1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips/assembler-mips.h"
15 // Forward declaration.
18 // Reserved Register Usage Summary.
20 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
22 // The programmer should know that the MacroAssembler may clobber these three,
23 // but won't touch other registers except in special cases.
25 // Per the MIPS ABI, register t9 must be used for indirect function call
26 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
27 // trying to update gp register for position-independent-code. Whenever
28 // MIPS generated code calls C code, it must be via t9 register.
31 // Flags used for LeaveExitFrame function.
32 enum LeaveExitFrameMode {
34 NO_EMIT_RETURN = false
37 // Flags used for AllocateHeapNumber
45 // Flags used for the ObjectToDoubleFPURegister function.
46 enum ObjectToDoubleFlags {
48 NO_OBJECT_TO_DOUBLE_FLAGS = 0,
49 // Object is known to be a non smi.
50 OBJECT_NOT_SMI = 1 << 0,
51 // Don't load NaNs or infinities, branch to the non number case instead.
52 AVOID_NANS_AND_INFINITIES = 1 << 1
55 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
56 enum BranchDelaySlot {
61 // Flags used for the li macro-assembler function.
63 // If the constant value can be represented in just 16 bits, then
64 // optimize the li to use a single instruction, rather than lui/ori pair.
66 // Always use 2 instructions (lui/ori pair), even if the constant could
67 // be loaded with just one, so that this value is patchable later.
72 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
73 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
74 enum PointersToHereCheck {
75 kPointersToHereMaybeInteresting,
76 kPointersToHereAreAlwaysInteresting
78 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
80 Register GetRegisterThatIsNotOneOf(Register reg1,
81 Register reg2 = no_reg,
82 Register reg3 = no_reg,
83 Register reg4 = no_reg,
84 Register reg5 = no_reg,
85 Register reg6 = no_reg);
87 bool AreAliased(Register reg1,
89 Register reg3 = no_reg,
90 Register reg4 = no_reg,
91 Register reg5 = no_reg,
92 Register reg6 = no_reg,
93 Register reg7 = no_reg,
94 Register reg8 = no_reg);
97 // -----------------------------------------------------------------------------
98 // Static helper functions.
100 inline MemOperand ContextOperand(Register context, int index) {
101 return MemOperand(context, Context::SlotOffset(index));
105 inline MemOperand GlobalObjectOperand() {
106 return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
110 // Generate a MemOperand for loading a field from an object.
111 inline MemOperand FieldMemOperand(Register object, int offset) {
112 return MemOperand(object, offset - kHeapObjectTag);
116 // Generate a MemOperand for storing arguments 5..N on the stack
117 // when calling CallCFunction().
118 inline MemOperand CFunctionArgumentOperand(int index) {
119 DCHECK(index > kCArgSlotCount);
120 // Argument 5 takes the slot just past the four Arg-slots.
121 int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
122 return MemOperand(sp, offset);
126 // MacroAssembler implements a collection of frequently used macros.
127 class MacroAssembler: public Assembler {
129 // The isolate parameter can be NULL if the macro assembler should
130 // not use isolate-dependent functionality. In this case, it's the
131 // responsibility of the caller to never invoke such function on the
133 MacroAssembler(Isolate* isolate, void* buffer, int size);
136 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
137 #define COND_ARGS cond, r1, r2
139 // Cases when relocation is not needed.
140 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
141 void Name(target_type target, BranchDelaySlot bd = PROTECT); \
142 inline void Name(BranchDelaySlot bd, target_type target) { \
145 void Name(target_type target, \
147 BranchDelaySlot bd = PROTECT); \
148 inline void Name(BranchDelaySlot bd, \
149 target_type target, \
151 Name(target, COND_ARGS, bd); \
154 #define DECLARE_BRANCH_PROTOTYPES(Name) \
155 DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
156 DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
158 DECLARE_BRANCH_PROTOTYPES(Branch)
159 DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
160 DECLARE_BRANCH_PROTOTYPES(BranchShort)
162 #undef DECLARE_BRANCH_PROTOTYPES
163 #undef COND_TYPED_ARGS
167 // Jump, Call, and Ret pseudo instructions implementing inter-working.
168 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
169 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
171 void Jump(Register target, COND_ARGS);
172 void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
173 void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
174 void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
175 static int CallSize(Register target, COND_ARGS);
176 void Call(Register target, COND_ARGS);
177 static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
178 void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
179 int CallSize(Handle<Code> code,
180 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
181 TypeFeedbackId ast_id = TypeFeedbackId::None(),
183 void Call(Handle<Code> code,
184 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
185 TypeFeedbackId ast_id = TypeFeedbackId::None(),
188 inline void Ret(BranchDelaySlot bd, Condition cond = al,
189 Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
190 Ret(cond, rs, rt, bd);
193 void Branch(Label* L,
196 Heap::RootListIndex index,
197 BranchDelaySlot bdslot = PROTECT);
201 // Emit code to discard a non-negative number of pointer-sized elements
202 // from the stack, clobbering only the sp register.
204 Condition cond = cc_always,
205 Register reg = no_reg,
206 const Operand& op = Operand(no_reg));
208 // Trivial case of DropAndRet that utilizes the delay slot and only emits
210 void DropAndRet(int drop);
212 void DropAndRet(int drop,
217 // Swap two registers. If the scratch register is omitted then a slightly
218 // less efficient form using xor instead of mov is emitted.
219 void Swap(Register reg1, Register reg2, Register scratch = no_reg);
221 void Call(Label* target);
223 inline void Move(Register dst, Register src) {
229 inline void Move(FPURegister dst, FPURegister src) {
235 inline void Move(Register dst_low, Register dst_high, FPURegister src) {
237 Mfhc1(dst_high, src);
240 inline void FmoveHigh(Register dst_high, FPURegister src) {
241 Mfhc1(dst_high, src);
244 inline void FmoveLow(Register dst_low, FPURegister src) {
248 inline void Move(FPURegister dst, Register src_low, Register src_high) {
250 Mthc1(src_high, dst);
253 void Move(FPURegister dst, float imm);
254 void Move(FPURegister dst, double imm);
257 void Movz(Register rd, Register rs, Register rt);
258 void Movn(Register rd, Register rs, Register rt);
259 void Movt(Register rd, Register rs, uint16_t cc = 0);
260 void Movf(Register rd, Register rs, uint16_t cc = 0);
262 void Clz(Register rd, Register rs);
264 // Jump unconditionally to given label.
265 // We NEED a nop in the branch delay slot, as it used by v8, for example in
266 // CodeGenerator::ProcessDeferred().
267 // Currently the branch delay slot is filled by the MacroAssembler.
268 // Use rather b(Label) for code generation.
273 void Load(Register dst, const MemOperand& src, Representation r);
274 void Store(Register src, const MemOperand& dst, Representation r);
276 // Load an object from the root table.
277 void LoadRoot(Register destination,
278 Heap::RootListIndex index);
279 void LoadRoot(Register destination,
280 Heap::RootListIndex index,
281 Condition cond, Register src1, const Operand& src2);
283 // Store an object to the root table.
284 void StoreRoot(Register source,
285 Heap::RootListIndex index);
286 void StoreRoot(Register source,
287 Heap::RootListIndex index,
288 Condition cond, Register src1, const Operand& src2);
290 // ---------------------------------------------------------------------------
293 void IncrementalMarkingRecordWriteHelper(Register object,
297 enum RememberedSetFinalAction {
303 // Record in the remembered set the fact that we have a pointer to new space
304 // at the address pointed to by the addr register. Only works if addr is not
306 void RememberedSetHelper(Register object, // Used for debug code.
309 SaveFPRegsMode save_fp,
310 RememberedSetFinalAction and_then);
312 void CheckPageFlag(Register object,
316 Label* condition_met);
318 // Check if object is in new space. Jumps if the object is not in new space.
319 // The register scratch can be object itself, but it will be clobbered.
320 void JumpIfNotInNewSpace(Register object,
323 InNewSpace(object, scratch, ne, branch);
326 // Check if object is in new space. Jumps if the object is in new space.
327 // The register scratch can be object itself, but scratch will be clobbered.
328 void JumpIfInNewSpace(Register object,
331 InNewSpace(object, scratch, eq, branch);
334 // Check if an object has a given incremental marking color.
335 void HasColor(Register object,
342 void JumpIfBlack(Register object,
347 // Checks the color of an object. If the object is already grey or black
348 // then we just fall through, since it is already live. If it is white and
349 // we can determine that it doesn't need to be scanned, then we just mark it
350 // black and fall through. For the rest we jump to the label so the
351 // incremental marker can fix its assumptions.
352 void EnsureNotWhite(Register object,
356 Label* object_is_white_and_not_data);
358 // Detects conservatively whether an object is data-only, i.e. it does need to
359 // be scanned by the garbage collector.
360 void JumpIfDataObject(Register value,
362 Label* not_data_object);
364 // Notify the garbage collector that we wrote a pointer into an object.
365 // |object| is the object being stored into, |value| is the object being
366 // stored. value and scratch registers are clobbered by the operation.
367 // The offset is the offset from the start of the object, not the offset from
368 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
369 void RecordWriteField(
375 SaveFPRegsMode save_fp,
376 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
377 SmiCheck smi_check = INLINE_SMI_CHECK,
378 PointersToHereCheck pointers_to_here_check_for_value =
379 kPointersToHereMaybeInteresting);
381 // As above, but the offset has the tag presubtracted. For use with
382 // MemOperand(reg, off).
383 inline void RecordWriteContextSlot(
389 SaveFPRegsMode save_fp,
390 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
391 SmiCheck smi_check = INLINE_SMI_CHECK,
392 PointersToHereCheck pointers_to_here_check_for_value =
393 kPointersToHereMaybeInteresting) {
394 RecordWriteField(context,
395 offset + kHeapObjectTag,
400 remembered_set_action,
402 pointers_to_here_check_for_value);
405 void RecordWriteForMap(
410 SaveFPRegsMode save_fp);
412 // For a given |object| notify the garbage collector that the slot |address|
413 // has been written. |value| is the object being stored. The value and
414 // address registers are clobbered by the operation.
420 SaveFPRegsMode save_fp,
421 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
422 SmiCheck smi_check = INLINE_SMI_CHECK,
423 PointersToHereCheck pointers_to_here_check_for_value =
424 kPointersToHereMaybeInteresting);
427 // ---------------------------------------------------------------------------
428 // Inline caching support.
430 // Generate code for checking access rights - used for security checks
431 // on access to global objects across environments. The holder register
432 // is left untouched, whereas both scratch registers are clobbered.
433 void CheckAccessGlobalProxy(Register holder_reg,
437 void GetNumberHash(Register reg0, Register scratch);
439 void LoadFromNumberDictionary(Label* miss,
448 inline void MarkCode(NopMarkerTypes type) {
452 // Check if the given instruction is a 'type' marker.
453 // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
454 // nop(type)). These instructions are generated to mark special location in
455 // the code, like some special IC code.
456 static inline bool IsMarkedCode(Instr instr, int type) {
457 DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
458 return IsNop(instr, type);
462 static inline int GetCodeMarker(Instr instr) {
463 uint32_t opcode = ((instr & kOpcodeMask));
464 uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
465 uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
466 uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
468 // Return <n> if we have a sll zero_reg, zero_reg, n
470 bool sllzz = (opcode == SLL &&
471 rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
472 rs == static_cast<uint32_t>(ToNumber(zero_reg)));
474 (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
475 DCHECK((type == -1) ||
476 ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
482 // ---------------------------------------------------------------------------
483 // Allocation support.
485 // Allocate an object in new space or old pointer space. The object_size is
486 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
487 // is passed. If the space is exhausted control continues at the gc_required
488 // label. The allocated object is returned in result. If the flag
489 // tag_allocated_object is true the result is tagged as as a heap object.
490 // All registers are clobbered also when control continues at the gc_required
492 void Allocate(int object_size,
497 AllocationFlags flags);
499 void Allocate(Register object_size,
504 AllocationFlags flags);
506 // Undo allocation in new space. The object passed and objects allocated after
507 // it will no longer be allocated. The caller must make sure that no pointers
508 // are left to the object(s) no longer allocated as they would be invalid when
509 // allocation is undone.
510 void UndoAllocationInNewSpace(Register object, Register scratch);
513 void AllocateTwoByteString(Register result,
519 void AllocateOneByteString(Register result, Register length,
520 Register scratch1, Register scratch2,
521 Register scratch3, Label* gc_required);
522 void AllocateTwoByteConsString(Register result,
527 void AllocateOneByteConsString(Register result, Register length,
528 Register scratch1, Register scratch2,
530 void AllocateTwoByteSlicedString(Register result,
535 void AllocateOneByteSlicedString(Register result, Register length,
536 Register scratch1, Register scratch2,
539 // Allocates a heap number or jumps to the gc_required label if the young
540 // space is full and a scavenge is needed. All registers are clobbered also
541 // when control continues at the gc_required label.
542 void AllocateHeapNumber(Register result,
545 Register heap_number_map,
547 TaggingMode tagging_mode = TAG_RESULT,
548 MutableMode mode = IMMUTABLE);
549 void AllocateHeapNumberWithValue(Register result,
555 // ---------------------------------------------------------------------------
556 // Instruction macros.
558 #define DEFINE_INSTRUCTION(instr) \
559 void instr(Register rd, Register rs, const Operand& rt); \
560 void instr(Register rd, Register rs, Register rt) { \
561 instr(rd, rs, Operand(rt)); \
563 void instr(Register rs, Register rt, int32_t j) { \
564 instr(rs, rt, Operand(j)); \
567 #define DEFINE_INSTRUCTION2(instr) \
568 void instr(Register rs, const Operand& rt); \
569 void instr(Register rs, Register rt) { \
570 instr(rs, Operand(rt)); \
572 void instr(Register rs, int32_t j) { \
573 instr(rs, Operand(j)); \
576 #define DEFINE_INSTRUCTION3(instr) \
577 void instr(Register rd_hi, Register rd_lo, Register rs, const Operand& rt); \
578 void instr(Register rd_hi, Register rd_lo, Register rs, Register rt) { \
579 instr(rd_hi, rd_lo, rs, Operand(rt)); \
581 void instr(Register rd_hi, Register rd_lo, Register rs, int32_t j) { \
582 instr(rd_hi, rd_lo, rs, Operand(j)); \
585 DEFINE_INSTRUCTION(Addu);
586 DEFINE_INSTRUCTION(Subu);
587 DEFINE_INSTRUCTION(Mul);
588 DEFINE_INSTRUCTION(Div);
589 DEFINE_INSTRUCTION(Divu);
590 DEFINE_INSTRUCTION(Mod);
591 DEFINE_INSTRUCTION(Modu);
592 DEFINE_INSTRUCTION(Mulh);
593 DEFINE_INSTRUCTION2(Mult);
594 DEFINE_INSTRUCTION(Mulhu);
595 DEFINE_INSTRUCTION2(Multu);
596 DEFINE_INSTRUCTION2(Div);
597 DEFINE_INSTRUCTION2(Divu);
599 DEFINE_INSTRUCTION3(Div);
600 DEFINE_INSTRUCTION3(Mul);
602 DEFINE_INSTRUCTION(And);
603 DEFINE_INSTRUCTION(Or);
604 DEFINE_INSTRUCTION(Xor);
605 DEFINE_INSTRUCTION(Nor);
606 DEFINE_INSTRUCTION2(Neg);
608 DEFINE_INSTRUCTION(Slt);
609 DEFINE_INSTRUCTION(Sltu);
611 // MIPS32 R2 instruction macro.
612 DEFINE_INSTRUCTION(Ror);
614 #undef DEFINE_INSTRUCTION
615 #undef DEFINE_INSTRUCTION2
617 void Pref(int32_t hint, const MemOperand& rs);
620 // ---------------------------------------------------------------------------
621 // Pseudo-instructions.
623 void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
625 void Ulw(Register rd, const MemOperand& rs);
626 void Usw(Register rd, const MemOperand& rs);
628 // Load int32 in the rd register.
629 void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
630 inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
631 li(rd, Operand(j), mode);
633 void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
635 // Push multiple registers on the stack.
636 // Registers are saved in numerical order, with higher numbered registers
637 // saved in higher memory addresses.
638 void MultiPush(RegList regs);
639 void MultiPushReversed(RegList regs);
641 void MultiPushFPU(RegList regs);
642 void MultiPushReversedFPU(RegList regs);
644 void push(Register src) {
645 Addu(sp, sp, Operand(-kPointerSize));
646 sw(src, MemOperand(sp, 0));
648 void Push(Register src) { push(src); }
651 void Push(Handle<Object> handle);
652 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
654 // Push two registers. Pushes leftmost register first (to highest address).
655 void Push(Register src1, Register src2) {
656 Subu(sp, sp, Operand(2 * kPointerSize));
657 sw(src1, MemOperand(sp, 1 * kPointerSize));
658 sw(src2, MemOperand(sp, 0 * kPointerSize));
661 // Push three registers. Pushes leftmost register first (to highest address).
662 void Push(Register src1, Register src2, Register src3) {
663 Subu(sp, sp, Operand(3 * kPointerSize));
664 sw(src1, MemOperand(sp, 2 * kPointerSize));
665 sw(src2, MemOperand(sp, 1 * kPointerSize));
666 sw(src3, MemOperand(sp, 0 * kPointerSize));
669 // Push four registers. Pushes leftmost register first (to highest address).
670 void Push(Register src1, Register src2, Register src3, Register src4) {
671 Subu(sp, sp, Operand(4 * kPointerSize));
672 sw(src1, MemOperand(sp, 3 * kPointerSize));
673 sw(src2, MemOperand(sp, 2 * kPointerSize));
674 sw(src3, MemOperand(sp, 1 * kPointerSize));
675 sw(src4, MemOperand(sp, 0 * kPointerSize));
678 void Push(Register src, Condition cond, Register tst1, Register tst2) {
679 // Since we don't have conditional execution we use a Branch.
680 Branch(3, cond, tst1, Operand(tst2));
681 Subu(sp, sp, Operand(kPointerSize));
682 sw(src, MemOperand(sp, 0));
685 // Pops multiple values from the stack and load them in the
686 // registers specified in regs. Pop order is the opposite as in MultiPush.
687 void MultiPop(RegList regs);
688 void MultiPopReversed(RegList regs);
690 void MultiPopFPU(RegList regs);
691 void MultiPopReversedFPU(RegList regs);
693 void pop(Register dst) {
694 lw(dst, MemOperand(sp, 0));
695 Addu(sp, sp, Operand(kPointerSize));
697 void Pop(Register dst) { pop(dst); }
699 // Pop two registers. Pops rightmost register first (from lower address).
700 void Pop(Register src1, Register src2) {
701 DCHECK(!src1.is(src2));
702 lw(src2, MemOperand(sp, 0 * kPointerSize));
703 lw(src1, MemOperand(sp, 1 * kPointerSize));
704 Addu(sp, sp, 2 * kPointerSize);
707 // Pop three registers. Pops rightmost register first (from lower address).
708 void Pop(Register src1, Register src2, Register src3) {
709 lw(src3, MemOperand(sp, 0 * kPointerSize));
710 lw(src2, MemOperand(sp, 1 * kPointerSize));
711 lw(src1, MemOperand(sp, 2 * kPointerSize));
712 Addu(sp, sp, 3 * kPointerSize);
715 void Pop(uint32_t count = 1) {
716 Addu(sp, sp, Operand(count * kPointerSize));
719 // Push and pop the registers that can hold pointers, as defined by the
720 // RegList constant kSafepointSavedRegisters.
721 void PushSafepointRegisters();
722 void PopSafepointRegisters();
723 // Store value in register src in the safepoint stack slot for
725 void StoreToSafepointRegisterSlot(Register src, Register dst);
726 // Load the value of the src register from its safepoint stack slot
727 // into register dst.
728 void LoadFromSafepointRegisterSlot(Register dst, Register src);
730 // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
732 // Does not handle errors.
733 void FlushICache(Register address, unsigned instructions);
735 // MIPS32 R2 instruction macro.
736 void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
737 void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
739 // ---------------------------------------------------------------------------
740 // FPU macros. These do not handle special cases like NaN or +- inf.
742 // Convert unsigned word to double.
743 void Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch);
744 void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
746 // Convert double to unsigned word.
747 void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
748 void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
750 void Trunc_w_d(FPURegister fd, FPURegister fs);
751 void Round_w_d(FPURegister fd, FPURegister fs);
752 void Floor_w_d(FPURegister fd, FPURegister fs);
753 void Ceil_w_d(FPURegister fd, FPURegister fs);
755 // FP32 mode: Move the general purpose register into
756 // the high part of the double-register pair.
757 // FP64 mode: Move the general-purpose register into
758 // the higher 32 bits of the 64-bit coprocessor register,
759 // while leaving the low bits unchanged.
760 void Mthc1(Register rt, FPURegister fs);
762 // FP32 mode: move the high part of the double-register pair into
763 // general purpose register.
764 // FP64 mode: Move the higher 32 bits of the 64-bit coprocessor register into
765 // general-purpose register.
766 void Mfhc1(Register rt, FPURegister fs);
768 // Wrapper function for the different cmp/branch types.
769 void BranchF(Label* target,
774 BranchDelaySlot bd = PROTECT);
776 // Alternate (inline) version for better readability with USE_DELAY_SLOT.
777 inline void BranchF(BranchDelaySlot bd,
783 BranchF(target, nan, cc, cmp1, cmp2, bd);
786 // Truncates a double using a specific rounding mode, and writes the value
787 // to the result register.
788 // The except_flag will contain any exceptions caused by the instruction.
789 // If check_inexact is kDontCheckForInexactConversion, then the inexact
790 // exception is masked.
791 void EmitFPUTruncate(FPURoundingMode rounding_mode,
793 DoubleRegister double_input,
795 DoubleRegister double_scratch,
796 Register except_flag,
797 CheckForInexactConversion check_inexact
798 = kDontCheckForInexactConversion);
800 // Performs a truncating conversion of a floating point number as used by
801 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
802 // succeeds, otherwise falls through if result is saturated. On return
803 // 'result' either holds answer, or is clobbered on fall through.
805 // Only public for the test code in test-code-stubs-arm.cc.
806 void TryInlineTruncateDoubleToI(Register result,
807 DoubleRegister input,
810 // Performs a truncating conversion of a floating point number as used by
811 // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
812 // Exits with 'result' holding the answer.
813 void TruncateDoubleToI(Register result, DoubleRegister double_input);
815 // Performs a truncating conversion of a heap number as used by
816 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
817 // must be different registers. Exits with 'result' holding the answer.
818 void TruncateHeapNumberToI(Register result, Register object);
820 // Converts the smi or heap number in object to an int32 using the rules
821 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
822 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
823 // different registers.
824 void TruncateNumberToI(Register object,
826 Register heap_number_map,
830 // Loads the number from object into dst register.
831 // If |object| is neither smi nor heap number, |not_number| is jumped to
832 // with |object| still intact.
833 void LoadNumber(Register object,
835 Register heap_number_map,
839 // Loads the number from object into double_dst in the double format.
840 // Control will jump to not_int32 if the value cannot be exactly represented
841 // by a 32-bit integer.
842 // Floating point value in the 32-bit integer range that are not exact integer
844 void LoadNumberAsInt32Double(Register object,
845 DoubleRegister double_dst,
846 Register heap_number_map,
849 FPURegister double_scratch,
852 // Loads the number from object into dst as a 32-bit integer.
853 // Control will jump to not_int32 if the object cannot be exactly represented
854 // by a 32-bit integer.
855 // Floating point value in the 32-bit integer range that are not exact integer
856 // won't be converted.
857 void LoadNumberAsInt32(Register object,
859 Register heap_number_map,
862 FPURegister double_scratch0,
863 FPURegister double_scratch1,
867 // argc - argument count to be dropped by LeaveExitFrame.
868 // save_doubles - saves FPU registers on stack, currently disabled.
869 // stack_space - extra stack space.
870 void EnterExitFrame(bool save_doubles,
871 int stack_space = 0);
873 // Leave the current exit frame.
874 void LeaveExitFrame(bool save_doubles, Register arg_count,
875 bool restore_context, bool do_return = NO_EMIT_RETURN,
876 bool argument_count_is_length = false);
878 // Get the actual activation frame alignment for target environment.
879 static int ActivationFrameAlignment();
881 // Make sure the stack is aligned. Only emits code in debug mode.
882 void AssertStackIsAligned();
884 void LoadContext(Register dst, int context_chain_length);
886 // Conditionally load the cached Array transitioned map of type
887 // transitioned_kind from the native context if the map in register
888 // map_in_out is the cached Array map in the native context of
890 void LoadTransitionedArrayMapConditional(
891 ElementsKind expected_kind,
892 ElementsKind transitioned_kind,
895 Label* no_map_match);
897 void LoadGlobalFunction(int index, Register function);
899 // Load the initial map from the global function. The registers
900 // function and map can be the same, function is then overwritten.
901 void LoadGlobalFunctionInitialMap(Register function,
905 void InitializeRootRegister() {
906 ExternalReference roots_array_start =
907 ExternalReference::roots_array_start(isolate());
908 li(kRootRegister, Operand(roots_array_start));
911 // -------------------------------------------------------------------------
912 // JavaScript invokes.
914 // Invoke the JavaScript function code by either calling or jumping.
915 void InvokeCode(Register code,
916 const ParameterCount& expected,
917 const ParameterCount& actual,
919 const CallWrapper& call_wrapper);
921 // Invoke the JavaScript function in the given register. Changes the
922 // current context to the context in the function before invoking.
923 void InvokeFunction(Register function,
924 const ParameterCount& actual,
926 const CallWrapper& call_wrapper);
928 void InvokeFunction(Register function,
929 const ParameterCount& expected,
930 const ParameterCount& actual,
932 const CallWrapper& call_wrapper);
934 void InvokeFunction(Handle<JSFunction> function,
935 const ParameterCount& expected,
936 const ParameterCount& actual,
938 const CallWrapper& call_wrapper);
941 void IsObjectJSObjectType(Register heap_object,
946 void IsInstanceJSObjectType(Register map,
950 void IsObjectJSStringType(Register object,
954 void IsObjectNameType(Register object,
958 // -------------------------------------------------------------------------
963 // -------------------------------------------------------------------------
964 // Exception handling.
966 // Push a new try handler and link into try handler chain.
967 void PushTryHandler(StackHandler::Kind kind, int handler_index);
969 // Unlink the stack handler on top of the stack from the try handler chain.
970 // Must preserve the result register.
971 void PopTryHandler();
973 // Passes thrown value to the handler of top of the try handler chain.
974 void Throw(Register value);
976 // Propagates an uncatchable exception to the top of the current JS stack's
978 void ThrowUncatchable(Register value);
980 // Copies a fixed number of fields of heap objects from src to dst.
981 void CopyFields(Register dst, Register src, RegList temps, int field_count);
983 // Copies a number of bytes from src to dst. All registers are clobbered. On
984 // exit src and dst will point to the place just after where the last byte was
985 // read or written and length will be zero.
986 void CopyBytes(Register src,
991 // Initialize fields with filler values. Fields starting at |start_offset|
992 // not including end_offset are overwritten with the value in |filler|. At
993 // the end the loop, |start_offset| takes the value of |end_offset|.
994 void InitializeFieldsWithFiller(Register start_offset,
998 // -------------------------------------------------------------------------
999 // Support functions.
1001 // Try to get function prototype of a function and puts the value in
1002 // the result register. Checks that the function really is a
1003 // function and jumps to the miss label if the fast checks fail. The
1004 // function register will be untouched; the other registers may be
1006 void TryGetFunctionPrototype(Register function,
1010 bool miss_on_bound_function = false);
1012 void GetObjectType(Register function,
1016 // Check if a map for a JSObject indicates that the object has fast elements.
1017 // Jump to the specified label if it does not.
1018 void CheckFastElements(Register map,
1022 // Check if a map for a JSObject indicates that the object can have both smi
1023 // and HeapObject elements. Jump to the specified label if it does not.
1024 void CheckFastObjectElements(Register map,
1028 // Check if a map for a JSObject indicates that the object has fast smi only
1029 // elements. Jump to the specified label if it does not.
1030 void CheckFastSmiElements(Register map,
1034 // Check to see if maybe_number can be stored as a double in
1035 // FastDoubleElements. If it can, store it at the index specified by key in
1036 // the FastDoubleElements array elements. Otherwise jump to fail.
1037 void StoreNumberToDoubleElements(Register value_reg,
1039 Register elements_reg,
1044 int elements_offset = 0);
1046 // Compare an object's map with the specified map and its transitioned
1047 // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1048 // "branch_to" if the result of the comparison is "cond". If multiple map
1049 // compares are required, the compare sequences branches to early_success.
1050 void CompareMapAndBranch(Register obj,
1053 Label* early_success,
1057 // As above, but the map of the object is already loaded into the register
1058 // which is preserved by the code generated.
1059 void CompareMapAndBranch(Register obj_map,
1061 Label* early_success,
1065 // Check if the map of an object is equal to a specified map and branch to
1066 // label if not. Skip the smi check if not required (object is known to be a
1067 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1068 // against maps that are ElementsKind transition maps of the specificed map.
1069 void CheckMap(Register obj,
1073 SmiCheckType smi_check_type);
1076 void CheckMap(Register obj,
1078 Heap::RootListIndex index,
1080 SmiCheckType smi_check_type);
1082 // Check if the map of an object is equal to a specified weak map and branch
1083 // to a specified target if equal. Skip the smi check if not required
1084 // (object is known to be a heap object)
1085 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1086 Handle<WeakCell> cell, Handle<Code> success,
1087 SmiCheckType smi_check_type);
1089 // Get value of the weak cell.
1090 void GetWeakValue(Register value, Handle<WeakCell> cell);
1092 // Load the value of the weak cell in the value register. Branch to the
1093 // given miss label is the weak cell was cleared.
1094 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
1096 // Load and check the instance type of an object for being a string.
1097 // Loads the type into the second argument register.
1098 // Returns a condition that will be enabled if the object was a string.
1099 Condition IsObjectStringType(Register obj,
1102 lw(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1103 lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1104 And(type, type, Operand(kIsNotStringMask));
1105 DCHECK_EQ(0, kStringTag);
1110 // Picks out an array index from the hash field.
1112 // hash - holds the index's hash. Clobbered.
1113 // index - holds the overwritten index on exit.
1114 void IndexFromHash(Register hash, Register index);
1116 // Get the number of least significant bits from a register.
1117 void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1118 void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1120 // Load the value of a number object into a FPU double register. If the
1121 // object is not a number a jump to the label not_number is performed
1122 // and the FPU double register is unchanged.
1123 void ObjectToDoubleFPURegister(
1128 Register heap_number_map,
1130 ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1132 // Load the value of a smi object into a FPU double register. The register
1133 // scratch1 can be the same register as smi in which case smi will hold the
1134 // untagged value afterwards.
1135 void SmiToDoubleFPURegister(Register smi,
1139 // -------------------------------------------------------------------------
1140 // Overflow handling functions.
1141 // Usage: first call the appropriate arithmetic function, then call one of the
1142 // jump functions with the overflow_dst register as the second parameter.
1144 void AdduAndCheckForOverflow(Register dst,
1147 Register overflow_dst,
1148 Register scratch = at);
1150 void AdduAndCheckForOverflow(Register dst, Register left,
1151 const Operand& right, Register overflow_dst,
1152 Register scratch = at);
1154 void SubuAndCheckForOverflow(Register dst,
1157 Register overflow_dst,
1158 Register scratch = at);
1160 void SubuAndCheckForOverflow(Register dst, Register left,
1161 const Operand& right, Register overflow_dst,
1162 Register scratch = at);
1164 void BranchOnOverflow(Label* label,
1165 Register overflow_check,
1166 BranchDelaySlot bd = PROTECT) {
1167 Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1170 void BranchOnNoOverflow(Label* label,
1171 Register overflow_check,
1172 BranchDelaySlot bd = PROTECT) {
1173 Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1176 void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1177 Ret(lt, overflow_check, Operand(zero_reg), bd);
1180 void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1181 Ret(ge, overflow_check, Operand(zero_reg), bd);
1184 // -------------------------------------------------------------------------
1187 // See comments at the beginning of CEntryStub::Generate.
1188 inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
1190 inline void PrepareCEntryFunction(const ExternalReference& ref) {
1191 li(a1, Operand(ref));
1194 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1195 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1197 // Call a code stub.
1198 void CallStub(CodeStub* stub,
1199 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1202 // Tail call a code stub (jump).
1203 void TailCallStub(CodeStub* stub, COND_ARGS);
1207 void CallJSExitStub(CodeStub* stub);
1209 // Call a runtime routine.
1210 void CallRuntime(const Runtime::Function* f,
1212 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1213 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1214 const Runtime::Function* function = Runtime::FunctionForId(id);
1215 CallRuntime(function, function->nargs, kSaveFPRegs);
1218 // Convenience function: Same as above, but takes the fid instead.
1219 void CallRuntime(Runtime::FunctionId id,
1221 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1222 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1225 // Convenience function: call an external reference.
1226 void CallExternalReference(const ExternalReference& ext,
1228 BranchDelaySlot bd = PROTECT);
1230 // Tail call of a runtime routine (jump).
1231 // Like JumpToExternalReference, but also takes care of passing the number
1233 void TailCallExternalReference(const ExternalReference& ext,
1237 // Convenience function: tail call a runtime routine (jump).
1238 void TailCallRuntime(Runtime::FunctionId fid,
1242 int CalculateStackPassedWords(int num_reg_arguments,
1243 int num_double_arguments);
1245 // Before calling a C-function from generated code, align arguments on stack
1246 // and add space for the four mips argument slots.
1247 // After aligning the frame, non-register arguments must be stored on the
1248 // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1249 // The argument count assumes all arguments are word sized.
1250 // Some compilers/platforms require the stack to be aligned when calling
1252 // Needs a scratch register to do some arithmetic. This register will be
1254 void PrepareCallCFunction(int num_reg_arguments,
1255 int num_double_registers,
1257 void PrepareCallCFunction(int num_reg_arguments,
1260 // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1261 // Arguments 5..n are stored to stack using following:
1262 // sw(t0, CFunctionArgumentOperand(5));
1264 // Calls a C function and cleans up the space for arguments allocated
1265 // by PrepareCallCFunction. The called function is not allowed to trigger a
1266 // garbage collection, since that might move the code and invalidate the
1267 // return address (unless this is somehow accounted for by the called
1269 void CallCFunction(ExternalReference function, int num_arguments);
1270 void CallCFunction(Register function, int num_arguments);
1271 void CallCFunction(ExternalReference function,
1272 int num_reg_arguments,
1273 int num_double_arguments);
1274 void CallCFunction(Register function,
1275 int num_reg_arguments,
1276 int num_double_arguments);
1277 void MovFromFloatResult(DoubleRegister dst);
1278 void MovFromFloatParameter(DoubleRegister dst);
1280 // There are two ways of passing double arguments on MIPS, depending on
1281 // whether soft or hard floating point ABI is used. These functions
1282 // abstract parameter passing for the three different ways we call
1283 // C functions from generated code.
1284 void MovToFloatParameter(DoubleRegister src);
1285 void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1286 void MovToFloatResult(DoubleRegister src);
1288 // Jump to the builtin routine.
1289 void JumpToExternalReference(const ExternalReference& builtin,
1290 BranchDelaySlot bd = PROTECT);
1292 // Invoke specified builtin JavaScript function. Adds an entry to
1293 // the unresolved list if the name does not resolve.
1294 void InvokeBuiltin(Builtins::JavaScript id,
1296 const CallWrapper& call_wrapper = NullCallWrapper());
1298 // Store the code object for the given builtin in the target register and
1299 // setup the function in a1.
1300 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
1302 // Store the function for the given builtin in the target register.
1303 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
1307 uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders.
1311 Handle<Object> CodeObject() {
1312 DCHECK(!code_object_.is_null());
1313 return code_object_;
1316 // Emit code for a truncating division by a constant. The dividend register is
1317 // unchanged and at gets clobbered. Dividend and result must be different.
1318 void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1320 // -------------------------------------------------------------------------
1321 // StatsCounter support.
1323 void SetCounter(StatsCounter* counter, int value,
1324 Register scratch1, Register scratch2);
1325 void IncrementCounter(StatsCounter* counter, int value,
1326 Register scratch1, Register scratch2);
1327 void DecrementCounter(StatsCounter* counter, int value,
1328 Register scratch1, Register scratch2);
1331 // -------------------------------------------------------------------------
1334 // Calls Abort(msg) if the condition cc is not satisfied.
1335 // Use --debug_code to enable.
1336 void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1337 void AssertFastElements(Register elements);
1339 // Like Assert(), but always enabled.
1340 void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1342 // Print a message to stdout and abort execution.
1343 void Abort(BailoutReason msg);
1345 // Verify restrictions about code generated in stubs.
1346 void set_generating_stub(bool value) { generating_stub_ = value; }
1347 bool generating_stub() { return generating_stub_; }
1348 void set_has_frame(bool value) { has_frame_ = value; }
1349 bool has_frame() { return has_frame_; }
1350 inline bool AllowThisStubCall(CodeStub* stub);
1352 // ---------------------------------------------------------------------------
1353 // Number utilities.
1355 // Check whether the value of reg is a power of two and not zero. If not
1356 // control continues at the label not_power_of_two. If reg is a power of two
1357 // the register scratch contains the value of (reg - 1) when control falls
1359 void JumpIfNotPowerOfTwoOrZero(Register reg,
1361 Label* not_power_of_two_or_zero);
1363 // -------------------------------------------------------------------------
1366 void SmiTag(Register reg) {
1367 Addu(reg, reg, reg);
1370 // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1371 void SmiTagCheckOverflow(Register reg, Register overflow);
1372 void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1374 void SmiTag(Register dst, Register src) {
1375 Addu(dst, src, src);
1378 // Try to convert int32 to smi. If the value is to large, preserve
1379 // the original value and jump to not_a_smi. Destroys scratch and
1381 void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1382 TrySmiTag(reg, reg, scratch, not_a_smi);
1384 void TrySmiTag(Register dst,
1388 SmiTagCheckOverflow(at, src, scratch);
1389 BranchOnOverflow(not_a_smi, scratch);
1393 void SmiUntag(Register reg) {
1394 sra(reg, reg, kSmiTagSize);
1397 void SmiUntag(Register dst, Register src) {
1398 sra(dst, src, kSmiTagSize);
1401 // Test if the register contains a smi.
1402 inline void SmiTst(Register value, Register scratch) {
1403 And(scratch, value, Operand(kSmiTagMask));
1405 inline void NonNegativeSmiTst(Register value, Register scratch) {
1406 And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1409 // Untag the source value into destination and jump if source is a smi.
1410 // Souce and destination can be the same register.
1411 void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1413 // Untag the source value into destination and jump if source is not a smi.
1414 // Souce and destination can be the same register.
1415 void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1417 // Jump the register contains a smi.
1418 void JumpIfSmi(Register value,
1420 Register scratch = at,
1421 BranchDelaySlot bd = PROTECT);
1423 // Jump if the register contains a non-smi.
1424 void JumpIfNotSmi(Register value,
1425 Label* not_smi_label,
1426 Register scratch = at,
1427 BranchDelaySlot bd = PROTECT);
1429 // Jump if either of the registers contain a non-smi.
1430 void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1431 // Jump if either of the registers contain a smi.
1432 void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1434 // Abort execution if argument is a smi, enabled via --debug-code.
1435 void AssertNotSmi(Register object);
1436 void AssertSmi(Register object);
1438 // Abort execution if argument is not a string, enabled via --debug-code.
1439 void AssertString(Register object);
1441 // Abort execution if argument is not a name, enabled via --debug-code.
1442 void AssertName(Register object);
1444 // Abort execution if argument is not undefined or an AllocationSite, enabled
1445 // via --debug-code.
1446 void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1448 // Abort execution if reg is not the root value with the given index,
1449 // enabled via --debug-code.
1450 void AssertIsRoot(Register reg, Heap::RootListIndex index);
1452 // ---------------------------------------------------------------------------
1453 // HeapNumber utilities.
1455 void JumpIfNotHeapNumber(Register object,
1456 Register heap_number_map,
1458 Label* on_not_heap_number);
1460 // -------------------------------------------------------------------------
1461 // String utilities.
1463 // Generate code to do a lookup in the number string cache. If the number in
1464 // the register object is found in the cache the generated code falls through
1465 // with the result in the result register. The object and the result register
1466 // can be the same. If the number is not found in the cache the code jumps to
1467 // the label not_found with only the content of register object unchanged.
1468 void LookupNumberStringCache(Register object,
1475 // Checks if both instance types are sequential ASCII strings and jumps to
1476 // label if either is not.
1477 void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1478 Register first_object_instance_type, Register second_object_instance_type,
1479 Register scratch1, Register scratch2, Label* failure);
1481 // Check if instance type is sequential one-byte string and jump to label if
1483 void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1486 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1488 void EmitSeqStringSetCharCheck(Register string,
1492 uint32_t encoding_mask);
1494 // Checks if both objects are sequential one-byte strings and jumps to label
1495 // if either is not. Assumes that neither object is a smi.
1496 void JumpIfNonSmisNotBothSequentialOneByteStrings(Register first,
1502 // Checks if both objects are sequential one-byte strings and jumps to label
1503 // if either is not.
1504 void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1507 Label* not_flat_one_byte_strings);
1509 void ClampUint8(Register output_reg, Register input_reg);
1511 void ClampDoubleToUint8(Register result_reg,
1512 DoubleRegister input_reg,
1513 DoubleRegister temp_double_reg);
1516 void LoadInstanceDescriptors(Register map, Register descriptors);
1517 void EnumLength(Register dst, Register map);
1518 void NumberOfOwnDescriptors(Register dst, Register map);
1519 void LoadAccessor(Register dst, Register holder, int accessor_index,
1520 AccessorComponent accessor);
1522 template<typename Field>
1523 void DecodeField(Register dst, Register src) {
1524 Ext(dst, src, Field::kShift, Field::kSize);
1527 template<typename Field>
1528 void DecodeField(Register reg) {
1529 DecodeField<Field>(reg, reg);
1532 template<typename Field>
1533 void DecodeFieldToSmi(Register dst, Register src) {
1534 static const int shift = Field::kShift;
1535 static const int mask = Field::kMask >> shift << kSmiTagSize;
1536 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1537 STATIC_ASSERT(kSmiTag == 0);
1538 if (shift < kSmiTagSize) {
1539 sll(dst, src, kSmiTagSize - shift);
1540 And(dst, dst, Operand(mask));
1541 } else if (shift > kSmiTagSize) {
1542 srl(dst, src, shift - kSmiTagSize);
1543 And(dst, dst, Operand(mask));
1545 And(dst, src, Operand(mask));
1549 template<typename Field>
1550 void DecodeFieldToSmi(Register reg) {
1551 DecodeField<Field>(reg, reg);
1554 // Generates function and stub prologue code.
1555 void StubPrologue();
1556 void Prologue(bool code_pre_aging);
1558 // Activation support.
1559 void EnterFrame(StackFrame::Type type);
1560 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
1561 void LeaveFrame(StackFrame::Type type);
1563 // Patch the relocated value (lui/ori pair).
1564 void PatchRelocatedValue(Register li_location,
1566 Register new_value);
1567 // Get the relocatad value (loaded data) from the lui/ori pair.
1568 void GetRelocatedValue(Register li_location,
1572 // Expects object in a0 and returns map with validated enum cache
1573 // in a0. Assumes that any other register can be used as a scratch.
1574 void CheckEnumCache(Register null_value, Label* call_runtime);
1576 // AllocationMemento support. Arrays may have an associated
1577 // AllocationMemento object that can be checked for in order to pretransition
1579 // On entry, receiver_reg should point to the array object.
1580 // scratch_reg gets clobbered.
1581 // If allocation info is present, jump to allocation_memento_present.
1582 void TestJSArrayForAllocationMemento(
1583 Register receiver_reg,
1584 Register scratch_reg,
1585 Label* no_memento_found,
1586 Condition cond = al,
1587 Label* allocation_memento_present = NULL);
1589 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1590 Register scratch_reg,
1591 Label* memento_found) {
1592 Label no_memento_found;
1593 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1594 &no_memento_found, eq, memento_found);
1595 bind(&no_memento_found);
1598 // Jumps to found label if a prototype map has dictionary elements.
1599 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1600 Register scratch1, Label* found);
1603 void CallCFunctionHelper(Register function,
1604 int num_reg_arguments,
1605 int num_double_arguments);
1607 void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
1608 void BranchAndLinkShort(int16_t offset, Condition cond, Register rs,
1610 BranchDelaySlot bdslot = PROTECT);
1611 void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1612 void BranchAndLinkShort(Label* L, Condition cond, Register rs,
1614 BranchDelaySlot bdslot = PROTECT);
1615 void J(Label* L, BranchDelaySlot bdslot);
1616 void Jr(Label* L, BranchDelaySlot bdslot);
1617 void Jalr(Label* L, BranchDelaySlot bdslot);
1619 // Helper functions for generating invokes.
1620 void InvokePrologue(const ParameterCount& expected,
1621 const ParameterCount& actual,
1622 Handle<Code> code_constant,
1625 bool* definitely_mismatches,
1627 const CallWrapper& call_wrapper);
1629 // Get the code for the given builtin. Returns if able to resolve
1630 // the function in the 'resolved' flag.
1631 Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
1633 void InitializeNewString(Register string,
1635 Heap::RootListIndex map_index,
1639 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1640 void InNewSpace(Register object,
1642 Condition cond, // eq for new space, ne otherwise.
1645 // Helper for finding the mark bits for an address. Afterwards, the
1646 // bitmap register points at the word with the mark bits and the mask
1647 // the position of the first bit. Leaves addr_reg unchanged.
1648 inline void GetMarkBits(Register addr_reg,
1649 Register bitmap_reg,
1652 // Helper for throwing exceptions. Compute a handler address and jump to
1653 // it. See the implementation for register usage.
1654 void JumpToHandlerEntry();
1656 // Compute memory operands for safepoint stack slots.
1657 static int SafepointRegisterStackIndex(int reg_code);
1658 MemOperand SafepointRegisterSlot(Register reg);
1659 MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1661 bool generating_stub_;
1663 bool has_double_zero_reg_set_;
1664 // This handle will be patched with the code object on installation.
1665 Handle<Object> code_object_;
1667 // Needs access to SafepointRegisterStackIndex for compiled frame
1669 friend class StandardFrame;
1673 // The code patcher is used to patch (typically) small parts of code e.g. for
1674 // debugging and other types of instrumentation. When using the code patcher
1675 // the exact number of bytes specified must be emitted. It is not legal to emit
1676 // relocation information. If any of these constraints are violated it causes
1677 // an assertion to fail.
1685 CodePatcher(byte* address,
1687 FlushICache flush_cache = FLUSH);
1688 virtual ~CodePatcher();
1690 // Macro assembler to emit code.
1691 MacroAssembler* masm() { return &masm_; }
1693 // Emit an instruction directly.
1694 void Emit(Instr instr);
1696 // Emit an address directly.
1697 void Emit(Address addr);
1699 // Change the condition part of an instruction leaving the rest of the current
1700 // instruction unchanged.
1701 void ChangeBranchCondition(Condition cond);
1704 byte* address_; // The address of the code being patched.
1705 int size_; // Number of bytes of the expected patch size.
1706 MacroAssembler masm_; // Macro assembler used to generate the code.
1707 FlushICache flush_cache_; // Whether to flush the I cache after patching.
1712 #ifdef GENERATED_CODE_COVERAGE
1713 #define CODE_COVERAGE_STRINGIFY(x) #x
1714 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1715 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1716 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
1718 #define ACCESS_MASM(masm) masm->
1721 } } // namespace v8::internal
1723 #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_