1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips/assembler-mips.h"
15 // Forward declaration.
18 // Reserved Register Usage Summary.
20 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
22 // The programmer should know that the MacroAssembler may clobber these three,
23 // but won't touch other registers except in special cases.
25 // Per the MIPS ABI, register t9 must be used for indirect function call
26 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
27 // trying to update gp register for position-independent-code. Whenever
28 // MIPS generated code calls C code, it must be via t9 register.
31 // Flags used for LeaveExitFrame function.
32 enum LeaveExitFrameMode {
34 NO_EMIT_RETURN = false
37 // Flags used for AllocateHeapNumber
45 // Flags used for the ObjectToDoubleFPURegister function.
46 enum ObjectToDoubleFlags {
48 NO_OBJECT_TO_DOUBLE_FLAGS = 0,
49 // Object is known to be a non smi.
50 OBJECT_NOT_SMI = 1 << 0,
51 // Don't load NaNs or infinities, branch to the non number case instead.
52 AVOID_NANS_AND_INFINITIES = 1 << 1
55 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
56 enum BranchDelaySlot {
61 // Flags used for the li macro-assembler function.
63 // If the constant value can be represented in just 16 bits, then
64 // optimize the li to use a single instruction, rather than lui/ori pair.
66 // Always use 2 instructions (lui/ori pair), even if the constant could
67 // be loaded with just one, so that this value is patchable later.
72 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
73 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
74 enum PointersToHereCheck {
75 kPointersToHereMaybeInteresting,
76 kPointersToHereAreAlwaysInteresting
78 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
80 Register GetRegisterThatIsNotOneOf(Register reg1,
81 Register reg2 = no_reg,
82 Register reg3 = no_reg,
83 Register reg4 = no_reg,
84 Register reg5 = no_reg,
85 Register reg6 = no_reg);
87 bool AreAliased(Register reg1,
89 Register reg3 = no_reg,
90 Register reg4 = no_reg,
91 Register reg5 = no_reg,
92 Register reg6 = no_reg,
93 Register reg7 = no_reg,
94 Register reg8 = no_reg);
97 // -----------------------------------------------------------------------------
98 // Static helper functions.
100 inline MemOperand ContextOperand(Register context, int index) {
101 return MemOperand(context, Context::SlotOffset(index));
105 inline MemOperand GlobalObjectOperand() {
106 return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
110 // Generate a MemOperand for loading a field from an object.
111 inline MemOperand FieldMemOperand(Register object, int offset) {
112 return MemOperand(object, offset - kHeapObjectTag);
116 // Generate a MemOperand for storing arguments 5..N on the stack
117 // when calling CallCFunction().
118 inline MemOperand CFunctionArgumentOperand(int index) {
119 DCHECK(index > kCArgSlotCount);
120 // Argument 5 takes the slot just past the four Arg-slots.
121 int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
122 return MemOperand(sp, offset);
126 // MacroAssembler implements a collection of frequently used macros.
127 class MacroAssembler: public Assembler {
129 // The isolate parameter can be NULL if the macro assembler should
130 // not use isolate-dependent functionality. In this case, it's the
131 // responsibility of the caller to never invoke such function on the
133 MacroAssembler(Isolate* isolate, void* buffer, int size);
136 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
137 #define COND_ARGS cond, r1, r2
139 // Cases when relocation is not needed.
140 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
141 void Name(target_type target, BranchDelaySlot bd = PROTECT); \
142 inline void Name(BranchDelaySlot bd, target_type target) { \
145 void Name(target_type target, \
147 BranchDelaySlot bd = PROTECT); \
148 inline void Name(BranchDelaySlot bd, \
149 target_type target, \
151 Name(target, COND_ARGS, bd); \
154 #define DECLARE_BRANCH_PROTOTYPES(Name) \
155 DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
156 DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
158 DECLARE_BRANCH_PROTOTYPES(Branch)
159 DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
160 DECLARE_BRANCH_PROTOTYPES(BranchShort)
162 #undef DECLARE_BRANCH_PROTOTYPES
163 #undef COND_TYPED_ARGS
167 // Jump, Call, and Ret pseudo instructions implementing inter-working.
168 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
169 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
171 void Jump(Register target, COND_ARGS);
172 void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
173 void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
174 void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
175 static int CallSize(Register target, COND_ARGS);
176 void Call(Register target, COND_ARGS);
177 static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
178 void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
179 int CallSize(Handle<Code> code,
180 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
181 TypeFeedbackId ast_id = TypeFeedbackId::None(),
183 void Call(Handle<Code> code,
184 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
185 TypeFeedbackId ast_id = TypeFeedbackId::None(),
188 inline void Ret(BranchDelaySlot bd, Condition cond = al,
189 Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
190 Ret(cond, rs, rt, bd);
193 void Branch(Label* L,
196 Heap::RootListIndex index,
197 BranchDelaySlot bdslot = PROTECT);
201 // Emit code to discard a non-negative number of pointer-sized elements
202 // from the stack, clobbering only the sp register.
204 Condition cond = cc_always,
205 Register reg = no_reg,
206 const Operand& op = Operand(no_reg));
208 // Trivial case of DropAndRet that utilizes the delay slot and only emits
210 void DropAndRet(int drop);
212 void DropAndRet(int drop,
217 // Swap two registers. If the scratch register is omitted then a slightly
218 // less efficient form using xor instead of mov is emitted.
219 void Swap(Register reg1, Register reg2, Register scratch = no_reg);
221 void Call(Label* target);
223 inline void Move(Register dst, Register src) {
229 inline void Move(FPURegister dst, FPURegister src) {
235 inline void Move(Register dst_low, Register dst_high, FPURegister src) {
237 mfc1(dst_high, FPURegister::from_code(src.code() + 1));
240 inline void FmoveHigh(Register dst_high, FPURegister src) {
241 mfc1(dst_high, FPURegister::from_code(src.code() + 1));
244 inline void FmoveLow(Register dst_low, FPURegister src) {
248 inline void Move(FPURegister dst, Register src_low, Register src_high) {
250 mtc1(src_high, FPURegister::from_code(dst.code() + 1));
254 void Move(FPURegister dst, double imm);
255 void Movz(Register rd, Register rs, Register rt);
256 void Movn(Register rd, Register rs, Register rt);
257 void Movt(Register rd, Register rs, uint16_t cc = 0);
258 void Movf(Register rd, Register rs, uint16_t cc = 0);
260 void Clz(Register rd, Register rs);
262 // Jump unconditionally to given label.
263 // We NEED a nop in the branch delay slot, as it used by v8, for example in
264 // CodeGenerator::ProcessDeferred().
265 // Currently the branch delay slot is filled by the MacroAssembler.
266 // Use rather b(Label) for code generation.
271 void Load(Register dst, const MemOperand& src, Representation r);
272 void Store(Register src, const MemOperand& dst, Representation r);
274 // Load an object from the root table.
275 void LoadRoot(Register destination,
276 Heap::RootListIndex index);
277 void LoadRoot(Register destination,
278 Heap::RootListIndex index,
279 Condition cond, Register src1, const Operand& src2);
281 // Store an object to the root table.
282 void StoreRoot(Register source,
283 Heap::RootListIndex index);
284 void StoreRoot(Register source,
285 Heap::RootListIndex index,
286 Condition cond, Register src1, const Operand& src2);
288 // ---------------------------------------------------------------------------
291 void IncrementalMarkingRecordWriteHelper(Register object,
295 enum RememberedSetFinalAction {
301 // Record in the remembered set the fact that we have a pointer to new space
302 // at the address pointed to by the addr register. Only works if addr is not
304 void RememberedSetHelper(Register object, // Used for debug code.
307 SaveFPRegsMode save_fp,
308 RememberedSetFinalAction and_then);
310 void CheckPageFlag(Register object,
314 Label* condition_met);
316 void CheckMapDeprecated(Handle<Map> map,
318 Label* if_deprecated);
320 // Check if object is in new space. Jumps if the object is not in new space.
321 // The register scratch can be object itself, but it will be clobbered.
322 void JumpIfNotInNewSpace(Register object,
325 InNewSpace(object, scratch, ne, branch);
328 // Check if object is in new space. Jumps if the object is in new space.
329 // The register scratch can be object itself, but scratch will be clobbered.
330 void JumpIfInNewSpace(Register object,
333 InNewSpace(object, scratch, eq, branch);
336 // Check if an object has a given incremental marking color.
337 void HasColor(Register object,
344 void JumpIfBlack(Register object,
349 // Checks the color of an object. If the object is already grey or black
350 // then we just fall through, since it is already live. If it is white and
351 // we can determine that it doesn't need to be scanned, then we just mark it
352 // black and fall through. For the rest we jump to the label so the
353 // incremental marker can fix its assumptions.
354 void EnsureNotWhite(Register object,
358 Label* object_is_white_and_not_data);
360 // Detects conservatively whether an object is data-only, i.e. it does need to
361 // be scanned by the garbage collector.
362 void JumpIfDataObject(Register value,
364 Label* not_data_object);
366 // Notify the garbage collector that we wrote a pointer into an object.
367 // |object| is the object being stored into, |value| is the object being
368 // stored. value and scratch registers are clobbered by the operation.
369 // The offset is the offset from the start of the object, not the offset from
370 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
371 void RecordWriteField(
377 SaveFPRegsMode save_fp,
378 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
379 SmiCheck smi_check = INLINE_SMI_CHECK,
380 PointersToHereCheck pointers_to_here_check_for_value =
381 kPointersToHereMaybeInteresting);
383 // As above, but the offset has the tag presubtracted. For use with
384 // MemOperand(reg, off).
385 inline void RecordWriteContextSlot(
391 SaveFPRegsMode save_fp,
392 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
393 SmiCheck smi_check = INLINE_SMI_CHECK,
394 PointersToHereCheck pointers_to_here_check_for_value =
395 kPointersToHereMaybeInteresting) {
396 RecordWriteField(context,
397 offset + kHeapObjectTag,
402 remembered_set_action,
404 pointers_to_here_check_for_value);
407 void RecordWriteForMap(
412 SaveFPRegsMode save_fp);
414 // For a given |object| notify the garbage collector that the slot |address|
415 // has been written. |value| is the object being stored. The value and
416 // address registers are clobbered by the operation.
422 SaveFPRegsMode save_fp,
423 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
424 SmiCheck smi_check = INLINE_SMI_CHECK,
425 PointersToHereCheck pointers_to_here_check_for_value =
426 kPointersToHereMaybeInteresting);
429 // ---------------------------------------------------------------------------
430 // Inline caching support.
432 // Generate code for checking access rights - used for security checks
433 // on access to global objects across environments. The holder register
434 // is left untouched, whereas both scratch registers are clobbered.
435 void CheckAccessGlobalProxy(Register holder_reg,
439 void GetNumberHash(Register reg0, Register scratch);
441 void LoadFromNumberDictionary(Label* miss,
450 inline void MarkCode(NopMarkerTypes type) {
454 // Check if the given instruction is a 'type' marker.
455 // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
456 // nop(type)). These instructions are generated to mark special location in
457 // the code, like some special IC code.
458 static inline bool IsMarkedCode(Instr instr, int type) {
459 DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
460 return IsNop(instr, type);
464 static inline int GetCodeMarker(Instr instr) {
465 uint32_t opcode = ((instr & kOpcodeMask));
466 uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
467 uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
468 uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
470 // Return <n> if we have a sll zero_reg, zero_reg, n
472 bool sllzz = (opcode == SLL &&
473 rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
474 rs == static_cast<uint32_t>(ToNumber(zero_reg)));
476 (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
477 DCHECK((type == -1) ||
478 ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
484 // ---------------------------------------------------------------------------
485 // Allocation support.
487 // Allocate an object in new space or old pointer space. The object_size is
488 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
489 // is passed. If the space is exhausted control continues at the gc_required
490 // label. The allocated object is returned in result. If the flag
491 // tag_allocated_object is true the result is tagged as as a heap object.
492 // All registers are clobbered also when control continues at the gc_required
494 void Allocate(int object_size,
499 AllocationFlags flags);
501 void Allocate(Register object_size,
506 AllocationFlags flags);
508 // Undo allocation in new space. The object passed and objects allocated after
509 // it will no longer be allocated. The caller must make sure that no pointers
510 // are left to the object(s) no longer allocated as they would be invalid when
511 // allocation is undone.
512 void UndoAllocationInNewSpace(Register object, Register scratch);
515 void AllocateTwoByteString(Register result,
521 void AllocateAsciiString(Register result,
527 void AllocateTwoByteConsString(Register result,
532 void AllocateAsciiConsString(Register result,
537 void AllocateTwoByteSlicedString(Register result,
542 void AllocateAsciiSlicedString(Register result,
548 // Allocates a heap number or jumps to the gc_required label if the young
549 // space is full and a scavenge is needed. All registers are clobbered also
550 // when control continues at the gc_required label.
551 void AllocateHeapNumber(Register result,
554 Register heap_number_map,
556 TaggingMode tagging_mode = TAG_RESULT,
557 MutableMode mode = IMMUTABLE);
558 void AllocateHeapNumberWithValue(Register result,
564 // ---------------------------------------------------------------------------
565 // Instruction macros.
567 #define DEFINE_INSTRUCTION(instr) \
568 void instr(Register rd, Register rs, const Operand& rt); \
569 void instr(Register rd, Register rs, Register rt) { \
570 instr(rd, rs, Operand(rt)); \
572 void instr(Register rs, Register rt, int32_t j) { \
573 instr(rs, rt, Operand(j)); \
576 #define DEFINE_INSTRUCTION2(instr) \
577 void instr(Register rs, const Operand& rt); \
578 void instr(Register rs, Register rt) { \
579 instr(rs, Operand(rt)); \
581 void instr(Register rs, int32_t j) { \
582 instr(rs, Operand(j)); \
585 DEFINE_INSTRUCTION(Addu);
586 DEFINE_INSTRUCTION(Subu);
587 DEFINE_INSTRUCTION(Mul);
588 DEFINE_INSTRUCTION2(Mult);
589 DEFINE_INSTRUCTION2(Multu);
590 DEFINE_INSTRUCTION2(Div);
591 DEFINE_INSTRUCTION2(Divu);
593 DEFINE_INSTRUCTION(And);
594 DEFINE_INSTRUCTION(Or);
595 DEFINE_INSTRUCTION(Xor);
596 DEFINE_INSTRUCTION(Nor);
597 DEFINE_INSTRUCTION2(Neg);
599 DEFINE_INSTRUCTION(Slt);
600 DEFINE_INSTRUCTION(Sltu);
602 // MIPS32 R2 instruction macro.
603 DEFINE_INSTRUCTION(Ror);
605 #undef DEFINE_INSTRUCTION
606 #undef DEFINE_INSTRUCTION2
608 void Pref(int32_t hint, const MemOperand& rs);
611 // ---------------------------------------------------------------------------
612 // Pseudo-instructions.
614 void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
616 void Ulw(Register rd, const MemOperand& rs);
617 void Usw(Register rd, const MemOperand& rs);
619 // Load int32 in the rd register.
620 void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
621 inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
622 li(rd, Operand(j), mode);
624 void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
626 // Push multiple registers on the stack.
627 // Registers are saved in numerical order, with higher numbered registers
628 // saved in higher memory addresses.
629 void MultiPush(RegList regs);
630 void MultiPushReversed(RegList regs);
632 void MultiPushFPU(RegList regs);
633 void MultiPushReversedFPU(RegList regs);
635 void push(Register src) {
636 Addu(sp, sp, Operand(-kPointerSize));
637 sw(src, MemOperand(sp, 0));
639 void Push(Register src) { push(src); }
642 void Push(Handle<Object> handle);
643 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
645 // Push two registers. Pushes leftmost register first (to highest address).
646 void Push(Register src1, Register src2) {
647 Subu(sp, sp, Operand(2 * kPointerSize));
648 sw(src1, MemOperand(sp, 1 * kPointerSize));
649 sw(src2, MemOperand(sp, 0 * kPointerSize));
652 // Push three registers. Pushes leftmost register first (to highest address).
653 void Push(Register src1, Register src2, Register src3) {
654 Subu(sp, sp, Operand(3 * kPointerSize));
655 sw(src1, MemOperand(sp, 2 * kPointerSize));
656 sw(src2, MemOperand(sp, 1 * kPointerSize));
657 sw(src3, MemOperand(sp, 0 * kPointerSize));
660 // Push four registers. Pushes leftmost register first (to highest address).
661 void Push(Register src1, Register src2, Register src3, Register src4) {
662 Subu(sp, sp, Operand(4 * kPointerSize));
663 sw(src1, MemOperand(sp, 3 * kPointerSize));
664 sw(src2, MemOperand(sp, 2 * kPointerSize));
665 sw(src3, MemOperand(sp, 1 * kPointerSize));
666 sw(src4, MemOperand(sp, 0 * kPointerSize));
669 void Push(Register src, Condition cond, Register tst1, Register tst2) {
670 // Since we don't have conditional execution we use a Branch.
671 Branch(3, cond, tst1, Operand(tst2));
672 Subu(sp, sp, Operand(kPointerSize));
673 sw(src, MemOperand(sp, 0));
676 // Pops multiple values from the stack and load them in the
677 // registers specified in regs. Pop order is the opposite as in MultiPush.
678 void MultiPop(RegList regs);
679 void MultiPopReversed(RegList regs);
681 void MultiPopFPU(RegList regs);
682 void MultiPopReversedFPU(RegList regs);
684 void pop(Register dst) {
685 lw(dst, MemOperand(sp, 0));
686 Addu(sp, sp, Operand(kPointerSize));
688 void Pop(Register dst) { pop(dst); }
690 // Pop two registers. Pops rightmost register first (from lower address).
691 void Pop(Register src1, Register src2) {
692 DCHECK(!src1.is(src2));
693 lw(src2, MemOperand(sp, 0 * kPointerSize));
694 lw(src1, MemOperand(sp, 1 * kPointerSize));
695 Addu(sp, sp, 2 * kPointerSize);
698 // Pop three registers. Pops rightmost register first (from lower address).
699 void Pop(Register src1, Register src2, Register src3) {
700 lw(src3, MemOperand(sp, 0 * kPointerSize));
701 lw(src2, MemOperand(sp, 1 * kPointerSize));
702 lw(src1, MemOperand(sp, 2 * kPointerSize));
703 Addu(sp, sp, 3 * kPointerSize);
706 void Pop(uint32_t count = 1) {
707 Addu(sp, sp, Operand(count * kPointerSize));
710 // Push and pop the registers that can hold pointers, as defined by the
711 // RegList constant kSafepointSavedRegisters.
712 void PushSafepointRegisters();
713 void PopSafepointRegisters();
714 // Store value in register src in the safepoint stack slot for
716 void StoreToSafepointRegisterSlot(Register src, Register dst);
717 // Load the value of the src register from its safepoint stack slot
718 // into register dst.
719 void LoadFromSafepointRegisterSlot(Register dst, Register src);
721 // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
723 // Does not handle errors.
724 void FlushICache(Register address, unsigned instructions);
726 // MIPS32 R2 instruction macro.
727 void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
728 void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
730 // ---------------------------------------------------------------------------
731 // FPU macros. These do not handle special cases like NaN or +- inf.
733 // Convert unsigned word to double.
734 void Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch);
735 void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
737 // Convert double to unsigned word.
738 void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
739 void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
741 void Trunc_w_d(FPURegister fd, FPURegister fs);
742 void Round_w_d(FPURegister fd, FPURegister fs);
743 void Floor_w_d(FPURegister fd, FPURegister fs);
744 void Ceil_w_d(FPURegister fd, FPURegister fs);
745 // Wrapper function for the different cmp/branch types.
746 void BranchF(Label* target,
751 BranchDelaySlot bd = PROTECT);
753 // Alternate (inline) version for better readability with USE_DELAY_SLOT.
754 inline void BranchF(BranchDelaySlot bd,
760 BranchF(target, nan, cc, cmp1, cmp2, bd);
763 // Truncates a double using a specific rounding mode, and writes the value
764 // to the result register.
765 // The except_flag will contain any exceptions caused by the instruction.
766 // If check_inexact is kDontCheckForInexactConversion, then the inexact
767 // exception is masked.
768 void EmitFPUTruncate(FPURoundingMode rounding_mode,
770 DoubleRegister double_input,
772 DoubleRegister double_scratch,
773 Register except_flag,
774 CheckForInexactConversion check_inexact
775 = kDontCheckForInexactConversion);
777 // Performs a truncating conversion of a floating point number as used by
778 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
779 // succeeds, otherwise falls through if result is saturated. On return
780 // 'result' either holds answer, or is clobbered on fall through.
782 // Only public for the test code in test-code-stubs-arm.cc.
783 void TryInlineTruncateDoubleToI(Register result,
784 DoubleRegister input,
787 // Performs a truncating conversion of a floating point number as used by
788 // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
789 // Exits with 'result' holding the answer.
790 void TruncateDoubleToI(Register result, DoubleRegister double_input);
792 // Performs a truncating conversion of a heap number as used by
793 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
794 // must be different registers. Exits with 'result' holding the answer.
795 void TruncateHeapNumberToI(Register result, Register object);
797 // Converts the smi or heap number in object to an int32 using the rules
798 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
799 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
800 // different registers.
801 void TruncateNumberToI(Register object,
803 Register heap_number_map,
807 // Loads the number from object into dst register.
808 // If |object| is neither smi nor heap number, |not_number| is jumped to
809 // with |object| still intact.
810 void LoadNumber(Register object,
812 Register heap_number_map,
816 // Loads the number from object into double_dst in the double format.
817 // Control will jump to not_int32 if the value cannot be exactly represented
818 // by a 32-bit integer.
819 // Floating point value in the 32-bit integer range that are not exact integer
821 void LoadNumberAsInt32Double(Register object,
822 DoubleRegister double_dst,
823 Register heap_number_map,
826 FPURegister double_scratch,
829 // Loads the number from object into dst as a 32-bit integer.
830 // Control will jump to not_int32 if the object cannot be exactly represented
831 // by a 32-bit integer.
832 // Floating point value in the 32-bit integer range that are not exact integer
833 // won't be converted.
834 void LoadNumberAsInt32(Register object,
836 Register heap_number_map,
839 FPURegister double_scratch0,
840 FPURegister double_scratch1,
844 // argc - argument count to be dropped by LeaveExitFrame.
845 // save_doubles - saves FPU registers on stack, currently disabled.
846 // stack_space - extra stack space.
847 void EnterExitFrame(bool save_doubles,
848 int stack_space = 0);
850 // Leave the current exit frame.
851 void LeaveExitFrame(bool save_doubles,
853 bool restore_context,
854 bool do_return = NO_EMIT_RETURN);
856 // Get the actual activation frame alignment for target environment.
857 static int ActivationFrameAlignment();
859 // Make sure the stack is aligned. Only emits code in debug mode.
860 void AssertStackIsAligned();
862 void LoadContext(Register dst, int context_chain_length);
864 // Conditionally load the cached Array transitioned map of type
865 // transitioned_kind from the native context if the map in register
866 // map_in_out is the cached Array map in the native context of
868 void LoadTransitionedArrayMapConditional(
869 ElementsKind expected_kind,
870 ElementsKind transitioned_kind,
873 Label* no_map_match);
875 void LoadGlobalFunction(int index, Register function);
877 // Load the initial map from the global function. The registers
878 // function and map can be the same, function is then overwritten.
879 void LoadGlobalFunctionInitialMap(Register function,
883 void InitializeRootRegister() {
884 ExternalReference roots_array_start =
885 ExternalReference::roots_array_start(isolate());
886 li(kRootRegister, Operand(roots_array_start));
889 // -------------------------------------------------------------------------
890 // JavaScript invokes.
892 // Invoke the JavaScript function code by either calling or jumping.
893 void InvokeCode(Register code,
894 const ParameterCount& expected,
895 const ParameterCount& actual,
897 const CallWrapper& call_wrapper);
899 // Invoke the JavaScript function in the given register. Changes the
900 // current context to the context in the function before invoking.
901 void InvokeFunction(Register function,
902 const ParameterCount& actual,
904 const CallWrapper& call_wrapper);
906 void InvokeFunction(Register function,
907 const ParameterCount& expected,
908 const ParameterCount& actual,
910 const CallWrapper& call_wrapper);
912 void InvokeFunction(Handle<JSFunction> function,
913 const ParameterCount& expected,
914 const ParameterCount& actual,
916 const CallWrapper& call_wrapper);
919 void IsObjectJSObjectType(Register heap_object,
924 void IsInstanceJSObjectType(Register map,
928 void IsObjectJSStringType(Register object,
932 void IsObjectNameType(Register object,
936 // -------------------------------------------------------------------------
941 // -------------------------------------------------------------------------
942 // Exception handling.
944 // Push a new try handler and link into try handler chain.
945 void PushTryHandler(StackHandler::Kind kind, int handler_index);
947 // Unlink the stack handler on top of the stack from the try handler chain.
948 // Must preserve the result register.
949 void PopTryHandler();
951 // Passes thrown value to the handler of top of the try handler chain.
952 void Throw(Register value);
954 // Propagates an uncatchable exception to the top of the current JS stack's
956 void ThrowUncatchable(Register value);
958 // Copies a fixed number of fields of heap objects from src to dst.
959 void CopyFields(Register dst, Register src, RegList temps, int field_count);
961 // Copies a number of bytes from src to dst. All registers are clobbered. On
962 // exit src and dst will point to the place just after where the last byte was
963 // read or written and length will be zero.
964 void CopyBytes(Register src,
969 // Initialize fields with filler values. Fields starting at |start_offset|
970 // not including end_offset are overwritten with the value in |filler|. At
971 // the end the loop, |start_offset| takes the value of |end_offset|.
972 void InitializeFieldsWithFiller(Register start_offset,
976 // -------------------------------------------------------------------------
977 // Support functions.
979 // Try to get function prototype of a function and puts the value in
980 // the result register. Checks that the function really is a
981 // function and jumps to the miss label if the fast checks fail. The
982 // function register will be untouched; the other registers may be
984 void TryGetFunctionPrototype(Register function,
988 bool miss_on_bound_function = false);
990 void GetObjectType(Register function,
994 // Check if a map for a JSObject indicates that the object has fast elements.
995 // Jump to the specified label if it does not.
996 void CheckFastElements(Register map,
1000 // Check if a map for a JSObject indicates that the object can have both smi
1001 // and HeapObject elements. Jump to the specified label if it does not.
1002 void CheckFastObjectElements(Register map,
1006 // Check if a map for a JSObject indicates that the object has fast smi only
1007 // elements. Jump to the specified label if it does not.
1008 void CheckFastSmiElements(Register map,
1012 // Check to see if maybe_number can be stored as a double in
1013 // FastDoubleElements. If it can, store it at the index specified by key in
1014 // the FastDoubleElements array elements. Otherwise jump to fail.
1015 void StoreNumberToDoubleElements(Register value_reg,
1017 Register elements_reg,
1022 int elements_offset = 0);
1024 // Compare an object's map with the specified map and its transitioned
1025 // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1026 // "branch_to" if the result of the comparison is "cond". If multiple map
1027 // compares are required, the compare sequences branches to early_success.
1028 void CompareMapAndBranch(Register obj,
1031 Label* early_success,
1035 // As above, but the map of the object is already loaded into the register
1036 // which is preserved by the code generated.
1037 void CompareMapAndBranch(Register obj_map,
1039 Label* early_success,
1043 // Check if the map of an object is equal to a specified map and branch to
1044 // label if not. Skip the smi check if not required (object is known to be a
1045 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1046 // against maps that are ElementsKind transition maps of the specificed map.
1047 void CheckMap(Register obj,
1051 SmiCheckType smi_check_type);
1054 void CheckMap(Register obj,
1056 Heap::RootListIndex index,
1058 SmiCheckType smi_check_type);
1060 // Check if the map of an object is equal to a specified map and branch to a
1061 // specified target if equal. Skip the smi check if not required (object is
1062 // known to be a heap object)
1063 void DispatchMap(Register obj,
1066 Handle<Code> success,
1067 SmiCheckType smi_check_type);
1070 // Load and check the instance type of an object for being a string.
1071 // Loads the type into the second argument register.
1072 // Returns a condition that will be enabled if the object was a string.
1073 Condition IsObjectStringType(Register obj,
1076 lw(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1077 lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1078 And(type, type, Operand(kIsNotStringMask));
1079 DCHECK_EQ(0, kStringTag);
1084 // Picks out an array index from the hash field.
1086 // hash - holds the index's hash. Clobbered.
1087 // index - holds the overwritten index on exit.
1088 void IndexFromHash(Register hash, Register index);
1090 // Get the number of least significant bits from a register.
1091 void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1092 void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1094 // Load the value of a number object into a FPU double register. If the
1095 // object is not a number a jump to the label not_number is performed
1096 // and the FPU double register is unchanged.
1097 void ObjectToDoubleFPURegister(
1102 Register heap_number_map,
1104 ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1106 // Load the value of a smi object into a FPU double register. The register
1107 // scratch1 can be the same register as smi in which case smi will hold the
1108 // untagged value afterwards.
1109 void SmiToDoubleFPURegister(Register smi,
1113 // -------------------------------------------------------------------------
1114 // Overflow handling functions.
1115 // Usage: first call the appropriate arithmetic function, then call one of the
1116 // jump functions with the overflow_dst register as the second parameter.
1118 void AdduAndCheckForOverflow(Register dst,
1121 Register overflow_dst,
1122 Register scratch = at);
1124 void SubuAndCheckForOverflow(Register dst,
1127 Register overflow_dst,
1128 Register scratch = at);
1130 void BranchOnOverflow(Label* label,
1131 Register overflow_check,
1132 BranchDelaySlot bd = PROTECT) {
1133 Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1136 void BranchOnNoOverflow(Label* label,
1137 Register overflow_check,
1138 BranchDelaySlot bd = PROTECT) {
1139 Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1142 void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1143 Ret(lt, overflow_check, Operand(zero_reg), bd);
1146 void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1147 Ret(ge, overflow_check, Operand(zero_reg), bd);
1150 // -------------------------------------------------------------------------
1153 // See comments at the beginning of CEntryStub::Generate.
1154 inline void PrepareCEntryArgs(int num_args) {
1156 li(s1, (num_args - 1) * kPointerSize);
1159 inline void PrepareCEntryFunction(const ExternalReference& ref) {
1160 li(s2, Operand(ref));
1163 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1164 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1166 // Call a code stub.
1167 void CallStub(CodeStub* stub,
1168 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1171 // Tail call a code stub (jump).
1172 void TailCallStub(CodeStub* stub, COND_ARGS);
1176 void CallJSExitStub(CodeStub* stub);
1178 // Call a runtime routine.
1179 void CallRuntime(const Runtime::Function* f,
1181 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1182 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1183 const Runtime::Function* function = Runtime::FunctionForId(id);
1184 CallRuntime(function, function->nargs, kSaveFPRegs);
1187 // Convenience function: Same as above, but takes the fid instead.
1188 void CallRuntime(Runtime::FunctionId id,
1190 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1191 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1194 // Convenience function: call an external reference.
1195 void CallExternalReference(const ExternalReference& ext,
1197 BranchDelaySlot bd = PROTECT);
1199 // Tail call of a runtime routine (jump).
1200 // Like JumpToExternalReference, but also takes care of passing the number
1202 void TailCallExternalReference(const ExternalReference& ext,
1206 // Convenience function: tail call a runtime routine (jump).
1207 void TailCallRuntime(Runtime::FunctionId fid,
1211 int CalculateStackPassedWords(int num_reg_arguments,
1212 int num_double_arguments);
1214 // Before calling a C-function from generated code, align arguments on stack
1215 // and add space for the four mips argument slots.
1216 // After aligning the frame, non-register arguments must be stored on the
1217 // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1218 // The argument count assumes all arguments are word sized.
1219 // Some compilers/platforms require the stack to be aligned when calling
1221 // Needs a scratch register to do some arithmetic. This register will be
1223 void PrepareCallCFunction(int num_reg_arguments,
1224 int num_double_registers,
1226 void PrepareCallCFunction(int num_reg_arguments,
1229 // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1230 // Arguments 5..n are stored to stack using following:
1231 // sw(t0, CFunctionArgumentOperand(5));
1233 // Calls a C function and cleans up the space for arguments allocated
1234 // by PrepareCallCFunction. The called function is not allowed to trigger a
1235 // garbage collection, since that might move the code and invalidate the
1236 // return address (unless this is somehow accounted for by the called
1238 void CallCFunction(ExternalReference function, int num_arguments);
1239 void CallCFunction(Register function, int num_arguments);
1240 void CallCFunction(ExternalReference function,
1241 int num_reg_arguments,
1242 int num_double_arguments);
1243 void CallCFunction(Register function,
1244 int num_reg_arguments,
1245 int num_double_arguments);
1246 void MovFromFloatResult(DoubleRegister dst);
1247 void MovFromFloatParameter(DoubleRegister dst);
1249 // There are two ways of passing double arguments on MIPS, depending on
1250 // whether soft or hard floating point ABI is used. These functions
1251 // abstract parameter passing for the three different ways we call
1252 // C functions from generated code.
1253 void MovToFloatParameter(DoubleRegister src);
1254 void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1255 void MovToFloatResult(DoubleRegister src);
1257 // Calls an API function. Allocates HandleScope, extracts returned value
1258 // from handle and propagates exceptions. Restores context. stack_space
1259 // - space to be unwound on exit (includes the call JS arguments space and
1260 // the additional space allocated for the fast call).
1261 void CallApiFunctionAndReturn(Register function_address,
1262 ExternalReference thunk_ref,
1264 MemOperand return_value_operand,
1265 MemOperand* context_restore_operand);
1267 // Jump to the builtin routine.
1268 void JumpToExternalReference(const ExternalReference& builtin,
1269 BranchDelaySlot bd = PROTECT);
1271 // Invoke specified builtin JavaScript function. Adds an entry to
1272 // the unresolved list if the name does not resolve.
1273 void InvokeBuiltin(Builtins::JavaScript id,
1275 const CallWrapper& call_wrapper = NullCallWrapper());
1277 // Store the code object for the given builtin in the target register and
1278 // setup the function in a1.
1279 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
1281 // Store the function for the given builtin in the target register.
1282 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
1286 uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders.
1290 Handle<Object> CodeObject() {
1291 DCHECK(!code_object_.is_null());
1292 return code_object_;
1295 // Emit code for a truncating division by a constant. The dividend register is
1296 // unchanged and at gets clobbered. Dividend and result must be different.
1297 void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1299 // -------------------------------------------------------------------------
1300 // StatsCounter support.
1302 void SetCounter(StatsCounter* counter, int value,
1303 Register scratch1, Register scratch2);
1304 void IncrementCounter(StatsCounter* counter, int value,
1305 Register scratch1, Register scratch2);
1306 void DecrementCounter(StatsCounter* counter, int value,
1307 Register scratch1, Register scratch2);
1310 // -------------------------------------------------------------------------
1313 // Calls Abort(msg) if the condition cc is not satisfied.
1314 // Use --debug_code to enable.
1315 void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1316 void AssertFastElements(Register elements);
1318 // Like Assert(), but always enabled.
1319 void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1321 // Print a message to stdout and abort execution.
1322 void Abort(BailoutReason msg);
1324 // Verify restrictions about code generated in stubs.
1325 void set_generating_stub(bool value) { generating_stub_ = value; }
1326 bool generating_stub() { return generating_stub_; }
1327 void set_has_frame(bool value) { has_frame_ = value; }
1328 bool has_frame() { return has_frame_; }
1329 inline bool AllowThisStubCall(CodeStub* stub);
1331 // ---------------------------------------------------------------------------
1332 // Number utilities.
1334 // Check whether the value of reg is a power of two and not zero. If not
1335 // control continues at the label not_power_of_two. If reg is a power of two
1336 // the register scratch contains the value of (reg - 1) when control falls
1338 void JumpIfNotPowerOfTwoOrZero(Register reg,
1340 Label* not_power_of_two_or_zero);
1342 // -------------------------------------------------------------------------
1345 void SmiTag(Register reg) {
1346 Addu(reg, reg, reg);
1349 // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1350 void SmiTagCheckOverflow(Register reg, Register overflow);
1351 void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1353 void SmiTag(Register dst, Register src) {
1354 Addu(dst, src, src);
1357 // Try to convert int32 to smi. If the value is to large, preserve
1358 // the original value and jump to not_a_smi. Destroys scratch and
1360 void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1361 TrySmiTag(reg, reg, scratch, not_a_smi);
1363 void TrySmiTag(Register dst,
1367 SmiTagCheckOverflow(at, src, scratch);
1368 BranchOnOverflow(not_a_smi, scratch);
1372 void SmiUntag(Register reg) {
1373 sra(reg, reg, kSmiTagSize);
1376 void SmiUntag(Register dst, Register src) {
1377 sra(dst, src, kSmiTagSize);
1380 // Test if the register contains a smi.
1381 inline void SmiTst(Register value, Register scratch) {
1382 And(scratch, value, Operand(kSmiTagMask));
1384 inline void NonNegativeSmiTst(Register value, Register scratch) {
1385 And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1388 // Untag the source value into destination and jump if source is a smi.
1389 // Souce and destination can be the same register.
1390 void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1392 // Untag the source value into destination and jump if source is not a smi.
1393 // Souce and destination can be the same register.
1394 void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1396 // Jump the register contains a smi.
1397 void JumpIfSmi(Register value,
1399 Register scratch = at,
1400 BranchDelaySlot bd = PROTECT);
1402 // Jump if the register contains a non-smi.
1403 void JumpIfNotSmi(Register value,
1404 Label* not_smi_label,
1405 Register scratch = at,
1406 BranchDelaySlot bd = PROTECT);
1408 // Jump if either of the registers contain a non-smi.
1409 void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1410 // Jump if either of the registers contain a smi.
1411 void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1413 // Abort execution if argument is a smi, enabled via --debug-code.
1414 void AssertNotSmi(Register object);
1415 void AssertSmi(Register object);
1417 // Abort execution if argument is not a string, enabled via --debug-code.
1418 void AssertString(Register object);
1420 // Abort execution if argument is not a name, enabled via --debug-code.
1421 void AssertName(Register object);
1423 // Abort execution if argument is not undefined or an AllocationSite, enabled
1424 // via --debug-code.
1425 void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1427 // Abort execution if reg is not the root value with the given index,
1428 // enabled via --debug-code.
1429 void AssertIsRoot(Register reg, Heap::RootListIndex index);
1431 // ---------------------------------------------------------------------------
1432 // HeapNumber utilities.
1434 void JumpIfNotHeapNumber(Register object,
1435 Register heap_number_map,
1437 Label* on_not_heap_number);
1439 // -------------------------------------------------------------------------
1440 // String utilities.
1442 // Generate code to do a lookup in the number string cache. If the number in
1443 // the register object is found in the cache the generated code falls through
1444 // with the result in the result register. The object and the result register
1445 // can be the same. If the number is not found in the cache the code jumps to
1446 // the label not_found with only the content of register object unchanged.
1447 void LookupNumberStringCache(Register object,
1454 // Checks if both instance types are sequential ASCII strings and jumps to
1455 // label if either is not.
1456 void JumpIfBothInstanceTypesAreNotSequentialAscii(
1457 Register first_object_instance_type,
1458 Register second_object_instance_type,
1463 // Check if instance type is sequential ASCII string and jump to label if
1465 void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
1469 void JumpIfNotUniqueName(Register reg, Label* not_unique_name);
1471 void EmitSeqStringSetCharCheck(Register string,
1475 uint32_t encoding_mask);
1477 // Test that both first and second are sequential ASCII strings.
1478 // Assume that they are non-smis.
1479 void JumpIfNonSmisNotBothSequentialAsciiStrings(Register first,
1485 // Test that both first and second are sequential ASCII strings.
1486 // Check that they are non-smis.
1487 void JumpIfNotBothSequentialAsciiStrings(Register first,
1493 void ClampUint8(Register output_reg, Register input_reg);
1495 void ClampDoubleToUint8(Register result_reg,
1496 DoubleRegister input_reg,
1497 DoubleRegister temp_double_reg);
1500 void LoadInstanceDescriptors(Register map, Register descriptors);
1501 void EnumLength(Register dst, Register map);
1502 void NumberOfOwnDescriptors(Register dst, Register map);
1504 template<typename Field>
1505 void DecodeField(Register dst, Register src) {
1506 Ext(dst, src, Field::kShift, Field::kSize);
1509 template<typename Field>
1510 void DecodeField(Register reg) {
1511 DecodeField<Field>(reg, reg);
1514 template<typename Field>
1515 void DecodeFieldToSmi(Register dst, Register src) {
1516 static const int shift = Field::kShift;
1517 static const int mask = Field::kMask >> shift << kSmiTagSize;
1518 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1519 STATIC_ASSERT(kSmiTag == 0);
1520 if (shift < kSmiTagSize) {
1521 sll(dst, src, kSmiTagSize - shift);
1522 And(dst, dst, Operand(mask));
1523 } else if (shift > kSmiTagSize) {
1524 srl(dst, src, shift - kSmiTagSize);
1525 And(dst, dst, Operand(mask));
1527 And(dst, src, Operand(mask));
1531 template<typename Field>
1532 void DecodeFieldToSmi(Register reg) {
1533 DecodeField<Field>(reg, reg);
1536 // Generates function and stub prologue code.
1537 void StubPrologue();
1538 void Prologue(bool code_pre_aging);
1540 // Activation support.
1541 void EnterFrame(StackFrame::Type type);
1542 void LeaveFrame(StackFrame::Type type);
1544 // Patch the relocated value (lui/ori pair).
1545 void PatchRelocatedValue(Register li_location,
1547 Register new_value);
1548 // Get the relocatad value (loaded data) from the lui/ori pair.
1549 void GetRelocatedValue(Register li_location,
1553 // Expects object in a0 and returns map with validated enum cache
1554 // in a0. Assumes that any other register can be used as a scratch.
1555 void CheckEnumCache(Register null_value, Label* call_runtime);
1557 // AllocationMemento support. Arrays may have an associated
1558 // AllocationMemento object that can be checked for in order to pretransition
1560 // On entry, receiver_reg should point to the array object.
1561 // scratch_reg gets clobbered.
1562 // If allocation info is present, jump to allocation_memento_present.
1563 void TestJSArrayForAllocationMemento(
1564 Register receiver_reg,
1565 Register scratch_reg,
1566 Label* no_memento_found,
1567 Condition cond = al,
1568 Label* allocation_memento_present = NULL);
1570 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1571 Register scratch_reg,
1572 Label* memento_found) {
1573 Label no_memento_found;
1574 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1575 &no_memento_found, eq, memento_found);
1576 bind(&no_memento_found);
1579 // Jumps to found label if a prototype map has dictionary elements.
1580 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1581 Register scratch1, Label* found);
1584 void CallCFunctionHelper(Register function,
1585 int num_reg_arguments,
1586 int num_double_arguments);
1588 void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
1589 void BranchAndLinkShort(int16_t offset, Condition cond, Register rs,
1591 BranchDelaySlot bdslot = PROTECT);
1592 void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1593 void BranchAndLinkShort(Label* L, Condition cond, Register rs,
1595 BranchDelaySlot bdslot = PROTECT);
1596 void J(Label* L, BranchDelaySlot bdslot);
1597 void Jr(Label* L, BranchDelaySlot bdslot);
1598 void Jalr(Label* L, BranchDelaySlot bdslot);
1600 // Helper functions for generating invokes.
1601 void InvokePrologue(const ParameterCount& expected,
1602 const ParameterCount& actual,
1603 Handle<Code> code_constant,
1606 bool* definitely_mismatches,
1608 const CallWrapper& call_wrapper);
1610 // Get the code for the given builtin. Returns if able to resolve
1611 // the function in the 'resolved' flag.
1612 Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
1614 void InitializeNewString(Register string,
1616 Heap::RootListIndex map_index,
1620 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1621 void InNewSpace(Register object,
1623 Condition cond, // eq for new space, ne otherwise.
1626 // Helper for finding the mark bits for an address. Afterwards, the
1627 // bitmap register points at the word with the mark bits and the mask
1628 // the position of the first bit. Leaves addr_reg unchanged.
1629 inline void GetMarkBits(Register addr_reg,
1630 Register bitmap_reg,
1633 // Helper for throwing exceptions. Compute a handler address and jump to
1634 // it. See the implementation for register usage.
1635 void JumpToHandlerEntry();
1637 // Compute memory operands for safepoint stack slots.
1638 static int SafepointRegisterStackIndex(int reg_code);
1639 MemOperand SafepointRegisterSlot(Register reg);
1640 MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1642 bool generating_stub_;
1644 // This handle will be patched with the code object on installation.
1645 Handle<Object> code_object_;
1647 // Needs access to SafepointRegisterStackIndex for compiled frame
1649 friend class StandardFrame;
1653 // The code patcher is used to patch (typically) small parts of code e.g. for
1654 // debugging and other types of instrumentation. When using the code patcher
1655 // the exact number of bytes specified must be emitted. It is not legal to emit
1656 // relocation information. If any of these constraints are violated it causes
1657 // an assertion to fail.
1665 CodePatcher(byte* address,
1667 FlushICache flush_cache = FLUSH);
1668 virtual ~CodePatcher();
1670 // Macro assembler to emit code.
1671 MacroAssembler* masm() { return &masm_; }
1673 // Emit an instruction directly.
1674 void Emit(Instr instr);
1676 // Emit an address directly.
1677 void Emit(Address addr);
1679 // Change the condition part of an instruction leaving the rest of the current
1680 // instruction unchanged.
1681 void ChangeBranchCondition(Condition cond);
1684 byte* address_; // The address of the code being patched.
1685 int size_; // Number of bytes of the expected patch size.
1686 MacroAssembler masm_; // Macro assembler used to generate the code.
1687 FlushICache flush_cache_; // Whether to flush the I cache after patching.
1692 #ifdef GENERATED_CODE_COVERAGE
1693 #define CODE_COVERAGE_STRINGIFY(x) #x
1694 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1695 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1696 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
1698 #define ACCESS_MASM(masm) masm->
1701 } } // namespace v8::internal
1703 #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_