1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
43 #include "src/assembler.h"
44 #include "src/compiler.h"
45 #include "src/mips64/constants-mips64.h"
52 // 1) We would prefer to use an enum, but enum values are assignment-
53 // compatible with int, which has caused code-generation bugs.
55 // 2) We would prefer to use a class instead of a struct but we don't like
56 // the register initialization to depend on the particular initialization
57 // order (which appears to be different on OS X, Linux, and Windows for the
58 // installed versions of C++ we tried). Using a struct permits C-style
59 // "initialization". Also, the Register objects cannot be const as this
60 // forces initialization stubs in MSVC, making us dependent on initialization
63 // 3) By not using an enum, we are possibly preventing the compiler from
64 // doing certain constant folds, which may significantly reduce the
65 // code generated for some assembly instructions (because they boil down
66 // to a few constants). If this is a problem, we could change the code
67 // such that we use an enum in optimized mode, and the struct in debug
68 // mode. This way we get the compile-time error checking in debug mode
69 // and best performance in optimized code.
72 // -----------------------------------------------------------------------------
73 // Implementation of Register and FPURegister.
77 static const int kNumRegisters = v8::internal::kNumRegisters;
78 static const int kMaxNumAllocatableRegisters = 14; // v0 through t6 and cp.
79 static const int kSizeInBytes = 8;
80 static const int kCpRegister = 23; // cp (s7) is the 23rd register.
82 inline static int NumAllocatableRegisters();
84 static int ToAllocationIndex(Register reg) {
85 DCHECK((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) ||
86 reg.is(from_code(kCpRegister)));
87 return reg.is(from_code(kCpRegister)) ?
88 kMaxNumAllocatableRegisters - 1 : // Return last index for 'cp'.
89 reg.code() - 2; // zero_reg and 'at' are skipped.
92 static Register FromAllocationIndex(int index) {
93 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
94 return index == kMaxNumAllocatableRegisters - 1 ?
95 from_code(kCpRegister) : // Last index is always the 'cp' register.
96 from_code(index + 2); // zero_reg and 'at' are skipped.
99 static const char* AllocationIndexToString(int index) {
100 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
101 const char* const names[] = {
120 static Register from_code(int code) {
121 Register r = { code };
125 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
126 bool is(Register reg) const { return code_ == reg.code_; }
136 // Unfortunately we can't make this private in a struct.
140 #define REGISTER(N, C) \
141 const int kRegister_ ## N ## _Code = C; \
142 const Register N = { C }
144 REGISTER(no_reg, -1);
146 REGISTER(zero_reg, 0);
147 // at: Reserved for synthetic instructions.
149 // v0, v1: Used when returning multiple values from subroutines.
152 // a0 - a4: Used to pass non-FP parameters.
157 // a4 - a7 t0 - t3: Can be used without reservation, act as temporary registers
158 // and are allowed to be destroyed by subroutines.
167 // s0 - s7: Subroutine register variables. Subroutines that write to these
168 // registers must restore their values before exiting so that the caller can
169 // expect the values to be preserved.
180 // k0, k1: Reserved for system calls and interrupt handlers.
185 // sp: Stack pointer.
187 // fp: Frame pointer.
189 // ra: Return address pointer.
195 int ToNumber(Register reg);
197 Register ToRegister(int num);
199 // Coprocessor register.
201 static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;
203 // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
204 // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
205 // number of Double regs (64-bit regs, or FPU-reg-pairs).
207 // A few double registers are reserved: one as a scratch register and one to
210 // f30: scratch register.
211 static const int kNumReservedRegisters = 2;
212 static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
213 kNumReservedRegisters;
215 inline static int NumRegisters();
216 inline static int NumAllocatableRegisters();
218 // TODO(turbofan): Proper support for float32.
219 inline static int NumAllocatableAliasedRegisters();
221 inline static int ToAllocationIndex(FPURegister reg);
222 static const char* AllocationIndexToString(int index);
224 static FPURegister FromAllocationIndex(int index) {
225 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
226 return from_code(index * 2);
229 static FPURegister from_code(int code) {
230 FPURegister r = { code };
234 bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
235 bool is(FPURegister creg) const { return code_ == creg.code_; }
236 FPURegister low() const {
237 // TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1.
238 // Find low reg of a Double-reg pair, which is the reg itself.
239 DCHECK(code_ % 2 == 0); // Specified Double reg must be even.
242 DCHECK(reg.is_valid());
245 FPURegister high() const {
246 // TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1.
247 // Find high reg of a Doubel-reg pair, which is reg + 1.
248 DCHECK(code_ % 2 == 0); // Specified Double reg must be even.
250 reg.code_ = code_ + 1;
251 DCHECK(reg.is_valid());
263 void setcode(int f) {
267 // Unfortunately we can't make this private in a struct.
271 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
272 // 32-bit registers, f0 through f31. When used as 'double' they are used
273 // in pairs, starting with the even numbered register. So a double operation
274 // on f0 really uses f0 and f1.
275 // (Modern mips hardware also supports 32 64-bit registers, via setting
276 // (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
277 // but it is not in common use. Someday we will want to support this in v8.)
279 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
280 typedef FPURegister DoubleRegister;
281 typedef FPURegister FloatRegister;
283 const FPURegister no_freg = { -1 };
285 const FPURegister f0 = { 0 }; // Return value in hard float mode.
286 const FPURegister f1 = { 1 };
287 const FPURegister f2 = { 2 };
288 const FPURegister f3 = { 3 };
289 const FPURegister f4 = { 4 };
290 const FPURegister f5 = { 5 };
291 const FPURegister f6 = { 6 };
292 const FPURegister f7 = { 7 };
293 const FPURegister f8 = { 8 };
294 const FPURegister f9 = { 9 };
295 const FPURegister f10 = { 10 };
296 const FPURegister f11 = { 11 };
297 const FPURegister f12 = { 12 }; // Arg 0 in hard float mode.
298 const FPURegister f13 = { 13 };
299 const FPURegister f14 = { 14 }; // Arg 1 in hard float mode.
300 const FPURegister f15 = { 15 };
301 const FPURegister f16 = { 16 };
302 const FPURegister f17 = { 17 };
303 const FPURegister f18 = { 18 };
304 const FPURegister f19 = { 19 };
305 const FPURegister f20 = { 20 };
306 const FPURegister f21 = { 21 };
307 const FPURegister f22 = { 22 };
308 const FPURegister f23 = { 23 };
309 const FPURegister f24 = { 24 };
310 const FPURegister f25 = { 25 };
311 const FPURegister f26 = { 26 };
312 const FPURegister f27 = { 27 };
313 const FPURegister f28 = { 28 };
314 const FPURegister f29 = { 29 };
315 const FPURegister f30 = { 30 };
316 const FPURegister f31 = { 31 };
319 // cp is assumed to be a callee saved register.
320 // Defined using #define instead of "static const Register&" because Clang
321 // complains otherwise when a compilation unit that includes this header
322 // doesn't use the variables.
323 #define kRootRegister s6
325 #define kLithiumScratchReg s3
326 #define kLithiumScratchReg2 s4
327 #define kInterpreterBytecodeOffsetRegister t0
328 #define kInterpreterBytecodeArrayRegister t1
329 #define kInterpreterDispatchTableRegister t2
330 #define kLithiumScratchDouble f30
331 #define kDoubleRegZero f28
332 // Used on mips64r6 for compare operations.
333 #define kDoubleCompareReg f31
335 // FPU (coprocessor 1) control registers.
336 // Currently only FCSR (#31) is implemented.
337 struct FPUControlRegister {
338 bool is_valid() const { return code_ == kFCSRRegister; }
339 bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
348 void setcode(int f) {
352 // Unfortunately we can't make this private in a struct.
356 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
357 const FPUControlRegister FCSR = { kFCSRRegister };
360 // -----------------------------------------------------------------------------
361 // Machine instruction Operands.
362 const int kSmiShift = kSmiTagSize + kSmiShiftSize;
363 const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
364 // Class Operand represents a shifter operand in data processing instructions.
365 class Operand BASE_EMBEDDED {
368 INLINE(explicit Operand(int64_t immediate,
369 RelocInfo::Mode rmode = RelocInfo::NONE64));
370 INLINE(explicit Operand(const ExternalReference& f));
371 INLINE(explicit Operand(const char* s));
372 INLINE(explicit Operand(Object** opp));
373 INLINE(explicit Operand(Context** cpp));
374 explicit Operand(Handle<Object> handle);
375 INLINE(explicit Operand(Smi* value));
378 INLINE(explicit Operand(Register rm));
380 // Return true if this is a register operand.
381 INLINE(bool is_reg() const);
383 inline int64_t immediate() const {
388 Register rm() const { return rm_; }
392 int64_t imm64_; // Valid if rm_ == no_reg.
393 RelocInfo::Mode rmode_;
395 friend class Assembler;
396 friend class MacroAssembler;
400 // On MIPS we have only one adressing mode with base_reg + offset.
401 // Class MemOperand represents a memory operand in load and store instructions.
402 class MemOperand : public Operand {
404 // Immediate value attached to offset.
406 offset_minus_one = -1,
410 explicit MemOperand(Register rn, int32_t offset = 0);
411 explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
412 OffsetAddend offset_addend = offset_zero);
413 int32_t offset() const { return offset_; }
415 bool OffsetIsInt16Encodable() const {
416 return is_int16(offset_);
422 friend class Assembler;
426 class Assembler : public AssemblerBase {
428 // Create an assembler. Instructions and relocation information are emitted
429 // into a buffer, with the instructions starting from the beginning and the
430 // relocation information starting from the end of the buffer. See CodeDesc
431 // for a detailed comment on the layout (globals.h).
433 // If the provided buffer is NULL, the assembler allocates and grows its own
434 // buffer, and buffer_size determines the initial buffer size. The buffer is
435 // owned by the assembler and deallocated upon destruction of the assembler.
437 // If the provided buffer is not NULL, the assembler uses the provided buffer
438 // for code generation and assumes its size to be buffer_size. If the buffer
439 // is too small, a fatal error occurs. No deallocation of the buffer is done
440 // upon destruction of the assembler.
441 Assembler(Isolate* isolate, void* buffer, int buffer_size);
442 virtual ~Assembler() { }
444 // GetCode emits any pending (non-emitted) code and fills the descriptor
445 // desc. GetCode() is idempotent; it returns the same result if no other
446 // Assembler functions are invoked in between GetCode() calls.
447 void GetCode(CodeDesc* desc);
449 // Label operations & relative jumps (PPUM Appendix D).
451 // Takes a branch opcode (cc) and a label (L) and generates
452 // either a backward branch or a forward branch and links it
453 // to the label fixup chain. Usage:
455 // Label L; // unbound label
456 // j(cc, &L); // forward branch to unbound label
457 // bind(&L); // bind label to the current pc
458 // j(cc, &L); // backward branch to bound label
459 // bind(&L); // illegal: a label may be bound only once
461 // Note: The same Label can be used for forward and backward branches
462 // but it may be bound only once.
463 void bind(Label* L); // Binds an unbound label L to current code position.
464 // Determines if Label is bound and near enough so that branch instruction
465 // can be used to reach it, instead of jump instruction.
466 bool is_near(Label* L);
468 // Returns the branch offset to the given label from the current code
469 // position. Links the label to the current position if it is still unbound.
470 // Manages the jump elimination optimization if the second parameter is true.
471 int32_t branch_offset(Label* L, bool jump_elimination_allowed);
472 int32_t branch_offset_compact(Label* L, bool jump_elimination_allowed);
473 int32_t branch_offset21(Label* L, bool jump_elimination_allowed);
474 int32_t branch_offset21_compact(Label* L, bool jump_elimination_allowed);
475 int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
476 int32_t o = branch_offset(L, jump_elimination_allowed);
477 DCHECK((o & 3) == 0); // Assert the offset is aligned.
480 int32_t shifted_branch_offset_compact(Label* L,
481 bool jump_elimination_allowed) {
482 int32_t o = branch_offset_compact(L, jump_elimination_allowed);
483 DCHECK((o & 3) == 0); // Assert the offset is aligned.
486 uint64_t jump_address(Label* L);
487 uint64_t jump_offset(Label* L);
489 // Puts a labels target address at the given position.
490 // The high 8 bits are set to zero.
491 void label_at_put(Label* L, int at_offset);
493 // Read/Modify the code target address in the branch/call instruction at pc.
494 static Address target_address_at(Address pc);
495 static void set_target_address_at(Address pc,
497 ICacheFlushMode icache_flush_mode =
498 FLUSH_ICACHE_IF_NEEDED);
499 // On MIPS there is no Constant Pool so we skip that parameter.
500 INLINE(static Address target_address_at(Address pc, Address constant_pool)) {
501 return target_address_at(pc);
503 INLINE(static void set_target_address_at(
504 Address pc, Address constant_pool, Address target,
505 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
506 set_target_address_at(pc, target, icache_flush_mode);
508 INLINE(static Address target_address_at(Address pc, Code* code)) {
509 Address constant_pool = code ? code->constant_pool() : NULL;
510 return target_address_at(pc, constant_pool);
512 INLINE(static void set_target_address_at(Address pc,
515 ICacheFlushMode icache_flush_mode =
516 FLUSH_ICACHE_IF_NEEDED)) {
517 Address constant_pool = code ? code->constant_pool() : NULL;
518 set_target_address_at(pc, constant_pool, target, icache_flush_mode);
521 // Return the code target address at a call site from the return address
522 // of that call in the instruction stream.
523 inline static Address target_address_from_return_address(Address pc);
525 static void JumpLabelToJumpRegister(Address pc);
527 static void QuietNaN(HeapObject* nan);
529 // This sets the branch destination (which gets loaded at the call address).
530 // This is for calls and branches within generated code. The serializer
531 // has already deserialized the lui/ori instructions etc.
532 inline static void deserialization_set_special_target_at(
533 Address instruction_payload, Code* code, Address target) {
534 set_target_address_at(
535 instruction_payload - kInstructionsFor64BitConstant * kInstrSize,
540 // This sets the internal reference at the pc.
541 inline static void deserialization_set_target_internal_reference_at(
542 Address pc, Address target,
543 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
545 // Size of an instruction.
546 static const int kInstrSize = sizeof(Instr);
548 // Difference between address of current opcode and target address offset.
549 static const int kBranchPCOffset = 4;
551 // Here we are patching the address in the LUI/ORI instruction pair.
552 // These values are used in the serialization process and must be zero for
553 // MIPS platform, as Code, Embedded Object or External-reference pointers
554 // are split across two consecutive instructions and don't exist separately
555 // in the code, so the serializer should not step forwards in memory after
556 // a target is resolved and written.
557 static const int kSpecialTargetSize = 0;
559 // Number of consecutive instructions used to store 32bit/64bit constant.
560 // This constant was used in RelocInfo::target_address_address() function
561 // to tell serializer address of the instruction that follows
562 // LUI/ORI instruction pair.
563 static const int kInstructionsFor32BitConstant = 2;
564 static const int kInstructionsFor64BitConstant = 4;
566 // Distance between the instruction referring to the address of the call
567 // target and the return address.
568 static const int kCallTargetAddressOffset = 6 * kInstrSize;
570 // Distance between start of patched debug break slot and the emitted address
572 static const int kPatchDebugBreakSlotAddressOffset = 6 * kInstrSize;
574 // Difference between address of current opcode and value read from pc
576 static const int kPcLoadDelta = 4;
578 static const int kDebugBreakSlotInstructions = 6;
579 static const int kDebugBreakSlotLength =
580 kDebugBreakSlotInstructions * kInstrSize;
583 // ---------------------------------------------------------------------------
586 // Insert the smallest number of nop instructions
587 // possible to align the pc offset to a multiple
588 // of m. m must be a power of 2 (>= 4).
590 // Insert the smallest number of zero bytes possible to align the pc offset
591 // to a mulitple of m. m must be a power of 2 (>= 2).
592 void DataAlign(int m);
593 // Aligns code to something that's optimal for a jump target for the platform.
594 void CodeTargetAlign();
596 // Different nop operations are used by the code generator to detect certain
597 // states of the generated code.
598 enum NopMarkerTypes {
602 PROPERTY_ACCESS_INLINED,
603 PROPERTY_ACCESS_INLINED_CONTEXT,
604 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
607 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
609 CODE_AGE_MARKER_NOP = 6,
610 CODE_AGE_SEQUENCE_NOP
613 // Type == 0 is the default non-marking nop. For mips this is a
614 // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
615 // marking, to avoid conflict with ssnop and ehb instructions.
616 void nop(unsigned int type = 0) {
618 Register nop_rt_reg = (type == 0) ? zero_reg : at;
619 sll(zero_reg, nop_rt_reg, type, true);
623 // --------Branch-and-jump-instructions----------
624 // We don't use likely variant of instructions.
625 void b(int16_t offset);
626 void b(Label* L) { b(branch_offset(L, false)>>2); }
627 void bal(int16_t offset);
628 void bal(Label* L) { bal(branch_offset(L, false)>>2); }
629 void bc(int32_t offset);
630 void bc(Label* L) { bc(branch_offset(L, false) >> 2); }
631 void balc(int32_t offset);
632 void balc(Label* L) { balc(branch_offset(L, false) >> 2); }
634 void beq(Register rs, Register rt, int16_t offset);
635 void beq(Register rs, Register rt, Label* L) {
636 beq(rs, rt, branch_offset(L, false) >> 2);
638 void bgez(Register rs, int16_t offset);
639 void bgezc(Register rt, int16_t offset);
640 void bgezc(Register rt, Label* L) {
641 bgezc(rt, branch_offset_compact(L, false)>>2);
643 void bgeuc(Register rs, Register rt, int16_t offset);
644 void bgeuc(Register rs, Register rt, Label* L) {
645 bgeuc(rs, rt, branch_offset_compact(L, false)>>2);
647 void bgec(Register rs, Register rt, int16_t offset);
648 void bgec(Register rs, Register rt, Label* L) {
649 bgec(rs, rt, branch_offset_compact(L, false)>>2);
651 void bgezal(Register rs, int16_t offset);
652 void bgezalc(Register rt, int16_t offset);
653 void bgezalc(Register rt, Label* L) {
654 bgezalc(rt, branch_offset_compact(L, false)>>2);
656 void bgezall(Register rs, int16_t offset);
657 void bgezall(Register rs, Label* L) {
658 bgezall(rs, branch_offset(L, false)>>2);
660 void bgtz(Register rs, int16_t offset);
661 void bgtzc(Register rt, int16_t offset);
662 void bgtzc(Register rt, Label* L) {
663 bgtzc(rt, branch_offset_compact(L, false)>>2);
665 void blez(Register rs, int16_t offset);
666 void blezc(Register rt, int16_t offset);
667 void blezc(Register rt, Label* L) {
668 blezc(rt, branch_offset_compact(L, false)>>2);
670 void bltz(Register rs, int16_t offset);
671 void bltzc(Register rt, int16_t offset);
672 void bltzc(Register rt, Label* L) {
673 bltzc(rt, branch_offset_compact(L, false)>>2);
675 void bltuc(Register rs, Register rt, int16_t offset);
676 void bltuc(Register rs, Register rt, Label* L) {
677 bltuc(rs, rt, branch_offset_compact(L, false)>>2);
679 void bltc(Register rs, Register rt, int16_t offset);
680 void bltc(Register rs, Register rt, Label* L) {
681 bltc(rs, rt, branch_offset_compact(L, false)>>2);
684 void bltzal(Register rs, int16_t offset);
685 void blezalc(Register rt, int16_t offset);
686 void blezalc(Register rt, Label* L) {
687 blezalc(rt, branch_offset_compact(L, false)>>2);
689 void bltzalc(Register rt, int16_t offset);
690 void bltzalc(Register rt, Label* L) {
691 bltzalc(rt, branch_offset_compact(L, false)>>2);
693 void bgtzalc(Register rt, int16_t offset);
694 void bgtzalc(Register rt, Label* L) {
695 bgtzalc(rt, branch_offset_compact(L, false)>>2);
697 void beqzalc(Register rt, int16_t offset);
698 void beqzalc(Register rt, Label* L) {
699 beqzalc(rt, branch_offset_compact(L, false)>>2);
701 void beqc(Register rs, Register rt, int16_t offset);
702 void beqc(Register rs, Register rt, Label* L) {
703 beqc(rs, rt, branch_offset_compact(L, false)>>2);
705 void beqzc(Register rs, int32_t offset);
706 void beqzc(Register rs, Label* L) {
707 beqzc(rs, branch_offset21_compact(L, false)>>2);
709 void bnezalc(Register rt, int16_t offset);
710 void bnezalc(Register rt, Label* L) {
711 bnezalc(rt, branch_offset_compact(L, false)>>2);
713 void bnec(Register rs, Register rt, int16_t offset);
714 void bnec(Register rs, Register rt, Label* L) {
715 bnec(rs, rt, branch_offset_compact(L, false)>>2);
717 void bnezc(Register rt, int32_t offset);
718 void bnezc(Register rt, Label* L) {
719 bnezc(rt, branch_offset21_compact(L, false)>>2);
721 void bne(Register rs, Register rt, int16_t offset);
722 void bne(Register rs, Register rt, Label* L) {
723 bne(rs, rt, branch_offset(L, false)>>2);
725 void bovc(Register rs, Register rt, int16_t offset);
726 void bovc(Register rs, Register rt, Label* L) {
727 bovc(rs, rt, branch_offset_compact(L, false)>>2);
729 void bnvc(Register rs, Register rt, int16_t offset);
730 void bnvc(Register rs, Register rt, Label* L) {
731 bnvc(rs, rt, branch_offset_compact(L, false)>>2);
734 // Never use the int16_t b(l)cond version with a branch offset
735 // instead of using the Label* version.
737 // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
738 void j(int64_t target);
739 void jal(int64_t target);
740 void j(Label* target);
741 void jal(Label* target);
742 void jalr(Register rs, Register rd = ra);
743 void jr(Register target);
744 void jic(Register rt, int16_t offset);
745 void jialc(Register rt, int16_t offset);
748 // -------Data-processing-instructions---------
751 void addu(Register rd, Register rs, Register rt);
752 void subu(Register rd, Register rs, Register rt);
754 void div(Register rs, Register rt);
755 void divu(Register rs, Register rt);
756 void ddiv(Register rs, Register rt);
757 void ddivu(Register rs, Register rt);
758 void div(Register rd, Register rs, Register rt);
759 void divu(Register rd, Register rs, Register rt);
760 void ddiv(Register rd, Register rs, Register rt);
761 void ddivu(Register rd, Register rs, Register rt);
762 void mod(Register rd, Register rs, Register rt);
763 void modu(Register rd, Register rs, Register rt);
764 void dmod(Register rd, Register rs, Register rt);
765 void dmodu(Register rd, Register rs, Register rt);
767 void mul(Register rd, Register rs, Register rt);
768 void muh(Register rd, Register rs, Register rt);
769 void mulu(Register rd, Register rs, Register rt);
770 void muhu(Register rd, Register rs, Register rt);
771 void mult(Register rs, Register rt);
772 void multu(Register rs, Register rt);
773 void dmul(Register rd, Register rs, Register rt);
774 void dmuh(Register rd, Register rs, Register rt);
775 void dmulu(Register rd, Register rs, Register rt);
776 void dmuhu(Register rd, Register rs, Register rt);
777 void daddu(Register rd, Register rs, Register rt);
778 void dsubu(Register rd, Register rs, Register rt);
779 void dmult(Register rs, Register rt);
780 void dmultu(Register rs, Register rt);
782 void addiu(Register rd, Register rs, int32_t j);
783 void daddiu(Register rd, Register rs, int32_t j);
786 void and_(Register rd, Register rs, Register rt);
787 void or_(Register rd, Register rs, Register rt);
788 void xor_(Register rd, Register rs, Register rt);
789 void nor(Register rd, Register rs, Register rt);
791 void andi(Register rd, Register rs, int32_t j);
792 void ori(Register rd, Register rs, int32_t j);
793 void xori(Register rd, Register rs, int32_t j);
794 void lui(Register rd, int32_t j);
795 void aui(Register rs, Register rt, int32_t j);
796 void daui(Register rs, Register rt, int32_t j);
797 void dahi(Register rs, int32_t j);
798 void dati(Register rs, int32_t j);
801 // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
802 // and may cause problems in normal code. coming_from_nop makes sure this
804 void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
805 void sllv(Register rd, Register rt, Register rs);
806 void srl(Register rd, Register rt, uint16_t sa);
807 void srlv(Register rd, Register rt, Register rs);
808 void sra(Register rt, Register rd, uint16_t sa);
809 void srav(Register rt, Register rd, Register rs);
810 void rotr(Register rd, Register rt, uint16_t sa);
811 void rotrv(Register rd, Register rt, Register rs);
812 void dsll(Register rd, Register rt, uint16_t sa);
813 void dsllv(Register rd, Register rt, Register rs);
814 void dsrl(Register rd, Register rt, uint16_t sa);
815 void dsrlv(Register rd, Register rt, Register rs);
816 void drotr(Register rd, Register rt, uint16_t sa);
817 void drotrv(Register rd, Register rt, Register rs);
818 void dsra(Register rt, Register rd, uint16_t sa);
819 void dsrav(Register rd, Register rt, Register rs);
820 void dsll32(Register rt, Register rd, uint16_t sa);
821 void dsrl32(Register rt, Register rd, uint16_t sa);
822 void dsra32(Register rt, Register rd, uint16_t sa);
825 // ------------Memory-instructions-------------
827 void lb(Register rd, const MemOperand& rs);
828 void lbu(Register rd, const MemOperand& rs);
829 void lh(Register rd, const MemOperand& rs);
830 void lhu(Register rd, const MemOperand& rs);
831 void lw(Register rd, const MemOperand& rs);
832 void lwu(Register rd, const MemOperand& rs);
833 void lwl(Register rd, const MemOperand& rs);
834 void lwr(Register rd, const MemOperand& rs);
835 void sb(Register rd, const MemOperand& rs);
836 void sh(Register rd, const MemOperand& rs);
837 void sw(Register rd, const MemOperand& rs);
838 void swl(Register rd, const MemOperand& rs);
839 void swr(Register rd, const MemOperand& rs);
840 void ldl(Register rd, const MemOperand& rs);
841 void ldr(Register rd, const MemOperand& rs);
842 void sdl(Register rd, const MemOperand& rs);
843 void sdr(Register rd, const MemOperand& rs);
844 void ld(Register rd, const MemOperand& rs);
845 void sd(Register rd, const MemOperand& rs);
848 // ---------PC-Relative-instructions-----------
850 void addiupc(Register rs, int32_t imm19);
851 void lwpc(Register rs, int32_t offset19);
852 void lwupc(Register rs, int32_t offset19);
853 void ldpc(Register rs, int32_t offset18);
854 void auipc(Register rs, int16_t imm16);
855 void aluipc(Register rs, int16_t imm16);
858 // ----------------Prefetch--------------------
860 void pref(int32_t hint, const MemOperand& rs);
863 // -------------Misc-instructions--------------
865 // Break / Trap instructions.
866 void break_(uint32_t code, bool break_as_stop = false);
867 void stop(const char* msg, uint32_t code = kMaxStopCode);
868 void tge(Register rs, Register rt, uint16_t code);
869 void tgeu(Register rs, Register rt, uint16_t code);
870 void tlt(Register rs, Register rt, uint16_t code);
871 void tltu(Register rs, Register rt, uint16_t code);
872 void teq(Register rs, Register rt, uint16_t code);
873 void tne(Register rs, Register rt, uint16_t code);
875 // Move from HI/LO register.
876 void mfhi(Register rd);
877 void mflo(Register rd);
880 void slt(Register rd, Register rs, Register rt);
881 void sltu(Register rd, Register rs, Register rt);
882 void slti(Register rd, Register rs, int32_t j);
883 void sltiu(Register rd, Register rs, int32_t j);
886 void movz(Register rd, Register rs, Register rt);
887 void movn(Register rd, Register rs, Register rt);
888 void movt(Register rd, Register rs, uint16_t cc = 0);
889 void movf(Register rd, Register rs, uint16_t cc = 0);
891 void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
892 void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
893 void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
894 void seleqz(Register rd, Register rs, Register rt);
895 void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
897 void selnez(Register rs, Register rt, Register rd);
898 void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
900 void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
901 void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
902 void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
903 void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
905 void movz_s(FPURegister fd, FPURegister fs, Register rt);
906 void movz_d(FPURegister fd, FPURegister fs, Register rt);
907 void movt_s(FPURegister fd, FPURegister fs, uint16_t cc);
908 void movt_d(FPURegister fd, FPURegister fs, uint16_t cc);
909 void movf_s(FPURegister fd, FPURegister fs, uint16_t cc);
910 void movf_d(FPURegister fd, FPURegister fs, uint16_t cc);
911 void movn_s(FPURegister fd, FPURegister fs, Register rt);
912 void movn_d(FPURegister fd, FPURegister fs, Register rt);
914 void clz(Register rd, Register rs);
915 void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
916 void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
917 void dext_(Register rt, Register rs, uint16_t pos, uint16_t size);
918 void bitswap(Register rd, Register rt);
919 void dbitswap(Register rd, Register rt);
920 void align(Register rd, Register rs, Register rt, uint8_t bp);
921 void dalign(Register rd, Register rs, Register rt, uint8_t bp);
923 // --------Coprocessor-instructions----------------
925 // Load, store, and move.
926 void lwc1(FPURegister fd, const MemOperand& src);
927 void ldc1(FPURegister fd, const MemOperand& src);
929 void swc1(FPURegister fs, const MemOperand& dst);
930 void sdc1(FPURegister fs, const MemOperand& dst);
932 void mtc1(Register rt, FPURegister fs);
933 void mthc1(Register rt, FPURegister fs);
934 void dmtc1(Register rt, FPURegister fs);
936 void mfc1(Register rt, FPURegister fs);
937 void mfhc1(Register rt, FPURegister fs);
938 void dmfc1(Register rt, FPURegister fs);
940 void ctc1(Register rt, FPUControlRegister fs);
941 void cfc1(Register rt, FPUControlRegister fs);
944 void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
945 void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
946 void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
947 void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
948 void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
949 void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
950 void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
951 void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
952 void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
953 void abs_s(FPURegister fd, FPURegister fs);
954 void abs_d(FPURegister fd, FPURegister fs);
955 void mov_d(FPURegister fd, FPURegister fs);
956 void mov_s(FPURegister fd, FPURegister fs);
957 void neg_s(FPURegister fd, FPURegister fs);
958 void neg_d(FPURegister fd, FPURegister fs);
959 void sqrt_s(FPURegister fd, FPURegister fs);
960 void sqrt_d(FPURegister fd, FPURegister fs);
961 void rsqrt_s(FPURegister fd, FPURegister fs);
962 void rsqrt_d(FPURegister fd, FPURegister fs);
963 void recip_d(FPURegister fd, FPURegister fs);
964 void recip_s(FPURegister fd, FPURegister fs);
967 void cvt_w_s(FPURegister fd, FPURegister fs);
968 void cvt_w_d(FPURegister fd, FPURegister fs);
969 void trunc_w_s(FPURegister fd, FPURegister fs);
970 void trunc_w_d(FPURegister fd, FPURegister fs);
971 void round_w_s(FPURegister fd, FPURegister fs);
972 void round_w_d(FPURegister fd, FPURegister fs);
973 void floor_w_s(FPURegister fd, FPURegister fs);
974 void floor_w_d(FPURegister fd, FPURegister fs);
975 void ceil_w_s(FPURegister fd, FPURegister fs);
976 void ceil_w_d(FPURegister fd, FPURegister fs);
977 void rint_s(FPURegister fd, FPURegister fs);
978 void rint_d(FPURegister fd, FPURegister fs);
979 void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
982 void cvt_l_s(FPURegister fd, FPURegister fs);
983 void cvt_l_d(FPURegister fd, FPURegister fs);
984 void trunc_l_s(FPURegister fd, FPURegister fs);
985 void trunc_l_d(FPURegister fd, FPURegister fs);
986 void round_l_s(FPURegister fd, FPURegister fs);
987 void round_l_d(FPURegister fd, FPURegister fs);
988 void floor_l_s(FPURegister fd, FPURegister fs);
989 void floor_l_d(FPURegister fd, FPURegister fs);
990 void ceil_l_s(FPURegister fd, FPURegister fs);
991 void ceil_l_d(FPURegister fd, FPURegister fs);
993 void class_s(FPURegister fd, FPURegister fs);
994 void class_d(FPURegister fd, FPURegister fs);
996 void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
997 void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
998 void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
999 void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
1000 void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
1001 void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
1002 void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
1003 void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
1004 void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
1005 void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
1006 void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
1007 void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
1009 void cvt_s_w(FPURegister fd, FPURegister fs);
1010 void cvt_s_l(FPURegister fd, FPURegister fs);
1011 void cvt_s_d(FPURegister fd, FPURegister fs);
1013 void cvt_d_w(FPURegister fd, FPURegister fs);
1014 void cvt_d_l(FPURegister fd, FPURegister fs);
1015 void cvt_d_s(FPURegister fd, FPURegister fs);
1017 // Conditions and branches for MIPSr6.
1018 void cmp(FPUCondition cond, SecondaryField fmt,
1019 FPURegister fd, FPURegister ft, FPURegister fs);
1020 void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
1021 void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
1023 void bc1eqz(int16_t offset, FPURegister ft);
1024 void bc1eqz(Label* L, FPURegister ft) {
1025 bc1eqz(branch_offset(L, false)>>2, ft);
1027 void bc1nez(int16_t offset, FPURegister ft);
1028 void bc1nez(Label* L, FPURegister ft) {
1029 bc1nez(branch_offset(L, false)>>2, ft);
1032 // Conditions and branches for non MIPSr6.
1033 void c(FPUCondition cond, SecondaryField fmt,
1034 FPURegister ft, FPURegister fs, uint16_t cc = 0);
1035 void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
1036 void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
1038 void bc1f(int16_t offset, uint16_t cc = 0);
1039 void bc1f(Label* L, uint16_t cc = 0) {
1040 bc1f(branch_offset(L, false)>>2, cc);
1042 void bc1t(int16_t offset, uint16_t cc = 0);
1043 void bc1t(Label* L, uint16_t cc = 0) {
1044 bc1t(branch_offset(L, false)>>2, cc);
1046 void fcmp(FPURegister src1, const double src2, FPUCondition cond);
1048 // Check the code size generated from label to here.
1049 int SizeOfCodeGeneratedSince(Label* label) {
1050 return pc_offset() - label->pos();
1053 // Check the number of instructions generated from label to here.
1054 int InstructionsGeneratedSince(Label* label) {
1055 return SizeOfCodeGeneratedSince(label) / kInstrSize;
1058 // Class for scoping postponing the trampoline pool generation.
1059 class BlockTrampolinePoolScope {
1061 explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
1062 assem_->StartBlockTrampolinePool();
1064 ~BlockTrampolinePoolScope() {
1065 assem_->EndBlockTrampolinePool();
1071 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1074 // Class for postponing the assembly buffer growth. Typically used for
1075 // sequences of instructions that must be emitted as a unit, before
1076 // buffer growth (and relocation) can occur.
1077 // This blocking scope is not nestable.
1078 class BlockGrowBufferScope {
1080 explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1081 assem_->StartBlockGrowBuffer();
1083 ~BlockGrowBufferScope() {
1084 assem_->EndBlockGrowBuffer();
1090 DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1095 // Mark generator continuation.
1096 void RecordGeneratorContinuation();
1098 // Mark address of a debug break slot.
1099 void RecordDebugBreakSlot(RelocInfo::Mode mode, int argc = 0);
1101 // Record the AST id of the CallIC being compiled, so that it can be placed
1102 // in the relocation information.
1103 void SetRecordedAstId(TypeFeedbackId ast_id) {
1104 DCHECK(recorded_ast_id_.IsNone());
1105 recorded_ast_id_ = ast_id;
1108 TypeFeedbackId RecordedAstId() {
1109 DCHECK(!recorded_ast_id_.IsNone());
1110 return recorded_ast_id_;
1113 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1115 // Record a comment relocation entry that can be used by a disassembler.
1116 // Use --code-comments to enable.
1117 void RecordComment(const char* msg);
1119 // Record a deoptimization reason that can be used by a log or cpu profiler.
1120 // Use --trace-deopt to enable.
1121 void RecordDeoptReason(const int reason, const SourcePosition position);
1123 static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
1126 // Writes a single byte or word of data in the code stream. Used for
1127 // inline tables, e.g., jump-tables.
1128 void db(uint8_t data);
1129 void dd(uint32_t data);
1130 void dq(uint64_t data);
1131 void dp(uintptr_t data) { dq(data); }
1132 void dd(Label* label);
1134 // Emits the address of the code stub's first instruction.
1135 void emit_code_stub_address(Code* stub);
1137 PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1139 // Postpone the generation of the trampoline pool for the specified number of
1141 void BlockTrampolinePoolFor(int instructions);
1143 // Check if there is less than kGap bytes available in the buffer.
1144 // If this is the case, we need to grow the buffer before emitting
1145 // an instruction or relocation information.
1146 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1148 // Get the number of bytes available in the buffer.
1149 inline intptr_t available_space() const {
1150 return reloc_info_writer.pos() - pc_;
1153 // Read/patch instructions.
1154 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
1155 static void instr_at_put(byte* pc, Instr instr) {
1156 *reinterpret_cast<Instr*>(pc) = instr;
1158 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
1159 void instr_at_put(int pos, Instr instr) {
1160 *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1163 // Check if an instruction is a branch of some kind.
1164 static bool IsBranch(Instr instr);
1165 static bool IsBeq(Instr instr);
1166 static bool IsBne(Instr instr);
1168 static bool IsJump(Instr instr);
1169 static bool IsJ(Instr instr);
1170 static bool IsLui(Instr instr);
1171 static bool IsOri(Instr instr);
1173 static bool IsJal(Instr instr);
1174 static bool IsJr(Instr instr);
1175 static bool IsJalr(Instr instr);
1177 static bool IsNop(Instr instr, unsigned int type);
1178 static bool IsPop(Instr instr);
1179 static bool IsPush(Instr instr);
1180 static bool IsLwRegFpOffset(Instr instr);
1181 static bool IsSwRegFpOffset(Instr instr);
1182 static bool IsLwRegFpNegOffset(Instr instr);
1183 static bool IsSwRegFpNegOffset(Instr instr);
1185 static Register GetRtReg(Instr instr);
1186 static Register GetRsReg(Instr instr);
1187 static Register GetRdReg(Instr instr);
1189 static uint32_t GetRt(Instr instr);
1190 static uint32_t GetRtField(Instr instr);
1191 static uint32_t GetRs(Instr instr);
1192 static uint32_t GetRsField(Instr instr);
1193 static uint32_t GetRd(Instr instr);
1194 static uint32_t GetRdField(Instr instr);
1195 static uint32_t GetSa(Instr instr);
1196 static uint32_t GetSaField(Instr instr);
1197 static uint32_t GetOpcodeField(Instr instr);
1198 static uint32_t GetFunction(Instr instr);
1199 static uint32_t GetFunctionField(Instr instr);
1200 static uint32_t GetImmediate16(Instr instr);
1201 static uint32_t GetLabelConst(Instr instr);
1203 static int32_t GetBranchOffset(Instr instr);
1204 static bool IsLw(Instr instr);
1205 static int16_t GetLwOffset(Instr instr);
1206 static Instr SetLwOffset(Instr instr, int16_t offset);
1208 static bool IsSw(Instr instr);
1209 static Instr SetSwOffset(Instr instr, int16_t offset);
1210 static bool IsAddImmediate(Instr instr);
1211 static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1213 static bool IsAndImmediate(Instr instr);
1214 static bool IsEmittedConstant(Instr instr);
1216 void CheckTrampolinePool();
1218 void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1219 ConstantPoolEntry::Access access,
1220 ConstantPoolEntry::Type type) {
1221 // No embedded constant pool support.
1226 // Relocation for a type-recording IC has the AST id added to it. This
1227 // member variable is a way to pass the information from the call site to
1228 // the relocation info.
1229 TypeFeedbackId recorded_ast_id_;
1231 inline static void set_target_internal_reference_encoded_at(Address pc,
1234 int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1236 // Decode branch instruction at pos and return branch target pos.
1237 int target_at(int pos, bool is_internal);
1239 // Patch branch instruction at pos to branch to given branch target pos.
1240 void target_at_put(int pos, int target_pos, bool is_internal);
1242 // Say if we need to relocate with this mode.
1243 bool MustUseReg(RelocInfo::Mode rmode);
1245 // Record reloc info for current pc_.
1246 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1248 // Block the emission of the trampoline pool before pc_offset.
1249 void BlockTrampolinePoolBefore(int pc_offset) {
1250 if (no_trampoline_pool_before_ < pc_offset)
1251 no_trampoline_pool_before_ = pc_offset;
1254 void StartBlockTrampolinePool() {
1255 trampoline_pool_blocked_nesting_++;
1258 void EndBlockTrampolinePool() {
1259 trampoline_pool_blocked_nesting_--;
1262 bool is_trampoline_pool_blocked() const {
1263 return trampoline_pool_blocked_nesting_ > 0;
1266 bool has_exception() const {
1267 return internal_trampoline_exception_;
1270 void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1272 bool is_trampoline_emitted() const {
1273 return trampoline_emitted_;
1276 // Temporarily block automatic assembly buffer growth.
1277 void StartBlockGrowBuffer() {
1278 DCHECK(!block_buffer_growth_);
1279 block_buffer_growth_ = true;
1282 void EndBlockGrowBuffer() {
1283 DCHECK(block_buffer_growth_);
1284 block_buffer_growth_ = false;
1287 bool is_buffer_growth_blocked() const {
1288 return block_buffer_growth_;
1292 // Buffer size and constant pool distance are checked together at regular
1293 // intervals of kBufferCheckInterval emitted bytes.
1294 static const int kBufferCheckInterval = 1*KB/2;
1297 // The relocation writer's position is at least kGap bytes below the end of
1298 // the generated instructions. This is so that multi-instruction sequences do
1299 // not have to check for overflow. The same is true for writes of large
1300 // relocation info entries.
1301 static const int kGap = 32;
1304 // Repeated checking whether the trampoline pool should be emitted is rather
1305 // expensive. By default we only check again once a number of instructions
1306 // has been generated.
1307 static const int kCheckConstIntervalInst = 32;
1308 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1310 int next_buffer_check_; // pc offset of next buffer check.
1312 // Emission of the trampoline pool may be blocked in some code sequences.
1313 int trampoline_pool_blocked_nesting_; // Block emission if this is not zero.
1314 int no_trampoline_pool_before_; // Block emission before this pc offset.
1316 // Keep track of the last emitted pool to guarantee a maximal distance.
1317 int last_trampoline_pool_end_; // pc offset of the end of the last pool.
1319 // Automatic growth of the assembly buffer may be blocked for some sequences.
1320 bool block_buffer_growth_; // Block growth when true.
1322 // Relocation information generation.
1323 // Each relocation is encoded as a variable size value.
1324 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1325 RelocInfoWriter reloc_info_writer;
1327 // The bound position, before this we cannot do instruction elimination.
1328 int last_bound_pos_;
1331 inline void CheckBuffer();
1333 inline void emit(Instr x);
1334 inline void emit(uint64_t x);
1335 inline void CheckTrampolinePoolQuick(int extra_instructions = 0);
1337 // Instruction generation.
1338 // We have 3 different kind of encoding layout on MIPS.
1339 // However due to many different types of objects encoded in the same fields
1340 // we have quite a few aliases for each mode.
1341 // Using the same structure to refer to Register and FPURegister would spare a
1342 // few aliases, but mixing both does not look clean to me.
1343 // Anyway we could surely implement this differently.
1345 void GenInstrRegister(Opcode opcode,
1350 SecondaryField func = NULLSF);
1352 void GenInstrRegister(Opcode opcode,
1357 SecondaryField func);
1359 void GenInstrRegister(Opcode opcode,
1364 SecondaryField func = NULLSF);
1366 void GenInstrRegister(Opcode opcode,
1371 SecondaryField func = NULLSF);
1373 void GenInstrRegister(Opcode opcode,
1378 SecondaryField func = NULLSF);
1380 void GenInstrRegister(Opcode opcode,
1383 FPUControlRegister fs,
1384 SecondaryField func = NULLSF);
1387 void GenInstrImmediate(Opcode opcode,
1391 void GenInstrImmediate(Opcode opcode,
1395 void GenInstrImmediate(Opcode opcode,
1399 void GenInstrImmediate(Opcode opcode, Register rs, int32_t j);
1400 void GenInstrImmediate(Opcode opcode, int32_t offset26);
1403 void GenInstrJump(Opcode opcode,
1407 void LoadRegPlusOffsetToAt(const MemOperand& src);
1410 void print(Label* L);
1411 void bind_to(Label* L, int pos);
1412 void next(Label* L, bool is_internal);
1414 // One trampoline consists of:
1415 // - space for trampoline slots,
1416 // - space for labels.
1418 // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1419 // Space for trampoline slots preceeds space for labels. Each label is of one
1420 // instruction size, so total amount for labels is equal to
1421 // label_count * kInstrSize.
1427 free_slot_count_ = 0;
1430 Trampoline(int start, int slot_count) {
1433 free_slot_count_ = slot_count;
1434 end_ = start + slot_count * kTrampolineSlotsSize;
1443 int trampoline_slot = kInvalidSlotPos;
1444 if (free_slot_count_ <= 0) {
1445 // We have run out of space on trampolines.
1446 // Make sure we fail in debug mode, so we become aware of each case
1447 // when this happens.
1449 // Internal exception will be caught.
1451 trampoline_slot = next_slot_;
1453 next_slot_ += kTrampolineSlotsSize;
1455 return trampoline_slot;
1462 int free_slot_count_;
1465 int32_t get_trampoline_entry(int32_t pos);
1466 int unbound_labels_count_;
1467 // After trampoline is emitted, long branches are used in generated code for
1468 // the forward branches whose target offsets could be beyond reach of branch
1469 // instruction. We use this information to trigger different mode of
1470 // branch instruction generation, where we use jump instructions rather
1471 // than regular branch instructions.
1472 bool trampoline_emitted_;
1473 static const int kTrampolineSlotsSize = 2 * kInstrSize;
1474 static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1475 static const int kInvalidSlotPos = -1;
1477 // Internal reference positions, required for unbounded internal reference
1479 std::set<int64_t> internal_reference_positions_;
1481 Trampoline trampoline_;
1482 bool internal_trampoline_exception_;
1484 friend class RegExpMacroAssemblerMIPS;
1485 friend class RelocInfo;
1486 friend class CodePatcher;
1487 friend class BlockTrampolinePoolScope;
1489 PositionsRecorder positions_recorder_;
1490 friend class PositionsRecorder;
1491 friend class EnsureSpace;
1495 class EnsureSpace BASE_EMBEDDED {
1497 explicit EnsureSpace(Assembler* assembler) {
1498 assembler->CheckBuffer();
1502 } } // namespace v8::internal
1504 #endif // V8_ARM_ASSEMBLER_MIPS_H_