1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
6 #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_
8 #include "src/assembler.h"
9 #include "src/globals.h"
10 #include "src/mips/assembler-mips.h"
15 // Forward declaration.
18 // Reserved Register Usage Summary.
20 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
22 // The programmer should know that the MacroAssembler may clobber these three,
23 // but won't touch other registers except in special cases.
25 // Per the MIPS ABI, register t9 must be used for indirect function call
26 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
27 // trying to update gp register for position-independent-code. Whenever
28 // MIPS generated code calls C code, it must be via t9 register.
31 // Flags used for LeaveExitFrame function.
32 enum LeaveExitFrameMode {
34 NO_EMIT_RETURN = false
37 // Flags used for AllocateHeapNumber
45 // Flags used for the ObjectToDoubleFPURegister function.
46 enum ObjectToDoubleFlags {
48 NO_OBJECT_TO_DOUBLE_FLAGS = 0,
49 // Object is known to be a non smi.
50 OBJECT_NOT_SMI = 1 << 0,
51 // Don't load NaNs or infinities, branch to the non number case instead.
52 AVOID_NANS_AND_INFINITIES = 1 << 1
55 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
56 enum BranchDelaySlot {
61 // Flags used for the li macro-assembler function.
63 // If the constant value can be represented in just 16 bits, then
64 // optimize the li to use a single instruction, rather than lui/ori pair.
66 // Always use 2 instructions (lui/ori pair), even if the constant could
67 // be loaded with just one, so that this value is patchable later.
72 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
73 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
74 enum PointersToHereCheck {
75 kPointersToHereMaybeInteresting,
76 kPointersToHereAreAlwaysInteresting
78 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
80 Register GetRegisterThatIsNotOneOf(Register reg1,
81 Register reg2 = no_reg,
82 Register reg3 = no_reg,
83 Register reg4 = no_reg,
84 Register reg5 = no_reg,
85 Register reg6 = no_reg);
87 bool AreAliased(Register r1, Register r2, Register r3, Register r4);
90 // -----------------------------------------------------------------------------
91 // Static helper functions.
93 inline MemOperand ContextOperand(Register context, int index) {
94 return MemOperand(context, Context::SlotOffset(index));
98 inline MemOperand GlobalObjectOperand() {
99 return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
103 // Generate a MemOperand for loading a field from an object.
104 inline MemOperand FieldMemOperand(Register object, int offset) {
105 return MemOperand(object, offset - kHeapObjectTag);
109 // Generate a MemOperand for storing arguments 5..N on the stack
110 // when calling CallCFunction().
111 inline MemOperand CFunctionArgumentOperand(int index) {
112 ASSERT(index > kCArgSlotCount);
113 // Argument 5 takes the slot just past the four Arg-slots.
114 int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
115 return MemOperand(sp, offset);
119 // MacroAssembler implements a collection of frequently used macros.
120 class MacroAssembler: public Assembler {
122 // The isolate parameter can be NULL if the macro assembler should
123 // not use isolate-dependent functionality. In this case, it's the
124 // responsibility of the caller to never invoke such function on the
126 MacroAssembler(Isolate* isolate, void* buffer, int size);
129 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
130 #define COND_ARGS cond, r1, r2
132 // Cases when relocation is not needed.
133 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
134 void Name(target_type target, BranchDelaySlot bd = PROTECT); \
135 inline void Name(BranchDelaySlot bd, target_type target) { \
138 void Name(target_type target, \
140 BranchDelaySlot bd = PROTECT); \
141 inline void Name(BranchDelaySlot bd, \
142 target_type target, \
144 Name(target, COND_ARGS, bd); \
147 #define DECLARE_BRANCH_PROTOTYPES(Name) \
148 DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
149 DECLARE_NORELOC_PROTOTYPE(Name, int16_t)
151 DECLARE_BRANCH_PROTOTYPES(Branch)
152 DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
153 DECLARE_BRANCH_PROTOTYPES(BranchShort)
155 #undef DECLARE_BRANCH_PROTOTYPES
156 #undef COND_TYPED_ARGS
160 // Jump, Call, and Ret pseudo instructions implementing inter-working.
161 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
162 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
164 void Jump(Register target, COND_ARGS);
165 void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
166 void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
167 void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
168 static int CallSize(Register target, COND_ARGS);
169 void Call(Register target, COND_ARGS);
170 static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS);
171 void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
172 int CallSize(Handle<Code> code,
173 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
174 TypeFeedbackId ast_id = TypeFeedbackId::None(),
176 void Call(Handle<Code> code,
177 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
178 TypeFeedbackId ast_id = TypeFeedbackId::None(),
181 inline void Ret(BranchDelaySlot bd, Condition cond = al,
182 Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) {
183 Ret(cond, rs, rt, bd);
186 void Branch(Label* L,
189 Heap::RootListIndex index,
190 BranchDelaySlot bdslot = PROTECT);
194 // Emit code to discard a non-negative number of pointer-sized elements
195 // from the stack, clobbering only the sp register.
197 Condition cond = cc_always,
198 Register reg = no_reg,
199 const Operand& op = Operand(no_reg));
201 // Trivial case of DropAndRet that utilizes the delay slot and only emits
203 void DropAndRet(int drop);
205 void DropAndRet(int drop,
210 // Swap two registers. If the scratch register is omitted then a slightly
211 // less efficient form using xor instead of mov is emitted.
212 void Swap(Register reg1, Register reg2, Register scratch = no_reg);
214 void Call(Label* target);
216 inline void Move(Register dst, Register src) {
222 inline void Move(FPURegister dst, FPURegister src) {
228 inline void Move(Register dst_low, Register dst_high, FPURegister src) {
230 mfc1(dst_high, FPURegister::from_code(src.code() + 1));
233 inline void FmoveHigh(Register dst_high, FPURegister src) {
234 mfc1(dst_high, FPURegister::from_code(src.code() + 1));
237 inline void FmoveLow(Register dst_low, FPURegister src) {
241 inline void Move(FPURegister dst, Register src_low, Register src_high) {
243 mtc1(src_high, FPURegister::from_code(dst.code() + 1));
247 void Move(FPURegister dst, double imm);
248 void Movz(Register rd, Register rs, Register rt);
249 void Movn(Register rd, Register rs, Register rt);
250 void Movt(Register rd, Register rs, uint16_t cc = 0);
251 void Movf(Register rd, Register rs, uint16_t cc = 0);
253 void Clz(Register rd, Register rs);
255 // Jump unconditionally to given label.
256 // We NEED a nop in the branch delay slot, as it used by v8, for example in
257 // CodeGenerator::ProcessDeferred().
258 // Currently the branch delay slot is filled by the MacroAssembler.
259 // Use rather b(Label) for code generation.
264 void Load(Register dst, const MemOperand& src, Representation r);
265 void Store(Register src, const MemOperand& dst, Representation r);
267 // Load an object from the root table.
268 void LoadRoot(Register destination,
269 Heap::RootListIndex index);
270 void LoadRoot(Register destination,
271 Heap::RootListIndex index,
272 Condition cond, Register src1, const Operand& src2);
274 // Store an object to the root table.
275 void StoreRoot(Register source,
276 Heap::RootListIndex index);
277 void StoreRoot(Register source,
278 Heap::RootListIndex index,
279 Condition cond, Register src1, const Operand& src2);
281 // ---------------------------------------------------------------------------
284 void IncrementalMarkingRecordWriteHelper(Register object,
288 enum RememberedSetFinalAction {
294 // Record in the remembered set the fact that we have a pointer to new space
295 // at the address pointed to by the addr register. Only works if addr is not
297 void RememberedSetHelper(Register object, // Used for debug code.
300 SaveFPRegsMode save_fp,
301 RememberedSetFinalAction and_then);
303 void CheckPageFlag(Register object,
307 Label* condition_met);
309 void CheckMapDeprecated(Handle<Map> map,
311 Label* if_deprecated);
313 // Check if object is in new space. Jumps if the object is not in new space.
314 // The register scratch can be object itself, but it will be clobbered.
315 void JumpIfNotInNewSpace(Register object,
318 InNewSpace(object, scratch, ne, branch);
321 // Check if object is in new space. Jumps if the object is in new space.
322 // The register scratch can be object itself, but scratch will be clobbered.
323 void JumpIfInNewSpace(Register object,
326 InNewSpace(object, scratch, eq, branch);
329 // Check if an object has a given incremental marking color.
330 void HasColor(Register object,
337 void JumpIfBlack(Register object,
342 // Checks the color of an object. If the object is already grey or black
343 // then we just fall through, since it is already live. If it is white and
344 // we can determine that it doesn't need to be scanned, then we just mark it
345 // black and fall through. For the rest we jump to the label so the
346 // incremental marker can fix its assumptions.
347 void EnsureNotWhite(Register object,
351 Label* object_is_white_and_not_data);
353 // Detects conservatively whether an object is data-only, i.e. it does need to
354 // be scanned by the garbage collector.
355 void JumpIfDataObject(Register value,
357 Label* not_data_object);
359 // Notify the garbage collector that we wrote a pointer into an object.
360 // |object| is the object being stored into, |value| is the object being
361 // stored. value and scratch registers are clobbered by the operation.
362 // The offset is the offset from the start of the object, not the offset from
363 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
364 void RecordWriteField(
370 SaveFPRegsMode save_fp,
371 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
372 SmiCheck smi_check = INLINE_SMI_CHECK,
373 PointersToHereCheck pointers_to_here_check_for_value =
374 kPointersToHereMaybeInteresting);
376 // As above, but the offset has the tag presubtracted. For use with
377 // MemOperand(reg, off).
378 inline void RecordWriteContextSlot(
384 SaveFPRegsMode save_fp,
385 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
386 SmiCheck smi_check = INLINE_SMI_CHECK,
387 PointersToHereCheck pointers_to_here_check_for_value =
388 kPointersToHereMaybeInteresting) {
389 RecordWriteField(context,
390 offset + kHeapObjectTag,
395 remembered_set_action,
397 pointers_to_here_check_for_value);
400 void RecordWriteForMap(
405 SaveFPRegsMode save_fp);
407 // For a given |object| notify the garbage collector that the slot |address|
408 // has been written. |value| is the object being stored. The value and
409 // address registers are clobbered by the operation.
415 SaveFPRegsMode save_fp,
416 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
417 SmiCheck smi_check = INLINE_SMI_CHECK,
418 PointersToHereCheck pointers_to_here_check_for_value =
419 kPointersToHereMaybeInteresting);
422 // ---------------------------------------------------------------------------
423 // Inline caching support.
425 // Generate code for checking access rights - used for security checks
426 // on access to global objects across environments. The holder register
427 // is left untouched, whereas both scratch registers are clobbered.
428 void CheckAccessGlobalProxy(Register holder_reg,
432 void GetNumberHash(Register reg0, Register scratch);
434 void LoadFromNumberDictionary(Label* miss,
443 inline void MarkCode(NopMarkerTypes type) {
447 // Check if the given instruction is a 'type' marker.
448 // i.e. check if it is a sll zero_reg, zero_reg, <type> (referenced as
449 // nop(type)). These instructions are generated to mark special location in
450 // the code, like some special IC code.
451 static inline bool IsMarkedCode(Instr instr, int type) {
452 ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
453 return IsNop(instr, type);
457 static inline int GetCodeMarker(Instr instr) {
458 uint32_t opcode = ((instr & kOpcodeMask));
459 uint32_t rt = ((instr & kRtFieldMask) >> kRtShift);
460 uint32_t rs = ((instr & kRsFieldMask) >> kRsShift);
461 uint32_t sa = ((instr & kSaFieldMask) >> kSaShift);
463 // Return <n> if we have a sll zero_reg, zero_reg, n
465 bool sllzz = (opcode == SLL &&
466 rt == static_cast<uint32_t>(ToNumber(zero_reg)) &&
467 rs == static_cast<uint32_t>(ToNumber(zero_reg)));
469 (sllzz && FIRST_IC_MARKER <= sa && sa < LAST_CODE_MARKER) ? sa : -1;
470 ASSERT((type == -1) ||
471 ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
477 // ---------------------------------------------------------------------------
478 // Allocation support.
480 // Allocate an object in new space or old pointer space. The object_size is
481 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
482 // is passed. If the space is exhausted control continues at the gc_required
483 // label. The allocated object is returned in result. If the flag
484 // tag_allocated_object is true the result is tagged as as a heap object.
485 // All registers are clobbered also when control continues at the gc_required
487 void Allocate(int object_size,
492 AllocationFlags flags);
494 void Allocate(Register object_size,
499 AllocationFlags flags);
501 // Undo allocation in new space. The object passed and objects allocated after
502 // it will no longer be allocated. The caller must make sure that no pointers
503 // are left to the object(s) no longer allocated as they would be invalid when
504 // allocation is undone.
505 void UndoAllocationInNewSpace(Register object, Register scratch);
508 void AllocateTwoByteString(Register result,
514 void AllocateAsciiString(Register result,
520 void AllocateTwoByteConsString(Register result,
525 void AllocateAsciiConsString(Register result,
530 void AllocateTwoByteSlicedString(Register result,
535 void AllocateAsciiSlicedString(Register result,
541 // Allocates a heap number or jumps to the gc_required label if the young
542 // space is full and a scavenge is needed. All registers are clobbered also
543 // when control continues at the gc_required label.
544 void AllocateHeapNumber(Register result,
547 Register heap_number_map,
549 TaggingMode tagging_mode = TAG_RESULT,
550 MutableMode mode = IMMUTABLE);
551 void AllocateHeapNumberWithValue(Register result,
557 // ---------------------------------------------------------------------------
558 // Instruction macros.
560 #define DEFINE_INSTRUCTION(instr) \
561 void instr(Register rd, Register rs, const Operand& rt); \
562 void instr(Register rd, Register rs, Register rt) { \
563 instr(rd, rs, Operand(rt)); \
565 void instr(Register rs, Register rt, int32_t j) { \
566 instr(rs, rt, Operand(j)); \
569 #define DEFINE_INSTRUCTION2(instr) \
570 void instr(Register rs, const Operand& rt); \
571 void instr(Register rs, Register rt) { \
572 instr(rs, Operand(rt)); \
574 void instr(Register rs, int32_t j) { \
575 instr(rs, Operand(j)); \
578 DEFINE_INSTRUCTION(Addu);
579 DEFINE_INSTRUCTION(Subu);
580 DEFINE_INSTRUCTION(Mul);
581 DEFINE_INSTRUCTION2(Mult);
582 DEFINE_INSTRUCTION2(Multu);
583 DEFINE_INSTRUCTION2(Div);
584 DEFINE_INSTRUCTION2(Divu);
586 DEFINE_INSTRUCTION(And);
587 DEFINE_INSTRUCTION(Or);
588 DEFINE_INSTRUCTION(Xor);
589 DEFINE_INSTRUCTION(Nor);
590 DEFINE_INSTRUCTION2(Neg);
592 DEFINE_INSTRUCTION(Slt);
593 DEFINE_INSTRUCTION(Sltu);
595 // MIPS32 R2 instruction macro.
596 DEFINE_INSTRUCTION(Ror);
598 #undef DEFINE_INSTRUCTION
599 #undef DEFINE_INSTRUCTION2
601 void Pref(int32_t hint, const MemOperand& rs);
604 // ---------------------------------------------------------------------------
605 // Pseudo-instructions.
607 void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
609 void Ulw(Register rd, const MemOperand& rs);
610 void Usw(Register rd, const MemOperand& rs);
612 // Load int32 in the rd register.
613 void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
614 inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
615 li(rd, Operand(j), mode);
617 void li(Register dst, Handle<Object> value, LiFlags mode = OPTIMIZE_SIZE);
619 // Push multiple registers on the stack.
620 // Registers are saved in numerical order, with higher numbered registers
621 // saved in higher memory addresses.
622 void MultiPush(RegList regs);
623 void MultiPushReversed(RegList regs);
625 void MultiPushFPU(RegList regs);
626 void MultiPushReversedFPU(RegList regs);
628 void push(Register src) {
629 Addu(sp, sp, Operand(-kPointerSize));
630 sw(src, MemOperand(sp, 0));
632 void Push(Register src) { push(src); }
635 void Push(Handle<Object> handle);
636 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
638 // Push two registers. Pushes leftmost register first (to highest address).
639 void Push(Register src1, Register src2) {
640 Subu(sp, sp, Operand(2 * kPointerSize));
641 sw(src1, MemOperand(sp, 1 * kPointerSize));
642 sw(src2, MemOperand(sp, 0 * kPointerSize));
645 // Push three registers. Pushes leftmost register first (to highest address).
646 void Push(Register src1, Register src2, Register src3) {
647 Subu(sp, sp, Operand(3 * kPointerSize));
648 sw(src1, MemOperand(sp, 2 * kPointerSize));
649 sw(src2, MemOperand(sp, 1 * kPointerSize));
650 sw(src3, MemOperand(sp, 0 * kPointerSize));
653 // Push four registers. Pushes leftmost register first (to highest address).
654 void Push(Register src1, Register src2, Register src3, Register src4) {
655 Subu(sp, sp, Operand(4 * kPointerSize));
656 sw(src1, MemOperand(sp, 3 * kPointerSize));
657 sw(src2, MemOperand(sp, 2 * kPointerSize));
658 sw(src3, MemOperand(sp, 1 * kPointerSize));
659 sw(src4, MemOperand(sp, 0 * kPointerSize));
662 void Push(Register src, Condition cond, Register tst1, Register tst2) {
663 // Since we don't have conditional execution we use a Branch.
664 Branch(3, cond, tst1, Operand(tst2));
665 Subu(sp, sp, Operand(kPointerSize));
666 sw(src, MemOperand(sp, 0));
669 // Pops multiple values from the stack and load them in the
670 // registers specified in regs. Pop order is the opposite as in MultiPush.
671 void MultiPop(RegList regs);
672 void MultiPopReversed(RegList regs);
674 void MultiPopFPU(RegList regs);
675 void MultiPopReversedFPU(RegList regs);
677 void pop(Register dst) {
678 lw(dst, MemOperand(sp, 0));
679 Addu(sp, sp, Operand(kPointerSize));
681 void Pop(Register dst) { pop(dst); }
683 // Pop two registers. Pops rightmost register first (from lower address).
684 void Pop(Register src1, Register src2) {
685 ASSERT(!src1.is(src2));
686 lw(src2, MemOperand(sp, 0 * kPointerSize));
687 lw(src1, MemOperand(sp, 1 * kPointerSize));
688 Addu(sp, sp, 2 * kPointerSize);
691 // Pop three registers. Pops rightmost register first (from lower address).
692 void Pop(Register src1, Register src2, Register src3) {
693 lw(src3, MemOperand(sp, 0 * kPointerSize));
694 lw(src2, MemOperand(sp, 1 * kPointerSize));
695 lw(src1, MemOperand(sp, 2 * kPointerSize));
696 Addu(sp, sp, 3 * kPointerSize);
699 void Pop(uint32_t count = 1) {
700 Addu(sp, sp, Operand(count * kPointerSize));
703 // Push and pop the registers that can hold pointers, as defined by the
704 // RegList constant kSafepointSavedRegisters.
705 void PushSafepointRegisters();
706 void PopSafepointRegisters();
707 void PushSafepointRegistersAndDoubles();
708 void PopSafepointRegistersAndDoubles();
709 // Store value in register src in the safepoint stack slot for
711 void StoreToSafepointRegisterSlot(Register src, Register dst);
712 void StoreToSafepointRegistersAndDoublesSlot(Register src, Register dst);
713 // Load the value of the src register from its safepoint stack slot
714 // into register dst.
715 void LoadFromSafepointRegisterSlot(Register dst, Register src);
717 // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
719 // Does not handle errors.
720 void FlushICache(Register address, unsigned instructions);
722 // MIPS32 R2 instruction macro.
723 void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
724 void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
726 // ---------------------------------------------------------------------------
727 // FPU macros. These do not handle special cases like NaN or +- inf.
729 // Convert unsigned word to double.
730 void Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch);
731 void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch);
733 // Convert double to unsigned word.
734 void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
735 void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch);
737 void Trunc_w_d(FPURegister fd, FPURegister fs);
738 void Round_w_d(FPURegister fd, FPURegister fs);
739 void Floor_w_d(FPURegister fd, FPURegister fs);
740 void Ceil_w_d(FPURegister fd, FPURegister fs);
741 // Wrapper function for the different cmp/branch types.
742 void BranchF(Label* target,
747 BranchDelaySlot bd = PROTECT);
749 // Alternate (inline) version for better readability with USE_DELAY_SLOT.
750 inline void BranchF(BranchDelaySlot bd,
756 BranchF(target, nan, cc, cmp1, cmp2, bd);
759 // Truncates a double using a specific rounding mode, and writes the value
760 // to the result register.
761 // The except_flag will contain any exceptions caused by the instruction.
762 // If check_inexact is kDontCheckForInexactConversion, then the inexact
763 // exception is masked.
764 void EmitFPUTruncate(FPURoundingMode rounding_mode,
766 DoubleRegister double_input,
768 DoubleRegister double_scratch,
769 Register except_flag,
770 CheckForInexactConversion check_inexact
771 = kDontCheckForInexactConversion);
773 // Performs a truncating conversion of a floating point number as used by
774 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
775 // succeeds, otherwise falls through if result is saturated. On return
776 // 'result' either holds answer, or is clobbered on fall through.
778 // Only public for the test code in test-code-stubs-arm.cc.
779 void TryInlineTruncateDoubleToI(Register result,
780 DoubleRegister input,
783 // Performs a truncating conversion of a floating point number as used by
784 // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
785 // Exits with 'result' holding the answer.
786 void TruncateDoubleToI(Register result, DoubleRegister double_input);
788 // Performs a truncating conversion of a heap number as used by
789 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
790 // must be different registers. Exits with 'result' holding the answer.
791 void TruncateHeapNumberToI(Register result, Register object);
793 // Converts the smi or heap number in object to an int32 using the rules
794 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
795 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
796 // different registers.
797 void TruncateNumberToI(Register object,
799 Register heap_number_map,
803 // Loads the number from object into dst register.
804 // If |object| is neither smi nor heap number, |not_number| is jumped to
805 // with |object| still intact.
806 void LoadNumber(Register object,
808 Register heap_number_map,
812 // Loads the number from object into double_dst in the double format.
813 // Control will jump to not_int32 if the value cannot be exactly represented
814 // by a 32-bit integer.
815 // Floating point value in the 32-bit integer range that are not exact integer
817 void LoadNumberAsInt32Double(Register object,
818 DoubleRegister double_dst,
819 Register heap_number_map,
822 FPURegister double_scratch,
825 // Loads the number from object into dst as a 32-bit integer.
826 // Control will jump to not_int32 if the object cannot be exactly represented
827 // by a 32-bit integer.
828 // Floating point value in the 32-bit integer range that are not exact integer
829 // won't be converted.
830 void LoadNumberAsInt32(Register object,
832 Register heap_number_map,
835 FPURegister double_scratch0,
836 FPURegister double_scratch1,
840 // argc - argument count to be dropped by LeaveExitFrame.
841 // save_doubles - saves FPU registers on stack, currently disabled.
842 // stack_space - extra stack space.
843 void EnterExitFrame(bool save_doubles,
844 int stack_space = 0);
846 // Leave the current exit frame.
847 void LeaveExitFrame(bool save_doubles,
849 bool restore_context,
850 bool do_return = NO_EMIT_RETURN);
852 // Get the actual activation frame alignment for target environment.
853 static int ActivationFrameAlignment();
855 // Make sure the stack is aligned. Only emits code in debug mode.
856 void AssertStackIsAligned();
858 void LoadContext(Register dst, int context_chain_length);
860 // Conditionally load the cached Array transitioned map of type
861 // transitioned_kind from the native context if the map in register
862 // map_in_out is the cached Array map in the native context of
864 void LoadTransitionedArrayMapConditional(
865 ElementsKind expected_kind,
866 ElementsKind transitioned_kind,
869 Label* no_map_match);
871 void LoadGlobalFunction(int index, Register function);
873 // Load the initial map from the global function. The registers
874 // function and map can be the same, function is then overwritten.
875 void LoadGlobalFunctionInitialMap(Register function,
879 void InitializeRootRegister() {
880 ExternalReference roots_array_start =
881 ExternalReference::roots_array_start(isolate());
882 li(kRootRegister, Operand(roots_array_start));
885 // -------------------------------------------------------------------------
886 // JavaScript invokes.
888 // Invoke the JavaScript function code by either calling or jumping.
889 void InvokeCode(Register code,
890 const ParameterCount& expected,
891 const ParameterCount& actual,
893 const CallWrapper& call_wrapper);
895 // Invoke the JavaScript function in the given register. Changes the
896 // current context to the context in the function before invoking.
897 void InvokeFunction(Register function,
898 const ParameterCount& actual,
900 const CallWrapper& call_wrapper);
902 void InvokeFunction(Register function,
903 const ParameterCount& expected,
904 const ParameterCount& actual,
906 const CallWrapper& call_wrapper);
908 void InvokeFunction(Handle<JSFunction> function,
909 const ParameterCount& expected,
910 const ParameterCount& actual,
912 const CallWrapper& call_wrapper);
915 void IsObjectJSObjectType(Register heap_object,
920 void IsInstanceJSObjectType(Register map,
924 void IsObjectJSStringType(Register object,
928 void IsObjectNameType(Register object,
932 // -------------------------------------------------------------------------
937 // -------------------------------------------------------------------------
938 // Exception handling.
940 // Push a new try handler and link into try handler chain.
941 void PushTryHandler(StackHandler::Kind kind, int handler_index);
943 // Unlink the stack handler on top of the stack from the try handler chain.
944 // Must preserve the result register.
945 void PopTryHandler();
947 // Passes thrown value to the handler of top of the try handler chain.
948 void Throw(Register value);
950 // Propagates an uncatchable exception to the top of the current JS stack's
952 void ThrowUncatchable(Register value);
954 // Copies a fixed number of fields of heap objects from src to dst.
955 void CopyFields(Register dst, Register src, RegList temps, int field_count);
957 // Copies a number of bytes from src to dst. All registers are clobbered. On
958 // exit src and dst will point to the place just after where the last byte was
959 // read or written and length will be zero.
960 void CopyBytes(Register src,
965 // Initialize fields with filler values. Fields starting at |start_offset|
966 // not including end_offset are overwritten with the value in |filler|. At
967 // the end the loop, |start_offset| takes the value of |end_offset|.
968 void InitializeFieldsWithFiller(Register start_offset,
972 // -------------------------------------------------------------------------
973 // Support functions.
975 // Try to get function prototype of a function and puts the value in
976 // the result register. Checks that the function really is a
977 // function and jumps to the miss label if the fast checks fail. The
978 // function register will be untouched; the other registers may be
980 void TryGetFunctionPrototype(Register function,
984 bool miss_on_bound_function = false);
986 void GetObjectType(Register function,
990 // Check if a map for a JSObject indicates that the object has fast elements.
991 // Jump to the specified label if it does not.
992 void CheckFastElements(Register map,
996 // Check if a map for a JSObject indicates that the object can have both smi
997 // and HeapObject elements. Jump to the specified label if it does not.
998 void CheckFastObjectElements(Register map,
1002 // Check if a map for a JSObject indicates that the object has fast smi only
1003 // elements. Jump to the specified label if it does not.
1004 void CheckFastSmiElements(Register map,
1008 // Check to see if maybe_number can be stored as a double in
1009 // FastDoubleElements. If it can, store it at the index specified by key in
1010 // the FastDoubleElements array elements. Otherwise jump to fail.
1011 void StoreNumberToDoubleElements(Register value_reg,
1013 Register elements_reg,
1018 int elements_offset = 0);
1020 // Compare an object's map with the specified map and its transitioned
1021 // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Jumps to
1022 // "branch_to" if the result of the comparison is "cond". If multiple map
1023 // compares are required, the compare sequences branches to early_success.
1024 void CompareMapAndBranch(Register obj,
1027 Label* early_success,
1031 // As above, but the map of the object is already loaded into the register
1032 // which is preserved by the code generated.
1033 void CompareMapAndBranch(Register obj_map,
1035 Label* early_success,
1039 // Check if the map of an object is equal to a specified map and branch to
1040 // label if not. Skip the smi check if not required (object is known to be a
1041 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1042 // against maps that are ElementsKind transition maps of the specificed map.
1043 void CheckMap(Register obj,
1047 SmiCheckType smi_check_type);
1050 void CheckMap(Register obj,
1052 Heap::RootListIndex index,
1054 SmiCheckType smi_check_type);
1056 // Check if the map of an object is equal to a specified map and branch to a
1057 // specified target if equal. Skip the smi check if not required (object is
1058 // known to be a heap object)
1059 void DispatchMap(Register obj,
1062 Handle<Code> success,
1063 SmiCheckType smi_check_type);
1066 // Load and check the instance type of an object for being a string.
1067 // Loads the type into the second argument register.
1068 // Returns a condition that will be enabled if the object was a string.
1069 Condition IsObjectStringType(Register obj,
1072 lw(type, FieldMemOperand(obj, HeapObject::kMapOffset));
1073 lbu(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
1074 And(type, type, Operand(kIsNotStringMask));
1075 ASSERT_EQ(0, kStringTag);
1080 // Picks out an array index from the hash field.
1082 // hash - holds the index's hash. Clobbered.
1083 // index - holds the overwritten index on exit.
1084 void IndexFromHash(Register hash, Register index);
1086 // Get the number of least significant bits from a register.
1087 void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
1088 void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
1090 // Load the value of a number object into a FPU double register. If the
1091 // object is not a number a jump to the label not_number is performed
1092 // and the FPU double register is unchanged.
1093 void ObjectToDoubleFPURegister(
1098 Register heap_number_map,
1100 ObjectToDoubleFlags flags = NO_OBJECT_TO_DOUBLE_FLAGS);
1102 // Load the value of a smi object into a FPU double register. The register
1103 // scratch1 can be the same register as smi in which case smi will hold the
1104 // untagged value afterwards.
1105 void SmiToDoubleFPURegister(Register smi,
1109 // -------------------------------------------------------------------------
1110 // Overflow handling functions.
1111 // Usage: first call the appropriate arithmetic function, then call one of the
1112 // jump functions with the overflow_dst register as the second parameter.
1114 void AdduAndCheckForOverflow(Register dst,
1117 Register overflow_dst,
1118 Register scratch = at);
1120 void SubuAndCheckForOverflow(Register dst,
1123 Register overflow_dst,
1124 Register scratch = at);
1126 void BranchOnOverflow(Label* label,
1127 Register overflow_check,
1128 BranchDelaySlot bd = PROTECT) {
1129 Branch(label, lt, overflow_check, Operand(zero_reg), bd);
1132 void BranchOnNoOverflow(Label* label,
1133 Register overflow_check,
1134 BranchDelaySlot bd = PROTECT) {
1135 Branch(label, ge, overflow_check, Operand(zero_reg), bd);
1138 void RetOnOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1139 Ret(lt, overflow_check, Operand(zero_reg), bd);
1142 void RetOnNoOverflow(Register overflow_check, BranchDelaySlot bd = PROTECT) {
1143 Ret(ge, overflow_check, Operand(zero_reg), bd);
1146 // -------------------------------------------------------------------------
1149 // See comments at the beginning of CEntryStub::Generate.
1150 inline void PrepareCEntryArgs(int num_args) {
1152 li(s1, (num_args - 1) * kPointerSize);
1155 inline void PrepareCEntryFunction(const ExternalReference& ref) {
1156 li(s2, Operand(ref));
1159 #define COND_ARGS Condition cond = al, Register rs = zero_reg, \
1160 const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT
1162 // Call a code stub.
1163 void CallStub(CodeStub* stub,
1164 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1167 // Tail call a code stub (jump).
1168 void TailCallStub(CodeStub* stub, COND_ARGS);
1172 void CallJSExitStub(CodeStub* stub);
1174 // Call a runtime routine.
1175 void CallRuntime(const Runtime::Function* f,
1177 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1178 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1179 const Runtime::Function* function = Runtime::FunctionForId(id);
1180 CallRuntime(function, function->nargs, kSaveFPRegs);
1183 // Convenience function: Same as above, but takes the fid instead.
1184 void CallRuntime(Runtime::FunctionId id,
1186 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1187 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1190 // Convenience function: call an external reference.
1191 void CallExternalReference(const ExternalReference& ext,
1193 BranchDelaySlot bd = PROTECT);
1195 // Tail call of a runtime routine (jump).
1196 // Like JumpToExternalReference, but also takes care of passing the number
1198 void TailCallExternalReference(const ExternalReference& ext,
1202 // Convenience function: tail call a runtime routine (jump).
1203 void TailCallRuntime(Runtime::FunctionId fid,
1207 int CalculateStackPassedWords(int num_reg_arguments,
1208 int num_double_arguments);
1210 // Before calling a C-function from generated code, align arguments on stack
1211 // and add space for the four mips argument slots.
1212 // After aligning the frame, non-register arguments must be stored on the
1213 // stack, after the argument-slots using helper: CFunctionArgumentOperand().
1214 // The argument count assumes all arguments are word sized.
1215 // Some compilers/platforms require the stack to be aligned when calling
1217 // Needs a scratch register to do some arithmetic. This register will be
1219 void PrepareCallCFunction(int num_reg_arguments,
1220 int num_double_registers,
1222 void PrepareCallCFunction(int num_reg_arguments,
1225 // Arguments 1-4 are placed in registers a0 thru a3 respectively.
1226 // Arguments 5..n are stored to stack using following:
1227 // sw(t0, CFunctionArgumentOperand(5));
1229 // Calls a C function and cleans up the space for arguments allocated
1230 // by PrepareCallCFunction. The called function is not allowed to trigger a
1231 // garbage collection, since that might move the code and invalidate the
1232 // return address (unless this is somehow accounted for by the called
1234 void CallCFunction(ExternalReference function, int num_arguments);
1235 void CallCFunction(Register function, int num_arguments);
1236 void CallCFunction(ExternalReference function,
1237 int num_reg_arguments,
1238 int num_double_arguments);
1239 void CallCFunction(Register function,
1240 int num_reg_arguments,
1241 int num_double_arguments);
1242 void MovFromFloatResult(DoubleRegister dst);
1243 void MovFromFloatParameter(DoubleRegister dst);
1245 // There are two ways of passing double arguments on MIPS, depending on
1246 // whether soft or hard floating point ABI is used. These functions
1247 // abstract parameter passing for the three different ways we call
1248 // C functions from generated code.
1249 void MovToFloatParameter(DoubleRegister src);
1250 void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
1251 void MovToFloatResult(DoubleRegister src);
1253 // Calls an API function. Allocates HandleScope, extracts returned value
1254 // from handle and propagates exceptions. Restores context. stack_space
1255 // - space to be unwound on exit (includes the call JS arguments space and
1256 // the additional space allocated for the fast call).
1257 void CallApiFunctionAndReturn(Register function_address,
1258 ExternalReference thunk_ref,
1260 MemOperand return_value_operand,
1261 MemOperand* context_restore_operand);
1263 // Jump to the builtin routine.
1264 void JumpToExternalReference(const ExternalReference& builtin,
1265 BranchDelaySlot bd = PROTECT);
1267 // Invoke specified builtin JavaScript function. Adds an entry to
1268 // the unresolved list if the name does not resolve.
1269 void InvokeBuiltin(Builtins::JavaScript id,
1271 const CallWrapper& call_wrapper = NullCallWrapper());
1273 // Store the code object for the given builtin in the target register and
1274 // setup the function in a1.
1275 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
1277 // Store the function for the given builtin in the target register.
1278 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
1282 uint32_t flags; // See Bootstrapper::FixupFlags decoders/encoders.
1286 Handle<Object> CodeObject() {
1287 ASSERT(!code_object_.is_null());
1288 return code_object_;
1291 // Emit code for a truncating division by a constant. The dividend register is
1292 // unchanged and at gets clobbered. Dividend and result must be different.
1293 void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1295 // -------------------------------------------------------------------------
1296 // StatsCounter support.
1298 void SetCounter(StatsCounter* counter, int value,
1299 Register scratch1, Register scratch2);
1300 void IncrementCounter(StatsCounter* counter, int value,
1301 Register scratch1, Register scratch2);
1302 void DecrementCounter(StatsCounter* counter, int value,
1303 Register scratch1, Register scratch2);
1306 // -------------------------------------------------------------------------
1309 // Calls Abort(msg) if the condition cc is not satisfied.
1310 // Use --debug_code to enable.
1311 void Assert(Condition cc, BailoutReason reason, Register rs, Operand rt);
1312 void AssertFastElements(Register elements);
1314 // Like Assert(), but always enabled.
1315 void Check(Condition cc, BailoutReason reason, Register rs, Operand rt);
1317 // Print a message to stdout and abort execution.
1318 void Abort(BailoutReason msg);
1320 // Verify restrictions about code generated in stubs.
1321 void set_generating_stub(bool value) { generating_stub_ = value; }
1322 bool generating_stub() { return generating_stub_; }
1323 void set_has_frame(bool value) { has_frame_ = value; }
1324 bool has_frame() { return has_frame_; }
1325 inline bool AllowThisStubCall(CodeStub* stub);
1327 // ---------------------------------------------------------------------------
1328 // Number utilities.
1330 // Check whether the value of reg is a power of two and not zero. If not
1331 // control continues at the label not_power_of_two. If reg is a power of two
1332 // the register scratch contains the value of (reg - 1) when control falls
1334 void JumpIfNotPowerOfTwoOrZero(Register reg,
1336 Label* not_power_of_two_or_zero);
1338 // -------------------------------------------------------------------------
1341 void SmiTag(Register reg) {
1342 Addu(reg, reg, reg);
1345 // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
1346 void SmiTagCheckOverflow(Register reg, Register overflow);
1347 void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
1349 void SmiTag(Register dst, Register src) {
1350 Addu(dst, src, src);
1353 // Try to convert int32 to smi. If the value is to large, preserve
1354 // the original value and jump to not_a_smi. Destroys scratch and
1356 void TrySmiTag(Register reg, Register scratch, Label* not_a_smi) {
1357 TrySmiTag(reg, reg, scratch, not_a_smi);
1359 void TrySmiTag(Register dst,
1363 SmiTagCheckOverflow(at, src, scratch);
1364 BranchOnOverflow(not_a_smi, scratch);
1368 void SmiUntag(Register reg) {
1369 sra(reg, reg, kSmiTagSize);
1372 void SmiUntag(Register dst, Register src) {
1373 sra(dst, src, kSmiTagSize);
1376 // Test if the register contains a smi.
1377 inline void SmiTst(Register value, Register scratch) {
1378 And(scratch, value, Operand(kSmiTagMask));
1380 inline void NonNegativeSmiTst(Register value, Register scratch) {
1381 And(scratch, value, Operand(kSmiTagMask | kSmiSignMask));
1384 // Untag the source value into destination and jump if source is a smi.
1385 // Souce and destination can be the same register.
1386 void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1388 // Untag the source value into destination and jump if source is not a smi.
1389 // Souce and destination can be the same register.
1390 void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1392 // Jump the register contains a smi.
1393 void JumpIfSmi(Register value,
1395 Register scratch = at,
1396 BranchDelaySlot bd = PROTECT);
1398 // Jump if the register contains a non-smi.
1399 void JumpIfNotSmi(Register value,
1400 Label* not_smi_label,
1401 Register scratch = at,
1402 BranchDelaySlot bd = PROTECT);
1404 // Jump if either of the registers contain a non-smi.
1405 void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1406 // Jump if either of the registers contain a smi.
1407 void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1409 // Abort execution if argument is a smi, enabled via --debug-code.
1410 void AssertNotSmi(Register object);
1411 void AssertSmi(Register object);
1413 // Abort execution if argument is not a string, enabled via --debug-code.
1414 void AssertString(Register object);
1416 // Abort execution if argument is not a name, enabled via --debug-code.
1417 void AssertName(Register object);
1419 // Abort execution if argument is not undefined or an AllocationSite, enabled
1420 // via --debug-code.
1421 void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1423 // Abort execution if reg is not the root value with the given index,
1424 // enabled via --debug-code.
1425 void AssertIsRoot(Register reg, Heap::RootListIndex index);
1427 // ---------------------------------------------------------------------------
1428 // HeapNumber utilities.
1430 void JumpIfNotHeapNumber(Register object,
1431 Register heap_number_map,
1433 Label* on_not_heap_number);
1435 // -------------------------------------------------------------------------
1436 // String utilities.
1438 // Generate code to do a lookup in the number string cache. If the number in
1439 // the register object is found in the cache the generated code falls through
1440 // with the result in the result register. The object and the result register
1441 // can be the same. If the number is not found in the cache the code jumps to
1442 // the label not_found with only the content of register object unchanged.
1443 void LookupNumberStringCache(Register object,
1450 // Checks if both instance types are sequential ASCII strings and jumps to
1451 // label if either is not.
1452 void JumpIfBothInstanceTypesAreNotSequentialAscii(
1453 Register first_object_instance_type,
1454 Register second_object_instance_type,
1459 // Check if instance type is sequential ASCII string and jump to label if
1461 void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
1465 void JumpIfNotUniqueName(Register reg, Label* not_unique_name);
1467 void EmitSeqStringSetCharCheck(Register string,
1471 uint32_t encoding_mask);
1473 // Test that both first and second are sequential ASCII strings.
1474 // Assume that they are non-smis.
1475 void JumpIfNonSmisNotBothSequentialAsciiStrings(Register first,
1481 // Test that both first and second are sequential ASCII strings.
1482 // Check that they are non-smis.
1483 void JumpIfNotBothSequentialAsciiStrings(Register first,
1489 void ClampUint8(Register output_reg, Register input_reg);
1491 void ClampDoubleToUint8(Register result_reg,
1492 DoubleRegister input_reg,
1493 DoubleRegister temp_double_reg);
1496 void LoadInstanceDescriptors(Register map, Register descriptors);
1497 void EnumLength(Register dst, Register map);
1498 void NumberOfOwnDescriptors(Register dst, Register map);
1500 template<typename Field>
1501 void DecodeField(Register dst, Register src) {
1502 Ext(dst, src, Field::kShift, Field::kSize);
1505 template<typename Field>
1506 void DecodeField(Register reg) {
1507 DecodeField<Field>(reg, reg);
1510 template<typename Field>
1511 void DecodeFieldToSmi(Register dst, Register src) {
1512 static const int shift = Field::kShift;
1513 static const int mask = Field::kMask >> shift << kSmiTagSize;
1514 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1515 STATIC_ASSERT(kSmiTag == 0);
1516 if (shift < kSmiTagSize) {
1517 sll(dst, src, kSmiTagSize - shift);
1518 And(dst, dst, Operand(mask));
1519 } else if (shift > kSmiTagSize) {
1520 srl(dst, src, shift - kSmiTagSize);
1521 And(dst, dst, Operand(mask));
1523 And(dst, src, Operand(mask));
1527 template<typename Field>
1528 void DecodeFieldToSmi(Register reg) {
1529 DecodeField<Field>(reg, reg);
1532 // Generates function and stub prologue code.
1533 void StubPrologue();
1534 void Prologue(bool code_pre_aging);
1536 // Activation support.
1537 void EnterFrame(StackFrame::Type type);
1538 void LeaveFrame(StackFrame::Type type);
1540 // Patch the relocated value (lui/ori pair).
1541 void PatchRelocatedValue(Register li_location,
1543 Register new_value);
1544 // Get the relocatad value (loaded data) from the lui/ori pair.
1545 void GetRelocatedValue(Register li_location,
1549 // Expects object in a0 and returns map with validated enum cache
1550 // in a0. Assumes that any other register can be used as a scratch.
1551 void CheckEnumCache(Register null_value, Label* call_runtime);
1553 // AllocationMemento support. Arrays may have an associated
1554 // AllocationMemento object that can be checked for in order to pretransition
1556 // On entry, receiver_reg should point to the array object.
1557 // scratch_reg gets clobbered.
1558 // If allocation info is present, jump to allocation_memento_present.
1559 void TestJSArrayForAllocationMemento(
1560 Register receiver_reg,
1561 Register scratch_reg,
1562 Label* no_memento_found,
1563 Condition cond = al,
1564 Label* allocation_memento_present = NULL);
1566 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1567 Register scratch_reg,
1568 Label* memento_found) {
1569 Label no_memento_found;
1570 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1571 &no_memento_found, eq, memento_found);
1572 bind(&no_memento_found);
1575 // Jumps to found label if a prototype map has dictionary elements.
1576 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1577 Register scratch1, Label* found);
1580 void CallCFunctionHelper(Register function,
1581 int num_reg_arguments,
1582 int num_double_arguments);
1584 void BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot = PROTECT);
1585 void BranchAndLinkShort(int16_t offset, Condition cond, Register rs,
1587 BranchDelaySlot bdslot = PROTECT);
1588 void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
1589 void BranchAndLinkShort(Label* L, Condition cond, Register rs,
1591 BranchDelaySlot bdslot = PROTECT);
1592 void J(Label* L, BranchDelaySlot bdslot);
1593 void Jr(Label* L, BranchDelaySlot bdslot);
1594 void Jalr(Label* L, BranchDelaySlot bdslot);
1596 // Helper functions for generating invokes.
1597 void InvokePrologue(const ParameterCount& expected,
1598 const ParameterCount& actual,
1599 Handle<Code> code_constant,
1602 bool* definitely_mismatches,
1604 const CallWrapper& call_wrapper);
1606 // Get the code for the given builtin. Returns if able to resolve
1607 // the function in the 'resolved' flag.
1608 Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
1610 void InitializeNewString(Register string,
1612 Heap::RootListIndex map_index,
1616 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1617 void InNewSpace(Register object,
1619 Condition cond, // eq for new space, ne otherwise.
1622 // Helper for finding the mark bits for an address. Afterwards, the
1623 // bitmap register points at the word with the mark bits and the mask
1624 // the position of the first bit. Leaves addr_reg unchanged.
1625 inline void GetMarkBits(Register addr_reg,
1626 Register bitmap_reg,
1629 // Helper for throwing exceptions. Compute a handler address and jump to
1630 // it. See the implementation for register usage.
1631 void JumpToHandlerEntry();
1633 // Compute memory operands for safepoint stack slots.
1634 static int SafepointRegisterStackIndex(int reg_code);
1635 MemOperand SafepointRegisterSlot(Register reg);
1636 MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1638 bool generating_stub_;
1640 // This handle will be patched with the code object on installation.
1641 Handle<Object> code_object_;
1643 // Needs access to SafepointRegisterStackIndex for compiled frame
1645 friend class StandardFrame;
1649 // The code patcher is used to patch (typically) small parts of code e.g. for
1650 // debugging and other types of instrumentation. When using the code patcher
1651 // the exact number of bytes specified must be emitted. It is not legal to emit
1652 // relocation information. If any of these constraints are violated it causes
1653 // an assertion to fail.
1661 CodePatcher(byte* address,
1663 FlushICache flush_cache = FLUSH);
1664 virtual ~CodePatcher();
1666 // Macro assembler to emit code.
1667 MacroAssembler* masm() { return &masm_; }
1669 // Emit an instruction directly.
1670 void Emit(Instr instr);
1672 // Emit an address directly.
1673 void Emit(Address addr);
1675 // Change the condition part of an instruction leaving the rest of the current
1676 // instruction unchanged.
1677 void ChangeBranchCondition(Condition cond);
1680 byte* address_; // The address of the code being patched.
1681 int size_; // Number of bytes of the expected patch size.
1682 MacroAssembler masm_; // Macro assembler used to generate the code.
1683 FlushICache flush_cache_; // Whether to flush the I cache after patching.
1688 #ifdef GENERATED_CODE_COVERAGE
1689 #define CODE_COVERAGE_STRINGIFY(x) #x
1690 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1691 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1692 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
1694 #define ACCESS_MASM(masm) masm->
1697 } } // namespace v8::internal
1699 #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_