1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips/assembler-mips.h"
15 // Forward declaration.
18 // Reserved Register Usage Summary.
20 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
22 // The programmer should know that the MacroAssembler may clobber these three,
23 // but won't touch other registers except in special cases.
25 // Per the MIPS ABI, register t9 must be used for indirect function call
26 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
27 // trying to update gp register for position-independent-code. Whenever
28 // MIPS generated code calls C code, it must be via t9 register.
31 // Flags used for LeaveExitFrame function.
32 enum LeaveExitFrameMode {
34 NO_EMIT_RETURN = false
37 // Flags used for AllocateHeapNumber
45 // Flags used for the ObjectToDoubleFPURegister function.
46 enum ObjectToDoubleFlags {
48 NO_OBJECT_TO_DOUBLE_FLAGS = 0,
49 // Object is known to be a non smi.
50 OBJECT_NOT_SMI = 1 << 0,
51 // Don't load NaNs or infinities, branch to the non number case instead.
52 AVOID_NANS_AND_INFINITIES = 1 << 1
55 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
56 enum BranchDelaySlot {
61 // Flags used for the li macro-assembler function.
63 // If the constant value can be represented in just 16 bits, then
64 // optimize the li to use a single instruction, rather than lui/ori pair.
66 // Always use 2 instructions (lui/ori pair), even if the constant could
67 // be loaded with just one, so that this value is patchable later.
72 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
73 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
74 enum PointersToHereCheck {
75 kPointersToHereMaybeInteresting,
76 kPointersToHereAreAlwaysInteresting
78 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
80 Register GetRegisterThatIsNotOneOf(Register reg1,
81 Register reg2 = no_reg,
82 Register reg3 = no_reg,
83 Register reg4 = no_reg,
84 Register reg5 = no_reg,
85 Register reg6 = no_reg);
87 bool AreAliased(Register reg1,
89 Register reg3 = no_reg,
90 Register reg4 = no_reg,
91 Register reg5 = no_reg,
92 Register reg6 = no_reg,
93 Register reg7 = no_reg,
94 Register reg8 = no_reg);
97 // -----------------------------------------------------------------------------
98 // Static helper functions.
100 inline MemOperand ContextOperand(Register context, int index) {
101 return MemOperand(context, Context::SlotOffset(index));
105 inline MemOperand GlobalObjectOperand() {
106 return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
110 // Generate a MemOperand for loading a field from an object.
111 inline MemOperand FieldMemOperand(Register object, int offset) {
112 return MemOperand(object, offset - kHeapObjectTag);
116 // Generate a MemOperand for storing arguments 5..N on the stack
117 // when calling CallCFunction().
118 inline MemOperand CFunctionArgumentOperand(int index) {
119 DCHECK(index > kCArgSlotCount);
120 // Argument 5 takes the slot just past the four Arg-slots.
121 int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
122 return MemOperand(sp, offset);
126 // MacroAssembler implements a collection of frequently used macros.
127 class MacroAssembler: public Assembler {
129 // The isolate parameter can be NULL if the macro assembler should
130 // not use isolate-dependent functionality. In this case, it's the
131 // responsibility of the caller to never invoke such function on the
133 MacroAssembler(Isolate* isolate, void* buffer, int size);
136 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
137 #define COND_ARGS cond, r1, r2
139 // Cases when relocation is not needed.
140 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
141 void Name(target_type target, BranchDelaySlot bd = PROTECT); \
142 inline void Name(BranchDelaySlot bd, target_type target) { \
145 void Name(target_type target, \
147 BranchDelaySlot bd = PROTECT); \
148 inline void Name(BranchDelaySlot bd, \
149 target_type target, \
151 Name(target, COND_ARGS, bd); \
154 #define DECLARE_BRANCH_PROTOTYPES(Name) \
155 DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
156 DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
158 DECLARE_BRANCH_PROTOTYPES(Branch)
159 DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
160 DECLARE_BRANCH_PROTOTYPES(BranchShort)
162 #undef DECLARE_BRANCH_PROTOTYPES
163 #undef COND_TYPED_ARGS
167 // Jump, Call, and Ret pseudo instructions implementing inter-working.
168 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
169 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
171 void Jump(Register target, COND_ARGS);
172 void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
173 void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
174 void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
175 static int CallSize(Register target, COND_ARGS);
176 void Call(Register target, COND_ARGS);
177 static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
178 void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
179 int CallSize(Handle<Code> code,
180 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
181 TypeFeedbackId ast_id = TypeFeedbackId::None(),
183 void Call(Handle<Code> code,
184 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
185 TypeFeedbackId ast_id = TypeFeedbackId::None(),
188 inline void Ret(BranchDelaySlot bd, Condition cond = al,
189 Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
190 Ret(cond, rs, rt, bd);
193 void Branch(Label* L,
196 Heap::RootListIndex index,
197 BranchDelaySlot bdslot = PROTECT);
201 // Emit code to discard a non-negative number of pointer-sized elements
202 // from the stack, clobbering only the sp register.
204 Condition cond = cc_always,
205 Register reg = no_reg,
206 const Operand& op = Operand(no_reg));
208 // Trivial case of DropAndRet that utilizes the delay slot and only emits
210 void DropAndRet(int drop);
212 void DropAndRet(int drop,
217 // Swap two registers. If the scratch register is omitted then a slightly
218 // less efficient form using xor instead of mov is emitted.
219 void Swap(Register reg1, Register reg2, Register scratch = no_reg);
221 void Call(Label* target);
223 inline void Move(Register dst, Register src) {
229 inline void Move(FPURegister dst, FPURegister src) {
235 inline void Move(Register dst_low, Register dst_high, FPURegister src) {
237 Mfhc1(dst_high, src);
240 inline void FmoveHigh(Register dst_high, FPURegister src) {
241 Mfhc1(dst_high, src);
244 inline void FmoveLow(Register dst_low, FPURegister src) {
248 inline void Move(FPURegister dst, Register src_low, Register src_high) {
250 Mthc1(src_high, dst);
254 void Move(FPURegister dst, double imm);
255 void Movz(Register rd, Register rs, Register rt);
256 void Movn(Register rd, Register rs, Register rt);
257 void Movt(Register rd, Register rs, uint16_t cc = 0);
258 void Movf(Register rd, Register rs, uint16_t cc = 0);
260 void Clz(Register rd, Register rs);
262 // Jump unconditionally to given label.
263 // We NEED a nop in the branch delay slot, as it used by v8, for example in
264 // CodeGenerator::ProcessDeferred().
265 // Currently the branch delay slot is filled by the MacroAssembler.
266 // Use rather b(Label) for code generation.
271 void Load(Register dst, const MemOperand& src, Representation r);
272 void Store(Register src, const MemOperand& dst, Representation r);
274 // Load an object from the root table.
275 void LoadRoot(Register destination,
276 Heap::RootListIndex index);
277 void LoadRoot(Register destination,
278 Heap::RootListIndex index,
279 Condition cond, Register src1, const Operand& src2);
281 // Store an object to the root table.
282 void StoreRoot(Register source,
283 Heap::RootListIndex index);
284 void StoreRoot(Register source,
285 Heap::RootListIndex index,
286 Condition cond, Register src1, const Operand& src2);
288 // ---------------------------------------------------------------------------
291 void IncrementalMarkingRecordWriteHelper(Register object,
295 enum RememberedSetFinalAction {
301 // Record in the remembered set the fact that we have a pointer to new space
302 // at the address pointed to by the addr register. Only works if addr is not
304 void RememberedSetHelper(Register object, // Used for debug code.
307 SaveFPRegsMode save_fp,
308 RememberedSetFinalAction and_then);
310 void CheckPageFlag(Register object,
314 Label* condition_met);
316 void CheckMapDeprecated(Handle<Map> map,
318 Label* if_deprecated);
320 // Check if object is in new space. Jumps if the object is not in new space.
321 // The register scratch can be object itself, but it will be clobbered.
322 void JumpIfNotInNewSpace(Register object,
325 InNewSpace(object, scratch, ne, branch);
328 // Check if object is in new space. Jumps if the object is in new space.
329 // The register scratch can be object itself, but scratch will be clobbered.
330 void JumpIfInNewSpace(Register object,
333 InNewSpace(object, scratch, eq, branch);
336 // Check if an object has a given incremental marking color.
337 void HasColor(Register object,
344 void JumpIfBlack(Register object,
349 // Checks the color of an object. If the object is already grey or black
350 // then we just fall through, since it is already live. If it is white and
351 // we can determine that it doesn't need to be scanned, then we just mark it
352 // black and fall through. For the rest we jump to the label so the
353 // incremental marker can fix its assumptions.
354 void EnsureNotWhite(Register object,
358 Label* object_is_white_and_not_data);
360 // Detects conservatively whether an object is data-only, i.e. it does need to
361 // be scanned by the garbage collector.
362 void JumpIfDataObject(Register value,
364 Label* not_data_object);
366 // Notify the garbage collector that we wrote a pointer into an object.
367 // |object| is the object being stored into, |value| is the object being
368 // stored. value and scratch registers are clobbered by the operation.
369 // The offset is the offset from the start of the object, not the offset from
370 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
371 void RecordWriteField(
377 SaveFPRegsMode save_fp,
378 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
379 SmiCheck smi_check = INLINE_SMI_CHECK,
380 PointersToHereCheck pointers_to_here_check_for_value =
381 kPointersToHereMaybeInteresting);
383 // As above, but the offset has the tag presubtracted. For use with
384 // MemOperand(reg, off).
385 inline void RecordWriteContextSlot(
391 SaveFPRegsMode save_fp,
392 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
393 SmiCheck smi_check = INLINE_SMI_CHECK,
394 PointersToHereCheck pointers_to_here_check_for_value =
395 kPointersToHereMaybeInteresting) {
396 RecordWriteField(context,
397 offset + kHeapObjectTag,
402 remembered_set_action,
404 pointers_to_here_check_for_value);
407 void RecordWriteForMap(
412 SaveFPRegsMode save_fp);
414 // For a given |object| notify the garbage collector that the slot |address|
415 // has been written. |value| is the object being stored. The value and
416 // address registers are clobbered by the operation.
422 SaveFPRegsMode save_fp,
423 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
424 SmiCheck smi_check = INLINE_SMI_CHECK,
425 PointersToHereCheck pointers_to_here_check_for_value =
426 kPointersToHereMaybeInteresting);
429 // ---------------------------------------------------------------------------
430 // Inline caching support.
432 // Generate code for checking access rights - used for security checks
433 // on access to global objects across environments. The holder register
434 // is left untouched, whereas both scratch registers are clobbered.
435 void CheckAccessGlobalProxy(Register holder_reg,
439 void GetNumberHash(Register reg0, Register scratch);
441 void LoadFromNumberDictionary(Label* miss,
450 inline void MarkCode(NopMarkerTypes type) {
454 // Check if the given instruction is a 'type' marker.
455 // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
456 // nop(type)). These instructions are generated to mark special location in
457 // the code, like some special IC code.
458 static inline bool IsMarkedCode(Instr instr, int type) {
459 DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
460 return IsNop(instr, type);
464 static inline int GetCodeMarker(Instr instr) {
465 uint32_t opcode = ((instr & kOpcodeMask));
466 uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
467 uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
468 uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
470 // Return <n> if we have a sll zero_reg, zero_reg, n
472 bool sllzz = (opcode == SLL &&
473 rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
474 rs == static_cast<uint32_t>(ToNumber(zero_reg)));
476 (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
477 DCHECK((type == -1) ||
478 ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
484 // ---------------------------------------------------------------------------
485 // Allocation support.
487 // Allocate an object in new space or old pointer space. The object_size is
488 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
489 // is passed. If the space is exhausted control continues at the gc_required
490 // label. The allocated object is returned in result. If the flag
491 // tag_allocated_object is true the result is tagged as as a heap object.
492 // All registers are clobbered also when control continues at the gc_required
494 void Allocate(int object_size,
499 AllocationFlags flags);
501 void Allocate(Register object_size,
506 AllocationFlags flags);
508 // Undo allocation in new space. The object passed and objects allocated after
509 // it will no longer be allocated. The caller must make sure that no pointers
510 // are left to the object(s) no longer allocated as they would be invalid when
511 // allocation is undone.
512 void UndoAllocationInNewSpace(Register object, Register scratch);
515 void AllocateTwoByteString(Register result,
521 void AllocateOneByteString(Register result, Register length,
522 Register scratch1, Register scratch2,
523 Register scratch3, Label* gc_required);
524 void AllocateTwoByteConsString(Register result,
529 void AllocateOneByteConsString(Register result, Register length,
530 Register scratch1, Register scratch2,
532 void AllocateTwoByteSlicedString(Register result,
537 void AllocateOneByteSlicedString(Register result, Register length,
538 Register scratch1, Register scratch2,
541 // Allocates a heap number or jumps to the gc_required label if the young
542 // space is full and a scavenge is needed. All registers are clobbered also
543 // when control continues at the gc_required label.
544 void AllocateHeapNumber(Register result,
547 Register heap_number_map,
549 TaggingMode tagging_mode = TAG_RESULT,
550 MutableMode mode = IMMUTABLE);
551 void AllocateHeapNumberWithValue(Register result,
557 // ---------------------------------------------------------------------------
558 // Instruction macros.
560 #define DEFINE_INSTRUCTION(instr) \
561 void instr(Register rd, Register rs, const Operand& rt); \
562 void instr(Register rd, Register rs, Register rt) { \
563 instr(rd, rs, Operand(rt)); \
565 void instr(Register rs, Register rt, int32_t j) { \
566 instr(rs, rt, Operand(j)); \
569 #define DEFINE_INSTRUCTION2(instr) \
570 void instr(Register rs, const Operand& rt); \
571 void instr(Register rs, Register rt) { \
572 instr(rs, Operand(rt)); \
574 void instr(Register rs, int32_t j) { \
575 instr(rs, Operand(j)); \
578 #define DEFINE_INSTRUCTION3(instr) \
579 void instr(Register rd_hi, Register rd_lo, Register rs, const Operand& rt); \
580 void instr(Register rd_hi, Register rd_lo, Register rs, Register rt) { \
581 instr(rd_hi, rd_lo, rs, Operand(rt)); \
583 void instr(Register rd_hi, Register rd_lo, Register rs, int32_t j) { \
584 instr(rd_hi, rd_lo, rs, Operand(j)); \
587 DEFINE_INSTRUCTION(Addu);
588 DEFINE_INSTRUCTION(Subu);
589 DEFINE_INSTRUCTION(Mul);
590 DEFINE_INSTRUCTION(Mod);
591 DEFINE_INSTRUCTION(Mulh);
592 DEFINE_INSTRUCTION2(Mult);
593 DEFINE_INSTRUCTION2(Multu);
594 DEFINE_INSTRUCTION2(Div);
595 DEFINE_INSTRUCTION2(Divu);
597 DEFINE_INSTRUCTION3(Div);
598 DEFINE_INSTRUCTION3(Mul);
600 DEFINE_INSTRUCTION(And);
601 DEFINE_INSTRUCTION(Or);
602 DEFINE_INSTRUCTION(Xor);
603 DEFINE_INSTRUCTION(Nor);
604 DEFINE_INSTRUCTION2(Neg);
606 DEFINE_INSTRUCTION(Slt);
607 DEFINE_INSTRUCTION(Sltu);
609 // MIPS32 R2 instruction macro.
610 DEFINE_INSTRUCTION(Ror);
612 #undef DEFINE_INSTRUCTION
613 #undef DEFINE_INSTRUCTION2
615 void Pref(int32_t hint, const MemOperand& rs);
618 // ---------------------------------------------------------------------------
619 // Pseudo-instructions.
621 void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
623 void Ulw(Register rd, const MemOperand& rs);
624 void Usw(Register rd, const MemOperand& rs);
626 // Load int32 in the rd register.
627 void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
628 inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
629 li(rd, Operand(j), mode);
631 void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
633 // Push multiple registers on the stack.
634 // Registers are saved in numerical order, with higher numbered registers
635 // saved in higher memory addresses.
636 void MultiPush(RegList regs);
637 void MultiPushReversed(RegList regs);
639 void MultiPushFPU(RegList regs);
640 void MultiPushReversedFPU(RegList regs);
642 void push(Register src) {
643 Addu(sp, sp, Operand(-kPointerSize));
644 sw(src, MemOperand(sp, 0));
646 void Push(Register src) { push(src); }
649 void Push(Handle<Object> handle);
650 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
652 // Push two registers. Pushes leftmost register first (to highest address).
653 void Push(Register src1, Register src2) {
654 Subu(sp, sp, Operand(2 * kPointerSize));
655 sw(src1, MemOperand(sp, 1 * kPointerSize));
656 sw(src2, MemOperand(sp, 0 * kPointerSize));
659 // Push three registers. Pushes leftmost register first (to highest address).
660 void Push(Register src1, Register src2, Register src3) {
661 Subu(sp, sp, Operand(3 * kPointerSize));
662 sw(src1, MemOperand(sp, 2 * kPointerSize));
663 sw(src2, MemOperand(sp, 1 * kPointerSize));
664 sw(src3, MemOperand(sp, 0 * kPointerSize));
667 // Push four registers. Pushes leftmost register first (to highest address).
668 void Push(Register src1, Register src2, Register src3, Register src4) {
669 Subu(sp, sp, Operand(4 * kPointerSize));
670 sw(src1, MemOperand(sp, 3 * kPointerSize));
671 sw(src2, MemOperand(sp, 2 * kPointerSize));
672 sw(src3, MemOperand(sp, 1 * kPointerSize));
673 sw(src4, MemOperand(sp, 0 * kPointerSize));
676 void Push(Register src, Condition cond, Register tst1, Register tst2) {
677 // Since we don't have conditional execution we use a Branch.
678 Branch(3, cond, tst1, Operand(tst2));
679 Subu(sp, sp, Operand(kPointerSize));
680 sw(src, MemOperand(sp, 0));
683 // Pops multiple values from the stack and load them in the
684 // registers specified in regs. Pop order is the opposite as in MultiPush.
685 void MultiPop(RegList regs);
686 void MultiPopReversed(RegList regs);
688 void MultiPopFPU(RegList regs);
689 void MultiPopReversedFPU(RegList regs);
691 void pop(Register dst) {
692 lw(dst, MemOperand(sp, 0));
693 Addu(sp, sp, Operand(kPointerSize));
695 void Pop(Register dst) { pop(dst); }
697 // Pop two registers. Pops rightmost register first (from lower address).
698 void Pop(Register src1, Register src2) {
699 DCHECK(!src1.is(src2));
700 lw(src2, MemOperand(sp, 0 * kPointerSize));
701 lw(src1, MemOperand(sp, 1 * kPointerSize));
702 Addu(sp, sp, 2 * kPointerSize);
705 // Pop three registers. Pops rightmost register first (from lower address).
706 void Pop(Register src1, Register src2, Register src3) {
707 lw(src3, MemOperand(sp, 0 * kPointerSize));
708 lw(src2, MemOperand(sp, 1 * kPointerSize));
709 lw(src1, MemOperand(sp, 2 * kPointerSize));
710 Addu(sp, sp, 3 * kPointerSize);
713 void Pop(uint32_t count = 1) {
714 Addu(sp, sp, Operand(count * kPointerSize));
717 // Push and pop the registers that can hold pointers, as defined by the
718 // RegList constant kSafepointSavedRegisters.
719 void PushSafepointRegisters();
720 void PopSafepointRegisters();
721 // Store value in register src in the safepoint stack slot for
723 void StoreToSafepointRegisterSlot(Register src, Register dst);
724 // Load the value of the src register from its safepoint stack slot
725 // into register dst.
726 void LoadFromSafepointRegisterSlot(Register dst, Register src);
728 // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
730 // Does not handle errors.
731 void FlushICache(Register address, unsigned instructions);
733 // MIPS32 R2 instruction macro.
734 void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
735 void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
737 // ---------------------------------------------------------------------------
738 // FPU macros. These do not handle special cases like NaN or +- inf.
740 // Convert unsigned word to double.
741 void Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch);
742 void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
744 // Convert double to unsigned word.
745 void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
746 void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
748 void Trunc_w_d(FPURegister fd, FPURegister fs);
749 void Round_w_d(FPURegister fd, FPURegister fs);
750 void Floor_w_d(FPURegister fd, FPURegister fs);
751 void Ceil_w_d(FPURegister fd, FPURegister fs);
753 // FP32 mode: Move the general purpose register into
754 // the high part of the double-register pair.
755 // FP64 mode: Move the general-purpose register into
756 // the higher 32 bits of the 64-bit coprocessor register,
757 // while leaving the low bits unchanged.
758 void Mthc1(Register rt, FPURegister fs);
760 // FP32 mode: move the high part of the double-register pair into
761 // general purpose register.
762 // FP64 mode: Move the higher 32 bits of the 64-bit coprocessor register into
763 // general-purpose register.
764 void Mfhc1(Register rt, FPURegister fs);
766 // Wrapper function for the different cmp/branch types.
767 void BranchF(Label* target,
772 BranchDelaySlot bd = PROTECT);
774 // Alternate (inline) version for better readability with USE_DELAY_SLOT.
775 inline void BranchF(BranchDelaySlot bd,
781 BranchF(target, nan, cc, cmp1, cmp2, bd);
784 // Truncates a double using a specific rounding mode, and writes the value
785 // to the result register.
786 // The except_flag will contain any exceptions caused by the instruction.
787 // If check_inexact is kDontCheckForInexactConversion, then the inexact
788 // exception is masked.
789 void EmitFPUTruncate(FPURoundingMode rounding_mode,
791 DoubleRegister double_input,
793 DoubleRegister double_scratch,
794 Register except_flag,
795 CheckForInexactConversion check_inexact
796 = kDontCheckForInexactConversion);
798 // Performs a truncating conversion of a floating point number as used by
799 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
800 // succeeds, otherwise falls through if result is saturated. On return
801 // 'result' either holds answer, or is clobbered on fall through.
803 // Only public for the test code in test-code-stubs-arm.cc.
804 void TryInlineTruncateDoubleToI(Register result,
805 DoubleRegister input,
808 // Performs a truncating conversion of a floating point number as used by
809 // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
810 // Exits with 'result' holding the answer.
811 void TruncateDoubleToI(Register result, DoubleRegister double_input);
813 // Performs a truncating conversion of a heap number as used by
814 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
815 // must be different registers. Exits with 'result' holding the answer.
816 void TruncateHeapNumberToI(Register result, Register object);
818 // Converts the smi or heap number in object to an int32 using the rules
819 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
820 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
821 // different registers.
822 void TruncateNumberToI(Register object,
824 Register heap_number_map,
828 // Loads the number from object into dst register.
829 // If |object| is neither smi nor heap number, |not_number| is jumped to
830 // with |object| still intact.
831 void LoadNumber(Register object,
833 Register heap_number_map,
837 // Loads the number from object into double_dst in the double format.
838 // Control will jump to not_int32 if the value cannot be exactly represented
839 // by a 32-bit integer.
840 // Floating point value in the 32-bit integer range that are not exact integer
842 void LoadNumberAsInt32Double(Register object,
843 DoubleRegister double_dst,
844 Register heap_number_map,
847 FPURegister double_scratch,
850 // Loads the number from object into dst as a 32-bit integer.
851 // Control will jump to not_int32 if the object cannot be exactly represented
852 // by a 32-bit integer.
853 // Floating point value in the 32-bit integer range that are not exact integer
854 // won't be converted.
855 void LoadNumberAsInt32(Register object,
857 Register heap_number_map,
860 FPURegister double_scratch0,
861 FPURegister double_scratch1,
865 // argc - argument count to be dropped by LeaveExitFrame.
866 // save_doubles - saves FPU registers on stack, currently disabled.
867 // stack_space - extra stack space.
868 void EnterExitFrame(bool save_doubles,
869 int stack_space = 0);
871 // Leave the current exit frame.
872 void LeaveExitFrame(bool save_doubles,
874 bool restore_context,
875 bool do_return = NO_EMIT_RETURN);
877 // Get the actual activation frame alignment for target environment.
878 static int ActivationFrameAlignment();
880 // Make sure the stack is aligned. Only emits code in debug mode.
881 void AssertStackIsAligned();
883 void LoadContext(Register dst, int context_chain_length);
885 // Conditionally load the cached Array transitioned map of type
886 // transitioned_kind from the native context if the map in register
887 // map_in_out is the cached Array map in the native context of
889 void LoadTransitionedArrayMapConditional(
890 ElementsKind expected_kind,
891 ElementsKind transitioned_kind,
894 Label* no_map_match);
896 void LoadGlobalFunction(int index, Register function);
898 // Load the initial map from the global function. The registers
899 // function and map can be the same, function is then overwritten.
900 void LoadGlobalFunctionInitialMap(Register function,
904 void InitializeRootRegister() {
905 ExternalReference roots_array_start =
906 ExternalReference::roots_array_start(isolate());
907 li(kRootRegister, Operand(roots_array_start));
910 // -------------------------------------------------------------------------
911 // JavaScript invokes.
913 // Invoke the JavaScript function code by either calling or jumping.
914 void InvokeCode(Register code,
915 const ParameterCount& expected,
916 const ParameterCount& actual,
918 const CallWrapper& call_wrapper);
920 // Invoke the JavaScript function in the given register. Changes the
921 // current context to the context in the function before invoking.
922 void InvokeFunction(Register function,
923 const ParameterCount& actual,
925 const CallWrapper& call_wrapper);
927 void InvokeFunction(Register function,
928 const ParameterCount& expected,
929 const ParameterCount& actual,
931 const CallWrapper& call_wrapper);
933 void InvokeFunction(Handle<JSFunction> function,
934 const ParameterCount& expected,
935 const ParameterCount& actual,
937 const CallWrapper& call_wrapper);
940 void IsObjectJSObjectType(Register heap_object,
945 void IsInstanceJSObjectType(Register map,
949 void IsObjectJSStringType(Register object,
953 void IsObjectNameType(Register object,
957 // -------------------------------------------------------------------------
962 // -------------------------------------------------------------------------
963 // Exception handling.
965 // Push a new try handler and link into try handler chain.
966 void PushTryHandler(StackHandler::Kind kind, int handler_index);
968 // Unlink the stack handler on top of the stack from the try handler chain.
969 // Must preserve the result register.
970 void PopTryHandler();
972 // Passes thrown value to the handler of top of the try handler chain.
973 void Throw(Register value);
975 // Propagates an uncatchable exception to the top of the current JS stack's
977 void ThrowUncatchable(Register value);
979 // Copies a fixed number of fields of heap objects from src to dst.
980 void CopyFields(Register dst, Register src, RegList temps, int field_count);
982 // Copies a number of bytes from src to dst. All registers are clobbered. On
983 // exit src and dst will point to the place just after where the last byte was
984 // read or written and length will be zero.
985 void CopyBytes(Register src,
990 // Initialize fields with filler values. Fields starting at |start_offset|
991 // not including end_offset are overwritten with the value in |filler|. At
992 // the end the loop, |start_offset| takes the value of |end_offset|.
993 void InitializeFieldsWithFiller(Register start_offset,
997 // -------------------------------------------------------------------------
998 // Support functions.
1000 // Try to get function prototype of a function and puts the value in
1001 // the result register. Checks that the function really is a
1002 // function and jumps to the miss label if the fast checks fail. The
1003 // function register will be untouched; the other registers may be
1005 void TryGetFunctionPrototype(Register function,
1009 bool miss_on_bound_function = false);
1011 void GetObjectType(Register function,
1015 // Check if a map for a JSObject indicates that the object has fast elements.
1016 // Jump to the specified label if it does not.
1017 void CheckFastElements(Register map,
1021 // Check if a map for a JSObject indicates that the object can have both smi
1022 // and HeapObject elements. Jump to the specified label if it does not.
1023 void CheckFastObjectElements(Register map,
1027 // Check if a map for a JSObject indicates that the object has fast smi only
1028 // elements. Jump to the specified label if it does not.
1029 void CheckFastSmiElements(Register map,
1033 // Check to see if maybe_number can be stored as a double in
1034 // FastDoubleElements. If it can, store it at the index specified by key in
1035 // the FastDoubleElements array elements. Otherwise jump to fail.
1036 void StoreNumberToDoubleElements(Register value_reg,
1038 Register elements_reg,
1043 int elements_offset = 0);
1045 // Compare an object's map with the specified map and its transitioned
1046 // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1047 // "branch_to" if the result of the comparison is "cond". If multiple map
1048 // compares are required, the compare sequences branches to early_success.
1049 void CompareMapAndBranch(Register obj,
1052 Label* early_success,
1056 // As above, but the map of the object is already loaded into the register
1057 // which is preserved by the code generated.
1058 void CompareMapAndBranch(Register obj_map,
1060 Label* early_success,
1064 // Check if the map of an object is equal to a specified map and branch to
1065 // label if not. Skip the smi check if not required (object is known to be a
1066 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1067 // against maps that are ElementsKind transition maps of the specificed map.
1068 void CheckMap(Register obj,
1072 SmiCheckType smi_check_type);
1075 void CheckMap(Register obj,
1077 Heap::RootListIndex index,
1079 SmiCheckType smi_check_type);
1081 // Check if the map of an object is equal to a specified map and branch to a
1082 // specified target if equal. Skip the smi check if not required (object is
1083 // known to be a heap object)
1084 void DispatchMap(Register obj,
1087 Handle<Code> success,
1088 SmiCheckType smi_check_type);
1091 // Load and check the instance type of an object for being a string.
1092 // Loads the type into the second argument register.
1093 // Returns a condition that will be enabled if the object was a string.
1094 Condition IsObjectStringType(Register obj,
1097 lw(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1098 lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1099 And(type, type, Operand(kIsNotStringMask));
1100 DCHECK_EQ(0, kStringTag);
1105 // Picks out an array index from the hash field.
1107 // hash - holds the index's hash. Clobbered.
1108 // index - holds the overwritten index on exit.
1109 void IndexFromHash(Register hash, Register index);
1111 // Get the number of least significant bits from a register.
1112 void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1113 void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1115 // Load the value of a number object into a FPU double register. If the
1116 // object is not a number a jump to the label not_number is performed
1117 // and the FPU double register is unchanged.
1118 void ObjectToDoubleFPURegister(
1123 Register heap_number_map,
1125 ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1127 // Load the value of a smi object into a FPU double register. The register
1128 // scratch1 can be the same register as smi in which case smi will hold the
1129 // untagged value afterwards.
1130 void SmiToDoubleFPURegister(Register smi,
1134 // -------------------------------------------------------------------------
1135 // Overflow handling functions.
1136 // Usage: first call the appropriate arithmetic function, then call one of the
1137 // jump functions with the overflow_dst register as the second parameter.
1139 void AdduAndCheckForOverflow(Register dst,
1142 Register overflow_dst,
1143 Register scratch = at);
1145 void SubuAndCheckForOverflow(Register dst,
1148 Register overflow_dst,
1149 Register scratch = at);
1151 void BranchOnOverflow(Label* label,
1152 Register overflow_check,
1153 BranchDelaySlot bd = PROTECT) {
1154 Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1157 void BranchOnNoOverflow(Label* label,
1158 Register overflow_check,
1159 BranchDelaySlot bd = PROTECT) {
1160 Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1163 void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1164 Ret(lt, overflow_check, Operand(zero_reg), bd);
1167 void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1168 Ret(ge, overflow_check, Operand(zero_reg), bd);
1171 // -------------------------------------------------------------------------
1174 // See comments at the beginning of CEntryStub::Generate.
1175 inline void PrepareCEntryArgs(int num_args) {
1177 li(s1, (num_args - 1) * kPointerSize);
1180 inline void PrepareCEntryFunction(const ExternalReference& ref) {
1181 li(s2, Operand(ref));
1184 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1185 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1187 // Call a code stub.
1188 void CallStub(CodeStub* stub,
1189 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1192 // Tail call a code stub (jump).
1193 void TailCallStub(CodeStub* stub, COND_ARGS);
1197 void CallJSExitStub(CodeStub* stub);
1199 // Call a runtime routine.
1200 void CallRuntime(const Runtime::Function* f,
1202 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1203 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1204 const Runtime::Function* function = Runtime::FunctionForId(id);
1205 CallRuntime(function, function->nargs, kSaveFPRegs);
1208 // Convenience function: Same as above, but takes the fid instead.
1209 void CallRuntime(Runtime::FunctionId id,
1211 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1212 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1215 // Convenience function: call an external reference.
1216 void CallExternalReference(const ExternalReference& ext,
1218 BranchDelaySlot bd = PROTECT);
1220 // Tail call of a runtime routine (jump).
1221 // Like JumpToExternalReference, but also takes care of passing the number
1223 void TailCallExternalReference(const ExternalReference& ext,
1227 // Convenience function: tail call a runtime routine (jump).
1228 void TailCallRuntime(Runtime::FunctionId fid,
1232 int CalculateStackPassedWords(int num_reg_arguments,
1233 int num_double_arguments);
1235 // Before calling a C-function from generated code, align arguments on stack
1236 // and add space for the four mips argument slots.
1237 // After aligning the frame, non-register arguments must be stored on the
1238 // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1239 // The argument count assumes all arguments are word sized.
1240 // Some compilers/platforms require the stack to be aligned when calling
1242 // Needs a scratch register to do some arithmetic. This register will be
1244 void PrepareCallCFunction(int num_reg_arguments,
1245 int num_double_registers,
1247 void PrepareCallCFunction(int num_reg_arguments,
1250 // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1251 // Arguments 5..n are stored to stack using following:
1252 // sw(t0, CFunctionArgumentOperand(5));
1254 // Calls a C function and cleans up the space for arguments allocated
1255 // by PrepareCallCFunction. The called function is not allowed to trigger a
1256 // garbage collection, since that might move the code and invalidate the
1257 // return address (unless this is somehow accounted for by the called
1259 void CallCFunction(ExternalReference function, int num_arguments);
1260 void CallCFunction(Register function, int num_arguments);
1261 void CallCFunction(ExternalReference function,
1262 int num_reg_arguments,
1263 int num_double_arguments);
1264 void CallCFunction(Register function,
1265 int num_reg_arguments,
1266 int num_double_arguments);
1267 void MovFromFloatResult(DoubleRegister dst);
1268 void MovFromFloatParameter(DoubleRegister dst);
1270 // There are two ways of passing double arguments on MIPS, depending on
1271 // whether soft or hard floating point ABI is used. These functions
1272 // abstract parameter passing for the three different ways we call
1273 // C functions from generated code.
1274 void MovToFloatParameter(DoubleRegister src);
1275 void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1276 void MovToFloatResult(DoubleRegister src);
1278 // Calls an API function. Allocates HandleScope, extracts returned value
1279 // from handle and propagates exceptions. Restores context. stack_space
1280 // - space to be unwound on exit (includes the call JS arguments space and
1281 // the additional space allocated for the fast call).
1282 void CallApiFunctionAndReturn(Register function_address,
1283 ExternalReference thunk_ref,
1285 MemOperand return_value_operand,
1286 MemOperand* context_restore_operand);
1288 // Jump to the builtin routine.
1289 void JumpToExternalReference(const ExternalReference& builtin,
1290 BranchDelaySlot bd = PROTECT);
1292 // Invoke specified builtin JavaScript function. Adds an entry to
1293 // the unresolved list if the name does not resolve.
1294 void InvokeBuiltin(Builtins::JavaScript id,
1296 const CallWrapper& call_wrapper = NullCallWrapper());
1298 // Store the code object for the given builtin in the target register and
1299 // setup the function in a1.
1300 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
1302 // Store the function for the given builtin in the target register.
1303 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
1307 uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders.
1311 Handle<Object> CodeObject() {
1312 DCHECK(!code_object_.is_null());
1313 return code_object_;
1316 // Emit code for a truncating division by a constant. The dividend register is
1317 // unchanged and at gets clobbered. Dividend and result must be different.
1318 void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1320 // -------------------------------------------------------------------------
1321 // StatsCounter support.
1323 void SetCounter(StatsCounter* counter, int value,
1324 Register scratch1, Register scratch2);
1325 void IncrementCounter(StatsCounter* counter, int value,
1326 Register scratch1, Register scratch2);
1327 void DecrementCounter(StatsCounter* counter, int value,
1328 Register scratch1, Register scratch2);
1331 // -------------------------------------------------------------------------
1334 // Calls Abort(msg) if the condition cc is not satisfied.
1335 // Use --debug_code to enable.
1336 void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1337 void AssertFastElements(Register elements);
1339 // Like Assert(), but always enabled.
1340 void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1342 // Print a message to stdout and abort execution.
1343 void Abort(BailoutReason msg);
1345 // Verify restrictions about code generated in stubs.
1346 void set_generating_stub(bool value) { generating_stub_ = value; }
1347 bool generating_stub() { return generating_stub_; }
1348 void set_has_frame(bool value) { has_frame_ = value; }
1349 bool has_frame() { return has_frame_; }
1350 inline bool AllowThisStubCall(CodeStub* stub);
1352 // ---------------------------------------------------------------------------
1353 // Number utilities.
1355 // Check whether the value of reg is a power of two and not zero. If not
1356 // control continues at the label not_power_of_two. If reg is a power of two
1357 // the register scratch contains the value of (reg - 1) when control falls
1359 void JumpIfNotPowerOfTwoOrZero(Register reg,
1361 Label* not_power_of_two_or_zero);
1363 // -------------------------------------------------------------------------
1366 void SmiTag(Register reg) {
1367 Addu(reg, reg, reg);
1370 // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1371 void SmiTagCheckOverflow(Register reg, Register overflow);
1372 void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1374 void SmiTag(Register dst, Register src) {
1375 Addu(dst, src, src);
1378 // Try to convert int32 to smi. If the value is to large, preserve
1379 // the original value and jump to not_a_smi. Destroys scratch and
1381 void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1382 TrySmiTag(reg, reg, scratch, not_a_smi);
1384 void TrySmiTag(Register dst,
1388 SmiTagCheckOverflow(at, src, scratch);
1389 BranchOnOverflow(not_a_smi, scratch);
1393 void SmiUntag(Register reg) {
1394 sra(reg, reg, kSmiTagSize);
1397 void SmiUntag(Register dst, Register src) {
1398 sra(dst, src, kSmiTagSize);
1401 // Test if the register contains a smi.
1402 inline void SmiTst(Register value, Register scratch) {
1403 And(scratch, value, Operand(kSmiTagMask));
1405 inline void NonNegativeSmiTst(Register value, Register scratch) {
1406 And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1409 // Untag the source value into destination and jump if source is a smi.
1410 // Souce and destination can be the same register.
1411 void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1413 // Untag the source value into destination and jump if source is not a smi.
1414 // Souce and destination can be the same register.
1415 void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1417 // Jump the register contains a smi.
1418 void JumpIfSmi(Register value,
1420 Register scratch = at,
1421 BranchDelaySlot bd = PROTECT);
1423 // Jump if the register contains a non-smi.
1424 void JumpIfNotSmi(Register value,
1425 Label* not_smi_label,
1426 Register scratch = at,
1427 BranchDelaySlot bd = PROTECT);
1429 // Jump if either of the registers contain a non-smi.
1430 void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1431 // Jump if either of the registers contain a smi.
1432 void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1434 // Abort execution if argument is a smi, enabled via --debug-code.
1435 void AssertNotSmi(Register object);
1436 void AssertSmi(Register object);
1438 // Abort execution if argument is not a string, enabled via --debug-code.
1439 void AssertString(Register object);
1441 // Abort execution if argument is not a name, enabled via --debug-code.
1442 void AssertName(Register object);
1444 // Abort execution if argument is not undefined or an AllocationSite, enabled
1445 // via --debug-code.
1446 void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1448 // Abort execution if reg is not the root value with the given index,
1449 // enabled via --debug-code.
1450 void AssertIsRoot(Register reg, Heap::RootListIndex index);
1452 // ---------------------------------------------------------------------------
1453 // HeapNumber utilities.
1455 void JumpIfNotHeapNumber(Register object,
1456 Register heap_number_map,
1458 Label* on_not_heap_number);
1460 // -------------------------------------------------------------------------
1461 // String utilities.
1463 // Generate code to do a lookup in the number string cache. If the number in
1464 // the register object is found in the cache the generated code falls through
1465 // with the result in the result register. The object and the result register
1466 // can be the same. If the number is not found in the cache the code jumps to
1467 // the label not_found with only the content of register object unchanged.
1468 void LookupNumberStringCache(Register object,
1475 // Checks if both instance types are sequential ASCII strings and jumps to
1476 // label if either is not.
1477 void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1478 Register first_object_instance_type, Register second_object_instance_type,
1479 Register scratch1, Register scratch2, Label* failure);
1481 // Check if instance type is sequential one-byte string and jump to label if
1483 void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1486 void JumpIfNotUniqueName(Register reg, Label* not_unique_name);
1488 void EmitSeqStringSetCharCheck(Register string,
1492 uint32_t encoding_mask);
1494 // Checks if both objects are sequential one-byte strings and jumps to label
1495 // if either is not. Assumes that neither object is a smi.
1496 void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
1502 // Checks if both objects are sequential one-byte strings and jumps to label
1503 // if either is not.
1504 void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1507 Label* not_flat_one_byte_strings);
1509 void ClampUint8(Register output_reg, Register input_reg);
1511 void ClampDoubleToUint8(Register result_reg,
1512 DoubleRegister input_reg,
1513 DoubleRegister temp_double_reg);
1516 void LoadInstanceDescriptors(Register map, Register descriptors);
1517 void EnumLength(Register dst, Register map);
1518 void NumberOfOwnDescriptors(Register dst, Register map);
1520 template<typename Field>
1521 void DecodeField(Register dst, Register src) {
1522 Ext(dst, src, Field::kShift, Field::kSize);
1525 template<typename Field>
1526 void DecodeField(Register reg) {
1527 DecodeField<Field>(reg, reg);
1530 template<typename Field>
1531 void DecodeFieldToSmi(Register dst, Register src) {
1532 static const int shift = Field::kShift;
1533 static const int mask = Field::kMask >> shift << kSmiTagSize;
1534 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1535 STATIC_ASSERT(kSmiTag == 0);
1536 if (shift < kSmiTagSize) {
1537 sll(dst, src, kSmiTagSize - shift);
1538 And(dst, dst, Operand(mask));
1539 } else if (shift > kSmiTagSize) {
1540 srl(dst, src, shift - kSmiTagSize);
1541 And(dst, dst, Operand(mask));
1543 And(dst, src, Operand(mask));
1547 template<typename Field>
1548 void DecodeFieldToSmi(Register reg) {
1549 DecodeField<Field>(reg, reg);
1552 // Generates function and stub prologue code.
1553 void StubPrologue();
1554 void Prologue(bool code_pre_aging);
1556 // Activation support.
1557 void EnterFrame(StackFrame::Type type);
1558 void LeaveFrame(StackFrame::Type type);
1560 // Patch the relocated value (lui/ori pair).
1561 void PatchRelocatedValue(Register li_location,
1563 Register new_value);
1564 // Get the relocatad value (loaded data) from the lui/ori pair.
1565 void GetRelocatedValue(Register li_location,
1569 // Expects object in a0 and returns map with validated enum cache
1570 // in a0. Assumes that any other register can be used as a scratch.
1571 void CheckEnumCache(Register null_value, Label* call_runtime);
1573 // AllocationMemento support. Arrays may have an associated
1574 // AllocationMemento object that can be checked for in order to pretransition
1576 // On entry, receiver_reg should point to the array object.
1577 // scratch_reg gets clobbered.
1578 // If allocation info is present, jump to allocation_memento_present.
1579 void TestJSArrayForAllocationMemento(
1580 Register receiver_reg,
1581 Register scratch_reg,
1582 Label* no_memento_found,
1583 Condition cond = al,
1584 Label* allocation_memento_present = NULL);
1586 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1587 Register scratch_reg,
1588 Label* memento_found) {
1589 Label no_memento_found;
1590 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1591 &no_memento_found, eq, memento_found);
1592 bind(&no_memento_found);
1595 // Jumps to found label if a prototype map has dictionary elements.
1596 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1597 Register scratch1, Label* found);
1600 void CallCFunctionHelper(Register function,
1601 int num_reg_arguments,
1602 int num_double_arguments);
1604 void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
1605 void BranchAndLinkShort(int16_t offset, Condition cond, Register rs,
1607 BranchDelaySlot bdslot = PROTECT);
1608 void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1609 void BranchAndLinkShort(Label* L, Condition cond, Register rs,
1611 BranchDelaySlot bdslot = PROTECT);
1612 void J(Label* L, BranchDelaySlot bdslot);
1613 void Jr(Label* L, BranchDelaySlot bdslot);
1614 void Jalr(Label* L, BranchDelaySlot bdslot);
1616 // Helper functions for generating invokes.
1617 void InvokePrologue(const ParameterCount& expected,
1618 const ParameterCount& actual,
1619 Handle<Code> code_constant,
1622 bool* definitely_mismatches,
1624 const CallWrapper& call_wrapper);
1626 // Get the code for the given builtin. Returns if able to resolve
1627 // the function in the 'resolved' flag.
1628 Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
1630 void InitializeNewString(Register string,
1632 Heap::RootListIndex map_index,
1636 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1637 void InNewSpace(Register object,
1639 Condition cond, // eq for new space, ne otherwise.
1642 // Helper for finding the mark bits for an address. Afterwards, the
1643 // bitmap register points at the word with the mark bits and the mask
1644 // the position of the first bit. Leaves addr_reg unchanged.
1645 inline void GetMarkBits(Register addr_reg,
1646 Register bitmap_reg,
1649 // Helper for throwing exceptions. Compute a handler address and jump to
1650 // it. See the implementation for register usage.
1651 void JumpToHandlerEntry();
1653 // Compute memory operands for safepoint stack slots.
1654 static int SafepointRegisterStackIndex(int reg_code);
1655 MemOperand SafepointRegisterSlot(Register reg);
1656 MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1658 bool generating_stub_;
1660 // This handle will be patched with the code object on installation.
1661 Handle<Object> code_object_;
1663 // Needs access to SafepointRegisterStackIndex for compiled frame
1665 friend class StandardFrame;
1669 // The code patcher is used to patch (typically) small parts of code e.g. for
1670 // debugging and other types of instrumentation. When using the code patcher
1671 // the exact number of bytes specified must be emitted. It is not legal to emit
1672 // relocation information. If any of these constraints are violated it causes
1673 // an assertion to fail.
1681 CodePatcher(byte* address,
1683 FlushICache flush_cache = FLUSH);
1684 virtual ~CodePatcher();
1686 // Macro assembler to emit code.
1687 MacroAssembler* masm() { return &masm_; }
1689 // Emit an instruction directly.
1690 void Emit(Instr instr);
1692 // Emit an address directly.
1693 void Emit(Address addr);
1695 // Change the condition part of an instruction leaving the rest of the current
1696 // instruction unchanged.
1697 void ChangeBranchCondition(Condition cond);
1700 byte* address_; // The address of the code being patched.
1701 int size_; // Number of bytes of the expected patch size.
1702 MacroAssembler masm_; // Macro assembler used to generate the code.
1703 FlushICache flush_cache_; // Whether to flush the I cache after patching.
1708 #ifdef GENERATED_CODE_COVERAGE
1709 #define CODE_COVERAGE_STRINGIFY(x) #x
1710 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1711 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1712 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
1714 #define ACCESS_MASM(masm) masm->
1717 } } // namespace v8::internal
1719 #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_