // pc offset of the end of the last pool.
1275 // Automatic growth of the assembly buffer may be blocked for some sequences.
1276 bool block_buffer_growth_; // Block growth when true.
1278 // Relocation information generation.
1279 // Each relocation is encoded as a variable size value.
1280 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1281 RelocInfoWriter reloc_info_writer;
1283 // The bound position, before this we cannot do instruction elimination.
1284 int last_bound_pos_;
1287 inline void CheckBuffer();
1289 inline void emit(Instr x);
1290 inline void emit(uint64_t x);
1291 inline void CheckTrampolinePoolQuick();
1293 // Instruction generation.
1294 // We have 3 different kind of encoding layout on MIPS.
1295 // However due to many different types of objects encoded in the same fields
1296 // we have quite a few aliases for each mode.
1297 // Using the same structure to refer to Register and FPURegister would spare a
1298 // few aliases, but mixing both does not look clean to me.
1299 // Anyway we could surely implement this differently.
1301 void GenInstrRegister(Opcode opcode,
1306 SecondaryField func = NULLSF);
1308 void GenInstrRegister(Opcode opcode,
1313 SecondaryField func);
1315 void GenInstrRegister(Opcode opcode,
1320 SecondaryField func = NULLSF);
1322 void GenInstrRegister(Opcode opcode,
1327 SecondaryField func = NULLSF);
1329 void GenInstrRegister(Opcode opcode,
1334 SecondaryField func = NULLSF);
1336 void GenInstrRegister(Opcode opcode,
1339 FPUControlRegister fs,
1340 SecondaryField func = NULLSF);
1343 void GenInstrImmediate(Opcode opcode,
1347 void GenInstrImmediate(Opcode opcode,
1351 void GenInstrImmediate(Opcode opcode,
1357 void GenInstrJump(Opcode opcode,
1361 void LoadRegPlusOffsetToAt(const MemOperand& src);
1364 void print(Label* L);
1365 void bind_to(Label* L, int pos);
1366 void next(Label* L, bool is_internal);
1368 // One trampoline consists of:
1369 // - space for trampoline slots,
1370 // - space for labels.
1372 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1373 // Space for trampoline slots preceeds space for labels. Each label is of one
1374 // instruction size, so total amount for labels is equal to
1375 // label_count * kInstrSize.
1381 free_slot_count_ = 0;
1384 Trampoline(int start, int slot_count) {
1387 free_slot_count_ = slot_count;
1388 end_ = start + slot_count * kTrampolineSlotsSize;
1397 int trampoline_slot = kInvalidSlotPos;
1398 if (free_slot_count_ <= 0) {
1399 // We have run out of space on trampolines.
1400 // Make sure we fail in debug mode, so we become aware of each case
1401 // when this happens.
1403 // Internal exception will be caught.
1405 trampoline_slot = next_slot_;
1407 next_slot_ += kTrampolineSlotsSize;
1409 return trampoline_slot;
1416 int free_slot_count_;
1419 int32_t get_trampoline_entry(int32_t pos);
1420 int unbound_labels_count_;
1421 // If trampoline is emitted, generated code is becoming large. As this is
1422 // already a slow case which can possibly break our code generation for the
1423 // extreme case, we use this information to trigger different mode of
1424 // branch instruction generation, where we use jump instructions rather
1425 // than regular branch instructions.
1426 bool trampoline_emitted_;
1427 static const int kTrampolineSlotsSize = 6 * kInstrSize;
1428 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1429 static const int kInvalidSlotPos = -1;
1431 // Internal reference positions, required for unbounded internal reference
1433 std::set<int64_t> internal_reference_positions_;
1435 Trampoline trampoline_;
1436 bool internal_trampoline_exception_;
1438 friend class RegExpMacroAssemblerMIPS;
1439 friend class RelocInfo;
1440 friend class CodePatcher;
1441 friend class BlockTrampolinePoolScope;
1443 PositionsRecorder positions_recorder_;
1444 friend class PositionsRecorder;
1445 friend class EnsureSpace;
1449 class EnsureSpace BASE_EMBEDDED {
1451 explicit EnsureSpace(Assembler* assembler) {
1452 assembler->CheckBuffer();
1456 } } // namespace v8::internal
1458 #endif // V8_ARM_ASSEMBLER_MIPS_H_