1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips/assembler-mips.h"
15 // Forward declaration.
18 // Reserved Register Usage Summary.
20 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
22 // The programmer should know that the MacroAssembler may clobber these three,
23 // but won't touch other registers except in special cases.
25 // Per the MIPS ABI, register t9 must be used for indirect function call
26 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
27 // trying to update gp register for position-independent-code. Whenever
28 // MIPS generated code calls C code, it must be via t9 register.
31 // Flags used for LeaveExitFrame function.
32 enum LeaveExitFrameMode {
34 NO_EMIT_RETURN = false
37 // Flags used for AllocateHeapNumber
45 // Flags used for the ObjectToDoubleFPURegister function.
46 enum ObjectToDoubleFlags {
48 NO_OBJECT_TO_DOUBLE_FLAGS = 0,
49 // Object is known to be a non smi.
50 OBJECT_NOT_SMI = 1 << 0,
51 // Don't load NaNs or infinities, branch to the non number case instead.
52 AVOID_NANS_AND_INFINITIES = 1 << 1
55 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
56 enum BranchDelaySlot {
61 // Flags used for the li macro-assembler function.
63 // If the constant value can be represented in just 16 bits, then
64 // optimize the li to use a single instruction, rather than lui/ori pair.
66 // Always use 2 instructions (lui/ori pair), even if the constant could
67 // be loaded with just one, so that this value is patchable later.
72 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
73 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
74 enum PointersToHereCheck {
75 kPointersToHereMaybeInteresting,
76 kPointersToHereAreAlwaysInteresting
78 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
80 Register GetRegisterThatIsNotOneOf(Register reg1,
81 Register reg2 = no_reg,
82 Register reg3 = no_reg,
83 Register reg4 = no_reg,
84 Register reg5 = no_reg,
85 Register reg6 = no_reg);
87 bool AreAliased(Register reg1,
89 Register reg3 = no_reg,
90 Register reg4 = no_reg,
91 Register reg5 = no_reg,
92 Register reg6 = no_reg,
93 Register reg7 = no_reg,
94 Register reg8 = no_reg);
97 // -----------------------------------------------------------------------------
98 // Static helper functions.
100 inline MemOperand ContextOperand(Register context, int index) {
101 return MemOperand(context, Context::SlotOffset(index));
105 inline MemOperand GlobalObjectOperand() {
106 return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
110 // Generate a MemOperand for loading a field from an object.
111 inline MemOperand FieldMemOperand(Register object, int offset) {
112 return MemOperand(object, offset - kHeapObjectTag);
116 // Generate a MemOperand for storing arguments 5..N on the stack
117 // when calling CallCFunction().
118 inline MemOperand CFunctionArgumentOperand(int index) {
119 DCHECK(index > kCArgSlotCount);
120 // Argument 5 takes the slot just past the four Arg-slots.
121 int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
122 return MemOperand(sp, offset);
126 // MacroAssembler implements a collection of frequently used macros.
127 class MacroAssembler: public Assembler {
129 // The isolate parameter can be NULL if the macro assembler should
130 // not use isolate-dependent functionality. In this case, it's the
131 // responsibility of the caller to never invoke such function on the
133 MacroAssembler(Isolate* isolate, void* buffer, int size);
136 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
137 #define COND_ARGS cond, r1, r2
139 // Cases when relocation is not needed.
140 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
141 void Name(target_type target, BranchDelaySlot bd = PROTECT); \
142 inline void Name(BranchDelaySlot bd, target_type target) { \
145 void Name(target_type target, \
147 BranchDelaySlot bd = PROTECT); \
148 inline void Name(BranchDelaySlot bd, \
149 target_type target, \
151 Name(target, COND_ARGS, bd); \
154 #define DECLARE_BRANCH_PROTOTYPES(Name) \
155 DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
156 DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
158 DECLARE_BRANCH_PROTOTYPES(Branch)
159 DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
160 DECLARE_BRANCH_PROTOTYPES(BranchShort)
162 #undef DECLARE_BRANCH_PROTOTYPES
163 #undef COND_TYPED_ARGS
167 // Jump, Call, and Ret pseudo instructions implementing inter-working.
168 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
169 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
171 void Jump(Register target, COND_ARGS);
172 void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
173 void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
174 void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
175 static int CallSize(Register target, COND_ARGS);
176 void Call(Register target, COND_ARGS);
177 static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
178 void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
179 int CallSize(Handle<Code> code,
180 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
181 TypeFeedbackId ast_id = TypeFeedbackId::None(),
183 void Call(Handle<Code> code,
184 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
185 TypeFeedbackId ast_id = TypeFeedbackId::None(),
188 inline void Ret(BranchDelaySlot bd, Condition cond = al,
189 Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
190 Ret(cond, rs, rt, bd);
193 void Branch(Label* L,
196 Heap::RootListIndex index,
197 BranchDelaySlot bdslot = PROTECT);
201 // Emit code to discard a non-negative number of pointer-sized elements
202 // from the stack, clobbering only the sp register.
204 Condition cond = cc_always,
205 Register reg = no_reg,
206 const Operand& op = Operand(no_reg));
208 // Trivial case of DropAndRet that utilizes the delay slot and only emits
210 void DropAndRet(int drop);
212 void DropAndRet(int drop,
217 // Swap two registers. If the scratch register is omitted then a slightly
218 // less efficient form using xor instead of mov is emitted.
219 void Swap(Register reg1, Register reg2, Register scratch = no_reg);
221 void Call(Label* target);
223 inline void Move(Register dst, Register src) {
229 inline void Move(FPURegister dst, FPURegister src) {
235 inline void Move(Register dst_low, Register dst_high, FPURegister src) {
237 Mfhc1(dst_high, src);
240 inline void FmoveHigh(Register dst_high, FPURegister src) {
241 Mfhc1(dst_high, src);
244 inline void FmoveLow(Register dst_low, FPURegister src) {
248 inline void Move(FPURegister dst, Register src_low, Register src_high) {
250 Mthc1(src_high, dst);
253 void Move(FPURegister dst, float imm);
254 void Move(FPURegister dst, double imm);
257 void Movz(Register rd, Register rs, Register rt);
258 void Movn(Register rd, Register rs, Register rt);
259 void Movt(Register rd, Register rs, uint16_t cc = 0);
260 void Movf(Register rd, Register rs, uint16_t cc = 0);
262 void Clz(Register rd, Register rs);
264 // Jump unconditionally to given label.
265 // We NEED a nop in the branch delay slot, as it used by v8, for example in
266 // CodeGenerator::ProcessDeferred().
267 // Currently the branch delay slot is filled by the MacroAssembler.
268 // Use rather b(Label) for code generation.
273 void Load(Register dst, const MemOperand& src, Representation r);
274 void Store(Register src, const MemOperand& dst, Representation r);
276 // Load an object from the root table.
277 void LoadRoot(Register destination,
278 Heap::RootListIndex index);
279 void LoadRoot(Register destination,
280 Heap::RootListIndex index,
281 Condition cond, Register src1, const Operand& src2);
283 // Store an object to the root table.
284 void StoreRoot(Register source,
285 Heap::RootListIndex index);
286 void StoreRoot(Register source,
287 Heap::RootListIndex index,
288 Condition cond, Register src1, const Operand& src2);
290 // ---------------------------------------------------------------------------
293 void IncrementalMarkingRecordWriteHelper(Register object,
297 enum RememberedSetFinalAction {
303 // Record in the remembered set the fact that we have a pointer to new space
304 // at the address pointed to by the addr register. Only works if addr is not
306 void RememberedSetHelper(Register object, // Used for debug code.
309 SaveFPRegsMode save_fp,
310 RememberedSetFinalAction and_then);
312 void CheckPageFlag(Register object,
316 Label* condition_met);
318 // Check if object is in new space. Jumps if the object is not in new space.
319 // The register scratch can be object itself, but it will be clobbered.
320 void JumpIfNotInNewSpace(Register object,
323 InNewSpace(object, scratch, ne, branch);
326 // Check if object is in new space. Jumps if the object is in new space.
327 // The register scratch can be object itself, but scratch will be clobbered.
328 void JumpIfInNewSpace(Register object,
331 InNewSpace(object, scratch, eq, branch);
334 // Check if an object has a given incremental marking color.
335 void HasColor(Register object,
342 void JumpIfBlack(Register object,
347 // Checks the color of an object. If the object is already grey or black
348 // then we just fall through, since it is already live. If it is white and
349 // we can determine that it doesn't need to be scanned, then we just mark it
350 // black and fall through. For the rest we jump to the label so the
351 // incremental marker can fix its assumptions.
352 void EnsureNotWhite(Register object,
356 Label* object_is_white_and_not_data);
358 // Detects conservatively whether an object is data-only, i.e. it does need to
359 // be scanned by the garbage collector.
360 void JumpIfDataObject(Register value,
362 Label* not_data_object);
364 // Notify the garbage collector that we wrote a pointer into an object.
365 // |object| is the object being stored into, |value| is the object being
366 // stored. value and scratch registers are clobbered by the operation.
367 // The offset is the offset from the start of the object, not the offset from
368 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
369 void RecordWriteField(
375 SaveFPRegsMode save_fp,
376 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
377 SmiCheck smi_check = INLINE_SMI_CHECK,
378 PointersToHereCheck pointers_to_here_check_for_value =
379 kPointersToHereMaybeInteresting);
381 // As above, but the offset has the tag presubtracted. For use with
382 // MemOperand(reg, off).
383 inline void RecordWriteContextSlot(
389 SaveFPRegsMode save_fp,
390 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
391 SmiCheck smi_check = INLINE_SMI_CHECK,
392 PointersToHereCheck pointers_to_here_check_for_value =
393 kPointersToHereMaybeInteresting) {
394 RecordWriteField(context,
395 offset + kHeapObjectTag,
400 remembered_set_action,
402 pointers_to_here_check_for_value);
405 void RecordWriteForMap(
410 SaveFPRegsMode save_fp);
412 // For a given |object| notify the garbage collector that the slot |address|
413 // has been written. |value| is the object being stored. The value and
414 // address registers are clobbered by the operation.
420 SaveFPRegsMode save_fp,
421 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
422 SmiCheck smi_check = INLINE_SMI_CHECK,
423 PointersToHereCheck pointers_to_here_check_for_value =
424 kPointersToHereMaybeInteresting);
427 // ---------------------------------------------------------------------------
428 // Inline caching support.
430 // Generate code for checking access rights - used for security checks
431 // on access to global objects across environments. The holder register
432 // is left untouched, whereas both scratch registers are clobbered.
433 void CheckAccessGlobalProxy(Register holder_reg,
437 void GetNumberHash(Register reg0, Register scratch);
439 void LoadFromNumberDictionary(Label* miss,
448 inline void MarkCode(NopMarkerTypes type) {
452 // Check if the given instruction is a 'type' marker.
453 // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
454 // nop(type)). These instructions are generated to mark special location in
455 // the code, like some special IC code.
456 static inline bool IsMarkedCode(Instr instr, int type) {
457 DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
458 return IsNop(instr, type);
462 static inline int GetCodeMarker(Instr instr) {
463 uint32_t opcode = ((instr & kOpcodeMask));
464 uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
465 uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
466 uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
468 // Return <n> if we have a sll zero_reg, zero_reg, n
470 bool sllzz = (opcode == SLL &&
471 rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
472 rs == static_cast<uint32_t>(ToNumber(zero_reg)));
474 (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
475 DCHECK((type == -1) ||
476 ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
482 // ---------------------------------------------------------------------------
483 // Allocation support.
485 // Allocate an object in new space or old pointer space. The object_size is
486 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
487 // is passed. If the space is exhausted control continues at the gc_required
488 // label. The allocated object is returned in result. If the flag
489 // tag_allocated_object is true the result is tagged as as a heap object.
490 // All registers are clobbered also when control continues at the gc_required
492 void Allocate(int object_size,
497 AllocationFlags flags);
499 void Allocate(Register object_size,
504 AllocationFlags flags);
506 // Undo allocation in new space. The object passed and objects allocated after
507 // it will no longer be allocated. The caller must make sure that no pointers
508 // are left to the object(s) no longer allocated as they would be invalid when
509 // allocation is undone.
510 void UndoAllocationInNewSpace(Register object, Register scratch);
513 void AllocateTwoByteString(Register result,
519 void AllocateOneByteString(Register result, Register length,
520 Register scratch1, Register scratch2,
521 Register scratch3, Label* gc_required);
522 void AllocateTwoByteConsString(Register result,
527 void AllocateOneByteConsString(Register result, Register length,
528 Register scratch1, Register scratch2,
530 void AllocateTwoByteSlicedString(Register result,
535 void AllocateOneByteSlicedString(Register result, Register length,
536 Register scratch1, Register scratch2,
539 // Allocates a heap number or jumps to the gc_required label if the young
540 // space is full and a scavenge is needed. All registers are clobbered also
541 // when control continues at the gc_required label.
542 void AllocateHeapNumber(Register result,
545 Register heap_number_map,
547 TaggingMode tagging_mode = TAG_RESULT,
548 MutableMode mode = IMMUTABLE);
549 void AllocateHeapNumberWithValue(Register result,
555 // ---------------------------------------------------------------------------
556 // Instruction macros.
558 #define DEFINE_INSTRUCTION(instr) \
559 void instr(Register rd, Register rs, const Operand& rt); \
560 void instr(Register rd, Register rs, Register rt) { \
561 instr(rd, rs, Operand(rt)); \
563 void instr(Register rs, Register rt, int32_t j) { \
564 instr(rs, rt, Operand(j)); \
567 #define DEFINE_INSTRUCTION2(instr) \
568 void instr(Register rs, const Operand& rt); \
569 void instr(Register rs, Register rt) { \
570 instr(rs, Operand(rt)); \
572 void instr(Register rs, int32_t j) { \
573 instr(rs, Operand(j)); \
576 #define DEFINE_INSTRUCTION3(instr) \
577 void instr(Register rd_hi, Register rd_lo, Register rs, const Operand& rt); \
578 void instr(Register rd_hi, Register rd_lo, Register rs, Register rt) { \
579 instr(rd_hi, rd_lo, rs, Operand(rt)); \
581 void instr(Register rd_hi, Register rd_lo, Register rs, int32_t j) { \
582 instr(rd_hi, rd_lo, rs, Operand(j)); \
585 DEFINE_INSTRUCTION(Addu);
586 DEFINE_INSTRUCTION(Subu);
587 DEFINE_INSTRUCTION(Mul);
588 DEFINE_INSTRUCTION(Div);
589 DEFINE_INSTRUCTION(Divu);
590 DEFINE_INSTRUCTION(Mod);
591 DEFINE_INSTRUCTION(Modu);
592 DEFINE_INSTRUCTION(Mulh);
593 DEFINE_INSTRUCTION2(Mult);
594 DEFINE_INSTRUCTION(Mulhu);
595 DEFINE_INSTRUCTION2(Multu);
596 DEFINE_INSTRUCTION2(Div);
597 DEFINE_INSTRUCTION2(Divu);
599 DEFINE_INSTRUCTION3(Div);
600 DEFINE_INSTRUCTION3(Mul);
602 DEFINE_INSTRUCTION(And);
603 DEFINE_INSTRUCTION(Or);
604 DEFINE_INSTRUCTION(Xor);
605 DEFINE_INSTRUCTION(Nor);
606 DEFINE_INSTRUCTION2(Neg);
608 DEFINE_INSTRUCTION(Slt);
609 DEFINE_INSTRUCTION(Sltu);
611 // MIPS32 R2 instruction macro.
612 DEFINE_INSTRUCTION(Ror);
614 #undef DEFINE_INSTRUCTION
615 #undef DEFINE_INSTRUCTION2
617 void Pref(int32_t hint, const MemOperand& rs);
620 // ---------------------------------------------------------------------------
621 // Pseudo-instructions.
623 void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
625 void Ulw(Register rd, const MemOperand& rs);
626 void Usw(Register rd, const MemOperand& rs);
628 // Load int32 in the rd register.
629 void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
630 inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
631 li(rd, Operand(j), mode);
633 void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
635 // Push multiple registers on the stack.
636 // Registers are saved in numerical order, with higher numbered registers
637 // saved in higher memory addresses.
638 void MultiPush(RegList regs);
639 void MultiPushReversed(RegList regs);
641 void MultiPushFPU(RegList regs);
642 void MultiPushReversedFPU(RegList regs);
644 void push(Register src) {
645 Addu(sp, sp, Operand(-kPointerSize));
646 sw(src, MemOperand(sp, 0));
648 void Push(Register src) { push(src); }
651 void Push(Handle<Object> handle);
652 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
654 // Push two registers. Pushes leftmost register first (to highest address).
655 void Push(Register src1, Register src2) {
656 Subu(sp, sp, Operand(2 * kPointerSize));
657 sw(src1, MemOperand(sp, 1 * kPointerSize));
658 sw(src2, MemOperand(sp, 0 * kPointerSize));
661 // Push three registers. Pushes leftmost register first (to highest address).
662 void Push(Register src1, Register src2, Register src3) {
663 Subu(sp, sp, Operand(3 * kPointerSize));
664 sw(src1, MemOperand(sp, 2 * kPointerSize));
665 sw(src2, MemOperand(sp, 1 * kPointerSize));
666 sw(src3, MemOperand(sp, 0 * kPointerSize));
669 // Push four registers. Pushes leftmost register first (to highest address).
670 void Push(Register src1, Register src2, Register src3, Register src4) {
671 Subu(sp, sp, Operand(4 * kPointerSize));
672 sw(src1, MemOperand(sp, 3 * kPointerSize));
673 sw(src2, MemOperand(sp, 2 * kPointerSize));
674 sw(src3, MemOperand(sp, 1 * kPointerSize));
675 sw(src4, MemOperand(sp, 0 * kPointerSize));
678 void Push(Register src, Condition cond, Register tst1, Register tst2) {
679 // Since we don't have conditional execution we use a Branch.
680 Branch(3, cond, tst1, Operand(tst2));
681 Subu(sp, sp, Operand(kPointerSize));
682 sw(src, MemOperand(sp, 0));
685 // Pops multiple values from the stack and load them in the
686 // registers specified in regs. Pop order is the opposite as in MultiPush.
687 void MultiPop(RegList regs);
688 void MultiPopReversed(RegList regs);
690 void MultiPopFPU(RegList regs);
691 void MultiPopReversedFPU(RegList regs);
693 void pop(Register dst) {
694 lw(dst, MemOperand(sp, 0));
695 Addu(sp, sp, Operand(kPointerSize));
697 void Pop(Register dst) { pop(dst); }
699 // Pop two registers. Pops rightmost register first (from lower address).
700 void Pop(Register src1, Register src2) {
701 DCHECK(!src1.is(src2));
702 lw(src2, MemOperand(sp, 0 * kPointerSize));
703 lw(src1, MemOperand(sp, 1 * kPointerSize));
704 Addu(sp, sp, 2 * kPointerSize);
707 // Pop three registers. Pops rightmost register first (from lower address).
708 void Pop(Register src1, Register src2, Register src3) {
709 lw(src3, MemOperand(sp, 0 * kPointerSize));
710 lw(src2, MemOperand(sp, 1 * kPointerSize));
711 lw(src1, MemOperand(sp, 2 * kPointerSize));
712 Addu(sp, sp, 3 * kPointerSize);
715 void Pop(uint32_t count = 1) {
716 Addu(sp, sp, Operand(count * kPointerSize));
719 // Push and pop the registers that can hold pointers, as defined by the
720 // RegList constant kSafepointSavedRegisters.
721 void PushSafepointRegisters();
722 void PopSafepointRegisters();
723 // Store value in register src in the safepoint stack slot for
725 void StoreToSafepointRegisterSlot(Register src, Register dst);
726 // Load the value of the src register from its safepoint stack slot
727 // into register dst.
728 void LoadFromSafepointRegisterSlot(Register dst, Register src);
730 // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
732 // Does not handle errors.
733 void FlushICache(Register address, unsigned instructions);
735 // MIPS32 R2 instruction macro.
736 void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
737 void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
739 // ---------------------------------------------------------------------------
740 // FPU macros. These do not handle special cases like NaN or +- inf.
742 // Convert unsigned word to double.
743 void Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch);
744 void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
746 // Convert double to unsigned word.
747 void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
748 void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
750 void Trunc_w_d(FPURegister fd, FPURegister fs);
751 void Round_w_d(FPURegister fd, FPURegister fs);
752 void Floor_w_d(FPURegister fd, FPURegister fs);
753 void Ceil_w_d(FPURegister fd, FPURegister fs);
755 // FP32 mode: Move the general purpose register into
756 // the high part of the double-register pair.
757 // FP64 mode: Move the general-purpose register into
758 // the higher 32 bits of the 64-bit coprocessor register,
759 // while leaving the low bits unchanged.
760 void Mthc1(Register rt, FPURegister fs);
762 // FP32 mode: move the high part of the double-register pair into
763 // general purpose register.
764 // FP64 mode: Move the higher 32 bits of the 64-bit coprocessor register into
765 // general-purpose register.
766 void Mfhc1(Register rt, FPURegister fs);
768 // Wrapper function for the different cmp/branch types.
769 void BranchF(Label* target,
774 BranchDelaySlot bd = PROTECT);
776 // Alternate (inline) version for better readability with USE_DELAY_SLOT.
777 inline void BranchF(BranchDelaySlot bd,
783 BranchF(target, nan, cc, cmp1, cmp2, bd);
786 // Truncates a double using a specific rounding mode, and writes the value
787 // to the result register.
788 // The except_flag will contain any exceptions caused by the instruction.
789 // If check_inexact is kDontCheckForInexactConversion, then the inexact
790 // exception is masked.
791 void EmitFPUTruncate(FPURoundingMode rounding_mode,
793 DoubleRegister double_input,
795 DoubleRegister double_scratch,
796 Register except_flag,
797 CheckForInexactConversion check_inexact
798 = kDontCheckForInexactConversion);
800 // Performs a truncating conversion of a floating point number as used by
801 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
802 // succeeds, otherwise falls through if result is saturated. On return
803 // 'result' either holds answer, or is clobbered on fall through.
805 // Only public for the test code in test-code-stubs-arm.cc.
806 void TryInlineTruncateDoubleToI(Register result,
807 DoubleRegister input,
810 // Performs a truncating conversion of a floating point number as used by
811 // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
812 // Exits with 'result' holding the answer.
813 void TruncateDoubleToI(Register result, DoubleRegister double_input);
815 // Performs a truncating conversion of a heap number as used by
816 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
817 // must be different registers. Exits with 'result' holding the answer.
818 void TruncateHeapNumberToI(Register result, Register object);
820 // Converts the smi or heap number in object to an int32 using the rules
821 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
822 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
823 // different registers.
824 void TruncateNumberToI(Register object,
826 Register heap_number_map,
830 // Loads the number from object into dst register.
831 // If |object| is neither smi nor heap number, |not_number| is jumped to
832 // with |object| still intact.
833 void LoadNumber(Register object,
835 Register heap_number_map,
839 // Loads the number from object into double_dst in the double format.
840 // Control will jump to not_int32 if the value cannot be exactly represented
841 // by a 32-bit integer.
842 // Floating point value in the 32-bit integer range that are not exact integer
844 void LoadNumberAsInt32Double(Register object,
845 DoubleRegister double_dst,
846 Register heap_number_map,
849 FPURegister double_scratch,
852 // Loads the number from object into dst as a 32-bit integer.
853 // Control will jump to not_int32 if the object cannot be exactly represented
854 // by a 32-bit integer.
855 // Floating point value in the 32-bit integer range that are not exact integer
856 // won't be converted.
857 void LoadNumberAsInt32(Register object,
859 Register heap_number_map,
862 FPURegister double_scratch0,
863 FPURegister double_scratch1,
867 // argc - argument count to be dropped by LeaveExitFrame.
868 // save_doubles - saves FPU registers on stack, currently disabled.
869 // stack_space - extra stack space.
870 void EnterExitFrame(bool save_doubles,
871 int stack_space = 0);
873 // Leave the current exit frame.
874 void LeaveExitFrame(bool save_doubles, Register arg_count,
875 bool restore_context, bool do_return = NO_EMIT_RETURN,
876 bool argument_count_is_length = false);
878 // Get the actual activation frame alignment for target environment.
879 static int ActivationFrameAlignment();
881 // Make sure the stack is aligned. Only emits code in debug mode.
882 void AssertStackIsAligned();
884 void LoadContext(Register dst, int context_chain_length);
886 // Conditionally load the cached Array transitioned map of type
887 // transitioned_kind from the native context if the map in register
888 // map_in_out is the cached Array map in the native context of
890 void LoadTransitionedArrayMapConditional(
891 ElementsKind expected_kind,
892 ElementsKind transitioned_kind,
895 Label* no_map_match);
897 void LoadGlobalFunction(int index, Register function);
899 // Load the initial map from the global function. The registers
900 // function and map can be the same, function is then overwritten.
901 void LoadGlobalFunctionInitialMap(Register function,
905 void InitializeRootRegister() {
906 ExternalReference roots_array_start =
907 ExternalReference::roots_array_start(isolate());
908 li(kRootRegister, Operand(roots_array_start));
911 // -------------------------------------------------------------------------
912 // JavaScript invokes.
914 // Invoke the JavaScript function code by either calling or jumping.
915 void InvokeCode(Register code,
916 const ParameterCount& expected,
917 const ParameterCount& actual,
919 const CallWrapper& call_wrapper);
921 // Invoke the JavaScript function in the given register. Changes the
922 // current context to the context in the function before invoking.
923 void InvokeFunction(Register function,
924 const ParameterCount& actual,
926 const CallWrapper& call_wrapper);
928 void InvokeFunction(Register function,
929 const ParameterCount& expected,
930 const ParameterCount& actual,
932 const CallWrapper& call_wrapper);
934 void InvokeFunction(Handle<JSFunction> function,
935 const ParameterCount& expected,
936 const ParameterCount& actual,
938 const CallWrapper& call_wrapper);
941 void IsObjectJSObjectType(Register heap_object,
946 void IsInstanceJSObjectType(Register map,
950 void IsObjectJSStringType(Register object,
954 void IsObjectNameType(Register object,
958 // -------------------------------------------------------------------------
963 // -------------------------------------------------------------------------
964 // Exception handling.
966 // Push a new try handler and link into try handler chain.
967 void PushTryHandler(StackHandler::Kind kind, int handler_index);
969 // Unlink the stack handler on top of the stack from the try handler chain.
970 // Must preserve the result register.
971 void PopTryHandler();
973 // Copies a fixed number of fields of heap objects from src to dst.
974 void CopyFields(Register dst, Register src, RegList temps, int field_count);
976 // Copies a number of bytes from src to dst. All registers are clobbered. On
977 // exit src and dst will point to the place just after where the last byte was
978 // read or written and length will be zero.
979 void CopyBytes(Register src,
984 // Initialize fields with filler values. Fields starting at |start_offset|
985 // not including end_offset are overwritten with the value in |filler|. At
986 // the end the loop, |start_offset| takes the value of |end_offset|.
987 void InitializeFieldsWithFiller(Register start_offset,
991 // -------------------------------------------------------------------------
992 // Support functions.
994 // Machine code version of Map::GetConstructor().
995 // |temp| holds |result|'s map when done, and |temp2| its instance type.
996 void GetMapConstructor(Register result, Register map, Register temp,
999 // Try to get function prototype of a function and puts the value in
1000 // the result register. Checks that the function really is a
1001 // function and jumps to the miss label if the fast checks fail. The
1002 // function register will be untouched; the other registers may be
1004 void TryGetFunctionPrototype(Register function,
1008 bool miss_on_bound_function = false);
1010 void GetObjectType(Register function,
1014 // Check if a map for a JSObject indicates that the object has fast elements.
1015 // Jump to the specified label if it does not.
1016 void CheckFastElements(Register map,
1020 // Check if a map for a JSObject indicates that the object can have both smi
1021 // and HeapObject elements. Jump to the specified label if it does not.
1022 void CheckFastObjectElements(Register map,
1026 // Check if a map for a JSObject indicates that the object has fast smi only
1027 // elements. Jump to the specified label if it does not.
1028 void CheckFastSmiElements(Register map,
1032 // Check to see if maybe_number can be stored as a double in
1033 // FastDoubleElements. If it can, store it at the index specified by key in
1034 // the FastDoubleElements array elements. Otherwise jump to fail.
1035 void StoreNumberToDoubleElements(Register value_reg,
1037 Register elements_reg,
1042 int elements_offset = 0);
1044 // Compare an object's map with the specified map and its transitioned
1045 // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1046 // "branch_to" if the result of the comparison is "cond". If multiple map
1047 // compares are required, the compare sequences branches to early_success.
1048 void CompareMapAndBranch(Register obj,
1051 Label* early_success,
1055 // As above, but the map of the object is already loaded into the register
1056 // which is preserved by the code generated.
1057 void CompareMapAndBranch(Register obj_map,
1059 Label* early_success,
1063 // Check if the map of an object is equal to a specified map and branch to
1064 // label if not. Skip the smi check if not required (object is known to be a
1065 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1066 // against maps that are ElementsKind transition maps of the specificed map.
1067 void CheckMap(Register obj,
1071 SmiCheckType smi_check_type);
1074 void CheckMap(Register obj,
1076 Heap::RootListIndex index,
1078 SmiCheckType smi_check_type);
1080 // Check if the map of an object is equal to a specified weak map and branch
1081 // to a specified target if equal. Skip the smi check if not required
1082 // (object is known to be a heap object)
1083 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1084 Handle<WeakCell> cell, Handle<Code> success,
1085 SmiCheckType smi_check_type);
1087 // Get value of the weak cell.
1088 void GetWeakValue(Register value, Handle<WeakCell> cell);
1090 // Load the value of the weak cell in the value register. Branch to the
1091 // given miss label is the weak cell was cleared.
1092 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1094 // Load and check the instance type of an object for being a string.
1095 // Loads the type into the second argument register.
1096 // Returns a condition that will be enabled if the object was a string.
1097 Condition IsObjectStringType(Register obj,
1100 lw(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1101 lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1102 And(type, type, Operand(kIsNotStringMask));
1103 DCHECK_EQ(0u, kStringTag);
1108 // Picks out an array index from the hash field.
1110 // hash - holds the index's hash. Clobbered.
1111 // index - holds the overwritten index on exit.
1112 void IndexFromHash(Register hash, Register index);
1114 // Get the number of least significant bits from a register.
1115 void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1116 void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1118 // Load the value of a number object into a FPU double register. If the
1119 // object is not a number a jump to the label not_number is performed
1120 // and the FPU double register is unchanged.
1121 void ObjectToDoubleFPURegister(
1126 Register heap_number_map,
1128 ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1130 // Load the value of a smi object into a FPU double register. The register
1131 // scratch1 can be the same register as smi in which case smi will hold the
1132 // untagged value afterwards.
1133 void SmiToDoubleFPURegister(Register smi,
1137 // -------------------------------------------------------------------------
1138 // Overflow handling functions.
1139 // Usage: first call the appropriate arithmetic function, then call one of the
1140 // jump functions with the overflow_dst register as the second parameter.
1142 void AdduAndCheckForOverflow(Register dst,
1145 Register overflow_dst,
1146 Register scratch = at);
1148 void AdduAndCheckForOverflow(Register dst, Register left,
1149 const Operand& right, Register overflow_dst,
1150 Register scratch = at);
1152 void SubuAndCheckForOverflow(Register dst,
1155 Register overflow_dst,
1156 Register scratch = at);
1158 void SubuAndCheckForOverflow(Register dst, Register left,
1159 const Operand& right, Register overflow_dst,
1160 Register scratch = at);
1162 void BranchOnOverflow(Label* label,
1163 Register overflow_check,
1164 BranchDelaySlot bd = PROTECT) {
1165 Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1168 void BranchOnNoOverflow(Label* label,
1169 Register overflow_check,
1170 BranchDelaySlot bd = PROTECT) {
1171 Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1174 void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1175 Ret(lt, overflow_check, Operand(zero_reg), bd);
1178 void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1179 Ret(ge, overflow_check, Operand(zero_reg), bd);
1182 // -------------------------------------------------------------------------
1185 // See comments at the beginning of CEntryStub::Generate.
1186 inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
1188 inline void PrepareCEntryFunction(const ExternalReference& ref) {
1189 li(a1, Operand(ref));
1192 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1193 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1195 // Call a code stub.
1196 void CallStub(CodeStub* stub,
1197 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1200 // Tail call a code stub (jump).
1201 void TailCallStub(CodeStub* stub, COND_ARGS);
1205 void CallJSExitStub(CodeStub* stub);
1207 // Call a runtime routine.
1208 void CallRuntime(const Runtime::Function* f,
1210 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1211 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1212 const Runtime::Function* function = Runtime::FunctionForId(id);
1213 CallRuntime(function, function->nargs, kSaveFPRegs);
1216 // Convenience function: Same as above, but takes the fid instead.
1217 void CallRuntime(Runtime::FunctionId id,
1219 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1220 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1223 // Convenience function: call an external reference.
1224 void CallExternalReference(const ExternalReference& ext,
1226 BranchDelaySlot bd = PROTECT);
1228 // Tail call of a runtime routine (jump).
1229 // Like JumpToExternalReference, but also takes care of passing the number
1231 void TailCallExternalReference(const ExternalReference& ext,
1235 // Convenience function: tail call a runtime routine (jump).
1236 void TailCallRuntime(Runtime::FunctionId fid,
1240 int CalculateStackPassedWords(int num_reg_arguments,
1241 int num_double_arguments);
1243 // Before calling a C-function from generated code, align arguments on stack
1244 // and add space for the four mips argument slots.
1245 // After aligning the frame, non-register arguments must be stored on the
1246 // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1247 // The argument count assumes all arguments are word sized.
1248 // Some compilers/platforms require the stack to be aligned when calling
1250 // Needs a scratch register to do some arithmetic. This register will be
1252 void PrepareCallCFunction(int num_reg_arguments,
1253 int num_double_registers,
1255 void PrepareCallCFunction(int num_reg_arguments,
1258 // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1259 // Arguments 5..n are stored to stack using following:
1260 // sw(t0, CFunctionArgumentOperand(5));
1262 // Calls a C function and cleans up the space for arguments allocated
1263 // by PrepareCallCFunction. The called function is not allowed to trigger a
1264 // garbage collection, since that might move the code and invalidate the
1265 // return address (unless this is somehow accounted for by the called
1267 void CallCFunction(ExternalReference function, int num_arguments);
1268 void CallCFunction(Register function, int num_arguments);
1269 void CallCFunction(ExternalReference function,
1270 int num_reg_arguments,
1271 int num_double_arguments);
1272 void CallCFunction(Register function,
1273 int num_reg_arguments,
1274 int num_double_arguments);
1275 void MovFromFloatResult(DoubleRegister dst);
1276 void MovFromFloatParameter(DoubleRegister dst);
1278 // There are two ways of passing double arguments on MIPS, depending on
1279 // whether soft or hard floating point ABI is used. These functions
1280 // abstract parameter passing for the three different ways we call
1281 // C functions from generated code.
1282 void MovToFloatParameter(DoubleRegister src);
1283 void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1284 void MovToFloatResult(DoubleRegister src);
1286 // Jump to the builtin routine.
1287 void JumpToExternalReference(const ExternalReference& builtin,
1288 BranchDelaySlot bd = PROTECT);
1290 // Invoke specified builtin JavaScript function. Adds an entry to
1291 // the unresolved list if the name does not resolve.
1292 void InvokeBuiltin(Builtins::JavaScript id,
1294 const CallWrapper& call_wrapper = NullCallWrapper());
1296 // Store the code object for the given builtin in the target register and
1297 // setup the function in a1.
1298 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
1300 // Store the function for the given builtin in the target register.
1301 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
1305 uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders.
1309 Handle<Object> CodeObject() {
1310 DCHECK(!code_object_.is_null());
1311 return code_object_;
1314 // Emit code for a truncating division by a constant. The dividend register is
1315 // unchanged and at gets clobbered. Dividend and result must be different.
1316 void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1318 // -------------------------------------------------------------------------
1319 // StatsCounter support.
1321 void SetCounter(StatsCounter* counter, int value,
1322 Register scratch1, Register scratch2);
1323 void IncrementCounter(StatsCounter* counter, int value,
1324 Register scratch1, Register scratch2);
1325 void DecrementCounter(StatsCounter* counter, int value,
1326 Register scratch1, Register scratch2);
1329 // -------------------------------------------------------------------------
1332 // Calls Abort(msg) if the condition cc is not satisfied.
1333 // Use --debug_code to enable.
1334 void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1335 void AssertFastElements(Register elements);
1337 // Like Assert(), but always enabled.
1338 void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1340 // Print a message to stdout and abort execution.
1341 void Abort(BailoutReason msg);
1343 // Verify restrictions about code generated in stubs.
1344 void set_generating_stub(bool value) { generating_stub_ = value; }
1345 bool generating_stub() { return generating_stub_; }
1346 void set_has_frame(bool value) { has_frame_ = value; }
1347 bool has_frame() { return has_frame_; }
1348 inline bool AllowThisStubCall(CodeStub* stub);
1350 // ---------------------------------------------------------------------------
1351 // Number utilities.
1353 // Check whether the value of reg is a power of two and not zero. If not
1354 // control continues at the label not_power_of_two. If reg is a power of two
1355 // the register scratch contains the value of (reg - 1) when control falls
1357 void JumpIfNotPowerOfTwoOrZero(Register reg,
1359 Label* not_power_of_two_or_zero);
1361 // -------------------------------------------------------------------------
1364 void SmiTag(Register reg) {
1365 Addu(reg, reg, reg);
1368 // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1369 void SmiTagCheckOverflow(Register reg, Register overflow);
1370 void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1372 void SmiTag(Register dst, Register src) {
1373 Addu(dst, src, src);
1376 // Try to convert int32 to smi. If the value is to large, preserve
1377 // the original value and jump to not_a_smi. Destroys scratch and
1379 void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1380 TrySmiTag(reg, reg, scratch, not_a_smi);
1382 void TrySmiTag(Register dst,
1386 SmiTagCheckOverflow(at, src, scratch);
1387 BranchOnOverflow(not_a_smi, scratch);
1391 void SmiUntag(Register reg) {
1392 sra(reg, reg, kSmiTagSize);
1395 void SmiUntag(Register dst, Register src) {
1396 sra(dst, src, kSmiTagSize);
1399 // Test if the register contains a smi.
1400 inline void SmiTst(Register value, Register scratch) {
1401 And(scratch, value, Operand(kSmiTagMask));
1403 inline void NonNegativeSmiTst(Register value, Register scratch) {
1404 And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1407 // Untag the source value into destination and jump if source is a smi.
1408 // Souce and destination can be the same register.
1409 void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1411 // Untag the source value into destination and jump if source is not a smi.
1412 // Souce and destination can be the same register.
1413 void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1415 // Jump the register contains a smi.
1416 void JumpIfSmi(Register value,
1418 Register scratch = at,
1419 BranchDelaySlot bd = PROTECT);
1421 // Jump if the register contains a non-smi.
1422 void JumpIfNotSmi(Register value,
1423 Label* not_smi_label,
1424 Register scratch = at,
1425 BranchDelaySlot bd = PROTECT);
1427 // Jump if either of the registers contain a non-smi.
1428 void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1429 // Jump if either of the registers contain a smi.
1430 void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1432 // Abort execution if argument is a smi, enabled via --debug-code.
1433 void AssertNotSmi(Register object);
1434 void AssertSmi(Register object);
1436 // Abort execution if argument is not a string, enabled via --debug-code.
1437 void AssertString(Register object);
1439 // Abort execution if argument is not a name, enabled via --debug-code.
1440 void AssertName(Register object);
1442 // Abort execution if argument is not undefined or an AllocationSite, enabled
1443 // via --debug-code.
1444 void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1446 // Abort execution if reg is not the root value with the given index,
1447 // enabled via --debug-code.
1448 void AssertIsRoot(Register reg, Heap::RootListIndex index);
1450 // ---------------------------------------------------------------------------
1451 // HeapNumber utilities.
1453 void JumpIfNotHeapNumber(Register object,
1454 Register heap_number_map,
1456 Label* on_not_heap_number);
1458 // -------------------------------------------------------------------------
1459 // String utilities.
1461 // Generate code to do a lookup in the number string cache. If the number in
1462 // the register object is found in the cache the generated code falls through
1463 // with the result in the result register. The object and the result register
1464 // can be the same. If the number is not found in the cache the code jumps to
1465 // the label not_found with only the content of register object unchanged.
1466 void LookupNumberStringCache(Register object,
1473 // Checks if both instance types are sequential ASCII strings and jumps to
1474 // label if either is not.
1475 void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1476 Register first_object_instance_type, Register second_object_instance_type,
1477 Register scratch1, Register scratch2, Label* failure);
1479 // Check if instance type is sequential one-byte string and jump to label if
1481 void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1484 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1486 void EmitSeqStringSetCharCheck(Register string,
1490 uint32_t encoding_mask);
1492 // Checks if both objects are sequential one-byte strings and jumps to label
1493 // if either is not. Assumes that neither object is a smi.
1494 void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
1500 // Checks if both objects are sequential one-byte strings and jumps to label
1501 // if either is not.
1502 void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1505 Label* not_flat_one_byte_strings);
1507 void ClampUint8(Register output_reg, Register input_reg);
1509 void ClampDoubleToUint8(Register result_reg,
1510 DoubleRegister input_reg,
1511 DoubleRegister temp_double_reg);
1514 void LoadInstanceDescriptors(Register map, Register descriptors);
1515 void EnumLength(Register dst, Register map);
1516 void NumberOfOwnDescriptors(Register dst, Register map);
1517 void LoadAccessor(Register dst, Register holder, int accessor_index,
1518 AccessorComponent accessor);
1520 template<typename Field>
1521 void DecodeField(Register dst, Register src) {
1522 Ext(dst, src, Field::kShift, Field::kSize);
1525 template<typename Field>
1526 void DecodeField(Register reg) {
1527 DecodeField<Field>(reg, reg);
1530 template<typename Field>
1531 void DecodeFieldToSmi(Register dst, Register src) {
1532 static const int shift = Field::kShift;
1533 static const int mask = Field::kMask >> shift << kSmiTagSize;
1534 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1535 STATIC_ASSERT(kSmiTag == 0);
1536 if (shift < kSmiTagSize) {
1537 sll(dst, src, kSmiTagSize - shift);
1538 And(dst, dst, Operand(mask));
1539 } else if (shift > kSmiTagSize) {
1540 srl(dst, src, shift - kSmiTagSize);
1541 And(dst, dst, Operand(mask));
1543 And(dst, src, Operand(mask));
1547 template<typename Field>
1548 void DecodeFieldToSmi(Register reg) {
1549 DecodeField<Field>(reg, reg);
1552 // Generates function and stub prologue code.
1553 void StubPrologue();
1554 void Prologue(bool code_pre_aging);
1556 // Activation support.
1557 void EnterFrame(StackFrame::Type type);
1558 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1559 void LeaveFrame(StackFrame::Type type);
1561 // Patch the relocated value (lui/ori pair).
1562 void PatchRelocatedValue(Register li_location,
1564 Register new_value);
1565 // Get the relocatad value (loaded data) from the lui/ori pair.
1566 void GetRelocatedValue(Register li_location,
1570 // Expects object in a0 and returns map with validated enum cache
1571 // in a0. Assumes that any other register can be used as a scratch.
1572 void CheckEnumCache(Register null_value, Label* call_runtime);
1574 // AllocationMemento support. Arrays may have an associated
1575 // AllocationMemento object that can be checked for in order to pretransition
1577 // On entry, receiver_reg should point to the array object.
1578 // scratch_reg gets clobbered.
1579 // If allocation info is present, jump to allocation_memento_present.
1580 void TestJSArrayForAllocationMemento(
1581 Register receiver_reg,
1582 Register scratch_reg,
1583 Label* no_memento_found,
1584 Condition cond = al,
1585 Label* allocation_memento_present = NULL);
1587 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1588 Register scratch_reg,
1589 Label* memento_found) {
1590 Label no_memento_found;
1591 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1592 &no_memento_found, eq, memento_found);
1593 bind(&no_memento_found);
1596 // Jumps to found label if a prototype map has dictionary elements.
1597 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1598 Register scratch1, Label* found);
1601 void CallCFunctionHelper(Register function,
1602 int num_reg_arguments,
1603 int num_double_arguments);
1605 void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
1606 void BranchAndLinkShort(int16_t offset, Condition cond, Register rs,
1608 BranchDelaySlot bdslot = PROTECT);
1609 void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1610 void BranchAndLinkShort(Label* L, Condition cond, Register rs,
1612 BranchDelaySlot bdslot = PROTECT);
1613 void J(Label* L, BranchDelaySlot bdslot);
1614 void Jr(Label* L, BranchDelaySlot bdslot);
1615 void Jalr(Label* L, BranchDelaySlot bdslot);
1617 // Helper functions for generating invokes.
1618 void InvokePrologue(const ParameterCount& expected,
1619 const ParameterCount& actual,
1620 Handle<Code> code_constant,
1623 bool* definitely_mismatches,
1625 const CallWrapper& call_wrapper);
1627 // Get the code for the given builtin. Returns if able to resolve
1628 // the function in the 'resolved' flag.
1629 Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
1631 void InitializeNewString(Register string,
1633 Heap::RootListIndex map_index,
1637 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1638 void InNewSpace(Register object,
1640 Condition cond, // eq for new space, ne otherwise.
1643 // Helper for finding the mark bits for an address. Afterwards, the
1644 // bitmap register points at the word with the mark bits and the mask
1645 // the position of the first bit. Leaves addr_reg unchanged.
1646 inline void GetMarkBits(Register addr_reg,
1647 Register bitmap_reg,
1650 // Compute memory operands for safepoint stack slots.
1651 static int SafepointRegisterStackIndex(int reg_code);
1652 MemOperand SafepointRegisterSlot(Register reg);
1653 MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1655 bool generating_stub_;
1657 bool has_double_zero_reg_set_;
1658 // This handle will be patched with the code object on installation.
1659 Handle<Object> code_object_;
1661 // Needs access to SafepointRegisterStackIndex for compiled frame
1663 friend class StandardFrame;
1667 // The code patcher is used to patch (typically) small parts of code e.g. for
1668 // debugging and other types of instrumentation. When using the code patcher
1669 // the exact number of bytes specified must be emitted. It is not legal to emit
1670 // relocation information. If any of these constraints are violated it causes
1671 // an assertion to fail.
1679 CodePatcher(byte* address,
1681 FlushICache flush_cache = FLUSH);
1682 virtual ~CodePatcher();
1684 // Macro assembler to emit code.
1685 MacroAssembler* masm() { return &masm_; }
1687 // Emit an instruction directly.
1688 void Emit(Instr instr);
1690 // Emit an address directly.
1691 void Emit(Address addr);
1693 // Change the condition part of an instruction leaving the rest of the current
1694 // instruction unchanged.
1695 void ChangeBranchCondition(Condition cond);
1698 byte* address_; // The address of the code being patched.
1699 int size_; // Number of bytes of the expected patch size.
1700 MacroAssembler masm_; // Macro assembler used to generate the code.
1701 FlushICache flush_cache_; // Whether to flush the I cache after patching.
1706 #ifdef GENERATED_CODE_COVERAGE
1707 #define CODE_COVERAGE_STRINGIFY(x) #x
1708 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1709 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1710 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
1712 #define ACCESS_MASM(masm) masm->
1715 } } // namespace v8::internal
1717 #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_