1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips/assembler-mips.h"
15 // Forward declaration.
18 // Reserved Register Usage Summary.
20 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
22 // The programmer should know that the MacroAssembler may clobber these three,
23 // but won't touch other registers except in special cases.
25 // Per the MIPS ABI, register t9 must be used for indirect function call
26 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
27 // trying to update gp register for position-independent-code. Whenever
28 // MIPS generated code calls C code, it must be via t9 register.
31 // Flags used for LeaveExitFrame function.
32 enum LeaveExitFrameMode {
34 NO_EMIT_RETURN = false
37 // Flags used for AllocateHeapNumber
45 // Flags used for the ObjectToDoubleFPURegister function.
46 enum ObjectToDoubleFlags {
48 NO_OBJECT_TO_DOUBLE_FLAGS = 0,
49 // Object is known to be a non smi.
50 OBJECT_NOT_SMI = 1 << 0,
51 // Don't load NaNs or infinities, branch to the non number case instead.
52 AVOID_NANS_AND_INFINITIES = 1 << 1
55 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
56 enum BranchDelaySlot {
61 // Flags used for the li macro-assembler function.
63 // If the constant value can be represented in just 16 bits, then
64 // optimize the li to use a single instruction, rather than lui/ori pair.
66 // Always use 2 instructions (lui/ori pair), even if the constant could
67 // be loaded with just one, so that this value is patchable later.
72 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
73 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
74 enum PointersToHereCheck {
75 kPointersToHereMaybeInteresting,
76 kPointersToHereAreAlwaysInteresting
78 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
80 Register GetRegisterThatIsNotOneOf(Register reg1,
81 Register reg2 = no_reg,
82 Register reg3 = no_reg,
83 Register reg4 = no_reg,
84 Register reg5 = no_reg,
85 Register reg6 = no_reg);
87 bool AreAliased(Register r1, Register r2, Register r3, Register r4);
90 // -----------------------------------------------------------------------------
91 // Static helper functions.
93 inline MemOperand ContextOperand(Register context, int index) {
94 return MemOperand(context, Context::SlotOffset(index));
98 inline MemOperand GlobalObjectOperand() {
99 return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
103 // Generate a MemOperand for loading a field from an object.
104 inline MemOperand FieldMemOperand(Register object, int offset) {
105 return MemOperand(object, offset - kHeapObjectTag);
109 // Generate a MemOperand for storing arguments 5..N on the stack
110 // when calling CallCFunction().
111 inline MemOperand CFunctionArgumentOperand(int index) {
112 ASSERT(index > kCArgSlotCount);
113 // Argument 5 takes the slot just past the four Arg-slots.
114 int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
115 return MemOperand(sp, offset);
119 // MacroAssembler implements a collection of frequently used macros.
120 class MacroAssembler: public Assembler {
122 // The isolate parameter can be NULL if the macro assembler should
123 // not use isolate-dependent functionality. In this case, it's the
124 // responsibility of the caller to never invoke such function on the
126 MacroAssembler(Isolate* isolate, void* buffer, int size);
129 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
130 #define COND_ARGS cond, r1, r2
132 // Cases when relocation is not needed.
133 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
134 void Name(target_type target, BranchDelaySlot bd = PROTECT); \
135 inline void Name(BranchDelaySlot bd, target_type target) { \
138 void Name(target_type target, \
140 BranchDelaySlot bd = PROTECT); \
141 inline void Name(BranchDelaySlot bd, \
142 target_type target, \
144 Name(target, COND_ARGS, bd); \
147 #define DECLARE_BRANCH_PROTOTYPES(Name) \
148 DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
149 DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
151 DECLARE_BRANCH_PROTOTYPES(Branch)
152 DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
153 DECLARE_BRANCH_PROTOTYPES(BranchShort)
155 #undef DECLARE_BRANCH_PROTOTYPES
156 #undef COND_TYPED_ARGS
160 // Jump, Call, and Ret pseudo instructions implementing inter-working.
161 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
162 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
164 void Jump(Register target, COND_ARGS);
165 void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
166 void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
167 void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
168 static int CallSize(Register target, COND_ARGS);
169 void Call(Register target, COND_ARGS);
170 static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
171 void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
172 int CallSize(Handle<Code> code,
173 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
174 TypeFeedbackId ast_id = TypeFeedbackId::None(),
176 void Call(Handle<Code> code,
177 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
178 TypeFeedbackId ast_id = TypeFeedbackId::None(),
181 inline void Ret(BranchDelaySlot bd, Condition cond = al,
182 Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
183 Ret(cond, rs, rt, bd);
186 void Branch(Label* L,
189 Heap::RootListIndex index,
190 BranchDelaySlot bdslot = PROTECT);
194 // Emit code to discard a non-negative number of pointer-sized elements
195 // from the stack, clobbering only the sp register.
197 Condition cond = cc_always,
198 Register reg = no_reg,
199 const Operand& op = Operand(no_reg));
201 // Trivial case of DropAndRet that utilizes the delay slot and only emits
203 void DropAndRet(int drop);
205 void DropAndRet(int drop,
210 // Swap two registers. If the scratch register is omitted then a slightly
211 // less efficient form using xor instead of mov is emitted.
212 void Swap(Register reg1, Register reg2, Register scratch = no_reg);
214 void Call(Label* target);
216 inline void Move(Register dst, Register src) {
222 inline void Move(FPURegister dst, FPURegister src) {
228 inline void Move(Register dst_low, Register dst_high, FPURegister src) {
230 mfc1(dst_high, FPURegister::from_code(src.code() + 1));
233 inline void FmoveHigh(Register dst_high, FPURegister src) {
234 mfc1(dst_high, FPURegister::from_code(src.code() + 1));
237 inline void FmoveLow(Register dst_low, FPURegister src) {
241 inline void Move(FPURegister dst, Register src_low, Register src_high) {
243 mtc1(src_high, FPURegister::from_code(dst.code() + 1));
247 void Move(FPURegister dst, double imm);
248 void Movz(Register rd, Register rs, Register rt);
249 void Movn(Register rd, Register rs, Register rt);
250 void Movt(Register rd, Register rs, uint16_t cc = 0);
251 void Movf(Register rd, Register rs, uint16_t cc = 0);
253 void Clz(Register rd, Register rs);
255 // Jump unconditionally to given label.
256 // We NEED a nop in the branch delay slot, as it used by v8, for example in
257 // CodeGenerator::ProcessDeferred().
258 // Currently the branch delay slot is filled by the MacroAssembler.
259 // Use rather b(Label) for code generation.
264 void Load(Register dst, const MemOperand& src, Representation r);
265 void Store(Register src, const MemOperand& dst, Representation r);
267 // Load an object from the root table.
268 void LoadRoot(Register destination,
269 Heap::RootListIndex index);
270 void LoadRoot(Register destination,
271 Heap::RootListIndex index,
272 Condition cond, Register src1, const Operand& src2);
274 // Store an object to the root table.
275 void StoreRoot(Register source,
276 Heap::RootListIndex index);
277 void StoreRoot(Register source,
278 Heap::RootListIndex index,
279 Condition cond, Register src1, const Operand& src2);
281 // ---------------------------------------------------------------------------
284 void IncrementalMarkingRecordWriteHelper(Register object,
288 enum RememberedSetFinalAction {
294 // Record in the remembered set the fact that we have a pointer to new space
295 // at the address pointed to by the addr register. Only works if addr is not
297 void RememberedSetHelper(Register object, // Used for debug code.
300 SaveFPRegsMode save_fp,
301 RememberedSetFinalAction and_then);
303 void CheckPageFlag(Register object,
307 Label* condition_met);
309 void CheckMapDeprecated(Handle<Map> map,
311 Label* if_deprecated);
313 // Check if object is in new space. Jumps if the object is not in new space.
314 // The register scratch can be object itself, but it will be clobbered.
315 void JumpIfNotInNewSpace(Register object,
318 InNewSpace(object, scratch, ne, branch);
321 // Check if object is in new space. Jumps if the object is in new space.
322 // The register scratch can be object itself, but scratch will be clobbered.
323 void JumpIfInNewSpace(Register object,
326 InNewSpace(object, scratch, eq, branch);
329 // Check if an object has a given incremental marking color.
330 void HasColor(Register object,
337 void JumpIfBlack(Register object,
342 // Checks the color of an object. If the object is already grey or black
343 // then we just fall through, since it is already live. If it is white and
344 // we can determine that it doesn't need to be scanned, then we just mark it
345 // black and fall through. For the rest we jump to the label so the
346 // incremental marker can fix its assumptions.
347 void EnsureNotWhite(Register object,
351 Label* object_is_white_and_not_data);
353 // Detects conservatively whether an object is data-only, i.e. it does need to
354 // be scanned by the garbage collector.
355 void JumpIfDataObject(Register value,
357 Label* not_data_object);
359 // Notify the garbage collector that we wrote a pointer into an object.
360 // |object| is the object being stored into, |value| is the object being
361 // stored. value and scratch registers are clobbered by the operation.
362 // The offset is the offset from the start of the object, not the offset from
363 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
364 void RecordWriteField(
370 SaveFPRegsMode save_fp,
371 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
372 SmiCheck smi_check = INLINE_SMI_CHECK,
373 PointersToHereCheck pointers_to_here_check_for_value =
374 kPointersToHereMaybeInteresting);
376 // As above, but the offset has the tag presubtracted. For use with
377 // MemOperand(reg, off).
378 inline void RecordWriteContextSlot(
384 SaveFPRegsMode save_fp,
385 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
386 SmiCheck smi_check = INLINE_SMI_CHECK,
387 PointersToHereCheck pointers_to_here_check_for_value =
388 kPointersToHereMaybeInteresting) {
389 RecordWriteField(context,
390 offset + kHeapObjectTag,
395 remembered_set_action,
397 pointers_to_here_check_for_value);
400 void RecordWriteForMap(
405 SaveFPRegsMode save_fp);
407 // For a given |object| notify the garbage collector that the slot |address|
408 // has been written. |value| is the object being stored. The value and
409 // address registers are clobbered by the operation.
415 SaveFPRegsMode save_fp,
416 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
417 SmiCheck smi_check = INLINE_SMI_CHECK,
418 PointersToHereCheck pointers_to_here_check_for_value =
419 kPointersToHereMaybeInteresting);
422 // ---------------------------------------------------------------------------
423 // Inline caching support.
425 // Generate code for checking access rights - used for security checks
426 // on access to global objects across environments. The holder register
427 // is left untouched, whereas both scratch registers are clobbered.
428 void CheckAccessGlobalProxy(Register holder_reg,
432 void GetNumberHash(Register reg0, Register scratch);
434 void LoadFromNumberDictionary(Label* miss,
443 inline void MarkCode(NopMarkerTypes type) {
447 // Check if the given instruction is a 'type' marker.
448 // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
449 // nop(type)). These instructions are generated to mark special location in
450 // the code, like some special IC code.
451 static inline bool IsMarkedCode(Instr instr, int type) {
452 ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
453 return IsNop(instr, type);
457 static inline int GetCodeMarker(Instr instr) {
458 uint32_t opcode = ((instr & kOpcodeMask));
459 uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
460 uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
461 uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
463 // Return <n> if we have a sll zero_reg, zero_reg, n
465 bool sllzz = (opcode == SLL &&
466 rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
467 rs == static_cast<uint32_t>(ToNumber(zero_reg)));
469 (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
470 ASSERT((type == -1) ||
471 ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
477 // ---------------------------------------------------------------------------
478 // Allocation support.
480 // Allocate an object in new space or old pointer space. The object_size is
481 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
482 // is passed. If the space is exhausted control continues at the gc_required
483 // label. The allocated object is returned in result. If the flag
484 // tag_allocated_object is true the result is tagged as as a heap object.
485 // All registers are clobbered also when control continues at the gc_required
487 void Allocate(int object_size,
492 AllocationFlags flags);
494 void Allocate(Register object_size,
499 AllocationFlags flags);
501 // Undo allocation in new space. The object passed and objects allocated after
502 // it will no longer be allocated. The caller must make sure that no pointers
503 // are left to the object(s) no longer allocated as they would be invalid when
504 // allocation is undone.
505 void UndoAllocationInNewSpace(Register object, Register scratch);
508 void AllocateTwoByteString(Register result,
514 void AllocateAsciiString(Register result,
520 void AllocateTwoByteConsString(Register result,
525 void AllocateAsciiConsString(Register result,
530 void AllocateTwoByteSlicedString(Register result,
535 void AllocateAsciiSlicedString(Register result,
541 // Allocates a heap number or jumps to the gc_required label if the young
542 // space is full and a scavenge is needed. All registers are clobbered also
543 // when control continues at the gc_required label.
544 void AllocateHeapNumber(Register result,
547 Register heap_number_map,
549 TaggingMode tagging_mode = TAG_RESULT);
550 void AllocateHeapNumberWithValue(Register result,
556 // ---------------------------------------------------------------------------
557 // Instruction macros.
559 #define DEFINE_INSTRUCTION(instr) \
560 void instr(Register rd, Register rs, const Operand& rt); \
561 void instr(Register rd, Register rs, Register rt) { \
562 instr(rd, rs, Operand(rt)); \
564 void instr(Register rs, Register rt, int32_t j) { \
565 instr(rs, rt, Operand(j)); \
568 #define DEFINE_INSTRUCTION2(instr) \
569 void instr(Register rs, const Operand& rt); \
570 void instr(Register rs, Register rt) { \
571 instr(rs, Operand(rt)); \
573 void instr(Register rs, int32_t j) { \
574 instr(rs, Operand(j)); \
577 DEFINE_INSTRUCTION(Addu);
578 DEFINE_INSTRUCTION(Subu);
579 DEFINE_INSTRUCTION(Mul);
580 DEFINE_INSTRUCTION2(Mult);
581 DEFINE_INSTRUCTION2(Multu);
582 DEFINE_INSTRUCTION2(Div);
583 DEFINE_INSTRUCTION2(Divu);
585 DEFINE_INSTRUCTION(And);
586 DEFINE_INSTRUCTION(Or);
587 DEFINE_INSTRUCTION(Xor);
588 DEFINE_INSTRUCTION(Nor);
589 DEFINE_INSTRUCTION2(Neg);
591 DEFINE_INSTRUCTION(Slt);
592 DEFINE_INSTRUCTION(Sltu);
594 // MIPS32 R2 instruction macro.
595 DEFINE_INSTRUCTION(Ror);
597 #undef DEFINE_INSTRUCTION
598 #undef DEFINE_INSTRUCTION2
600 void Pref(int32_t hint, const MemOperand& rs);
603 // ---------------------------------------------------------------------------
604 // Pseudo-instructions.
606 void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
608 void Ulw(Register rd, const MemOperand& rs);
609 void Usw(Register rd, const MemOperand& rs);
611 // Load int32 in the rd register.
612 void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
613 inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
614 li(rd, Operand(j), mode);
616 void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
618 // Push multiple registers on the stack.
619 // Registers are saved in numerical order, with higher numbered registers
620 // saved in higher memory addresses.
621 void MultiPush(RegList regs);
622 void MultiPushReversed(RegList regs);
624 void MultiPushFPU(RegList regs);
625 void MultiPushReversedFPU(RegList regs);
627 void push(Register src) {
628 Addu(sp, sp, Operand(-kPointerSize));
629 sw(src, MemOperand(sp, 0));
631 void Push(Register src) { push(src); }
634 void Push(Handle<Object> handle);
635 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
637 // Push two registers. Pushes leftmost register first (to highest address).
638 void Push(Register src1, Register src2) {
639 Subu(sp, sp, Operand(2 * kPointerSize));
640 sw(src1, MemOperand(sp, 1 * kPointerSize));
641 sw(src2, MemOperand(sp, 0 * kPointerSize));
644 // Push three registers. Pushes leftmost register first (to highest address).
645 void Push(Register src1, Register src2, Register src3) {
646 Subu(sp, sp, Operand(3 * kPointerSize));
647 sw(src1, MemOperand(sp, 2 * kPointerSize));
648 sw(src2, MemOperand(sp, 1 * kPointerSize));
649 sw(src3, MemOperand(sp, 0 * kPointerSize));
652 // Push four registers. Pushes leftmost register first (to highest address).
653 void Push(Register src1, Register src2, Register src3, Register src4) {
654 Subu(sp, sp, Operand(4 * kPointerSize));
655 sw(src1, MemOperand(sp, 3 * kPointerSize));
656 sw(src2, MemOperand(sp, 2 * kPointerSize));
657 sw(src3, MemOperand(sp, 1 * kPointerSize));
658 sw(src4, MemOperand(sp, 0 * kPointerSize));
661 void Push(Register src, Condition cond, Register tst1, Register tst2) {
662 // Since we don't have conditional execution we use a Branch.
663 Branch(3, cond, tst1, Operand(tst2));
664 Subu(sp, sp, Operand(kPointerSize));
665 sw(src, MemOperand(sp, 0));
668 // Pops multiple values from the stack and load them in the
669 // registers specified in regs. Pop order is the opposite as in MultiPush.
670 void MultiPop(RegList regs);
671 void MultiPopReversed(RegList regs);
673 void MultiPopFPU(RegList regs);
674 void MultiPopReversedFPU(RegList regs);
676 void pop(Register dst) {
677 lw(dst, MemOperand(sp, 0));
678 Addu(sp, sp, Operand(kPointerSize));
680 void Pop(Register dst) { pop(dst); }
682 // Pop two registers. Pops rightmost register first (from lower address).
683 void Pop(Register src1, Register src2) {
684 ASSERT(!src1.is(src2));
685 lw(src2, MemOperand(sp, 0 * kPointerSize));
686 lw(src1, MemOperand(sp, 1 * kPointerSize));
687 Addu(sp, sp, 2 * kPointerSize);
690 // Pop three registers. Pops rightmost register first (from lower address).
691 void Pop(Register src1, Register src2, Register src3) {
692 lw(src3, MemOperand(sp, 0 * kPointerSize));
693 lw(src2, MemOperand(sp, 1 * kPointerSize));
694 lw(src1, MemOperand(sp, 2 * kPointerSize));
695 Addu(sp, sp, 3 * kPointerSize);
698 void Pop(uint32_t count = 1) {
699 Addu(sp, sp, Operand(count * kPointerSize));
702 // Push and pop the registers that can hold pointers, as defined by the
703 // RegList constant kSafepointSavedRegisters.
704 void PushSafepointRegisters();
705 void PopSafepointRegisters();
706 void PushSafepointRegistersAndDoubles();
707 void PopSafepointRegistersAndDoubles();
708 // Store value in register src in the safepoint stack slot for
710 void StoreToSafepointRegisterSlot(Register src, Register dst);
711 void StoreToSafepointRegistersAndDoublesSlot(Register src, Register dst);
712 // Load the value of the src register from its safepoint stack slot
713 // into register dst.
714 void LoadFromSafepointRegisterSlot(Register dst, Register src);
716 // Flush the I-cache from asm code. You should use CPU::FlushICache from C.
717 // Does not handle errors.
718 void FlushICache(Register address, unsigned instructions);
720 // MIPS32 R2 instruction macro.
721 void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
722 void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
724 // ---------------------------------------------------------------------------
725 // FPU macros. These do not handle special cases like NaN or +- inf.
727 // Convert unsigned word to double.
728 void Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch);
729 void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
731 // Convert double to unsigned word.
732 void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
733 void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
735 void Trunc_w_d(FPURegister fd, FPURegister fs);
736 void Round_w_d(FPURegister fd, FPURegister fs);
737 void Floor_w_d(FPURegister fd, FPURegister fs);
738 void Ceil_w_d(FPURegister fd, FPURegister fs);
739 // Wrapper function for the different cmp/branch types.
740 void BranchF(Label* target,
745 BranchDelaySlot bd = PROTECT);
747 // Alternate (inline) version for better readability with USE_DELAY_SLOT.
748 inline void BranchF(BranchDelaySlot bd,
754 BranchF(target, nan, cc, cmp1, cmp2, bd);
757 // Truncates a double using a specific rounding mode, and writes the value
758 // to the result register.
759 // The except_flag will contain any exceptions caused by the instruction.
760 // If check_inexact is kDontCheckForInexactConversion, then the inexact
761 // exception is masked.
762 void EmitFPUTruncate(FPURoundingMode rounding_mode,
764 DoubleRegister double_input,
766 DoubleRegister double_scratch,
767 Register except_flag,
768 CheckForInexactConversion check_inexact
769 = kDontCheckForInexactConversion);
771 // Performs a truncating conversion of a floating point number as used by
772 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
773 // succeeds, otherwise falls through if result is saturated. On return
774 // 'result' either holds answer, or is clobbered on fall through.
776 // Only public for the test code in test-code-stubs-arm.cc.
777 void TryInlineTruncateDoubleToI(Register result,
778 DoubleRegister input,
781 // Performs a truncating conversion of a floating point number as used by
782 // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
783 // Exits with 'result' holding the answer.
784 void TruncateDoubleToI(Register result, DoubleRegister double_input);
786 // Performs a truncating conversion of a heap number as used by
787 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
788 // must be different registers. Exits with 'result' holding the answer.
789 void TruncateHeapNumberToI(Register result, Register object);
791 // Converts the smi or heap number in object to an int32 using the rules
792 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
793 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
794 // different registers.
795 void TruncateNumberToI(Register object,
797 Register heap_number_map,
801 // Loads the number from object into dst register.
802 // If |object| is neither smi nor heap number, |not_number| is jumped to
803 // with |object| still intact.
804 void LoadNumber(Register object,
806 Register heap_number_map,
810 // Loads the number from object into double_dst in the double format.
811 // Control will jump to not_int32 if the value cannot be exactly represented
812 // by a 32-bit integer.
813 // Floating point value in the 32-bit integer range that are not exact integer
815 void LoadNumberAsInt32Double(Register object,
816 DoubleRegister double_dst,
817 Register heap_number_map,
820 FPURegister double_scratch,
823 // Loads the number from object into dst as a 32-bit integer.
824 // Control will jump to not_int32 if the object cannot be exactly represented
825 // by a 32-bit integer.
826 // Floating point value in the 32-bit integer range that are not exact integer
827 // won't be converted.
828 void LoadNumberAsInt32(Register object,
830 Register heap_number_map,
833 FPURegister double_scratch0,
834 FPURegister double_scratch1,
838 // argc - argument count to be dropped by LeaveExitFrame.
839 // save_doubles - saves FPU registers on stack, currently disabled.
840 // stack_space - extra stack space.
841 void EnterExitFrame(bool save_doubles,
842 int stack_space = 0);
844 // Leave the current exit frame.
845 void LeaveExitFrame(bool save_doubles,
847 bool restore_context,
848 bool do_return = NO_EMIT_RETURN);
850 // Get the actual activation frame alignment for target environment.
851 static int ActivationFrameAlignment();
853 // Make sure the stack is aligned. Only emits code in debug mode.
854 void AssertStackIsAligned();
856 void LoadContext(Register dst, int context_chain_length);
858 // Conditionally load the cached Array transitioned map of type
859 // transitioned_kind from the native context if the map in register
860 // map_in_out is the cached Array map in the native context of
862 void LoadTransitionedArrayMapConditional(
863 ElementsKind expected_kind,
864 ElementsKind transitioned_kind,
867 Label* no_map_match);
869 void LoadGlobalFunction(int index, Register function);
871 // Load the initial map from the global function. The registers
872 // function and map can be the same, function is then overwritten.
873 void LoadGlobalFunctionInitialMap(Register function,
877 void InitializeRootRegister() {
878 ExternalReference roots_array_start =
879 ExternalReference::roots_array_start(isolate());
880 li(kRootRegister, Operand(roots_array_start));
883 // -------------------------------------------------------------------------
884 // JavaScript invokes.
886 // Invoke the JavaScript function code by either calling or jumping.
887 void InvokeCode(Register code,
888 const ParameterCount& expected,
889 const ParameterCount& actual,
891 const CallWrapper& call_wrapper);
893 // Invoke the JavaScript function in the given register. Changes the
894 // current context to the context in the function before invoking.
895 void InvokeFunction(Register function,
896 const ParameterCount& actual,
898 const CallWrapper& call_wrapper);
900 void InvokeFunction(Register function,
901 const ParameterCount& expected,
902 const ParameterCount& actual,
904 const CallWrapper& call_wrapper);
906 void InvokeFunction(Handle<JSFunction> function,
907 const ParameterCount& expected,
908 const ParameterCount& actual,
910 const CallWrapper& call_wrapper);
913 void IsObjectJSObjectType(Register heap_object,
918 void IsInstanceJSObjectType(Register map,
922 void IsObjectJSStringType(Register object,
926 void IsObjectNameType(Register object,
930 // -------------------------------------------------------------------------
935 // -------------------------------------------------------------------------
936 // Exception handling.
938 // Push a new try handler and link into try handler chain.
939 void PushTryHandler(StackHandler::Kind kind, int handler_index);
941 // Unlink the stack handler on top of the stack from the try handler chain.
942 // Must preserve the result register.
943 void PopTryHandler();
945 // Passes thrown value to the handler of top of the try handler chain.
946 void Throw(Register value);
948 // Propagates an uncatchable exception to the top of the current JS stack's
950 void ThrowUncatchable(Register value);
952 // Copies a fixed number of fields of heap objects from src to dst.
953 void CopyFields(Register dst, Register src, RegList temps, int field_count);
955 // Copies a number of bytes from src to dst. All registers are clobbered. On
956 // exit src and dst will point to the place just after where the last byte was
957 // read or written and length will be zero.
958 void CopyBytes(Register src,
963 // Initialize fields with filler values. Fields starting at |start_offset|
964 // not including end_offset are overwritten with the value in |filler|. At
965 // the end the loop, |start_offset| takes the value of |end_offset|.
966 void InitializeFieldsWithFiller(Register start_offset,
970 // -------------------------------------------------------------------------
971 // Support functions.
973 // Try to get function prototype of a function and puts the value in
974 // the result register. Checks that the function really is a
975 // function and jumps to the miss label if the fast checks fail. The
976 // function register will be untouched; the other registers may be
978 void TryGetFunctionPrototype(Register function,
982 bool miss_on_bound_function = false);
984 void GetObjectType(Register function,
988 // Check if a map for a JSObject indicates that the object has fast elements.
989 // Jump to the specified label if it does not.
990 void CheckFastElements(Register map,
994 // Check if a map for a JSObject indicates that the object can have both smi
995 // and HeapObject elements. Jump to the specified label if it does not.
996 void CheckFastObjectElements(Register map,
1000 // Check if a map for a JSObject indicates that the object has fast smi only
1001 // elements. Jump to the specified label if it does not.
1002 void CheckFastSmiElements(Register map,
1006 // Check to see if maybe_number can be stored as a double in
1007 // FastDoubleElements. If it can, store it at the index specified by key in
1008 // the FastDoubleElements array elements. Otherwise jump to fail.
1009 void StoreNumberToDoubleElements(Register value_reg,
1011 Register elements_reg,
1016 int elements_offset = 0);
1018 // Compare an object's map with the specified map and its transitioned
1019 // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1020 // "branch_to" if the result of the comparison is "cond". If multiple map
1021 // compares are required, the compare sequences branches to early_success.
1022 void CompareMapAndBranch(Register obj,
1025 Label* early_success,
1029 // As above, but the map of the object is already loaded into the register
1030 // which is preserved by the code generated.
1031 void CompareMapAndBranch(Register obj_map,
1033 Label* early_success,
1037 // Check if the map of an object is equal to a specified map and branch to
1038 // label if not. Skip the smi check if not required (object is known to be a
1039 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1040 // against maps that are ElementsKind transition maps of the specificed map.
1041 void CheckMap(Register obj,
1045 SmiCheckType smi_check_type);
1048 void CheckMap(Register obj,
1050 Heap::RootListIndex index,
1052 SmiCheckType smi_check_type);
1054 // Check if the map of an object is equal to a specified map and branch to a
1055 // specified target if equal. Skip the smi check if not required (object is
1056 // known to be a heap object)
1057 void DispatchMap(Register obj,
1060 Handle<Code> success,
1061 SmiCheckType smi_check_type);
1064 // Load and check the instance type of an object for being a string.
1065 // Loads the type into the second argument register.
1066 // Returns a condition that will be enabled if the object was a string.
1067 Condition IsObjectStringType(Register obj,
1070 lw(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1071 lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1072 And(type, type, Operand(kIsNotStringMask));
1073 ASSERT_EQ(0, kStringTag);
1078 // Picks out an array index from the hash field.
1080 // hash - holds the index's hash. Clobbered.
1081 // index - holds the overwritten index on exit.
1082 void IndexFromHash(Register hash, Register index);
1084 // Get the number of least significant bits from a register.
1085 void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1086 void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1088 // Load the value of a number object into a FPU double register. If the
1089 // object is not a number a jump to the label not_number is performed
1090 // and the FPU double register is unchanged.
1091 void ObjectToDoubleFPURegister(
1096 Register heap_number_map,
1098 ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1100 // Load the value of a smi object into a FPU double register. The register
1101 // scratch1 can be the same register as smi in which case smi will hold the
1102 // untagged value afterwards.
1103 void SmiToDoubleFPURegister(Register smi,
1107 // -------------------------------------------------------------------------
1108 // Overflow handling functions.
1109 // Usage: first call the appropriate arithmetic function, then call one of the
1110 // jump functions with the overflow_dst register as the second parameter.
1112 void AdduAndCheckForOverflow(Register dst,
1115 Register overflow_dst,
1116 Register scratch = at);
1118 void SubuAndCheckForOverflow(Register dst,
1121 Register overflow_dst,
1122 Register scratch = at);
1124 void BranchOnOverflow(Label* label,
1125 Register overflow_check,
1126 BranchDelaySlot bd = PROTECT) {
1127 Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1130 void BranchOnNoOverflow(Label* label,
1131 Register overflow_check,
1132 BranchDelaySlot bd = PROTECT) {
1133 Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1136 void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1137 Ret(lt, overflow_check, Operand(zero_reg), bd);
1140 void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1141 Ret(ge, overflow_check, Operand(zero_reg), bd);
1144 // -------------------------------------------------------------------------
1147 // See comments at the beginning of CEntryStub::Generate.
1148 inline void PrepareCEntryArgs(int num_args) {
1150 li(s1, (num_args - 1) * kPointerSize);
1153 inline void PrepareCEntryFunction(const ExternalReference& ref) {
1154 li(s2, Operand(ref));
1157 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1158 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1160 // Call a code stub.
1161 void CallStub(CodeStub* stub,
1162 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1165 // Tail call a code stub (jump).
1166 void TailCallStub(CodeStub* stub, COND_ARGS);
1170 void CallJSExitStub(CodeStub* stub);
1172 // Call a runtime routine.
1173 void CallRuntime(const Runtime::Function* f,
1175 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1176 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1177 const Runtime::Function* function = Runtime::FunctionForId(id);
1178 CallRuntime(function, function->nargs, kSaveFPRegs);
1181 // Convenience function: Same as above, but takes the fid instead.
1182 void CallRuntime(Runtime::FunctionId id,
1184 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1185 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1188 // Convenience function: call an external reference.
1189 void CallExternalReference(const ExternalReference& ext,
1191 BranchDelaySlot bd = PROTECT);
1193 // Tail call of a runtime routine (jump).
1194 // Like JumpToExternalReference, but also takes care of passing the number
1196 void TailCallExternalReference(const ExternalReference& ext,
1200 // Convenience function: tail call a runtime routine (jump).
1201 void TailCallRuntime(Runtime::FunctionId fid,
1205 int CalculateStackPassedWords(int num_reg_arguments,
1206 int num_double_arguments);
1208 // Before calling a C-function from generated code, align arguments on stack
1209 // and add space for the four mips argument slots.
1210 // After aligning the frame, non-register arguments must be stored on the
1211 // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1212 // The argument count assumes all arguments are word sized.
1213 // Some compilers/platforms require the stack to be aligned when calling
1215 // Needs a scratch register to do some arithmetic. This register will be
1217 void PrepareCallCFunction(int num_reg_arguments,
1218 int num_double_registers,
1220 void PrepareCallCFunction(int num_reg_arguments,
1223 // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1224 // Arguments 5..n are stored to stack using following:
1225 // sw(t0, CFunctionArgumentOperand(5));
1227 // Calls a C function and cleans up the space for arguments allocated
1228 // by PrepareCallCFunction. The called function is not allowed to trigger a
1229 // garbage collection, since that might move the code and invalidate the
1230 // return address (unless this is somehow accounted for by the called
1232 void CallCFunction(ExternalReference function, int num_arguments);
1233 void CallCFunction(Register function, int num_arguments);
1234 void CallCFunction(ExternalReference function,
1235 int num_reg_arguments,
1236 int num_double_arguments);
1237 void CallCFunction(Register function,
1238 int num_reg_arguments,
1239 int num_double_arguments);
1240 void MovFromFloatResult(DoubleRegister dst);
1241 void MovFromFloatParameter(DoubleRegister dst);
1243 // There are two ways of passing double arguments on MIPS, depending on
1244 // whether soft or hard floating point ABI is used. These functions
1245 // abstract parameter passing for the three different ways we call
1246 // C functions from generated code.
1247 void MovToFloatParameter(DoubleRegister src);
1248 void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1249 void MovToFloatResult(DoubleRegister src);
1251 // Calls an API function. Allocates HandleScope, extracts returned value
1252 // from handle and propagates exceptions. Restores context. stack_space
1253 // - space to be unwound on exit (includes the call JS arguments space and
1254 // the additional space allocated for the fast call).
1255 void CallApiFunctionAndReturn(Register function_address,
1256 ExternalReference thunk_ref,
1258 MemOperand return_value_operand,
1259 MemOperand* context_restore_operand);
1261 // Jump to the builtin routine.
1262 void JumpToExternalReference(const ExternalReference& builtin,
1263 BranchDelaySlot bd = PROTECT);
1265 // Invoke specified builtin JavaScript function. Adds an entry to
1266 // the unresolved list if the name does not resolve.
1267 void InvokeBuiltin(Builtins::JavaScript id,
1269 const CallWrapper& call_wrapper = NullCallWrapper());
1271 // Store the code object for the given builtin in the target register and
1272 // setup the function in a1.
1273 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
1275 // Store the function for the given builtin in the target register.
1276 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
1280 uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders.
1284 Handle<Object> CodeObject() {
1285 ASSERT(!code_object_.is_null());
1286 return code_object_;
1289 // Emit code for a truncating division by a constant. The dividend register is
1290 // unchanged and at gets clobbered. Dividend and result must be different.
1291 void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1293 // -------------------------------------------------------------------------
1294 // StatsCounter support.
1296 void SetCounter(StatsCounter* counter, int value,
1297 Register scratch1, Register scratch2);
1298 void IncrementCounter(StatsCounter* counter, int value,
1299 Register scratch1, Register scratch2);
1300 void DecrementCounter(StatsCounter* counter, int value,
1301 Register scratch1, Register scratch2);
1304 // -------------------------------------------------------------------------
1307 // Calls Abort(msg) if the condition cc is not satisfied.
1308 // Use --debug_code to enable.
1309 void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1310 void AssertFastElements(Register elements);
1312 // Like Assert(), but always enabled.
1313 void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1315 // Print a message to stdout and abort execution.
1316 void Abort(BailoutReason msg);
1318 // Verify restrictions about code generated in stubs.
1319 void set_generating_stub(bool value) { generating_stub_ = value; }
1320 bool generating_stub() { return generating_stub_; }
1321 void set_has_frame(bool value) { has_frame_ = value; }
1322 bool has_frame() { return has_frame_; }
1323 inline bool AllowThisStubCall(CodeStub* stub);
1325 // ---------------------------------------------------------------------------
1326 // Number utilities.
1328 // Check whether the value of reg is a power of two and not zero. If not
1329 // control continues at the label not_power_of_two. If reg is a power of two
1330 // the register scratch contains the value of (reg - 1) when control falls
1332 void JumpIfNotPowerOfTwoOrZero(Register reg,
1334 Label* not_power_of_two_or_zero);
1336 // -------------------------------------------------------------------------
1339 void SmiTag(Register reg) {
1340 Addu(reg, reg, reg);
1343 // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1344 void SmiTagCheckOverflow(Register reg, Register overflow);
1345 void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1347 void SmiTag(Register dst, Register src) {
1348 Addu(dst, src, src);
1351 // Try to convert int32 to smi. If the value is to large, preserve
1352 // the original value and jump to not_a_smi. Destroys scratch and
1354 void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1355 TrySmiTag(reg, reg, scratch, not_a_smi);
1357 void TrySmiTag(Register dst,
1361 SmiTagCheckOverflow(at, src, scratch);
1362 BranchOnOverflow(not_a_smi, scratch);
1366 void SmiUntag(Register reg) {
1367 sra(reg, reg, kSmiTagSize);
1370 void SmiUntag(Register dst, Register src) {
1371 sra(dst, src, kSmiTagSize);
1374 // Test if the register contains a smi.
1375 inline void SmiTst(Register value, Register scratch) {
1376 And(scratch, value, Operand(kSmiTagMask));
1378 inline void NonNegativeSmiTst(Register value, Register scratch) {
1379 And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1382 // Untag the source value into destination and jump if source is a smi.
1383 // Souce and destination can be the same register.
1384 void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1386 // Untag the source value into destination and jump if source is not a smi.
1387 // Souce and destination can be the same register.
1388 void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1390 // Jump the register contains a smi.
1391 void JumpIfSmi(Register value,
1393 Register scratch = at,
1394 BranchDelaySlot bd = PROTECT);
1396 // Jump if the register contains a non-smi.
1397 void JumpIfNotSmi(Register value,
1398 Label* not_smi_label,
1399 Register scratch = at,
1400 BranchDelaySlot bd = PROTECT);
1402 // Jump if either of the registers contain a non-smi.
1403 void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1404 // Jump if either of the registers contain a smi.
1405 void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1407 // Abort execution if argument is a smi, enabled via --debug-code.
1408 void AssertNotSmi(Register object);
1409 void AssertSmi(Register object);
1411 // Abort execution if argument is not a string, enabled via --debug-code.
1412 void AssertString(Register object);
1414 // Abort execution if argument is not a name, enabled via --debug-code.
1415 void AssertName(Register object);
1417 // Abort execution if argument is not undefined or an AllocationSite, enabled
1418 // via --debug-code.
1419 void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1421 // Abort execution if reg is not the root value with the given index,
1422 // enabled via --debug-code.
1423 void AssertIsRoot(Register reg, Heap::RootListIndex index);
1425 // ---------------------------------------------------------------------------
1426 // HeapNumber utilities.
1428 void JumpIfNotHeapNumber(Register object,
1429 Register heap_number_map,
1431 Label* on_not_heap_number);
1433 // -------------------------------------------------------------------------
1434 // String utilities.
1436 // Generate code to do a lookup in the number string cache. If the number in
1437 // the register object is found in the cache the generated code falls through
1438 // with the result in the result register. The object and the result register
1439 // can be the same. If the number is not found in the cache the code jumps to
1440 // the label not_found with only the content of register object unchanged.
1441 void LookupNumberStringCache(Register object,
1448 // Checks if both instance types are sequential ASCII strings and jumps to
1449 // label if either is not.
1450 void JumpIfBothInstanceTypesAreNotSequentialAscii(
1451 Register first_object_instance_type,
1452 Register second_object_instance_type,
1457 // Check if instance type is sequential ASCII string and jump to label if
1459 void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
1463 void JumpIfNotUniqueName(Register reg, Label* not_unique_name);
1465 void EmitSeqStringSetCharCheck(Register string,
1469 uint32_t encoding_mask);
1471 // Test that both first and second are sequential ASCII strings.
1472 // Assume that they are non-smis.
1473 void JumpIfNonSmisNotBothSequentialAsciiStrings(Register first,
1479 // Test that both first and second are sequential ASCII strings.
1480 // Check that they are non-smis.
1481 void JumpIfNotBothSequentialAsciiStrings(Register first,
1487 void ClampUint8(Register output_reg, Register input_reg);
1489 void ClampDoubleToUint8(Register result_reg,
1490 DoubleRegister input_reg,
1491 DoubleRegister temp_double_reg);
1494 void LoadInstanceDescriptors(Register map, Register descriptors);
1495 void EnumLength(Register dst, Register map);
1496 void NumberOfOwnDescriptors(Register dst, Register map);
1498 template<typename Field>
1499 void DecodeField(Register dst, Register src) {
1500 Ext(dst, src, Field::kShift, Field::kSize);
1503 template<typename Field>
1504 void DecodeField(Register reg) {
1505 DecodeField<Field>(reg, reg);
1508 template<typename Field>
1509 void DecodeFieldToSmi(Register dst, Register src) {
1510 static const int shift = Field::kShift;
1511 static const int mask = Field::kMask >> shift << kSmiTagSize;
1512 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1513 STATIC_ASSERT(kSmiTag == 0);
1514 if (shift < kSmiTagSize) {
1515 sll(dst, src, kSmiTagSize - shift);
1516 And(dst, dst, Operand(mask));
1517 } else if (shift > kSmiTagSize) {
1518 srl(dst, src, shift - kSmiTagSize);
1519 And(dst, dst, Operand(mask));
1521 And(dst, src, Operand(mask));
1525 template<typename Field>
1526 void DecodeFieldToSmi(Register reg) {
1527 DecodeField<Field>(reg, reg);
1530 // Generates function and stub prologue code.
1531 void StubPrologue();
1532 void Prologue(bool code_pre_aging);
1534 // Activation support.
1535 void EnterFrame(StackFrame::Type type);
1536 void LeaveFrame(StackFrame::Type type);
1538 // Patch the relocated value (lui/ori pair).
1539 void PatchRelocatedValue(Register li_location,
1541 Register new_value);
1542 // Get the relocatad value (loaded data) from the lui/ori pair.
1543 void GetRelocatedValue(Register li_location,
1547 // Expects object in a0 and returns map with validated enum cache
1548 // in a0. Assumes that any other register can be used as a scratch.
1549 void CheckEnumCache(Register null_value, Label* call_runtime);
1551 // AllocationMemento support. Arrays may have an associated
1552 // AllocationMemento object that can be checked for in order to pretransition
1554 // On entry, receiver_reg should point to the array object.
1555 // scratch_reg gets clobbered.
1556 // If allocation info is present, jump to allocation_memento_present.
1557 void TestJSArrayForAllocationMemento(
1558 Register receiver_reg,
1559 Register scratch_reg,
1560 Label* no_memento_found,
1561 Condition cond = al,
1562 Label* allocation_memento_present = NULL);
1564 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1565 Register scratch_reg,
1566 Label* memento_found) {
1567 Label no_memento_found;
1568 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1569 &no_memento_found, eq, memento_found);
1570 bind(&no_memento_found);
1573 // Jumps to found label if a prototype map has dictionary elements.
1574 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1575 Register scratch1, Label* found);
1578 void CallCFunctionHelper(Register function,
1579 int num_reg_arguments,
1580 int num_double_arguments);
1582 void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
1583 void BranchAndLinkShort(int16_t offset, Condition cond, Register rs,
1585 BranchDelaySlot bdslot = PROTECT);
1586 void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1587 void BranchAndLinkShort(Label* L, Condition cond, Register rs,
1589 BranchDelaySlot bdslot = PROTECT);
1590 void J(Label* L, BranchDelaySlot bdslot);
1591 void Jr(Label* L, BranchDelaySlot bdslot);
1592 void Jalr(Label* L, BranchDelaySlot bdslot);
1594 // Helper functions for generating invokes.
1595 void InvokePrologue(const ParameterCount& expected,
1596 const ParameterCount& actual,
1597 Handle<Code> code_constant,
1600 bool* definitely_mismatches,
1602 const CallWrapper& call_wrapper);
1604 // Get the code for the given builtin. Returns if able to resolve
1605 // the function in the 'resolved' flag.
1606 Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
1608 void InitializeNewString(Register string,
1610 Heap::RootListIndex map_index,
1614 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1615 void InNewSpace(Register object,
1617 Condition cond, // eq for new space, ne otherwise.
1620 // Helper for finding the mark bits for an address. Afterwards, the
1621 // bitmap register points at the word with the mark bits and the mask
1622 // the position of the first bit. Leaves addr_reg unchanged.
1623 inline void GetMarkBits(Register addr_reg,
1624 Register bitmap_reg,
1627 // Helper for throwing exceptions. Compute a handler address and jump to
1628 // it. See the implementation for register usage.
1629 void JumpToHandlerEntry();
1631 // Compute memory operands for safepoint stack slots.
1632 static int SafepointRegisterStackIndex(int reg_code);
1633 MemOperand SafepointRegisterSlot(Register reg);
1634 MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1636 bool generating_stub_;
1638 // This handle will be patched with the code object on installation.
1639 Handle<Object> code_object_;
1641 // Needs access to SafepointRegisterStackIndex for compiled frame
1643 friend class StandardFrame;
1647 // The code patcher is used to patch (typically) small parts of code e.g. for
1648 // debugging and other types of instrumentation. When using the code patcher
1649 // the exact number of bytes specified must be emitted. It is not legal to emit
1650 // relocation information. If any of these constraints are violated it causes
1651 // an assertion to fail.
1659 CodePatcher(byte* address,
1661 FlushICache flush_cache = FLUSH);
1662 virtual ~CodePatcher();
1664 // Macro assembler to emit code.
1665 MacroAssembler* masm() { return &masm_; }
1667 // Emit an instruction directly.
1668 void Emit(Instr instr);
1670 // Emit an address directly.
1671 void Emit(Address addr);
1673 // Change the condition part of an instruction leaving the rest of the current
1674 // instruction unchanged.
1675 void ChangeBranchCondition(Condition cond);
1678 byte* address_; // The address of the code being patched.
1679 int size_; // Number of bytes of the expected patch size.
1680 MacroAssembler masm_; // Macro assembler used to generate the code.
1681 FlushICache flush_cache_; // Whether to flush the I cache after patching.
1686 #ifdef GENERATED_CODE_COVERAGE
1687 #define CODE_COVERAGE_STRINGIFY(x) #x
1688 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1689 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1690 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
1692 #define ACCESS_MASM(masm) masm->
1695 } } // namespace v8::internal
1697 #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_